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Abstract: Recent works have focused the analysis of chaotic phenomena in fractional discrete memris-
tor. However, most of the papers have been related to simulated results on the system dynamics rather
than on their hardware implementations. This work reports the implementation of a new chaotic
fractional memristor map with “hidden attractors”. The fractional memristor map is developed
based on a memristive map by using the Grunwald–Letnikov difference operator. The fractional
memristor map has flexible fixed points depending on a system’s parameters. We study system
dynamics for different values of the fractional orders by using bifurcation diagrams, phase portraits,
Lyapunov exponents, and the 0–1 test. We see that the fractional map generates rich dynamical
behavior, including coexisting hidden dynamics and initial offset boosting.
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1. Introduction

While the concept of non-integer order derivative dates back to 1695, discrete fractional
calculus was introduced about fifty years ago [1]. Namely, fractional difference equations
were derived for the first time in 1974 via the discretization of continuous-time operators [2].
By virtue of the great attention recently received by discrete fractional calculus, several
difference operators have been proposed in the literature, including the Grunwald–Letnikov
difference operator [3].

Since the discovery of chaos, various works have been made to deeply analyze the
dynamics of classical systems and fractional systems [4,5]. Referring to the latter, several
papers have been published on the study of chaotic behaviors in nonlinear maps described
by difference equations of fractional order [6,7]. Based on the Caputo-left difference
operator, Wu et al. [8] have introduced a fractional logistic map where the chaotic behavior
was investigated. In [9], a simple one-dimensional fractional map with chaotic attractors
and quasi-periodic behaviors is proposed. Khennaoui et al. [10] further proved the existence
of chaotic attractors in three fractional maps. In the same year, Peng et al. [11] reported the
dynamic behavior of a higher dimensional fractional order chaotic map, whereas in [12], the
authors have investigated a fractional order higher-dimensional multicavity chaotic map.
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Recently, Lu et al. have investigated the dynamics of a fractional order memristor-based
Rulkov neuron map [13]. On the other hand, the chaos and stability of the fractional-order
discrete COVID-19 pandemic model is reported in [14]. In addition, there are many studies
in the literature that investigate some special phenomena such as hidden attractors as
well as coexistence attractors in fractional-order maps. Chaos on a novel fractional map
with an infinite number of fixed points is investigated in [15]. In [16], the behavior of a
fractional-order discrete Bonhoeffer-van der Pol oscillator is illustrated. The map highlights
the coexistence of different types of attractors, including quasi-periodical and periodic
attractors, as well as chaotic and hyperchaotic attractors. Moreover, Almatroud et al. [17]
demonstrated the hidden extrem multistability in a novel 2D fractional-order chaotic map.
In recent years, memristive maps have been proposed. In [18], the dynamic properties of a
novel discrete memristive logistic map have been illustrated, while a memristive map with
hyperchaotic was introduced in [19].

In this study, a new fractional memristive map with infinite fixed points and no
fixed points is constructed using the Grunwald–Letnikov operator. This new fractional
memristive map possess not only hidden attractors but also coexisting attractors. The hid-
den attractors are numerically analyzed by bifurcation diagrams, phase portraits, and the
0–1 test. Moreover, the initial boosting phenomena is investigated in the proposed map.
Furthermore, a microcontroller is used to realize in hardware the proposed 2D fractional
map. The experimental results clearly show the presence of chaotic hidden attractors,
indicating that the approach developed herein is sound .

2. General Model

We consider the memristive map{
x(k + 1) = a1 sin(a2 cos(y(k))x(k)) + a3,
y(k + 1) = y(k) + x(k),

(1)

where a1, a2, a3 are bifurcation parameters. This map has been recently introduced in [20].
Fixed points in the map (1) are calculated by:{

x = a1 sin(a2 cos(y)x) + a3,
y = y + x.

(2)

By solving Equation (2), we derive the following two cases:

Cas 1 . When a3 = 0, the fixed points of system (1) in this case are given by S = (0, θ),
where θ is an arbitrary value depending on the memristor initial state. This implies
that the the memristor map (1) has infinite fixed points.
The Jacobian matrix at set S = (0, θ) can be expressed as:

J =
(

a1a2 cos(θ) 0
1 1

)
. (3)

The characteristic roots of map (1) in this case are λ1 = 1 and λ2 = a1a2 cos(θ).
The fixed points S are stable if the eigenvalues λ1 and λ2 satisfy |λi| < 1, ∀i = 1, 2.
Since there is a real root |λ1| = 1, we can not determine the stability of line
equilibrium points S, but it can determined by the numerical results.

