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Abstract: From 1990 to 2024, this study presents a groundbreaking bibliometric and sentiment
analysis of nanocomposite literature, distinguishing itself from existing reviews through its unique
computational methodology. Developed by our research group, this novel approach systematically
investigates the evolution of nanocomposites, focusing on microstructural characterization, electrical
properties, and mechanical behaviors. By deploying advanced Boolean search strategies within the
Scopus database, we achieve a meticulous extraction and in-depth exploration of thematic content, a
methodological advancement in the field. Our analysis uniquely identifies critical trends and insights
concerning nanocomposite microstructure, electrical attributes, and mechanical performance. The
paper goes beyond traditional textual analytics and bibliometric evaluation, offering new interpre-
tations of data and highlighting significant collaborative efforts and influential studies within the
nanocomposite domain. Our findings uncover the evolution of research language, thematic shifts,
and global contributions, providing a distinct and comprehensive view of the dynamic evolution
of nanocomposite research. A critical component of this study is the “State-of-the-Art and Gaps
Extracted from Results and Discussions” section, which delves into the latest advancements in
nanocomposite research. This section details various nanocomposite types and their properties and
introduces novel interpretations of their applications, especially in nanocomposite films. By tracing
historical progress and identifying emerging trends, this analysis emphasizes the significance of
collaboration and influential studies in molding the field. Moreover, the “Literature Review Guided
by Artificial Intelligence” section showcases an innovative AI-guided approach to nanocomposite
research, a first in this domain. Focusing on articles from 2023, selected based on citation frequency,
this method offers a new perspective on the interplay between nanocomposites and their electrical
properties. It highlights the composition, structure, and functionality of various systems, integrating
recent findings for a comprehensive overview of current knowledge. The sentiment analysis, with an
average score of 0.638771, reflects a positive trend in academic discourse and an increasing recogni-
tion of the potential of nanocomposites. Our bibliometric analysis, another methodological novelty,
maps the intellectual domain, emphasizing pivotal research themes and the influence of crosslink-
ing time on nanocomposite attributes. While acknowledging its limitations, this study exemplifies
the indispensable role of our innovative computational tools in synthesizing and understanding
the extensive body of nanocomposite literature. This work not only elucidates prevailing trends
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but also contributes a unique perspective and novel insights, enhancing our understanding of the
nanocomposite research field.

Keywords: nanocomposites; bibliometric analysis; sentiment analysis; microstructural characteriza-
tion; computational methodologies; Scopus database; Boolean search; crosslinking time

1. Introduction

Nanocomposites have become a central focus of scientific inquiry, extending their
influence across various sectors, evidenced by the significant research contributions of
several authors [1–5] and others, highlighting the transformative potential of these materials.
The works of Andritsch [6] and Faulkner [7], among others, have been instrumental
in showcasing how advanced manufacturing techniques are crucial for optimizing the
performance and functionality of nanocomposites, emphasizing the need to improve
processing methods for better structural integrity and interfacial adhesion [6,8–10].

A critical area of this research involves the integration of diverse nanofillers, such as
carbon nanotubes (CNTs) [11], graphene oxide (GO) [12,13], silica nanoparticles [14,15],
and various metal oxides [16,17], into polymer matrices [18–43]. This integration is vital in
enhancing the performance of composite materials. The study of nanocellulose composites,
in particular, has unveiled their exceptional properties, including strength, renewability,
and lightness [44–46]. The exploration of new nanofillers and their incorporation into
polymers, demonstrated by researchers like Fu et al. [4] and Tian et al. [47], has pushed
the boundaries of nanocomposite technology. Moreover, understanding the dispersion of
nanocomposites and its effect on material properties offers deep insights, facilitating the
development of predictive tools and optimization strategies [48–51].

The exploration of the nanoscopic world has brought nanocomposites to the forefront
of research, signifying a breakthrough in multiple domains, including environmental re-
covery [23,34,52–70], electronics [71–81], energy storage [82–101], and healthcare [102–120].
These nanocomposites, which are composed of diverse materials such as metals, ceramics,
and polymers, exemplify the capability to tailor-make materials with specific attributes for
a broad range of uses [121–124].

However, the development of nanomaterials faces considerable challenges. Enhancing
mechanical [22,36,40,41,60,67,70,125–161], electrical [21,27,30–32,35,42,55,59,120,160–203],
and microstructural [19,53,63,68,118,204–230] attributes in nanocomposites requires pre-
cise nanoscale manipulation. This is coupled with issues like reproducibility, cost, and
complexity in preparation, adding to the intricacies of nanomaterial research [231–250]. As
nanotechnology evolves, addressing these technical and ethical issues [251–276] is crucial
for maximizing the potential of nanomaterials and ensuring their responsible application
in various fields [277–280].

The advancement of nanomaterials can be expedited by leveraging data mining, an
essential tool in scientific research, given the vast and complex data generated. This process
is crucial for the progression of nanomaterials [281–286].

Incorporating data mining into nanomaterials research aids in identifying new pat-
terns, trends, and relationships in extensive datasets [287–299]. This is key to discovering
novel properties of nanomaterials, predicting material behaviors, and guiding the creation
of new nanocomposites with desired characteristics. Data mining also helps map the
research landscape in nanomaterials, pinpointing knowledge gaps and suggesting potential
areas for further research [216,217,300–302].

Nevertheless, data mining brings forth significant concerns, including privacy and
security. In this significant data era, maintaining confidentiality and data integrity is vital
for the credibility of scientific research. Ethical issues and potential biases in data mining
processes also need attention, as biases in data handling can lead to skewed and unjust
outcomes [303–309].
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Furthermore, the interpretability and transparency of data mining results are crucial
for building trust among stakeholders and understanding complex data analyses. The chal-
lenges of data quality and preprocessing are also significant, as inadequate data handling
can significantly impact data mining outcomes [310–316].

Machine learning (ML) is becoming a critical tool in various fields of nanomateri-
als research, such as nanoindentation [317–328], nanorobotics [329–334], and nanosen-
sor [335–340] development. Its ability to analyze and interpret complex patterns from
large datasets is particularly beneficial in advancing areas like nanostructured materials
analysis, nanoscale manufacturing processes, and the development of nanotechnology
applications in medicine and environmental monitoring [327,341–404]. Employing un-
supervised ML techniques on databases like Scopus, Web of Science, Scielo, and Google
Scholar can substantially contribute to nanomaterials research [354,405–436]. These tech-
niques autonomously analyze large volumes of unstructured data, identifying hidden
patterns and correlations essential for uncovering new material properties, understand-
ing nanoscale interactions, and predicting material behaviors [140]. This facilitates the
synthesis of novel nanocomposites and the optimization of their properties for diverse
applications [425,437–439].

This paper conducts a systematic and comprehensive review of the nanocomposite
research landscape, focusing on microstructure, electrical properties, and mechanical be-
havior. It utilizes insights from the Scopus database, combining textual and bibliometric
analysis to provide a detailed overview of the research field.

Given the immense complexity and volume of data from sources like Scopus, tradi-
tional analytical methods often fall short. Thus, this study employs computational tools,
including data mining and ML techniques like Boolean searches and Latent Dirichlet Al-
location (LDA) [419,440], to navigate and interpret the vast data effectively, revealing key
themes in nanocomposite research.

The research landscape is refined using network graph methodologies to identify
key research nodes and their interconnections [31,120,140,215,217,218,301,302,441–451],
spotlighting pivotal works and active research clusters, especially in emerging research
hubs like the United States, China, and India.

Advanced textual analysis, akin to platforms like Voyant Tools but customized for
this study, uses natural language processing (NLP) to dissect academic content meticu-
lously [452–464]. This aligns with the core themes of microstructural characterization,
electrical dynamics, and mechanical complexities in nanocomposites.

This study incorporates a detailed bibliometric analysis, mapping the pivotal contribu-
tions and key thought leaders in nanocomposites. This comprehensive approach provides
an in-depth understanding of the foundational aspects of the field. It anticipates emerging
trends, such as incorporating machine learning (ML) and Artificial Intelligence (AI) in
designing and optimizing nanocomposites.

The research highlights critical areas that require further investigation, including as-
pects related to nanocomposites’ durability, stability, and potential toxicological impacts.
Despite promising results in laboratory settings, scalability and commercial viability chal-
lenges persist. The study also notes a marked increase in research focused on energy
storage solutions, such as high-performance batteries and supercapacitors, which utilize
nanocomposite technologies, underscoring the dynamic progression of this field.

A combined bibliometric and sentiment analysis of nanocomposite literature is also
undertaken, revealing a gradual shift toward more positive sentiment in academic abstracts.
This shift suggests improvements in how researchers communicate their findings or reflects
an increasing enthusiasm for breakthroughs in nanocomposite research.

Our study expands upon traditional reviews by integrating a novel computational
approach to organize research within the nanomaterials field. We respect the profound
insights of conventional reviews, which draw from the rich knowledge of experienced
authors. However, our methodology is designed to complement, rather than replace,
such expertise. It serves as a resource for researchers, especially those newer to the field,
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to swiftly identify key and emerging topics within nanocomposite research, offering a
tool for rapidly pinpointing crucial and novel areas within nanocomposite studies. The
computational tools we have developed facilitate a more effective and thorough exploration
of the scientific landscape, particularly in identifying trends and insights that may not be
immediately apparent through conventional methods alone.

Our analysis of “Microstructural, Electrical, and Mechanical Properties” exemplifies
this methodology, showcasing how computational advancements can accelerate the un-
derstanding and development of nanomaterials. As such, this paper contributes to the
existing body of knowledge and presents a pioneering approach to research synthesis
in nanomaterials.

2. Methodology

The computational analyses in this study were conducted using a high-performance
workstation provided by Tyar, located in São Paulo, SP, Brazil. The system features a
13th Gen Intel®Core™ i9-13900KF processor, 62.6 GiB of RAM, and an NVIDIA GeForce
RTX3080 graphics card.

2.1. Scopus Database Search Strategy

On 23 October 2023, a detailed search of the Scopus database identified key research ar-
eas related to nanocomposites, focusing on their microstructural, electrical, and mechanical
characteristics. The search parameters encompassed titles, abstracts, and keywords of arti-
cles from all publication dates, used Boolean search techniques with three specific queries:
“Nanocomposi*” and “Microstructure”, “nanocomposi*” and “Electrical properties”, and
“Nanocomposi*” and “Mechanical behavior”. This approach facilitated the identification
of a clear view of current research trends in nanocomposites, particularly in fundamental
characterization. In the following sections, we analyze these data, highlighting emerging
trends and key findings from the research articles.

2.2. Textual Analytics Approach

As stated earlier, this study used proprietary software similar to Voyant Tools for
advanced text analytics, focusing on microstructural characterization, electrical properties,
and mechanical behavior of nanocomposites in the academic literature. Employing natural
language processing (NLP), the software refined data, filtered irrelevant terms, and visually
presented results. It integrated data into pandas DataFrames and used NLTK modules for
text processing. It engaged key NLTK modules, such as PorterStemmer and word tokenizer,
for text processing.

The software identified and quantified frequent terms, enabling us to specify the
number of terms for analysis or defaulting to the top 10. It also performed temporal
data analysis, generating year-specific CSV files and visualizing annual term significance
trends. This tool provided insights into the nanocomposite research landscape, emphasizing
thematic perspectives.

2.3. Scholarly Literature Analysis on Nanocomposite Themes

We developed a custom-developed software rooted in Python 3.8.10 and leveraged
libraries such as pandas, NLTK, Gensim, and Matplotlib. The resulting software excelled in
tracking the evolution of scholarly literature, conducting sentiment analysis on titles and
abstracts, precise topic modeling, and intricate visual representation.

The software starts with data import and refinement and then seamlessly integrates
metadata from relevant scholarly articles in CSV format, including parameters like title,
abstract, publication year, authors, and publishers. It filters out records with incomplete
titles or abstracts, ensuring a high-quality dataset for a thorough review.

Next, the software employs sci-kit-learn methodologies to analyze and visually repre-
sent data points such as annual publication counts, author contributions, and the spectrum
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of publishing entities, enabling us to visualize the historical development of niche domains
within nanocomposite themes.

The platform transitioned to thematic modeling using the Latent Dirichlet Alloca-
tion (LDA) algorithm. It analyzed titles and abstracts to uncover prominent themes and
keywords in nanocomposite literature, highlighting key discourses in this extensive field.

Visualization played a crucial role in the software’s capabilities, creating word clouds
that reflected identified themes from LDA analysis. These word clouds, along with struc-
tured graphical representations, provided layered insights into published works.

Additionally, the software facilitated the generation of comprehensive reports that in-
cluded textual explanations, tabulated insights, and graphical illustrations, offering readers
a comprehensive view of the academic landscape specific to nanocomposite domains.

2.4. Analysis of MAP and NET Files

The analysis began using VOSviewer version 1.6.19, focusing on content extracted
from titles and abstracts. Three RIS files served as the foundational datasets. Following
the application of a minimum occurrence threshold equal to 3, a total of 29,843 terms were
selected and evaluated in this analysis, encompassing all available terms, were selected.
Additional details on this analytical tool can be found in a previous study [217].

Next, the authors deployed their custom-designed software, precisely engineered to
process and visually represent data extracted from VOSViewer MAP and NET files. For a
comprehensive exploration of the RIS files, a repository has been provided and made avail-
able on GitHub (https://github.com/ftir-mc/Nano-MEM, accessed on 25 October 2023).

The software follows a structured workflow, beginning with setup and dependency
verification. In cases of missing libraries, it autonomously sources and integrates them for
operational efficiency. The user-friendly interface, developed using the Tkinter library, of-
fers an intuitive environment for selecting MAP and NET files for analysis, with transparent
directory displays.

Data processing follows data import, with essential libraries in action. The software
efficiently imports data from the MAP and NET files into data frames, refining MAP data
for clarity. Column designations are optimized for enhanced understanding, and data are
organized by parameters such as cluster and Total Link Strength (TLS), with relationships
visualized and archived. Additional columns, such as TLS_per_Occ, are introduced based
on computational determinants.

In the data organization phase, new columns facilitate in-depth analysis. The primary
data frame undergoes segmentation based on variables like cluster and publication year.
Salient nodes representing each cluster are systematically extracted and preserved for
future analysis.

Visualization is crucial, with the software creating treemaps illustrating node distribu-
tion across clusters and bar diagrams highlighting predominant nodes. Enhanced treemaps
provide insights into network datasets’ intricacies.

The software also conducts extended analysis, including calculating Euclidean dis-
tances between nodes, organizing NET data to establish meaningful associations, and
applying Tukey’s test to identify statistical variances in annual averages among clusters.

All analytical insights, from detailed cluster breakdowns to empirical statistical in-
terpretations, are consolidated into an extensive textual report, serving as a valuable
academic reference.

The software includes supplementary features, such as visual displays of random data
matrices using Matplotlib, customization of Excel outputs with conditional formatting, and
generating a DOCX document consolidating key metrics to enhance users’ understanding
of data significance.