Cas 2 . When a3 6= 0, Equation (2) has no real solution, demonstrating that the memristor
map has no fixed point.

Based on the definition in [21], all strange attractors generated by a chaotic system
with no fixed point or with infinite fixed points are regarded as hidden attractors since the
bassin of attraction does not not intersect with small neighbourhoods of any fixed points.
That is to say that all the chaotic attractors generated by the memristor map (1) are hidden
attractors. On the other hand, the memristor map is invariant under the transformation
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(x, y) to (−x,−y) for a3 = 0, i.e., if (x, y) is a solution of the memristor map then (−x,−y)
is a solution, which indicates that the integer-order map is symmetric with respect to the
origin. This exact symmetry could serve to justify the appearance of multiple coexisting
hidden attractors.

3. Fractional Model

Among the difference operators that have been defined in discrete fractional calculus,
this paper focus on the Grunwald–Letnikov operator [22]:

∆αy(n) =
1
hα

1

∑
j=0

(
α
j

)
y(n− j), (4)

where 0 < α ≤ 1 is the fractional order; the positive number h ∈]0,+∞[ is the sampling

time; and
(

α
j

)
is the binomial coefficient, which is defined as α(α−1)...(α−j+1)

j! for j > 0.

Considering an original discrete system

y(n + 1) = g(y(n)), (5)

where g(y(n)) is the nonlinear term and y ∈ R2 is the two-dimensional state vector. To
achieve our goal, the first-order difference equation is given first

∆yn = g(y(n))− y(n). (6)

By applying the Grunwald–Letnikov operator, the fractional form of Equation (6)
becomes

∆αyn = g(y(n))− y(n). (7)

Moreover, according to definition (4), Equation (7) can be rewritten as

∆αyn = y(n + 1)− αy(n) +
n+1

∑
j=2

(−1)j
(

α
j

)
y(n− j + 1). (8)

For simplicity, we denote p = j− 1, and we substitute Equation (12) into Equation (7)
so that we obtain [23]:

y(n + 1) = g(y(n)) + (µ− 1)y(n) +
n

∑
p=1

βpy(n− p), (9)

where the binomial coefficient βp is calculated by the following recursive formula

β0 = −µ, βp =

(
1− 1 + α

p + 1

)
βp−1. (10)

It is reported that the value of βp decreases when the iteration p increases, regardless
of the value of order α [24]. Consequently, in order to avoid computational inefficiency
and large data storage, it is possible to exploit a finite truncation to study a fractional
map. By indicating with L the truncation length and by taking into account the binomial
coefficients, Equation (9) becomes [23]:

y(n + 1) = g(y(n)) + (µ− 1)y(n) +
L

∑
p=1

βpy(n− p). (11)

By considering a trade-off between the computation complexity and the approximate
error, herein L = 20 is selected, as suggested in reference [24]. By applying Equation (11) to
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the integer-order map (1), the following fractional order version based on the Grunwald–
Letnikov discrete operator (4) is obtained:{

x(n + 1) = a1 sin(a2 cos(y(k))x(k)) + a3 + (α1 − 1)x(n)−∑L
p=1 βp1 x(n− p),

y(n + 1) = y(n) + x(n) + (α2 − 1)y(n)−∑L
p=1 βp2 y(n− p),

(12)

where α1, α2 are the fractional orders and a1, a2, a3 are constant parameters. For a1 = 2.6,
a2 = 1.1, a3 = 0.001, (x(0), y(0)) = (1, 2), and α1 = α2 = 0.98, the fractional map generates
strange attractors, as shown in Figure 1a. Figure 1b shows the translation components
p− q using the 0–1 test [25], in which a Brownian-like (unbounded) trajectory is found,
indicating the occurrence of a hidden chaotic attractor. Correspondingly, the maximum
Lyapunov exponents are calculated as λ1 = 0.3, which confirm the results.

Figure 1. Chaos in the fractional memristive map for the fractional order α1 = α2 = 0.98 and system
parameter a1 = 2.6, a2 = 1.1, and a3 = 0.001. (a) Iterative plot, (b) 0–1 test.