In summary, this methodology showcases the capabilities of the authors’ custom
software. Equipped with an intuitive interface and a range of data processing, visualization,
and analytical tools, this software is a valuable asset for researchers aiming to extract

https://github.com/ftir-mc/Nano-MEM
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profound insights from VOSViewer MAP and NET files, particularly in materials science
and data mining domains.

2.5. Bibliometric Data Analysis and Visualization Report

This section outlines the methodology used for bibliometric data analysis and visu-
alization, achieved through a custom software tool created by the authors. The software
effectively integrates functionalities from prominent Python libraries to reveal relationships
among research keywords.

Starting with data collection and preprocessing, the software operates on a dedi-
cated CSV file containing the required bibliometric data. It selectively targets keywords:
“.nanocomp.” and “.lectrical propert.” Additionally, two further combinations were em-
ployed: “.nanocomp.” and “.echanical behav.” and “.nanocomp.” and “microstruct”. Using
the pandas library, it imports and refines the dataset to include only records associated
with these keywords.

Data segmentation follows, with the curated dataset categorized into four distinct
groups based on criteria such as Link Strength Between Items or Terms (LSBI), average
publication years for the source and target terms (“year_i” and “year_f”), and Euclidean
distance (“DE”) between the source and target terms. Segmentation criteria are determined
by the top or bottom ten entries within these columns.

Hierarchical clustering plays a central role in the analysis, employing methodologies
from the scikit-learn library to group similar data points. The optimal number of clusters is
determined using the Elbow Method, enabling the labeling of clusters within the dataset.

The analysis then proceeds to generate network graphs. Each segmented dataset is
represented through network graphs created using the NetworkX 3.2.1 library. Keywords
are depicted as nodes, and their interconnections as edges. Node size corresponds to the
frequency of the associated keyword, providing insights into keyword significance.

To enhance clarity, graph visualization incorporates elements such as color differen-
tiation based on cluster labels and edges illustrating Link Strength Between Items (LSBI)
and Euclidean distance (ED) between terms. The Matplotlib library ensures vivid and
comprehensible graph displays, with options to save visual representations in PNG format.

Data tabulation is integral, with network graphs translated into DataFrame structures
and stored in CSV format for further analysis.

The synthesis of findings culminates in a comprehensive report generated with the
Python-docx library. This report includes an overview of processes, detailed breakdowns
of each graph, and an extensive data exploration, focusing on selected keywords. Key
findings, including those from the Elbow Method and cluster sizes related to keyword
frequencies, are highlighted.

The software significantly enhances analysis by applying hierarchical clustering tech-
niques to bibliometric data, processing both MAP and NET file formats, and consolidating
data within a single spreadsheet. User-defined keyword searches enable researchers to
explore intricate relationships between keywords and other essential terms.

The software concludes by presenting enhanced visualization and analysis, offering a
sequence of network graphs visually depicting keyword interconnections. These graphs
include essential data metrics, such as LSBI values, cluster identifiers, average publication
years, and term distances, with customization options based on keyword priorities.

In summary, the custom software developed by the authors serves as a powerful tool
for exploring and visualizing bibliometric data. Leveraging clustering and network analysis
empowers researchers to extract valuable insights, enhancing their understanding of the
research domain. This software was employed for all three combinations of nanocomposites
with microstructure, mechanical behavior, or electrical properties, forming the basis of the
presented review paper.

Supplementary Figure S1 serves as a visual guide to enhance comprehension of the
methodological sequence employed in our study. This diagram meticulously outlines each
methodology step, from the initial Scopus Database Search Strategy to the final stages of



Materials 2024, 17, 1088 7 of 81

bibliometric data analysis and visualization. Additionally, the figure seamlessly integrates
the sequence of results derived from these methods. By illustrating the connections between
various methodological steps and their corresponding outcomes, the diagram aids in
understanding how each phase of the research contributes to the overall findings and
conclusions of the study. This visual representation simplifies the complex processes
involved and highlights the logical flow and interrelation of the methods and results in our
comprehensive nanocomposite research.

3. Results and Discussions

The Scopus database, a prominent repository of scholarly articles, offers valuable
insights into research trends. As of 23 October 2023, a comprehensive review of nanocom-
posites reveals distinct thematic distributions. Although a general nanocomposites search
provides broad insights, additional focus on the microstructural, electrical, and mechan-
ical characterization of nanocomposites uniquely showcases our software ability when
investigating with a narrow focus.

Upon analysis, the theme centered on “Nanocomposi*” AND “Microstructure” yielded
13,317 documents, representing approximately 6.36% of all nanocomposites research. Ex-
ploring electrical properties through “Nanocomposi*” AND “Electrical properties” pro-
duced 5370 documents, accounting for about 2.57% of the overall nanocomposites docu-
mentation. Additionally, the theme of mechanical behavior, defined by “Nanocomposi*”
AND “Mechanical behavior”, revealed 2011 documents, constituting roughly 0.96% of the
total nanocomposites research corpus.

When comparing these results to the extensive pool of nanocomposite articles totaling
209,012 documents, several insights emerge. Microstructural studies in nanocomposites
form a substantial portion, emphasizing the significance of understanding microscopic
organization and its correlation with material properties. Electrical properties, although
slightly fewer in volume than microstructural studies, remain significant, shedding light on
the critical electrical attributes of these composite materials. Lastly, mechanical behavior,
occupying a smaller segment among the three thematic areas, remains pivotal, especially
when evaluating how nanocomposites respond to various stress conditions.

In conclusion, this analysis highlights that while the field of nanocomposite research
is vast and multifaceted, thematic dissection provides a clearer understanding of specific
areas of emphasis. The data obtained through this effort underscore the dynamic trajec-
tory of nanocomposite research, emphasizing the importance of microstructure, electrical
properties, and mechanical behavior in the ongoing academic discourse.

3.1. Scopus Database Search Strategy

Analyzing the Scopus database reveals central themes in nanocomposite research, as
illustrated in Figure 1.

From the late 1970s to the 1990s, the term “nanocomposite” was relatively infrequent,
indicating the early stages of this field. However, a notable increase in usage emerged in the
mid-1990s, aligning with the growing importance of nanotechnology. In the 21st century,
we have witnessed a significant surge in this term, reaching its peak between 2018 and
2022, followed by a slight decline attributed to the incompleteness of the publication data
for 2023, as our analysis concluded in October 2023. We anticipate a more comprehensive
picture once all publications from 2023 are fully accounted for.

The term “properties” mirrored this trend, reflecting a heightened focus on under-
standing nanocomposites’ inherent attributes. In contrast, “composite” showed a more
gradual rise, indicative of general discussions on composites before the dominance of
nanoscale considerations.
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Technically, terms such as “mechan”, “microstructure”, and “electr” (likely “electri-
cal”) gained prominence in the 1990s. The emphasis on “microstructure” underscores the
importance of understanding the microscale arrangement of nanocomposites. Simultane-
ously, the prominence of “mechan” and “electr” suggests intensified investigations into the
mechanical and electrical properties of nanocomposites.

While “increase” had limited prominence, “film” saw a notable rise from the 1990s,
peaking in the 2010s. This likely reflects research on nanocomposite films, which are
vital for applications like coatings and barrier materials. The term “effect”, although
initially subdued, exhibited consistent growth, indicating interest in understanding the
consequences and potential applications of nanocomposites.

The term “structur” (likely “structure”) became more prominent from the late 1980s
onward, highlighting the foundational interest in comprehending the structure of nanocom-
posites and its implications for properties and applications.

The word cloud in Figure 1 visually represents recurring terms in nanocomposite
research. For the “Microstructure” theme, the term itself holds prominence, emphasizing
its pivotal role. Microstructural characterization aims to provide insights into aspects like
arrangement, morphology, and phase distribution. Supplementary terms such as “size”,
“layer”, “scan electron”, and “microscopy” underscore the reliance on tools like scanning
electron microscopy (SEM) for microstructural elucidation.

In the context of “Electrical properties”, terms like “electron”, “conduct”, and “di-
electric” highlight the electrical behavior of nanocomposites. Introducing nanofillers can
enhance electrical properties, and the term “dielectric” suggests studies on materials under
external electric fields, which are crucial for capacitive and insulative applications.

Concerning “Mechanical behavior”, terms like “mechan”, “strength”, “modulus”, and
“resist” are salient. They collectively emphasize efforts to comprehend the mechanical
responses of nanocomposites, including their influence on attributes like tensile strength,
modulus, and toughness.
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In summary, this analysis outlines the multifaceted trajectory of nanocomposites
research. The fusion of advanced characterization techniques with data analysis has
yielded profound insights into the intricate relationships among microstructure, electrical
properties, and mechanical behavior in nanocomposites. The data underscore the dynamic
and ever-evolving nature of nanocomposite research.

3.2. Textual Analytics Approach

Figure 2 provides insights into collaborations among scholars in the nanocomposites
field. It outlines the top 10 collaborations based on citations, indicating the frequency of
joint publications by author pairs. Moreover, the Scopus ID of the author is presented in
parentheses. Notably, Sekino, Tohru, and Niihara, Koichi emerged as prominent collabo-
rators, with 30 joint publications, signifying a robust scholarly partnership. Chang, W.C.
is also notable for contributing prolifically, highlighting the significance of collaborative
research in knowledge dissemination.
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Figure 3 presents the top 10 most cited articles in nanocomposite research, showcasing
titles, authors, publication years, and citation counts.

“High-thermoelectric performance of nanostructured bismuth antimony telluride
bulk alloys” stands out with 4778 citations, underscoring its seminal impact. The tem-
poral distribution of articles suggests heightened interest in nanocomposites from 2002
to 2011, possibly due to advancements in characterization techniques or recognition of
nanocomposites’ potential in various applications. The diverse topics within these arti-
cles, from thermoelectric properties to bioinspired design, exemplify the versatility and
interdisciplinary nature of nanocomposite research.
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Figure 4 lists the top 10 most cited articles related to nanocomposites published in
the last five years, highlighting critical parameters: title, authors, publication year, and
citation count.
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Notably, the article by Xie P. et al. 2021 on “Hierarchically porous Co/C nanocom-
posites for ultralight high-performance microwave absorption” leads with 338 citations,
indicative of a resurgence of interest in the nanocomposite field. EMI shielding properties
are a recurring theme in the second, fifth, and ninth most cited articles, emphasizing their
relevance in modern electronics. The article by Wang K. et al. in 2019 explores bioinspired
structures for flexible pressure sensors, reflecting interdisciplinary research trends. Addi-
tionally, a 2020 publication by Kürnsteiner P. et al. on “High-strength Damascus steel by
additive manufacturing” highlights the fusion of ancient techniques with nanotechnology.
Lastly, the work by Qi G. et al. in 2021 emphasizes sustainable research practices using
waste materials.

Figure 5 reveals distinct patterns in funding sources by country, offering insights into
the current state of nanocomposite research globally.
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Figure 5. Funding sources by country, indicating the number of occurrences reflecting research
investment. The color temperature represents the volume of funding, with warm red signifying the
highest investment by China, followed by colder shades for other countries in descending order of
their investment occurrences.

China takes the lead with an impressive 7669 occurrences, showcasing its significant
investment in nanocomposite research. This dominance reflects China’s robust commitment
to innovation and technological advancement, bolstered by its substantial economy.

India follows as a distant second with 1109 occurrences, signaling its growing presence
in the global research community. India’s emphasis on advanced materials aligns with its
expanding industrial sector and diverse research interests.

The dataset also highlights contributions from countries across continents. Russia,
Canada, and Iran closely follow, with occurrences ranging from 364 to 335, demonstrating
a global interest in nanocomposites beyond regional boundaries.

Countries like Taiwan, Japan, Australia, Malaysia, and Saudi Arabia, though with
fewer occurrences, make substantial contributions, emphasizing the global recognition of
nanocomposites’ significance.



Materials 2024, 17, 1088 13 of 81

European countries like Austria, Germany, France, Czech Republic, Romania, and
Spain also feature, showcasing Europe’s continued commitment to pioneering research.

Notably, countries less commonly associated with global research, such as Qatar,
Egypt, and Ukraine, appear, indicating a democratization of research efforts and a more
inclusive global research landscape.

Figure 6 illustrates the evolution of academic publications across nine different lan-
guages from 1970 to 2020, shedding light on the diverse landscape of research languages.
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Figure 6. Cumulative language evolution.

From 1970 to 1985, English stood as the sole language of academic research, a testa-
ment to its historical role as the predominant language in academia and the substantial
investments of English-speaking countries in research and development.

In the 1990s, English continued to grow, and Chinese began to make its presence felt
in academic research, reflecting globalization trends and China’s increasing economic and
technological influence.

The 2000s witnessed a significant surge in English and Chinese publications, driven
by globalization, technological advancements, and Asia’s rising prominence in research.

Between 2010 and 2020, the predominance of English in academic publishing subtly di-
minished, reflecting a broader trend toward linguistic diversity in scholarly communication.
Concurrently, the research output in Chinese showed signs of slowing, possibly indicating
a shift in research priorities within China. Notably, languages such as Korean, Italian, and
Croatian—the latter acknowledged as an independent language since 1991 and included
in our analysis due to its distinctive historical and linguistic significance—made their
presence known. This diversification emphasizes a gradual move toward inclusivity in the
dissemination of academic knowledge, spotlighting the global nature of scientific research
and the importance of embracing a variety of linguistic perspectives. This is increasingly
enabled by the advent of Large Language Models (LLMs), which facilitate communication
across numerous languages, thereby broadening access to knowledge worldwide.
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Figure 6 provides a comprehensive view of how academic research languages have
evolved over five decades, with implications for broader global socio-economic, technolog-
ical, and geopolitical transformations.

Additionally, extensive data on countries producing academic articles related to spe-
cific chemicals associated with nanocomposites reflect the global landscape of research in
this field.

China leads with an astounding 7072 articles where a specific chemical is not declared
(notated as “nan”). China’s research is diverse, encompassing chemicals like graphite,
water, hydroxyapatite, cellulose, and more, demonstrating a comprehensive approach to
nanocomposite research.

India follows with 1035 “nan” articles, focusing on hydroxyapatite, biocompatible
materials, graphite, chitosan, and antibacterial agents.

Russia’s research, represented by 349 “nan” articles, emphasizes biocompatible materi-
als, capsules, and magnetite nanoparticles, along with niche chemicals like erythropoietin.

Other countries like Canada, Iran, Taiwan, Japan, Australia, Malaysia, and Saudi Arabia
have distinct chemical focuses, reflecting regional interests and industrial applications.

Figure 7 portrays the sentiment trends in academic titles from 1990 to 2024, offering
insights into evolving academic cultures, research focuses, and potential global influences.
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A glance at the scatter plot with error bars reveals a consistent sentiment hovering
near neutrality, with slight fluctuations over the years. These error bars, indicating standard
deviations, show that while individual titles may vary in sentiment, the overall outlook
remains balanced.

The regression line, represented by the equation y = −2.690 + 0.001 x, indicates a
subtle positive slope, suggesting a gradual increase in sentiment over time. However, this
increase is relatively small, reaffirming the predominantly neutral nature of academic titles.

The R2 value of 0.445 indicates that about 44.5% of sentiment variability can be
attributed to publication year, emphasizing the influence of other external factors beyond
temporal changes.
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Further examination in the “Global Statistics for Titles” table reveals that from 1990
to 2024, 19,645 titles were analyzed. The average sentiment across these titles is 0.052343,
confirming the prevalence of a neutral tone. The standard deviation of 0.166729 reinforces
the consistency in this neutrality.

The general neutrality in academic titles may stem from the objective nature of sci-
entific research, requiring a factual and impartial tone. While major global events or
technological advancements may have briefly influenced sentiment, these effects have been
balanced by other factors, resulting in a median sentiment trajectory.

Figure 8 provides a temporal analysis of sentiment trends in academic abstracts from
1990 to 2024, employing advanced textual analytics to uncover underlying sentiment
patterns.
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Figure 8. Abstracts sentiment scatter plot.

The scatter plot, accompanied by error bars, indicates a consistent sentiment above
neutrality throughout the studied period. The error bars represent data variability, high-
lighting that while abstracts generally maintain a positive sentiment, there are fluctuations
from year to year. Some notably long error bars indicate years with more significant
sentiment divergence in abstracts.

The regression line, described by y = −21.484 + 0.011 x and boasting an impressive R2

value of 0.777, depicts a gentle, positive slope. This suggests a gradual shift toward more
positive sentiment over time, indicating that researchers are becoming better at expressing
the significance of their work or their enthusiasm for their findings.

Global statistics reveal that among 19,352 abstracts from 1990 to 2024, the mean
sentiment is 0.638771, with a standard deviation of 0.343021. The relatively high mean
sentiment confirms a preference for positive expression in academic abstracts within this
domain. The standard deviation underscores the range of sentiment expressions present in
the corpus despite the prevalent positivity.

Comparing titles and abstracts, abstracts exhibit a more pronounced positive sentiment.
This difference in sentiment dynamics can be attributed to the nature of these textual
elements. While titles are concise summaries, abstracts offer a deeper exploration of
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methodologies, findings, and implications, allowing authors to convey their results and
breakthroughs with more depth and emotion.

In conclusion, sentiment trends in abstracts reflect an environment of progressive
optimism and notable breakthroughs in nanocomposite research. This meticulous text
analytics approach provides valuable insights into the evolving mindset of the academic
community. The increasing positive sentiment trajectory signifies not only advancements
in research but also growing confidence in communicating these achievements.

3.3. Scholarly Literature Analysis on Nanocomposite Themes

In Figure 9, the data generated through Latent Dirichlet Allocation (LDA) reveal the
multifaceted nature of nanocomposite research topics within scholarly literature titles.
This algorithmic analysis uncovers the primary thematic directions shaping contemporary
discourse in the field.
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Figure 9. LDA-generated word clouds from titles.

Title topic 1 centers on the analytical and functional aspects of nanocomposites. Terms
like “activity”, “analysis”, and “sensor” highlight a focus on practical applications, par-
ticularly in sensing and photocatalysis. The term “conductive” underscores interest in
the electronic properties of nanocomposites, suggesting potential in advanced electronics
and optoelectronics. Title topic 2 emphasizes synthesis, performance enhancement, and
materials like graphene. Research in this area aims to improve nanocomposite perfor-
mance, often by leveraging exceptional materials like graphene. Title topic 3 delves into
the microstructural and mechanical attributes of nanocomposites. Words like “property”,
“mechanical”, “microstructure”, and “behavior” signify a keen interest in understanding
and manipulating microscale physical characteristics and their influence on overall mechan-
ical behavior. Subsequent topics reveal diverse research directions. Topics 4 and 5 focus
on “composite”, “matrix”, and “coating”, indicating research into integrating nanoscale
components into matrices or surfaces for improved structural or protective properties.
Topic 6 highlights the importance of “film” and “thin” nanocomposite films, applicable
in various fields from electronics to coatings. Topic 7 explores carbon nanotubes’ role in
composites, emphasizing their reinforcing capabilities. Topic 8 showcases nanocomposites’
multifunctional attributes, including electrical, thermal, and optical properties, reflecting a
multidisciplinary approach. The ninth topic underscores the rigorous procedures involved
in nanocomposite synthesis and characterization. In contrast, the final topic touches on
the intersection of magnetism with nanocomposites, hinting at applications in areas like
medical imaging and data storage.

Figure 10 provides illustrative word clouds for 10 distinct topics derived from scientific
literature abstracts. The word size represents word prominence within each topic, offering
quantitative insights into dominant terms for a comprehensive understanding of each
topic’s relative importance.
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Topic 1 primarily revolves around microscopy techniques for nanomaterial characteri-
zation. Terms like “electron”, “composite”, and “microscopy” suggest a focus on electron
microscopy (EM) and advanced characterization methods like diffraction and spectroscopy.
Topic 2 delves into nanocomposite mechanical properties, with terms like “mechanical”,
“property”, and “strain” highlighting research on mechanical resilience and behavior.
“Model” and “study” indicate theoretical and empirical frameworks. Topic 3 centers on
biomedical applications, featuring words like “membrane”, “scaffold”, “hydrogel”, and
“cell”. “Photocatalytic” hints at light-induced catalysis for therapeutic or environmental
use. Topic 4 explores optoelectronic aspects, with “optical”, “temperature”, and “electrical”,
suggesting investigations into thermal, electrical, and optical properties, often involving
materials like zinc oxide (ZnO). Topic 5 focuses on thin-film technologies, emphasizing
“film” and “coating”. Research may involve deposition techniques, substrate exploration,
and surface morphology studies. Topic 6 revolves around electrical conductivity, with
“carbon” and “polymer” indicating research on polymer-based nanocomposites reinforced
with carbon fillers, potentially enhancing conductivity. Topic 7 highlights structural prop-
erties, possibly in metallic or ceramic composites, featuring terms like “grain”, “phase”,
“microstructure”, “alloy”, and “magnetic”. Topic 8 delves into nanoscale phenomena,
with “particle” and “size” indicating studies on nanoparticle synthesis, size-dependent
properties, and their influence. Topic 9 centers on high-performance materials, especially
those incorporating graphene. “High”, “performance”, “material”, “sensor”, and “elec-
trode” suggest efforts to enhance material properties and applications. Topic 10 emphasizes
nanocomposite mechanical robustness, with “mechanical”, “strength”, “tensile”, and “mod-
ulus”, highlighting research into tensile strength and modulus enhancement.

These topics reflect the diverse and expanding interest in nanocomposites across
various fields, including materials science, electronics, and biomedicine.

3.4. Analysis of MAP and NET Files

Analysis of MAP and NET files is a pivotal aspect of bibliometric network analysis,
particularly within the scope of VOSviewer. This analysis unveils the intricate interplay
between Total Link Strength (TLS) and the frequency of specific terms. This quantitative
exploration delivers invaluable qualitative insights into the research landscape.

TLS, in the context of VOSviewer, encapsulates an item’s connectivity and influence
within a network, while occurrences quantify how often a term appears in the dataset.
The relationship between these two metrics is elucidated in Figure 11, where each data
point signifies a unique term’s position based on its occurrence frequency and cumulative
link strength.
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Figure 11. Total link strength vs. occurrences from VOS analysis.

The most notable aspect of this analysis is the exceptionally high R2 value of 0.998,
indicating a strong correlation. Essentially, as the occurrence of a term increases, its TLS
proportionally increases. This finding suggests that terms with higher frequencies are not
only popular but also centrally connected within the network, signifying their importance.

However, outliers in the scatter plot, characterized by high occurrences but relatively
lower TLS, warrant scrutiny. These outliers may represent emerging or niche concepts
that, despite frequent discussion, still need to integrate into the broader network of estab-
lished terms.

Context plays a role in interpreting these data. Nascent research domains may experi-
ence rapid-term surges as foundational concepts are explored. As the domain matures, a
more interconnected network of terms may emerge, resulting in a more uniform distribution
of TLS and occurrences.

Figure 12 offers a detailed glimpse into the thematic clustering of terms in materials
science, where clusters are formed based on shared terms, illuminating collaborative
research trends within this field.

Cluster 1 revolves around surface characteristics, morphology, and electrical proper-
ties, reflecting a growing interest in electrical attributes of materials during 2016.3, possibly
driven by advancements in electronic applications. Cluster 2 emphasizes the mechanical
aspects of materials, particularly microstructure and mechanical properties. The focus on
optimizing material strength and performance is evident, with a significant occurrence of
“microstructure” in 2014.9. Cluster 3 highlights nanocomposites and their enhanced prop-
erties, with a surge in interest around 2015.6, possibly due to technological advancements
enabling more sophisticated synthesis. Cluster 4 explores methodologies and specific
nanomaterials, like carbon nanotubes, with “carbon nanotube” having 1911 mentions.
These unique materials may hold promise for various industrial applications. Cluster 5 un-
derscores the importance of characterization techniques, particularly electron microscopy,
in understanding material structure, focusing on the mid-2010s. Cluster 6 delves into
practical applications and their implications, with a more recent emphasis, possibly shift-
ing from theoretical understanding to real-world use. Cluster 7 centers on nanoparticle
integration into films, hinting at applications spanning electronics to coatings. Cluster 8
examines material properties, including resonant frequencies in technological applications,
around 2016–2017. Cluster 9 focuses on membrane technologies, particularly improving
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water affinity properties for filtration and separation performances. Cluster 10 pertains
to construction materials and their properties, aiming to enhance mechanical resilience
during 2015–2017. Cluster 11 explores thermoelectric properties, focusing on materials
that convert temperature differences into electric voltage, which is relevant for sustainable
energy solutions. Cluster 12 encompasses various topics, including material properties of
liquid solder alloys around 2016. Cluster 13 emphasizes advanced material characterization
techniques, with a heightened focus during 2016–2019. Cluster 14 centers on innovative
methodologies and their outcomes in material science, with a surge in novel approaches
around 2015–2016. Cluster 15 delved into microscopic material characterization, mainly
using scanning electron microscopy, around 2016.
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In conclusion, Figure 12 unveils diverse research themes in materials science, reflecting
evolving frontiers and the pursuit of knowledge and innovation within the scientific
community.

Figure 13 provides a comprehensive overview of recent terms within diverse clusters,
offering insights into evolving trends in materials science.
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Cluster 1 emphasizes optical properties and spectroscopy techniques, reflecting a
growing interest in materials’ interaction with light, possibly due to advancements in
optoelectronics. Cluster 2 focuses on hybrid and strengthened materials, emphasizing
mechanical properties crucial for industries like aerospace and automotive. Cluster 3
highlights nanotechnology and material properties, with a surge in interest in carbon
nanotubes and related properties. Cluster 4 delves into material durability and bonding
properties, mentioning the specialized “Digimat software” for material modeling. Cluster 5
explores advanced fabrication and surface treatment techniques significant for applications
like thin-film deposition and tribology. Cluster 6 intersects with biocompatible materials
and their interactions, which are essential for medical applications. Cluster 7 relates to
electronics and energy storage, highlighting novel material structures for energy devices
or sensors. Cluster 8 signifies advancements in materials with heightened piezoelectric
capacities relevant to renewable energy and energy-efficient designs. Cluster 9 centers on
methodologies and material synthesis, focusing on membrane technology and moisture
sorption for water purification.

Cluster 10 emphasizes nanotechnology challenges, particularly nanomaterial disper-
sion and composite material optimization. Cluster 11 underlines energy conservation and
effective energy transition in materials, potentially in advanced ceramics or semiconductors.
Cluster 12 suggests a broader acceptance of research methodologies or findings, referencing
advanced materials. Cluster 13 showcases hybrid nanocomposites and materials with
enhanced performance, reflecting evolving material science trends. Cluster 14 explores
materials for extreme conditions relevant to nuclear or high-energy applications. Cluster 15
covers foundational research, highlighting methodological advancements and the relation-
ship between material microstructure and performance. In conclusion, these clusters unveil
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a chronological narrative of research trajectories, reflecting the scientific community’s
pursuit of knowledge, innovation, and technological advancements in materials science.

Acknowledging the complexity of the cluster figures due to the broad and varied
groupings in the dataset, we have chosen the current presentation method as the most
effective. Although a detailed analysis of each cluster is not the focus of this work, we aim
to support the community’s needs. To this end, we have made the MAP and NET files
publicly available on GitHub (https://github.com/ftir-mc/Nano-MEM, accessed on 25
October 2023), both the complete set and individual clusters, to facilitate more in-depth
investigations by researchers. These files can be easily used with VOSviewer for further
personalized analysis.

Figure 14 offers insights into the top five pairs of terms based on their LSBI values, high-
lighting emerging relationships and research themes within a specific academic domain.
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The pair “microstructure vs. nanocomposite”, originating in 2014.95 and 2015.63,
boasts an LSBI of 3796 and a Euclidean distance of 0.39. This suggests a strong connection
between these terms, indicative of a growing interest in understanding how nanocompos-
ites and microstructures interact. Next, “effect vs. microstructure”, with origins in 2015.72
and 2014.95, exhibits an LSBI of 3552 and a Euclidean distance of 0.23. This pairing reflects
a significant link between studying effects and microstructures during this timeframe. The
“effect vs. nanocomposite” pair, emerging in 2015.72 and 2015.63, has an LSBI of 2883 and a
Euclidean distance of 0.26, indicating a focus on the impact of effects on nanocomposites.
The fourth pair, “mechanical property vs. microstructure”, from 2015.48 and 2014.95, has
an LSBI of 2462 and a Euclidean distance of 0.47. This pairing suggests research efforts in
correlating microstructures with mechanical properties. Lastly, “composite vs. microstruc-
ture”, originating in 2015.52 and 2014.95, carries an LSBI of 2128 and a Euclidean distance
of 0.33, reflecting academic exploration into the relationships between composites and
microstructures. In summary, Figure 14 unveils the complexities and research directions
within a specific context, shedding light on scholarly pursuits related to effects, properties,
and compositions concerning microstructures and nanocomposites. This portrayal empha-

https://github.com/ftir-mc/Nano-MEM
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sizes evolving research paradigms and invites further exploration of contextual factors and
industry demands that may have influenced these academic trajectories.