4. Dynamical Analysis of the Fractional Order Map

The effect of the fractional order and system parameters of the hidden dynamics of
the proposed fractional map are discussed. In the process of numerical analysis, the system
parameters are fixed where they satisfy the condition a3 6= 0 or a3 = 0 so that the attractors
of these 2D fractional map are hidden.

4.1. Case 1 for a3 = 0

Firstly, we set a1 as the bifurcation parameter and the system parameters are chosen
as a2 = 1.1, a3 = 0, with fractional order α = α1 = α2 = 0.99. The bifurcation diagram
and Lyapunov exponents are derived and shown in Figure 2a,b, respectively. Note that
the blue diagram is obtained for the initial condition (IC) (1, 2), while the red diagram
is obtained for (−1,−2). It can be seen that the fractional map shows the phenomena of
coexistence hidden attractors in the chaotic and periodic interval. Moreover, the fractional
memristor map (12) produces complex dynamical behavior under different bifurcation
parameter values, where tangent bifurcation, chaos crisis, period-doubling bifurcation, and
reverse-period-doubling bifurcation are included. When the bifurcation parameter a1 is
increased in [−2.78,−2.35], it can be seen from the bifurcation diagram in Figure 2a that
the states of the system start from chaos and go into periodic windows via the tangent
bifurcation route. When a1 is further increased, the fractional memrtistor map (12) evolves
from a periodic to a chaotic state via the period-doubling route.
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Figure 2. (a) Bifurcation diagram and (b) Lyapunov exponents of the fractional memristor map (12)
with infinite fixed points for order α = 0.99 and system parameter a2 = 1.1, a3 = 0 and ICs (1, 2) and
(−1,−2).

Without a loss of generality, the hidden attractors at several fractional orders corre-
sponding to Figure 2 are shown in Figure 3a,c,e,g. Figure 3b,d,f,h, gives the p− q chaotic
dynamics in which the Brownian-like dynamics are a significant occurrence of the chaotic
behaviors . The red and blue trajectories stand for the ICs (1, 2) and (−1,−2), respectively.

4.2. Case 2 for a3 6= 0

Considering that the system parameter and the initial condition of the 2D fractional
memristor map are taken as a1 = 2.1, a2 = 0.8, and IC (1, 2) (blue diagram), IC (−1,−2)
(red diagram), the coexistence of the bifurcation diagrams versus a3 of the system for
fractional-order values α = 0.98, α = 0.85, α = 0.8, α = 0.75 are plotted in Figure 4a–c, and
Figure 4d, respectively. Different dynamical behaviors, including the chaos, period, and
period-doubling routes, and multiple coexisting attractors, can be detected . For α = 0.98,
it can be seen from Figure 4a that the fractional memristor map presents periodic behavior
around a3 ∈ (−0.6, 0.6). When α = 0.85, the fractional map is in a chaotic state and
eventually goes into a periodic state via reverse period-doubling bifurcation. In the in-
terval a3 ∈ [−0.126, 0.142], a four-period attractor is observed. As a3 is further increased,
the motion trajectories starting from both initial conditions evolve from periodic to chaos
via period-doubling bifurcation. The bifurcation diagram corresponding to the fractional
order α = 0.8 is shown in in Figure 4c. Basically, when a3 ∈ [−0.882,−0.4] the states
of the fractional map goes from chaos to periodic attractors via reverse period-doubling
bifurcation. However, when a3 ∈ [−0.4, 0.4] the attraction domain of the two attractors
are significantly different, where two different types of coexisting attractors are obtained.
For example, the state starting from IC (−1,−2) (red diagram) shows the period-doubling
route to chaos, and then at a3 = 0.4 it jumps into the periodic state. However, the motion
trajectories of the IC (1, 2) jump into the chaotic state at a3 = −0.4 and eventually return to
the periodic state via inverse period bifurcation. For a3 > 0.4, a period-doubling route to
chaos is observed for both initial conditions. On decreasing the fractional order α to 0.75,
the bifurcation diagram is provided in Figure 4d. The bifurcation diagram in this case is
similar to the one in Figure 4c, where more periodic behavior is observed.
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Figure 3. Hidden coexisting chaotic attractors and Brownian-like dynamics of the fractional memristor
map (12) with infinite fixed points for ICs (1, 2) and (−1,−2) for fractional order α = 0.99 and system
parameters a2 = 1.1, a3 = 0.001: (a,b) a1 = −2.75; (c,d) a1 = −2.5; (e,f) a1 = 2.4; and (g,h) a1 = 2.4.
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(a) (b)

(c) (d)

Figure 4. Bifurcation diagrams versus a3 of the fractional memristor map (12) with no fixed points for
a2 = 0.8, a1 = 2.1, ICs (1, 2) and (−1,−2); and fore fractional-order values: (a) α = 0.98, (b) α = 0.85,
(c) α = 0.8, and (d) α = 0.75.