Figure 15 provides an in-depth exploration of term relationships within optics and
materials science. These data are distilled into five significant term pairs, revealing tem-
poral dynamics and topological closeness using the Euclidean distance and Link Strength
Between Items (LSBI).
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The first pair, “optical window vs. uv visible region”, emerged in 2023.67 and 2023.0,
indicating a growing focus on light permeability, possibly within the ultraviolet and visible
spectrum. With an LSBI of 2, these terms are firmly linked, and the minimal Euclidean
distance of 0.17 suggests subtle contextual variations or closely related subdomains. This
proximity may signify an emerging trend or innovation in this specific domain during that
period. The next pair, “optical window vs. zno photoelectrode”, originating in 2023.67
and 2022.33, reflects advancing research on zinc oxide-based photoelectrodes, likely in
photovoltaic or photoelectrochemical cells, and their optical properties. The LSBI of 2
and a minimal Euclidean distance of 0.03 indicate near-synonymous usage, highlighting
significant overlap in associated research areas. The third pairing, “optical window vs.
znogo”, with origins in 2023.67 and 2021.75, suggests exploring optical characteristics
related to the “znogo” compound or material. The LSBI is similar to the previous pair,
but the increased Euclidean distance of 0.32 suggests a broader contextual separation,
potentially indicating diverse applications or expanding research scope. In the fourth
pairing, “optical window vs. pdlc”, a more significant temporal gap is observed from
2023.67 to 2020. This may indicate a resurgence of the Polymeric Liquid Crystal Display
(PDLC) technology and its optical attributes. An LSBI of 1 suggests a moderate correlation,
while a substantial Euclidean distance of 0.43 implies distinctions in applications or research
objectives. Finally, “optical window vs. optoelectronic application”, originating in 2023.67
and 2019.45, demonstrates the widest temporal difference among the pairs. This pairing
likely explores various optoelectronic applications of optical windows, enhancing electronic
or photonic device performance. The significant Euclidean distance of 0.47, combined with
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an LSBI of 2, suggests a deep-rooted yet expansive connection. In summary, Figure 15
unveils the intricate relationships among pivotal terms in optics and materials science.
These relationships, considering both temporal emergence and interconnectedness, offer
valuable insights into evolving research trajectories and potential technological innovations
in the field. This analysis emphasizes the importance of monitoring these dynamics to
foster a comprehensive understanding of the field’s progress.

3.5. Bibliometric Data Analysis and Visualization Report

Figure 16 presents a concise visualization of the optimal cluster number determination
using the Elbow Method across three vital datasets: “nanocomposites and microstructure”,
“nanocomposites and mechanical behavior”, and “nanocomposites and electrical prop-
erties”. This method aids in pinpointing the ideal number of clusters, signifying where
additional clusters cease to reduce percentage variance significantly.
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Figure 16. Elbow plot.

For the “nanocomposites and mechanical behavior” dataset, the Elbow Method reveals
that a 10-cluster model effectively captures around 90.53% of the explained variance.
Beyond this point, the model’s efficiency plateaus, indicating that 10 clusters represent the
underlying structure in the mechanical behavior data.

Similarly, “nanocomposites and microstructure” analysis benefits from a 10-cluster
configuration, explaining an impressive 92.69% variance. The clear transition from a steep
incline to a gradual progression underlines the significance of the 10-cluster configuration
in encapsulating microstructural aspects effectively.

In the domain of “nanocomposites and electrical properties”, a parallel trend emerges,
with a 10-cluster arrangement capturing approximately 90.92% of the explained variance.
The trajectory of this dataset mirrors the prior two, reinforcing the diminishing returns
beyond the 10-cluster threshold.

These outcomes prompt contemplation of potential contextual factors. The intricate
nature of nanocomposites, involving multiple compositional elements and properties, may
lead to shared behavioral patterns. This convergence could result from shared research
methodologies, everyday materials, or shared challenges.
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Furthermore, bibliometric data nuances, such as frequently researched themes or
prevailing trends, may lead to keyword concentration around specific topics. This could
explain the consistent emergence of the 10-cluster model across the three datasets.

3.5.1. Nanocomposites and Electrical Properties

In the realm of nanocomposites and electrical properties, Figure 17 provides a complex
visual representation that highlights the relationships between research terms, primarily
through Link Strength Between Items (LSBI) values and average publication years. The
central term, “nanocomposite”, is a crucial node connecting various related terminologies.
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electrical properties.

Significant findings include the strong association between “microstructure” and
“nanocomposite”, with an LSBI of 3796 and an average publication year of 2015.29, in-
dicating a profound interest in understanding how microstructural attributes influence
nanocomposite properties during that period.

Moreover, the connection between “nanocomposite” and “electrical property”, char-
acterized by an LSBI of 1959 and an average publication year of 2015.955, reveals a re-
cent research focus on the electrical aspects of nanocomposites. The link with “effect”,
having an LSBI of 2883 and an average publication year of 2015.68, indicates extensive
investigations into the influence of nanocomposites on various properties, including
electrical characteristics.

Additionally, the connection between “effect” and “electrical property”, with an LSBI
of 1288 and an average publication year of 2016, emphasizes the growing attention given to
discerning the specific effects of nanocomposites on electrical properties.

Figure 18 delves into closer relationships between terms related to nanocomposites
and electrical properties, revealing valuable insights. For instance, a strong connection
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between “nanocomposite material” and “paper”, with an average year of 2014.565, suggests
pivotal research in 2014 concerning nanocomposite materials.
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Figure 18. Network of closest terms related to nanocomposites and electrical properties.

The relationship between “pp nanocomposite” and “pure pp”, with an average year of
2014.625, underscores the heightened research focus during this period on distinguishing
between PP nanocomposites and pure PP.

Connections between various nanocomposite formulations and their associated prop-
erties, ranging from 2011 to 2020, illustrate the evolving nature of nanocomposite research.
For instance, the “zno nio” and “zno nio nanocomposite” terms in 2020 signify expanded
research into the broader applications of these nanocomposites.

Figure 19 concentrates on the newest terms related to nanocomposites and electri-
cal properties. Notably, “crosslinking time” emerges as a critical parameter influencing
nanocomposites. The connection between “crosslinking time” and “nanocomposite mate-
rial” suggests significant research around 2018, highlighting the critical role of crosslinking
in nanocomposite investigations.

Furthermore, nanocomposites exhibit strong associations with “energy storage prop-
erties”, “equal channel angular pressing”, and “dimensional mesh structure”, reflecting the
multifaceted nature of recent nanocomposite studies.

Additionally, links between nanocomposites and “optical window” and “uv-vis analyt-
ical spectroscopy” signify research into the electrical–optical behaviors of nanocomposites,
potentially within optoelectronic devices.
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In summary, this analysis illuminates key trends in nanocomposites and electrical
properties research. Recent studies emphasize understanding the relationships between
nanocomposite materials and their electrical attributes. Crosslinking time plays a pivotal
role in shaping nanocomposite properties. Explorations into energy storage and electrical–
optical behaviors represent significant areas of investigation. Collaborations among experts
in materials science, electrical engineering, and analytical techniques can drive innovations
in nanocomposite research, advancing the field into new frontiers.

3.5.2. Nanocomposites and Mechanical Behavior

In nanocomposites and mechanical behavior, Figure 20 offers a comprehensive view
of the connections between research terms, primarily through Link Strength Between Items
(LSBI) values. Central to this analysis is the term “nanocomposite”, a hub for various
related terminologies.

Key findings include a significant link between “microstructure” and “nanocom-
posite”, marked by a substantial LSBI value of 3796. This connection underscores the
importance of microstructural details in shaping nanocomposites’ properties. The average
publication year for this connection centers around 2015, indicating sustained interest
during that period.

Furthermore, “effect” plays a crucial role in nanocomposite research, with an LSBI
value of 2883 for the link between “effect” and “nanocomposite”. This signifies extensive
exploration into the consequences of incorporating nanoparticles into different matrices.

The focus extends to nanocomposites’ properties, encompassing both “mechanical”
and “electrical” aspects, as indicated by the robust association between “nanocomposite”
and “mechanical property”, characterized by an LSBI of 1941.
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mechanical behavior.

Terms like “addition” and “increase” also hold importance, with LSBI values of
1801, suggesting the incorporation of various substances or nanoparticles to enhance base
material properties.

The role of analytical techniques is prominent, as terms like “x-ray diffraction”, “XRD”,
and “sem” underscore the significance of advanced analytical methods in understanding
nanocomposite structure and morphology.

Interdisciplinary connections are abundant, with terms like “composite”, “matrix”,
“morphology”, “sample”, and “structure” having varying LSBI values, illustrating the
comprehensive research framework in which nanocomposites are studied.

In essence, the network of connections revolving around “nanocomposite” provides
a vivid depiction of the extensive research landscape it encompasses. This narrative
highlights nanocomposites’ pivotal role in modern materials science, particularly their
mechanical behavior. Researchers take a multifaceted approach to unravel the complexities
of nanocomposites, leading to innovations in various applications.

Figure 21 delves into closer relationships between terms related to nanocomposites
and mechanical behavior, revealing significant insights. For example, a robust connection
exists between “nanocomposite material” and “paper”, indicating substantial academic
publishing in nanocomposites, emphasizing around 2014.

The data analysis reveals significant findings in nanocomposites and their mechanical
behavior. The initial dataset highlights a strong connection between “nanocomposite
material” and “paper”, indicating substantial academic research, particularly around 2014.

Another noteworthy observation is the relationship between “pp nanocomposite” and
“pure pp”, indicating the study of polypropylene (PP)-based nanocomposites derived from
pure PP. This relationship, although modest with an LSBI value of 7, points to extensive
documentation in the literature.
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The emergence of PBAT nanocomposites becomes evident through the connection
between “butylene adipate co terephthalate” (PBAT) and “pbat nanocomposite”, signifying
the evolution of PBAT-based nanocomposites, particularly around 2018.

A complex network segment surrounds “Al2O3 tin nanocomposite”, linking to var-
ious nodes such as “finer tin particle size”, “superior electrical conducting behavior”,
“in-situ nitridation”, and various powders. This suggests a thorough exploration of the
properties, synthesis methods, and applications of alumina–tin nanocomposites, primarily
around 2009.

The term “carbon nanofiber polystyrene nanocomposite” connects to concepts like
“electromagnetic shielding capability”, “nanofiber aspect ratio”, and “processing energy”,
implying investigations into its mechanical attributes, processing methodologies, and
potential applications, predominantly around 2013.

Lastly, “zno nio nanocomposite” is linked to its base components, “zno nio”, indicating
recent research into zinc oxide–nickel oxide nanocomposites, notably in 2020.

Figure 22 visually represents the relationships between various terminologies in
nanocomposites and their mechanical behavior, focusing on the latest terms. It provides
insights into evolving research trends, collaborations, literature gaps, and patterns, concen-
trating on terms like “nanocomp.*” and “.*echanical behav.*”.
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The data emphasize the significance of crosslinking time in nanocomposite research,
particularly toward the end of the second decade of the 21st century. The robust connection
between crosslinking time and the general term “nanocomposite” suggests recurrent explo-
ration of how crosslinking durations impact nanocomposite properties, with an average
year around 2019.44.

There is a notable correlation between nanocomposites and their energy storage
properties, indicating potential advancements in energy storage solutions, possibly in
advanced batteries or supercapacitors. Simultaneously, there is a trend toward multifunc-
tional nanocomposites, emphasizing materials that offer multiple benefits, optimizing
performance and cost.

The relationship between nanocomposites and terms like “equal channel angular
pressing”, “dimensional mesh structure”, and “brass matrix” suggests a deep dive into the
mechanical processes involved in nanocomposite formulation. Additionally, advanced ana-
lytical techniques such as “field emission scanning electron spectroscopy” are highlighted,
underscoring the need for high-resolution structural and morphological analysis.
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Emerging trends point toward integrating nanocomposites into specialized domains.
For instance, the connection between “nanocomposite fiber” and “optical window” suggests
potential applications in optoelectronics. Terms like “zoi” (Zone of inhibition) bridge the
gap between hybrid nanocomposites and bio-nanocomposite films, hinting at possible
biocompatible or bio-derived nanocomposite materials.

In summary, these data unveil the dynamic landscape of nanocomposite research,
progressing from fundamental studies in the early 2010s to more specialized investiga-
tions. The field demonstrates relentless innovation, focusing on crosslinking time, energy
storage, multifunctionality, and specialized applications. Researchers are encouraged to
address gaps in optimizing crosslinking times, explore multifunctional nanocomposites,
and integrate nanocomposites into various applications. The potential of nanocomposites
in shaping a sustainable technological future is undeniable, and continued research in this
domain is essential.

3.5.3. Nanocomposites and Microstructure

In the context of nanocomposites and their mechanical properties, a presented biblio-
metric study, depicted in Figure 23, provides a comprehensive overview of the intricate
relationships among various research terms and their associated parameters. At the core of
this analysis lies the Link Strength Between Items or Terms (LSBI), offering a quantitative
measure of these associations.
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Within this intricate network of research concepts, the study uncovers numerous
relationships, shedding light on the interconnected nature of terms in the field. The central
focus of this examination revolves around “microstructure” and “nanocomposite”, which
exhibit a wide array of connections to various thematic areas, emphasizing their pivotal
roles in multidisciplinary research.

The initial dataset highlights a robust connection between “microstructure” and
“nanocomposite”, characterized by an LSBI value of 3796 and a DE of 0.39. This strong
association signifies a profound correlation between the detailed arrangement of inter-
nal constituents (microstructure) and materials enhanced with nanoscale reinforcements
(nanocomposites). The average year of this correlation, approximately 2015.29, suggests
that this relationship has gained notable significance in recent years, marking a surge in
understanding how microstructural characteristics influence nanocomposite properties
and performance.
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Further exploration of “microstructure” reveals diverse connections, including a ro-
bust link with “effect” (LSBI: 3552), indicating substantial research into how microstructures
influence or are influenced by various external and internal factors. Additionally, a strong
connection with “mechanical property” (LSBI: 2462) underscores the pivotal role of mi-
crostructure in determining material mechanical behavior. “Composite”, with an LSBI of
2128, delineates the fundamental interplay between material microstructures and composite
materials. Moreover, connections with “addition”, “property”, “x-ray diffraction”, “XRD”,
“SEM”, and “sample” represent the comprehensive scope of microstructural studies, from
material property evaluations to intricate analysis techniques.

As we shift our focus to “nanocomposite”, its dynamic interactions with various terms
mirror its versatility. For instance, the connection with “effect” (LSBI: 2883) echoes studies
on the impact of integrating nano-reinforcements into composites. “Composite” emerges
as a direct relation with an LSBI of 2066, highlighting the foundational connection between
conventional composites and their nanoscale counterparts. A link with “electrical property”
(LSBI: 1959) offers insight into the exploration of nanocomposites in electronic and electrical
applications. Other prominent connections encompass “mechanical property”, “addition”,
and “property”, revealing the multifaceted nature of nanocomposite research.

These intricate relationships between “microstructure” and “nanocomposite”, along
with their associated nodes, underscore the complex interdependencies within the research
domain. These strong interconnections hint at an integrated approach where understanding
the micro-level intricacies of materials profoundly shapes the properties and applications
of advanced nanocomposites at the nano level.

The data paint a vibrant picture of a scientific domain characterized by intercon-
nectedness and continuous evolution. One plausible scenario entails the development
of advanced nanocomposites tailored for specific applications, driven by a deep under-
standing of their microstructure. This could lead to innovations in sectors ranging from
aerospace to electronics, where material performance is paramount.

Figure 24 illustrates relationships among closely related terms in nanocomposites and
microstructure, employing the Euclidean distance metric to reveal intricate interactions
primarily centered on nanocomposites and their microstructure.

In the expansive realm of scientific research, network graphs, like the one presented,
serve as potent tools to uncover subtle relationships and trends within complex datasets.
In this exploration of bibliometric data, the primary focus is on nanocomposites and
microstructural features.

Nanocomposite Material and its Relations: The initial dataset draws attention to the
association between “nanocomposite material” and “paper”. With an average year value of
2014.565 and a substantial LSBI value of 49, it is clear that research papers and publications
discussing nanocomposite materials have notably increased during this period. This
mirrors the global interest in nanocomposites due to their enhanced mechanical, thermal,
and electrical properties.

A noteworthy link surfaces between “pp nanocomposite” and “pure pp”, with an
average year value of 2014.625. Polypropylene (PP) nanocomposites have gained attention
for their improved mechanical strength and barrier properties compared to pure PP coun-
terparts. The LSBI value of 7 suggests a moderate connection, indicating ongoing research
in modifying polypropylene with nanomaterials.

Delving into Microstructural Themes: Notable connections from around 1995 involve
“mo grain”, “novel microstructural feature”, and “mo particle”. These connections under-
score a specific interest in the microstructural attributes of molybdenum (Mo) during this
period, shedding light on material behavior through microstructural analysis.

Evolution of Nanocomposite Research: The connection between “butylene adipate
co terephthalate” and “PBAT nanocomposite”, with an average year value of 2018.685,
points to recent advancements in polymer blend nanocomposites. PBAT, a biodegradable
copolyester, holds promise for sustainable and high-performance materials in nanocompos-
ite form.
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An intriguing cluster centered around “Al2O3 tin nanocomposite” in 2009 reveals
connections to terms like “bm powder”, “finer tin particle size”, “pn powder”, “situ
nitridation”, and “superior electrical conducting behavior”. This suggests intensive studies
on the electrical and structural properties of Al2O3 tin-based nanocomposites during
that time.

Emerging Themes in Nanocomposite Research: Notably, the link between “carbon
nanofiber polystyrene nanocomposite” and associated properties and applications, such
as “electromagnetic shielding capability”, points to 2013. This suggests that incorporating
carbon nanofibers into polystyrene matrices may enhance the material’s ability to shield
against electromagnetic interference, particularly significant in the electronics industry.

In summary, a nuanced examination of the connections in this bibliometric dataset
reveals several patterns. The persistent evolution of nanocomposite research from the 1990s
to today underscores its significance in material science. The shift from foundational studies
on microstructural properties in the 1990s to application-driven research in electromagnetic
shielding and sustainable materials in the 2010s reflects the field’s maturation.

Figure 25 presents a bibliometric network graph, showcasing intricate relationships
among various nanocomposite and microstructure terms, focusing on the newest terms.
This analysis reveals evolving research trends, collaborations, and emerging patterns.

In nanocomposite research, this bibliometric analysis delves into the intricate as-
sociations between various nanocomposite-related terms, focusing on their mechanical
properties. The study employs network graph methodologies to elucidate these connec-
tions, revealing the term “crosslinking time” as a nexus point that frequently co-occurs
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with “nanocomposite”, “microstructure”, and “nanocomposite material”. This indicates a
concentration of scholarly attention between 2018 and 2020.
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The linkage between “optical window” and “surface microstructure”, with an av-
erage mention year close to 2020, signals an active area of research that probes into
nanocomposites’ visual and surface characteristics. Moreover, “energy storage properties”
emerge prominently within the literature, often in conjunction with “microstructure” and
“nanocomposite”, which underscores the increasing significance of nanocomposites within
the energy storage sector.

The central role of “microstructure” in the performance and application of nanocom-
posites is underscored by its connection to terms such as “manganese tungstate” and
“higher requirement”. This association underscores the critical importance of microstruc-
tural integrity in enhancing nanocomposite functionality.

Further analysis reveals that terms like “nanocomposite fiber” and “optical window”
are being researched in light transmission through nanostructured fibers. The term “zoi”,
or zone of inhibition, presents an intriguing connection to both “microstructure” and
“nanocomposite”, suggesting a nascent property or technique emerging in nanocompos-
ite research.

The pairing of “UV-Vis analytical spectroscopy” with “nanocomposite” reflects recent
advancements in employing spectroscopic methods for analyzing these materials, with a
notable focus on studies around 2019.
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References to “pure CF” about “microstructure” point to an interest in the microstruc-
tural investigation of pure carbon fibers in contemporary studies.

This bibliometric investigation presents an overarching perspective on nanocompos-
ites, singling out “crosslinking time” and microstructural integrity as crucial determinants
of their mechanical behavior. There is also an evident surge in interest in their optical quali-
ties and capabilities in energy storage, with implications for optoelectronics and sustainable
energy technologies.

Novel terms such as “zoi”, “NiWO4”, and “UV-Vis analytical spectroscopy” surface
within the study, hinting at specialized subfields that could be at the cusp of innova-
tive developments. As the comprehension of nanocomposites and their microstructural
characteristics deepens, one can anticipate the advent of advanced materials designed
with precise functionalities, which could revolutionize various industrial sectors, from
electronics to aerospace.

The anticipation is that cross-disciplinary collaboration among optoelectronics, me-
chanical engineering, and materials science experts will propel advancements in sustainable
energy storage, advanced protective coatings, and the next wave of electronic devices. Spe-
cialized terminologies and methodologies are expected to facilitate exacting control over
material properties, culminating in the creation of custom-tailored nanocomposites for
niche applications.

The application of data mining and machine learning methodologies in this study
shines a light on the multifaceted landscape of nanocomposites, prioritizing the nuanced
characterization of microstructure, electrical properties, and mechanical behavior. This
approach reveals the dominant research trajectories and the complex interrelationships
within the various dimensions that define nanocomposite materials.

Exploring the Scopus dataset reveals a significant evolution in global research dy-
namics, with contributions from diverse nations, democratizing nanocomposite research.
Collaboration is evident through joint publications, emphasizing the integrative and inter-
disciplinary nature of current research.

Textual analytics track the evolution of terminologies, emphasizing emergent terms
related to mechanical behavior, such as ZnO-NiO nanocomposites. Bibliometric and
network graph methodologies provide insights into keyword interrelationships, enhancing
understanding of temporal trends and dynamic research foci in the nanocomposite field.

In summary, this study blends computational methodologies with traditional nano-
material research to deepen our data-driven understanding of nanocomposites, laying a
robust foundation for future endeavors in this rapidly evolving domain.

4. State of the Art and Gaps Extracted from Results and Discussions

Section 4 delves into the contemporary landscape of nanocomposite research as of
23 October 2023. Drawing from diverse sources and methodologies, including Scopus
database analysis, textual analytics, and bibliometric data, this segment meticulously charts
the expansive terrain of nanocomposites. It highlights critical research themes, historical
trajectories, and emerging trends, focusing on microstructure, electrical characteristics,
mechanical dynamics, and nanocomposite films. Collaboration is crucial for innovation,
and highly cited articles offer a window into the field’s pulse. The emergence of new
research avenues, China’s significant financial contributions, and linguistic shifts signify
the evolving dynamics of this domain. As Section 4 concludes, it not only furnishes a
holistic overview of current nanocomposites research but also illuminates the path forward
for future scholarly endeavors.

4.1. Insights from Section 3.1: Scopus Database Search Strategy

Analysis of the Scopus Database Search Strategy reveals a vast nanocomposite re-
search landscape comprising 209,012 documents as of 23 October 2023. This research
prominently explores microstructural investigations, delving into the microscopic arrange-
ment of materials and its impact on properties. While research on electrical properties is
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less voluminous, it plays a vital role in understanding these materials. Mechanical behavior
remains a significant study area, especially regarding material responses under various
stress conditions.

Historical trends show that nanocomposite research gained prominence in the late
1970s, peaking between 2018 and 2022, reflecting a shift toward understanding nanocom-
posite attributes, exemplified by the term “properties”. Research on nanocomposite films
has also grown, finding applications in coatings and barriers. The role of tools like scanning
electron microscopy (SEM) in elucidating nanocomposite microstructures is underscored.

However, post-2022, there is a noticeable decline in nanocomposite research, poten-
tially indicating research saturation, evolving priorities, or emerging challenges. Reduced
emphasis on “increase” may suggest limited investigations into scalability and broader
acceptance. The increased focus on “effect” may signal growing interest in outcomes and
potentialities, requiring further exploration.

In conclusion, key research areas for future exploration encompass microstructure in
nanocomposites, electrical properties of nanocomposites, mechanical behavior of nanocom-
posites, nanocomposite films, and SEM in nanocomposite research. This comprehensive
analysis offers valuable insights into the current state of nanocomposites research and
identifies potential directions for future scholarly endeavors.

4.2. Insights from Section 3.2: Textual Analytics Approach

Collaborations prove pivotal for innovation, with prominent scholars like Sekino,
Tohru, and Niihara, Koichi, along with contributions from researchers like Chang, W.C.,
highlighting the potency of collaborative research in nanocomposites.

Highly cited articles, such as “High-thermoelectric performance of nanostructured
bismuth antimony telluride bulk alloys”, indicate influential studies. Investigating the
reasons behind their citation surge can reveal research inclinations and knowledge gaps
in nanocomposites.

Emerging trends focus on “Hierarchically porous Co/C nanocomposites for ultralight
high-performance microwave absorption” and “High-strength Damascus steel by addi-
tive manufacturing”. These signal new research avenues in electromagnetic interference
shielding, sustainable materials, and bioinspired designs.

China’s increasing funding in nanocomposite studies raises questions about its motiva-
tions and consequences. Understanding China’s investment rationale can provide insights
into the nanocomposite research trajectory.

The rise of the Chinese language in nanocomposite studies suggests an area of explo-
ration regarding linguistic diversity’s impact on knowledge dissemination and collaboration.

Sentiment analysis of academic articles reveals growing optimism in nanocomposite
research, offering insights into the research ambiance and areas of enthusiasm and concern.

To explore 2023 trends in nanocomposite research comprehensively, recommended
keywords include (i) Nanocomposite Collaborations, (ii) Highly Cited Nanocomposite
Articles, (iii) Emerging Trends in Nanocomposites, (iv) Global Funding in Nanocomposites,
focusing on China’s role, (v) Language Trends in Nanocomposite Research, and (vi) Senti-
ment Analysis in Nanocomposite Abstracts. Utilizing these keywords empowers readers
with the latest insights in the dynamic field of nanocomposite research.

4.3. Insights from Section 3.3: Scholarly Literature Analysis on Nanocomposite Themes

The scholarly literature analysis on nanocomposite themes reveals the intricate and
multifaceted nature of research in this field. Nanocomposite research covers many themes,
including analysis, synthesis, performance enhancement, and more. Notably, advanced
characterization techniques like electron microscopy, diffraction, and spectroscopy play a
significant role, reflecting the continuous evolution of tools and methods for comprehensive
nanocomposite analysis.

The focus on understanding the mechanical behavior of nanocomposites is evident,
bridging gaps in performance and application knowledge. Biomedical nanocomposite
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applications are also rising, suggesting potential roles in tissue engineering and regenera-
tive medicine.

Optoelectronic properties, particularly in materials like zinc oxide, are a growing area
of interest due to their applications in optoelectronics. Ongoing research into thin-film
technologies sheds light on understanding nanocomposite film properties and applications.
Electrical conductivity, especially in carbon-based filler-reinforced nanocomposites, is a
significant domain, highlighting their importance in electronics.

Continued emphasis on structural properties and nanoparticle phenomena under-
scores the need to understand these materials’ intrinsic characteristics. High-performance
materials, particularly those incorporating graphene, signify efforts to enhance material
properties for applications ranging from sensors to electrodes.

To stay updated on the 2023 trends in nanocomposite research, recommended key-
words include (i) Nanocomposite Research Themes, (ii) Advanced Characterization Tech-
niques, (iii) Biomedical Nanocomposites, (iv) Optoelectronic Nanocomposites, (v) Thin-
Film Nanocomposites, (vi) Conductive Nanocomposites, (vii) Structural Analysis of
Nanocomposites, (viii) Nanoparticle-Enhanced Materials, and (ix) High-Performance
Nanocomposites, with a focus on graphene-based ones. These keywords empower re-
searchers to access the latest articles and data, ensuring a comprehensive and updated view
of the dynamic nanocomposite research field in 2023.

4.4. Findings from Section 3.4: Analysis of MAP and NET Files

The analysis of MAP and NET files, using VOSviewer, provides valuable insights into
bibliometric network analysis, extending beyond the specific domain to broader subjects
like materials science and optics. Several essential findings and areas of investigation
have emerged.

One significant discovery is a strong correlation, with an R2 value of 0.998, between
term frequency and Total Link Strength (TLS). This indicates that frequently appear-
ing terms hold central positions in the research landscape, solidifying their importance.
However, certain outliers have been identified—terms that occur frequently but have
lower TLS values. These outliers may represent emerging or specialized topics that have
yet to fully integrate into the recognized network of terms, potentially indicating novel
research directions.

It is crucial to consider the evolutionary stage of the research domain, as emerging
areas may experience rapid-term spikes. In contrast, established ones exhibit more balanced
distributions between TLS and term occurrences. Thematic clusters have also emerged,
highlighting prominent research themes, including surface characteristics, mechanical
properties, nanocomposites, and material characterization methods. Temporal trends, such
as the increased focus on materials’ electrical properties around 2016, suggest growing
interest in electronic applications.

In terms of gaps and opportunities, the outliers deserve special attention as potential
subjects for further investigation, given their relevance and potential role in shaping new
research directions. Monitoring the maturation and transformation of research domains
can provide insights into the interplay between term occurrences and TLS over time,
revealing overarching research patterns. Emerging themes within clusters, especially in
areas like nanocomposites, warrant thorough examination. Understanding shifts in research
focus over time, such as the 2016 shift toward electrical properties, can offer insights into
influential factors driving research directions. Examining the relationships among terms
within clusters, particularly recent term combinations with notable LSBI values, can signal
the emergence of new research themes.

To stay current with the 2023 trends in bibliometric network analysis, recommended
keywords include (i) Bibliometric Network Analysis Themes, (ii) Total Link Strength (TLS),
(iii) Occurrences, (iv) Outliers in Bibliometric Analysis, (v) Evolutionary Stage of Research
Domains, (vi) Thematic Clustering in Materials Science, (vii) Temporal Trends in Research
Topics, (viii) Emerging Research Trends, (ix) Interconnectedness of Terms, and (x) Research
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Themes in Optics and Materials Science. These keywords will facilitate a comprehensive
search for relevant articles and studies, enhancing understanding of bibliometric network
analysis and related research domains.