In addition, the fractional order α = (α1, α2) is considered as bifurcation parameter,
and the bifurcation diagrams are derived as shown in Figure 5. Note that the blue diagrams
are obtained for the IC (1, 2) and system parameters a1 = 2.1, a2 = 0.8, a3 = 0.3, while the
red diagram is obtained for IC (−1,−2). It is observed that the new system produces more
complex dynamics than the integer-order map (1). In particular, for the corresponding
integer-order value α = 1 the fractional map is periodic; however, it becomes chaotic
as the fractional-order value decreases, which indicates that the dynamic characteristic
of the system is more complex. Moreover, the ICs have the same bifurcation behavior
after entering the chaotic state via the inverse period bifurcation, but the red diagram lags
behind the blue diagram. Finally, the fractional memristor map returns to the periodic state
via the internal recovering crisis. The above numerical simulations demonstrate that the
fractional memristor map with hidden attractors and under the Grunwald operator can
describe the coexisting multiple phenomena [26–28].
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Figure 5. Coexisting multiple bifurcation diagram versus α for a1 = 2.1, a2 = 0.8, a3 = 0.3, where the
blue diagram is for IC (1, 2) and the red diagram for (−1,−2).

5. Initial Offset Boosting

In order to show the complex dynamics of the fractional memristor (1), the bifur-
cation diagrams and phase portraits are ploted by changing the IC y with 2π period
y(0) = 2 + 2nπ with fixed order α = 0.99 where n = 1, 2, 3, 4. Figure 6 illustrates the
bifurcation diagrams of system (12) when a2 = 1.1, a3 = 0.001.

By fixing a1 = 2.6, a2 = 1.1, a3 = 0.001 and varying α = 0.99, the attractors are
displayed in Figure 7 for y(0) = 2 + 2nπ, where n = 1, 2, 3, 4. Clearly, all these hidden
chaotic attractors have the same shape as the regime of homogenous multistability 2π.

Figure 6. Offset boosting of the map (12) when changing initial condition y(0) for x(0) = 1 and
α = 0.99 (a1 in [−2.8, 2.8] and a2 = 1.1, a3 = 0.001).
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Figure 7. Hidden chaotic attractors for a1 = 2.6, a2 = 1.1, a3 = 0.001 with y0 = 2 + 2π (blue),
y0 = 2 + 4π (red), and y0 = 2 + 6π (green), y0 = 2 + 8π (magenta).

6. Realization of the Fractional Order Map

The map has been implemented by using the Equation (12). We have considered
the trade-off between the computation complexity, the approximate error, and the limit
resource of the hardware platform [29]. The truncation length L is 20. We have used the
Arduino Uno board with an ATmega328P microcontroller. The microcontroller board is
connected to a laptop via a USB cable (please see Figure 8). We realized the proposed map
for the case a1 = 2.6, a2 = 1.1, a3 = 0.001, (x(0), y(0)) = (1, 2), α1 = α2 = 0.98. Obtained
signals are recorded and captured from the micro-controller. The experimental result in
Figure 9 confirms chaos in the map. It is noted that the state y of the map has both positive
and negative values based on the selected initial condition. We have implemented the
map with the initial condition (1,2). Therefore, the experimental result matches with the
numerical result in Figure 1a, where the value of the state y is positive.

Figure 8. The setup of the microcontroller.
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Figure 9. Experimental result indicates chaos.

7. Conclusions

In this paper, a fractional memristor map with hidden chaotic attractors is proposed.
Under the different system parameter a3, the fractional memristor map has either infinite
fixed points or no fixed points. The map’s dynamic is verified by the bifurcation diagram,
the Lyapunov exponents, the phase diagram, and the 0–1 test. It is found that there are
many types of coexisting attractors in the fractional map. By further analysis, it is found that
the fractional map generates multiple coexisting hidden attractors. Then, a microcontroller
has been used to implement in hardware the conceived 2D fractional map.
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