4.5. Findings from Section 3.5: Bibliometric Data Analysis and Visualization Report

The analysis in Section 3.5, focused on bibliometric data analysis and visualization,
provides valuable insights into the nanocomposite research landscape. Key findings are
summarized in three subsections.

4.5.1. Nanocomposites and Electrical Properties

This subsection uncovers profound relationships among terms related to nanocom-
posites and their electrical properties. Notable associations include “nanocomposite”,
“microstructure”, “electrical property”, and “effect”, highlighting the intricate interplay
between microstructure and electrical behavior. The research emphasizes a shift toward
investigating nanocomposites’ electrical attributes, showcasing this field’s interdisciplinary
nature. Crosslinking time emerges as a pivotal factor in shaping nanocomposite elec-
trical characteristics. To delve deeper into these insights, recommended keywords for
2023 research include (i) Nanocomposites, (ii) Electrical Properties, (iii) Microstructure, (iv)
Crosslinking Time, (v) Optoelectronic Behaviors, (vi) Interdisciplinary Research, (vii) Funda-
mental Mechanisms, (viii) Materials Science, (ix) Electrical Engineering, and (x) Analytical
Techniques.

4.5.2. Nanocomposites and Mechanical Behavior

This subsection delves into the ongoing developments in nanocomposite research,
highlighting the central role of the term “nanocomposite”. It emphasizes the interplay
between “microstructure” and “nanocomposite”, offering insights into how structural
nuances affect nanocomposite properties. Research extends to understanding the conse-
quences of nanoparticle incorporation, providing comprehensive insights into nanocompos-
ite attributes. Researchers employ advanced analytical tools such as “x-ray diffraction” and
“scanning electron microscopy” for deeper insights. Promising areas include optimizing
crosslinking times, exploring multifunctional nanocomposites, integrating nanocomposites
into specialized sectors like optoelectronics and biocompatible applications, and refining
understanding through advanced analytical modalities. To explore these insights further in
2023, use keywords like (i) Nanocomposites, (ii) Mechanical Behavior, (iii) Microstructure,
(iv) Nanoparticles, (v) Crosslinking Time, (vi) Multifunctional Nanocomposites, (vii) Ad-
vanced Analytical Techniques, (viii) Energy Storage, (ix) Optoelectronics, (x) Biocompatible
Nanocomposites, (xi) Material Behaviors, (xii) Morphological Aspects, (xiii) X-ray Diffrac-
tion, and (xiv) Scanning Electron Microscopy.

4.5.3. Nanocomposites and Microstructure

This subsection provides a deep understanding of advancements in nanocomposites,
focusing on “microstructure” as a pivotal term. It reveals a robust connection between “mi-
crostructure” and “nanocomposite”, emphasizing their interdependence at the nanoscale.
Microstructure research spans various aspects, including material enhancement, property
evaluation, and analytical techniques. The integration of “nanocomposite” into this re-
search landscape underscores an integrative approach to revolutionizing nanocomposite
attributes at the nano level. Emerging themes include research into “nanocomposite fiber”
and “optical window”, exploring “energy storage properties”, and employing spectroscopic
tools for nanocomposite analysis. Promising areas for future exploration include “crosslink-
ing time”, optical properties in optoelectronics and solar cells, nanocomposites in energy
storage, and niche terminologies and methodologies. To explore these insights in 2023, use
keywords like (i) Nanocomposites, (ii) Microstructure, (iii) Crosslinking Time, (iv) Optical
Properties, (v) Energy Storage, (vi) Spectroscopic Techniques, (vii) Nanocomposite Fiber,
(viii) Nanocomposite Material, (ix) Microstructural Features, (x) Molybdenum, (xi) PBAT
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Nanocomposite, (xii) Al2O3 Tin Nanocomposite, (xiii) Zinc Oxide–Nickel Oxide, (xiv)
Carbon Nanofiber Polystyrene Nanocomposite, and (xv) UV–Vis Analytical Spectroscopy.

Section 4 delivers an exhaustive analysis from Section 4.1 to Section 4.5, presenting an
expansive examination of nanocomposite studies, as represented in Figure 26.

A review of the Scopus database indicates an extensive compendium comprising
209,012 documents on nanocomposites as of 23 October 2023. This work primarily investi-
gates microstructural elements and their subsequent influence on material behavior. There
exists a pronounced interest in deciphering both the electrical and mechanical properties
manifested by nanocomposites. The research timeline shows an uptick in the late 1970s,
reaching a peak from 2018 to 2022. A growing inclination toward the term “effect” signals
an amplified focus on understanding the underlying implications of nanocomposites.

In textual analytics, collaborations prove instrumental in fostering innovation. High
citation counts in articles offer pivotal guidance, directing this research field. Emerging
trajectories include electromagnetic interference (EMI) shielding, sustainable materials, and
significant financial support for nanocomposite research from China. A discernible rise in
Chinese language publications in academic discourse becomes evident. Sentiment analysis
projects an optimistic direction for nanocomposite research.

Examining scholarly literature highlights many nanocomposite-related topics, en-
compassing analytical processes, functional characteristics, synthesis approaches, and
performance enhancement strategies. Areas of pronounced attention include advanced
characterization methods, mechanical properties, biomedical applications, and optoelec-
tronic functionalities.

Delving into the analysis of MAP and NET files through tools such as VOSviewer
reveals nuanced relationships between term frequency and Total Link Strength, hinting at
potential nascent topics. Patterns become apparent, especially within materials science.

The findings from the Bibliometric Data Analysis and Visualization Report elucidate
the nuanced relationship between electrical attributes, mechanical behavior, and microstruc-
tural details intrinsic to nanocomposites. The centrality of microstructure and the signif-
icance of crosslinking duration in shaping the electrical attributes of these materials are
highlighted.

Across Sections 4.5.1–4.5.3, nanocomposites remain the focal point, underscoring
their diverse applications and adaptability. The consistent reference to microstructure
underscores its paramount role in determining nanocomposite performance. The influence
of crosslinking duration recurs throughout, indicating its integral role in modulating
material properties. Although there is a unified approach to utilizing advanced analytical
methods, specific techniques vary between subsections. For instance, while Section 4.5.1
centers on the electrical attributes of nanocomposites and fields such as optoelectronics
and electrical engineering, Section 4.5.2 ventures into the mechanical behavior of these
materials, showcasing techniques like X-ray diffraction and scanning electron microscopy.

Conversely, Section 4.5.3 emphasizes UV–Vis Analytical Spectroscopy and presents
specific nanocomposite materials like PBAT, Al2O3 tin, and carbon nanofiber polystyrene,
indicating the diverse lenses through which nanocomposites are viewed and analyzed.
The range of materials explored, including molybdenum, PBAT, aluminum oxide, tin, zinc
oxide, and nickel oxide, signifies the vast scope of nanocomposite research. Data mining
and ML methodologies enhance the capability of researchers to identify trends and foresee
material behavior, thereby advancing the field of nanomaterials.

To conclude, Section 4 consolidates a plethora of insights, providing a holistic view of
the nanocomposite research landscape and setting the stage for future academic endeavors
in this versatile domain. Moreover, Table 1, provided at the end of this section, concisely
encapsulates these findings alongside a curated list of recommended keywords to guide
future research in the dynamic field of nanocomposites.
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Table 1. Holistic view of the nanocomposite research landscape.

Section Key Insights Recommended Keywords

4.1. Scopus Database
Search Strategy

- Prominence in microstructural research.
- Historical trends peaking between 2018 and 2022.
- Post-2022 decline, indicating potential
research saturation.

- Microstructure in Nanocomposites
- Electrical Properties of Nanocomposites
- Mechanical Behavior of Nanocomposites
- Nanocomposite Films
- SEM in Nanocomposite Research

4.2. Textual Analytics Approach

- Importance of collaborations in innovation.
- Emerging trends in electromagnetic interference
and sustainable materials.
- Rise of Chinese language in studies.

- Nanocomposite Collaborations
- Highly Cited Nanocomposite Articles
- Emerging Trends in Nanocomposites
- Global Funding in Nanocomposites
- Language Trends in Nanocomposite Research
- Sentiment Analysis in Nanocomposite Abstracts

4.3. Scholarly Literature Analysis

- Diverse themes, including analysis, synthesis,
and performance enhancement.
- Growing focus on biomedical applications and
optoelectronic properties.

- Nanocomposite Research Themes
- Advanced Characterization Techniques
- Biomedical Nanocomposites
- Optoelectronic Nanocomposites
- Thin-Film Nanocomposites
- Conductive Nanocomposites
- Structural Analysis of Nanocomposites
- Nanoparticle-Enhanced Materials
- High-Performance Nanocomposites

4.4. Analysis of MAP and
NET Files

- Strong correlation (R2 = 0.998) between term
frequency and Total Link Strength (TLS).
- Identification of thematic clusters and
temporal trends.

- Bibliometric Network Analysis Themes
- Total Link Strength (TLS)
- Occurrences
- Outliers in Bibliometric Analysis
- Evolutionary Stage of Research Domains
- Thematic Clustering in Materials Science
- Temporal Trends in Research Topics
- Emerging Research Trends
- Interconnectedness of Terms
- Research Themes in Optics and Materials Science

4.5.1. Nanocomposites and
Electrical Properties

- Relationships between nanocomposites and
electrical properties.
- Shift toward investigating electrical attributes
of nanocomposites.

- Nanocomposites
- Electrical Properties
- Microstructure
- Crosslinking Time
- Optoelectronic Behaviors
- Interdisciplinary Research
- Fundamental Mechanisms
- Materials Science
- Electrical Engineering
- Analytical Techniques

4.5.2. Nanocomposites and
Mechanical Behavior

- Interplay between microstructure and
nanocomposite properties.
- Exploration of multifunctional nanocomposites in
various sectors.

- Nanocomposites
- Mechanical Behavior
- Microstructure
- Nanoparticles
- Crosslinking Time
- Multifunctional Nanocomposites
- Advanced Analytical Techniques
- Energy Storage
- Optoelectronics
- Biocompatible Nanocomposites

4.5.3. Nanocomposites and
Microstructure

- Detailed analysis of microstructure in
nanocomposites.
- Focus on nanocomposite fibers and
optical properties.

- Nanocomposites
- Microstructure
- Crosslinking Time
- Optical Properties
- Energy Storage
- Spectroscopic Techniques
- Nanocomposite Fiber
- Nanocomposite Material
- Microstructural Features
- Molybdenum
- PBAT Nanocomposite
- Al2O3 Tin Nanocomposite
- Zinc Oxide–Nickel Oxide
- Carbon Nanofiber Polystyrene Nanocomposite
- UV–Vis Analytical Spectroscopy
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Table 1 serves as a vital synthesis tool, offering a clear summary of key findings
and trends and acting as a roadmap for future research endeavors in nanocomposite
research. It delineates critical areas of study and suggests targeted keywords, facilitating a
deeper understanding and efficient exploration of the evolving landscape of nanocomposite
research. This organized presentation of data highlights the study’s contribution to the
scientific community, serving as a valuable reference for researchers aiming to build on these
findings or explore new investigative paths in the multifaceted world of nanocomposites.

5. Literature Revision Guided by Artificial Intelligence

The insights from Section 4, combined with current trends in nanocomposite research,
have led to a revised approach for Scopus database searches. A specific set of keywords,
reflective of crucial subtopic connections, was selected to target cutting-edge nanocomposite
research in 2023. This new search method involves scanning titles, abstracts, and keywords
for the first two themes and using a specified keyword for the third theme, encompassing
all document fields. The focus was on publications from 2023, prioritizing articles by
citation frequency. The most cited article underwent detailed analysis. Different research
goals require modified search strategies.

5.1. Nanocomposites and Electrical Properties

This section delves into the intricate relationship between nanocomposites and their
electrical properties. It focuses on how these advanced materials interact fundamentally,
influencing their electrical characteristics. The examination covers various nanocomposite
systems, emphasizing their composition, structure, and functionality. This exploration is
crucial for advancing our understanding of how nanocomposites can be optimized for spe-
cific electrical applications, particularly in fields requiring enhanced electrical performance.
The discussion integrates findings from recent studies, providing a comprehensive view of
this area’s current state of knowledge.

5.1.1. Crosslinking Degree and Its Influence on XLPE/OMMT Nanocomposites

Yunzi et al. (2023) [465] studied the complex relationship between crosslinking degree
and the mechanical and electrical properties of polyethylene/organic modified montmo-
rillonite (XLPE/OMMT) nanocomposites. This research aligns with current discussions
in nanocomposites, electrical properties, and crosslinking duration, revealing intricate
interactions in these areas.

The study’s primary goal is to examine how crosslinking degree affects the tensile
and dielectric properties of XLPE/OMMT nanocomposites. The team employed various
experimental methods to explore this relationship comprehensively.

The methodology includes X-ray diffraction (XRD) for analyzing montmorillonite
dispersion and structural changes due to crosslinking. Scanning electron microscopy (SEM)
was crucial for observing changes in crystalline morphology and crosslinked networks’
effects on crystal growth. The gel content test provided insights into the evolution of
crosslinking degrees over time. Conductance-temperature characteristics, dielectric con-
stant, and dielectric loss tangent tests offered a detailed view of dielectric properties, com-
plemented by power-frequency breakdown field strength analysis using the two-parameter
Weibull distribution.

The findings highlight the dynamic nature of XLPE/OMMT nanocomposites under
different crosslinking degrees. XRD showed a transition of montmorillonite to an exfo-
liated state, with reduced crystallinity as crosslinking time increased. The gel content
test revealed a complex pattern of crosslinking degree development, peaking at 1520 min.
SEM showed that crosslinked networks inhibited crystal growth, leading to a more con-
sistent crystal size distribution in positively crosslinked states. The interaction between
OMMT and crosslinked bonds enhanced tensile strength, elastic modulus, and toughness,
demonstrating a well-balanced nanocomposite structure.
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In summary, this study significantly advances our understanding of the complex
relationship between crosslinking degree and the mechanical and electrical properties of
XLPE/OMMT nanocomposites. It reveals the multifaceted dynamics of this relationship
and highlights the critical role of crosslinking in defining these materials’ macroscopic
characteristics. Dong Yunzi and colleagues’ research marks a significant milestone in
nanocomposite research, illuminating the complex interplay between nanomaterials, poly-
mer science, and the temporal dynamics of crosslinking processes.

5.1.2. BaTiO3 Nanofillers in Polymer Blend Nanocomposites: A Study on PVDF/PMMA/
BaTiO3

The research on polymer blend nanocomposites (PBNCs) marks a pivotal advancement
in developing customizable materials for various applications. Sengwa et al. (2023) [466]
conducted a comprehensive study on PVDF/PMMA/BaTiO3 nanocomposites. This study
is crucial for understanding their applications in modern microelectronic and optoelec-
tronic technologies.

This research examines how BaTiO3 nanofillers in varying concentrations affect the
properties of the PBNC films. This is especially relevant for creating materials with ad-
justable properties for diverse technological uses.

The study uses a solution-cast method to prepare PBNC films. These films undergo
detailed analysis through several techniques. Scanning electron microscopy (SEM) reveals
the uniformity of PBNC films and the morphological changes in PVDF due to increased
BaTiO3 concentration. X-ray diffraction (XRD) detects electro-active polar β- and γ-phases
in PVDF crystallites. Fourier transform infrared (FTIR) spectroscopy corroborates these
findings. Differential scanning calorimetry (DSC) explores the thermal properties and
melting points of the PBNC materials. Extensive dielectric spectra are thoroughly examined,
including complex dielectric permittivity, dielectric loss tangent, and electric modulus
spectra. The study also methodically analyzes the electrical conductivity of PBNC films
across different frequencies.

The findings of this research demonstrate the significant influence of BaTiO3 nanopar-
ticles on PBNC films. Increased BaTiO3 concentration leads to high homogeneity and
noticeable changes in PVDF’s spherulite morphology. XRD confirms the presence of electro-
active polar β- and γ-phases in PVDF crystallites. The optical properties, including UV–Vis
absorbance and direct energy band gap, show notable variations related to nanomaterial
concentration. The dielectric properties reveal a decrease in the real part of complex di-
electric permittivity at higher frequencies and a pronounced chain segmental relaxation
process. The electrical conductivity of PBNC films increases with frequency, highlighting
their potential in capacitive energy storage and microelectronic devices.

In summary, incorporating BaTiO3 nanoparticles into the PVDF/PMMA blend matrix
significantly affects the PBNC films’ morphological, structural, thermal, optical, and elec-
trical properties. These materials are suitable for various applications, such as frequency-
tunable nanodielectrics, electromagnetic interference shielding, flexible dielectric substrates,
thermal insulators, and bandgap-regulated materials in microelectronics, capacitive energy
storage, and optoelectronics.

5.1.3. Enhancing Fatigue Life in Aluminum–Graphene Nanocomposites for Power
Transmission

Azizi et al.’s 2023 [467] study marks significant progress in comprehending high-
cycle fatigue (HCF) in aluminum–graphene nanocomposites, particularly for high-capacity
power transmission conductors. Their paper, “Fatigue life prediction of aluminum-graphene
nanocomposites: Application to high-capacity conductors”, delves into the Al-0.5 wt%
graphene nanoparticle (GNP) composite’s mechanical and electrical attributes, shedding
light on its fatigue resilience under various stress levels and temperatures.

The study’s primary goal is to evaluate the fatigue life of the Al-0.5 wt% GNP compos-
ite, a promising material for high-capacity conductors. It tackles the challenges of Aeolian
vibrations and fatigue failure in commercial aluminum conductors, suggesting graphene
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nanoparticle integration to boost mechanical and electrical qualities. This research also
explores the composite’s fatigue behavior at high temperatures, addressing a vital gap in
the current literature.

The authors applied various experimental approaches to the composite at ambient
and elevated temperatures, including quasi-static and high-cycle fatigue tests. These
tests helped derive material parameters for Basquin’s equation, offering a quantitative
perspective of the fatigue behavior. Fractographic analysis using field emission scanning
electron microscopy (FESEM) provided insights into failure mechanisms. Raman analysis
evaluated the graphene’s characteristics in the composite, and tensile strength tests assessed
its mechanical properties.

The findings show a significant enhancement in the fatigue life of the Al-0.5 wt% GNP
composite over pure aluminum. At room temperature, the composite shows a remarkable
234% increase in fatigue life at low stress levels and a 44% increase at high stress levels.
Elevated temperature tests indicate a 146% improvement at low stress levels and a 130%
increase at high stress levels compared to pure aluminum. The graphene nanoparticles are
identified as pivotal in delaying crack initiation and slowing crack growth, thus boosting
the matrix’s fatigue life.

Microstructural and mechanical tests further validate the composite’s advantages,
revealing graphene’s uniform distribution within aluminum and a grain size reduction
compared to pure aluminum. This implies that GNPs bolster mechanical strength and
induce favorable microstructural modifications in the composite.

Azizi et al.’s research substantially advances nanocomposite materials for high-capacity
conductors. The Al-0.5 wt% GNP composite shows superior fatigue life and mechanical
properties compared to pure aluminum, crediting graphene nanoparticles for these im-
provements. This work offers potential for material optimization in power transmission,
paving the way for enhanced efficiency and reliability.

5.1.4. Water-Tree Aging in XLPE/OMMT Nanocomposites: The Role of Crosslinking
Degree

Nanocomposites, particularly electrical insulation materials, represent a critical re-
search field in evolving modern power systems. Dong et al.’s 2023b article [468], “Effect of
Crosslinking Degree on Water-Tree Aging Characteristics of XLPE/OMMT Nanocompos-
ites”, investigates the relationship between the crosslinking degree in crosslinked polyethy-
lene/montmorillonite (XLPE/OMMT) nanocomposites and their electrical properties, fo-
cusing on water-tree aging.

Given the increasing voltage levels and challenging conditions in power systems,
there is a growing demand for insulation materials with enhanced electrical, thermal, and
mechanical properties. Polymer-based nanocomposites, known for their unique struc-
tures and exceptional properties, are emerging as effective dielectrics. This article con-
tributes to this field by examining how the crosslinking degree affects water-tree aging in
XLPE/OMMT nanocomposites.

The study’s primary aim is to understand how the crosslinking degree influences
the water-tree aging characteristics of these nanocomposites. The research team prepared
two nanocomposites with different crosslinking degrees and subjected them to acceler-
ated water-tree aging tests. They examined water-tree morphology, measured length,
and initiation probability, tested gel content for crosslinking assessment, and analyzed
chemical composition changes pre- and post-aging using Fourier transform infrared spec-
troscopy (FTIR).

The findings reveal a notable effect of crosslinking degree on water-tree aging charac-
teristics. Higher crosslinking degrees result in less dense water-tree morphologies, indicated
by smaller fractal dimensions and duty cycles. The study also highlights electrochemical
degradation during aging in XLPE/OMMT nanocomposites, offering insights into their
complex interactions.
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The research employs a diverse range of methods. Accelerated water-tree aging
experiments are vital to evaluating performance under simulated conditions. Microscopic
analyses, including polarized light and scanning electron microscopy (SEM), are used to
observe water-tree morphology and changes in crystal structure. Gel content tests and
FTIR analyses aid in assessing crosslinking degree and chemical composition changes
during aging.

In summary, Dong et al.’s study significantly enhances our understanding of the
relationship between crosslinking degree and water-tree aging in XLPE/OMMT nanocom-
posites. The research highlights the critical role of optimizing crosslinking degree to achieve
desired electrical properties and improve the durability of nanocomposite materials in
power systems.

5.1.5. Sn Doping Effects in CdO Nanocomposites: A Laser Ablation Study

Fadhali’s 2023 study, titled “Structural, optical, and electrical characterization of
laser ablated CdO1−xSnx nanocomposites” [469], presents an in-depth analysis of CdO:Sn
nanocomposites synthesized using laser ablation. Thanks to their distinctive electrical and
optical properties, these nanocomposites are notable for their potential in nanophotonics
and photovoltaics.

The study’s primary aim is to examine the effects of Sn doping on CdO nanocom-
posites’ structural, optical, and electrical features. Fadhali achieves this by synthesizing
CdO and CdO:Sn nanocomposites with varied Sn doping ratios (5%, 10%, 15%) using laser
ablation and conducting thorough characterizations.

This paper’s contributions are diverse. It enhances the understanding of CdO:Sn
nanocomposites by exploring their structural, optical, and electrical attributes. The research
highlights how Sn doping influences crystallinity in CdO samples. It also investigates the
nanocomposites’ size and roughness, showing how these are affected by Sn doping. The
study extends to optical characteristics, revealing absorption, transmission, and reflection
spectra changes due to Sn doping. It notably examines Sn doping’s impact on the nanocom-
posites’ energy bandgap, electron concentration, carrier mobility, and resistivity. The paper
also explores dielectric properties, noting significant shifts with different Sn doping ratios.

Methodologically, Fadhali employs laser ablation for synthesizing CdO and CdO:Sn
nanocomposites. The thin films are deposited using a Q-Switched Nd:YAG laser in a vac-
uum chamber. Characterization techniques include X-ray diffraction (XRD) for structural
analysis, atomic force microscopy (AFM) for surface morphology, UV–Vis spectrophotom-
etry for optical properties, Fourier transform infrared spectroscopy (FTIR) for chemical
characterization, and Hall effect measurements for electrical properties.

The results demonstrate various aspects of CdO:Sn nanocomposites. XRD confirms
crystalline phases, with cubic structures in CdO and tendencies toward orthorhombic
structures in CdO:Sn. AFM shows how Sn doping affects roughness and diameter. Optical
measurements reveal plasmonic effects and Sn doping’s influence on spectra. Electrical
characterizations indicate improved electron concentration, carrier mobility, and resistivity
with increased Sn doping. Dielectric properties show notable variations, indicating peak
shifts to higher wavelengths.

In conclusion, Fadhali’s work thoroughly investigates the structural, optical, and
electrical properties of CdO:Sn nanocomposites. The findings enrich the understanding
of these nanocomposites for potential applications, suggesting that a 10% Sn doping ratio
optimally enhances CdO:Sn nanocomposites’ properties.

5.1.6. ZnO/TiO2 Nanoparticles in PEO/CMC Nanocomposites: Implications for Flexible
Optoelectronics

Ragab’s 2023 study, “Optical, thermal and electrical characterization of PEO/CMC
incorporated with ZnO/TiO2 NPs for advanced flexible optoelectronic technologies” [470],
provides an in-depth analysis of PEO/CMC nanocomposites integrated with zinc oxide
(ZnO) and titanium dioxide (TiO2) nanoparticles. This research is pivotal in understanding
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nanocomposite materials, especially for their potential use in flexible capacitors and energy
storage systems within flexible optoelectronic technologies.

The main goal of this study is to examine the optical, thermal, and electrical properties
of PEO/CMC nanocomposites with various concentrations of ZnO/TiO2 nanoparticles.
These nanocomposites are synthesized through solution casting, showing promise for
advanced flexible optoelectronic applications.

Ragab’s work contributes significantly to the field. The study develops nanocomposite
samples of PEO/CMC filled with ZnO/TiO2 nanoparticles, broadening the material options
for energy devices. It provides essential insights into how ZnO/TiO2 nanoparticle concen-
trations affect the crystallinity and the allowed direct energy gap of the nanocomposite films.
The research uses diverse characterization techniques, including FTIR, XRD, UV–Vis analy-
sis, TGA, and impedance analysis, to fully understand the nanocomposite’s properties.

The methodology involves the solution casting method for synthesizing ZnO/TiO2
NPs nanocomposites within a PEO/CMC matrix. Characterization techniques include XRD
for crystallinity analysis, FTIR for examining metal oxide NPs and PEO/CMC composite
interactions, UV/Vis spectroscopy for optical properties, AC conductivity measurements
for electrical conductivity, TGA for thermogravimetric analysis, and impedance analysis
for dielectric properties investigation.

The study’s findings are notable. Increasing concentrations of ZnO/TiO2 NPs re-
duce the crystallinity of the nanocomposite films. A significant decline in the polymer
matrix’s allowed direct energy gap is observed at 7 wt% ZnO/TiO2 NP concentration. AC
conductivity decreases as ZnO/TiO2 NP concentration increases, with correlated barrier
hopping (CBH) and non-Debye relaxation processes identified as the dominant conduction
mechanisms. The refractive index shows a nonlinear increase with higher ZnO/TiO2 NP
concentrations, suggesting changes in packing densities and interatomic spacing.

In summary, integrating ZnO/TiO2 nanoparticles into the PEO/CMC polymer blend
markedly affects its optical, thermal, and electrical characteristics. Changes in crystallinity,
energy gap, electrical conductivity, and refractive index are observed, highlighting the
potential of PEO/CMC nanocomposites with ZnO/TiO2 NPs in flexible optoelectronic
devices and energy systems.

5.1.7. Partial Conclusions

The research presented in these six papers, summarized in Table 2, has significantly ad-
vanced our understanding of the properties and applications of nanocomposite materials in
various technological fields. These studies encompass a range of nanocomposites, including
XLPE/OMMT and PVDF/PMMA/BaTiO3, and focus on enhancing electrical properties,
improving fatigue life, and refining materials for specific uses in power transmission and
optoelectronic technologies. They highlight the complex interplay of material composition,
structure, and functionality in nanocomposite systems.

These studies utilize various analytical methods, such as X-ray diffraction, impedance
analysis, polarized light microscopy, scanning electron microscopy, and Fourier trans-
form infrared spectroscopy. The insights gained from these methods provide a deeper
understanding of how nanomaterials interact with polymers and contribute to developing
nanocomposite systems. This research demonstrates the potential of nanocomposites to
address current and future challenges in materials science and engineering.

Further studies are needed to understand the relationship between crosslinking de-
gree and nanocomposites’ mechanical and electrical properties, especially across various
nanomaterial–polymer systems. Research into incorporating graphene nanoparticles into
aluminum conductors may yield improvements in mechanical and electrical performance
for high-capacity power transmission. Additionally, exploring the fatigue behavior of
nanocomposites at high temperatures could provide solutions to fatigue failure issues in
commercial aluminum conductors. Future research should also include synthesizing and
characterizing CdO:Sn nanocomposites using laser ablation techniques to advance our
knowledge of their structural, optical, and electrical properties.
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Table 2. Synoptic summary regarding nanocomposites and electrical properties.

Subsection Key Insights Specific Studies and Findings

5.1.1. XLPE/OMMT
Nanocomposites

Crosslinking degree significantly affects
mechanical and electrical properties.

Yunzi et al. (2023) [465]: Utilized XRD, SEM, and
gel content test to demonstrate the influence of
crosslinking on XLPE/OMMT nanocomposites’
tensile and dielectric properties.

5.1.2. PVDF/PMMA/BaTiO3
Nanocomposites

BaTiO3 nanofillers’ impact on polymer
blend nanocomposites for
optoelectronic applications.

Sengwa et al. (2023) [466]: Analyzed the effects
of BaTiO3 concentration on the properties of
PBNC films using SEM, XRD, and FTIR.

5.1.3. Aluminum–Graphene
Nanocomposites

Enhancing fatigue life in nanocomposites
for power transmission.

Azizi et al. (2023) [467]: Investigated high-cycle
fatigue in Al-0.5 wt% GNP composites,
employing quasi-static and fatigue tests.

5.1.4. XLPE/OMMT Water-Tree
Aging

Crosslinking degree’s effect on water-tree
aging in nanocomposites.

Dong et al. (2023b) [468]: Conducted accelerated
water-tree aging tests on XLPE/OMMT
nanocomposites to study the effect
of crosslinking.

5.1.5. CdO:Sn Nanocomposites Effects of Sn doping in laser ablated
nanocomposites for nanophotonics.

Fadhali (2023) [469]: Synthesized CdO:Sn
nanocomposites to explore their structural,
optical, and electrical properties.

5.1.6. ZnO/TiO2
Nanocomposites in PEO/CMC

Application of nanoparticles in
bionanocomposites for flexible
optoelectronics.

Ragab (2023) [470]: Analyzed PEO/CMC
nanocomposites incorporated with ZnO/TiO2
NPs for optoelectronic technologies.

5.2. Nanocomposites and Mechanical Behavior

This section methodically examines the intricate relationship between nanocomposites
and their mechanical properties. Nanocomposites, composed of a matrix and nanoparticles,
demonstrate diverse mechanical behaviors influenced by their microstructure. This segment
aims to dissect these behaviors, focusing on how nanoparticle incorporation impacts
the overall mechanical performance of these composites. Through a series of studies, it
reveals the nuanced effects of various nanoparticles and fabrication techniques on the
strength, hardness, and wear resistance of nanocomposites. This exploration advances
our understanding of material science and guides the development of nanocomposites for
specialized applications, ranging from biomedical implants to structural components.

5.2.1. Enhancement of WE43 Magnesium-Based Nanocomposites through Friction Stir
Processing

In nanocomposites, a significant study investigates the mechanical properties and
antibacterial behavior of WE43 magnesium-based nanocomposites. Authored by O. Es-
maielzadeh et al., the research titled “Investigation of mechanical properties and antibac-
terial behavior of WE43 magnesium-based nanocomposite” [471] focuses on enhancing
WE43 magnesium alloy using ZnO and CuZnO particles. The researchers apply friction
stir processing (FSP) to achieve this enhancement.

The study’s primary aim is to explore how FSP affects these nanocomposites’ mechan-
ical and antibacterial properties. Researchers seek to develop biodegradable orthopedic
implants from magnesium alloys, which align with human bone regarding mechanical
properties. They use FSP to refine grain and evenly distribute secondary phase particles,
enhancing the alloy’s strength.

This paper demonstrates the increased mechanical strength of WE43 magnesium alloy
post-FSP. It evaluates the microstructure and mechanical properties of the alloy when
reinforced with ZnO and CuZnO nanoparticles. Additionally, it assesses the antibacterial
properties of these composites against bacteria like S. aureus and E. coli.

The methodology includes synthesizing ZnO powders, preparing WE43 alloy plates,
and executing FSP with tools made of hardened tool steel. Researchers insert reinforcement
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particles using groove and hole methods. They use field emission scanning electron
microscopy (FESEM) for microstructural characterization and test compressive strength
and stress–strain relations for mechanical properties. Antibacterial properties are tested
using disk samples.

Results show FSP’s effectiveness in reducing grain size and redistributing secondary
phase particles in the WE43 alloy. Nano-sized reinforcements distribute more efficiently
within the matrix than micro-sized ones. No chemical reaction between reinforcement
particles and the alloy is evident. FSP-processed composites exhibit higher microhardness
compared to untreated and FSP-processed samples. Furthermore, adding ZnO and CuZnO
particles improves the composites’ antibacterial capabilities, especially against E. coli.

In conclusion, the research highlights FSP’s role in enhancing the mechanical and
antibacterial properties of WE43 magnesium-based nanocomposites. This systematic study
contributes to our understanding of these materials and advances the development of
materials with superior mechanical strength and antibacterial functionality.

5.2.2. Role of Crosslinking in XLPE/OMMT Nanocomposites

The study of nanocomposites, mainly focusing on their mechanical behavior and
dimensional mesh structures, has significantly increased scientific interest. Researchers
Gao Dongyunzi et al. [465] have contributed notably to this field with their research on
crosslinked polyethylene/organic montmorillonite (XLPE/OMMT) nanocomposites. Their
paper examines the complex relationship between the degree of crosslinking and these
materials’ tensile and dielectric properties.

This research aims to deeply understand how varying degrees of crosslinking affect the
mechanical and electrical properties of XLPE/OMMT nanocomposites. Such understanding
is critical for optimizing the crosslinking process to enhance material performance.

The authors apply advanced analytical techniques to study the nanocomposites’ mi-
crostructure. They use X-ray diffraction (XRD) to examine montmorillonite dispersion
and structural changes in the samples. Scanning electron microscopy (SEM) investigates
changes in crystalline morphology. Gel content tests measure the degree of crosslinking,
while the study of tensile properties focuses on plastic and elastic deformation. Dielec-
tric properties are evaluated through conductance-temperature characteristics, dielectric
constant, and dielectric loss tangent tests. The researchers also applied the two-parameter
Weibull distribution to analyze power-frequency breakdown field strength in depth.

The study reveals that the degree of crosslinking significantly affects crystal size
uniformity and crystallinity in XLPE/OMMT nanocomposites. Optimal crosslinking,
identified within a 15–20 min window, enhances tensile strength, elasticity, and toughness.
The interaction between crosslinking and OMMT also improves electrical conductivity and
dielectric properties. However, due to crystal structure disruption, excessive crosslinking
beyond 20 min adversely affects tensile performance.

The paper’s findings elucidate the complex interplay between crosslinking degree,
OMMT dispersion, and electrical conductivity in nanocomposites. This research deepens
our fundamental understanding of these interactions and offers practical insights for achiev-
ing optimal crosslinking for better mechanical and electrical properties in XLPE/OMMT
nanocomposites.

In conclusion, the research highlights the critical role of crosslinking degree in de-
termining the mechanical and electrical capabilities of XLPE/OMMT nanocomposites.
Identifying a beneficial crosslinking period of 15–20 min provides a valuable guideline
for future work in nanocomposite property optimization. The study also emphasizes the
importance of the interplay between OMMT and the polymer matrix in enhancing these
advanced materials’ electrical and mechanical characteristics.

5.2.3. Al2O3 Reinforcement in Brass Matrix Nanocomposites

The study by Shayan Memar et al. [472] advances the understanding of nanocompos-
ites, specifically Al2O3/brass matrix nanocomposites. Their research, “An evaluation on
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microstructure, wear, and compression behavior of Al2O3/brass matrix nanocomposites
fabricated by stir casting method”, focuses on using stir casting to create leaded brass
composites reinforced with Al2O3 nanoparticles.

This research aims to evaluate the impact of Al2O3 nanoparticle reinforcement on the
mechanical properties of these nanocomposites. While copper matrix composites are well
studied, brass matrix composites, particularly those reinforced with Al2O3, have yet to be
explored more. This study addresses this gap, examining mechanical properties and wear
behavior through stir casting.

The paper’s contributions are multifaceted. It explores how Al2O3 nanoparticles affect
the nanocomposites’ mechanical properties, focusing on changes in microhardness and
toughness. The study also investigates wear and compression behavior, noting a shift in
wear mechanism from cutting to plow abrasive wear with nanoparticle addition. FESEM
and XRD analyses confirm the nanoparticles’ uniform distribution within the brass matrix.
This research enhances the understanding of wear-resistant materials.

The methodology encompasses material preparation with leaded brass ingot and
Al2O3 nanoparticles, using stir casting for fabrication. Pre-treatment includes ball milling
Al2O3 nanoparticles with copper microparticles. The microstructural analysis uses field
emission scanning electron microscopy (FESEM), while mechanical testing includes Vickers
hardness and microhardness measurements, along with compressive and wear testing fol-
lowing ASTM G99 standards. Porosity and chemical composition analyses are also crucial.

Results from this study show that FESEM images confirm uniform Al2O3 nanoparticle
distribution in the brass matrix. The nanocomposites demonstrate improved microhardness
and toughness compared to unreinforced brass. However, nanocomposites exhibit a higher
wear rate, attributed to nanoparticle addition. The wear mechanism shifts from cutting to
plow abrasive wear. The composites’ porosity remains below 5%, with density increasing
and porosity decreasing due to nanoparticle addition. Wear testing indicates slightly higher
specific wear rates and friction coefficients (COF) for nanocomposites than leaded brass.

In conclusion, Al2O3 nanoparticles significantly enhance the microhardness, tough-
ness, and elongation percent of leaded brass nanocomposites. The nanoparticles obstruct
dislocation movement, increasing microhardness. Toughness and elongation improve-
ments relate to a reduction in the β-phase percentage. While wear rates and COF are
marginally higher in nanocomposites, the study highlights the overall positive effect of
Al2O3 reinforcement on the mechanical properties of brass matrix nanocomposites.

5.2.4. Zinc Oxide Nanoparticles in PLA/PCL Bionanocomposites

Amir Babaei et al.’s work on polylactic acid/polycaprolactone (PLA/PCL) bionanocom-
posites stands out in nanocomposite research [473]. Their study, “Polylactic acid/polycaprolactone
bionanocomposites containing zinc oxide nanoparticles: Structure, characterization and
cytotoxicity assay”, thoroughly examines the structural, thermal, mechanical, and biocom-
patible characteristics of these bionanocomposites.

The study aims to explore biodegradable polymers, particularly PLA, as alternatives
to petroleum polymers, addressing environmental concerns. It investigates the integration
of PCL into PLA to improve brittleness and thermal stability. Additionally, it pioneered
zinc oxide nanoparticles (ZnO-NPs) in PLA/PCL blends, recognizing their potential to
enhance antimicrobial, photocatalytic, and biocompatible properties.

The paper’s contributions are diverse. The team synthesizes ZnO-NPs using a hy-
drothermal method. Analyses by FESEM, XRD, and FTIR confirm these nanoparticles’
hexagonal structure and size. When added to the PLA/PCL blend, ZnO-NPs induce
various structural improvements. The study examines morphological changes (via FE-
SEM), increased crystallinity and melting temperature (via DSC analysis), enhanced tensile
strength and modulus, altered rheological behavior indicating a 3D network structure,
and accelerated degradation under UV light. It also evaluates the cytotoxicity of the
nanocomposites on fibroblast cells, crucial for biomedical uses.
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Methodologically, the study employs FESEM, XRD, and FTIR for synthesis and char-
acterization, confirming ZnO-NPs’ structure and dispersion in the PLA/PCL blend. DSC
and tensile testing analyze thermal and mechanical aspects, while rheological properties
are examined using a rheometrics mechanical spectrometer. The cytotoxicity assay uses
MTT and acridine orange fluorescence staining to evaluate the bionanocomposites’ impact
on fibroblast cells.

Results show successful ZnO-NP synthesis and uniform PLA/PCL blend dispersion.
ZnO-NPs increase PLA’s crystallinity and melting temperature and improve tensile strength
and modulus. Rheological analyses indicate the development of a 3D-network structure.
The bionanocomposites also show accelerated photochemical degradation, suitable for
light-responsive applications. Notably, the cytotoxicity assay shows no harmful effects on
fibroblast cells, suggesting biomedical application potential.

In conclusion, this research is pioneering in incorporating ZnO-NPs into PLA/PCL
blends, highlighting its structural, thermal, mechanical, and biocompatible properties. This
study deepens our understanding of these bionanocomposites and opens avenues for their
use in eco-friendly and biomedical fields.

5.2.5. Aluminum Oxyhydroxide in Dental Nanocomposites

Nanocomposite materials are crucial in dental advancements, as shown in Savita
Kumari et al.’s study [474], “Enhanced physical and mechanical properties of resin added
with aluminum oxyhydroxide for dental applications”. This research focuses on adding
aluminum oxyhydroxide (AlOOH) to resin composites to improve their mechanical and
tribological properties for dental restorations.

The study aims to overcome the mechanical limitations of polymethyl methacrylate
(PMMA), widely used in denture bases. Despite PMMA’s transparency and heat resistance,
its mechanical strength is insufficient for high-stress dental applications. The research
explores resin-based composites (RBCs) with AlOOH, a non-toxic, heat-resistant metal
oxide filler that strengthens polymers at room temperature, enhancing PMMA’s mechanical
performance while maintaining biocompatibility.

This paper makes significant contributions. The team develops resin composites with
AlOOH, enhancing mechanical and tribological properties for dental use. They use a
heat-curing method to synthesize these composites, showing the process’s scalability for
incorporating AlOOH into the PMMA-ZrO2 matrix. The study uses XRD, FTIR, SEM,
EDAX, and Nanozetasizer to characterize the nanocomposites’ structural and surface
properties comprehensively. Optical and mechanical testing, including UV–Vis spectra
analysis and Universal Testing Machine assessments, provide insights into the composites’
optical behavior and mechanical properties.

The study finds that adding AlOOH to the PMMA-ZrO2 matrix increases crystallinity
and crystallite size, affecting optical behavior as seen in direct and indirect band gap deter-
mination. The PZA15 composite, in particular, shows improved mechanical performance,
with enhanced compressive and flexural strength and a reduced friction coefficient. Bio-
compatibility assessments using MTT assay confirm the PZA15 composite’s suitability for
dental applications. Although water absorption slightly increases, it does not significantly
affect performance.

In conclusion, this research enhances the understanding of nanocomposite materials in
dental applications, especially denture fabrication. AlOOH’s addition effectively enhances
PMMA’s mechanical strength and tribological properties, paving the way for more robust,
more biocompatible denture materials.

5.2.6. Partial Conclusions

The array of studies presented in Table 3 offers substantial progress in understanding
the mechanical behaviors of nanocomposites. These investigations highlight the intricate
relationship between nanoparticle types, fabrication methods, and the resulting mechanical
characteristics of nanocomposites.
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Table 3. Synoptic summary of studies on nanocomposites and mechanical behavior.

Subsection Key Insights Specific Studies and Findings

5.2.1. WE43 Magnesium-Based
Nanocomposites

Improvement of mechanical and
antibacterial properties through Friction
Stir Processing (FSP).

O. Esmaielzadeh et al. (2023) [471]: Demonstrated
enhanced strength and antibacterial properties of
WE43 magnesium alloy using ZnO and CuZnO
particles through FSP.

5.2.2. XLPE/OMMT
Nanocomposites

Impact of crosslinking degree on
mechanical and electrical properties.

Gao Dongyunzi et al. (2023) [465]: Analyzed how
crosslinking affects XLPE/OMMT nanocomposites
using XRD, SEM, and gel content tests.

5.2.3. Al2O3/Brass Matrix
Nanocomposites

Al2O3 nanoparticle reinforcement’s effect
on mechanical properties and wear
behavior.

Shayan Memar et al. (2023) [472]: Studied the
mechanical properties of Al2O3-reinforced brass
matrix nanocomposites using stir casting.

5.2.4. ZnO Nanoparticles in
PLA/PCL Bionanocomposites

Incorporation of ZnO nanoparticles
improves structural, thermal, mechanical,
and biocompatible properties.

Amir Babaei et al. (2023) [473]: Examined
PLA/PCL bionanocomposites containing ZnO
nanoparticles, focusing on their structural, thermal,
mechanical, and biocompatibility aspects.

5.2.5. Aluminum
Oxyhydroxide in Dental
Nanocomposites

Enhancement of mechanical and
tribological properties in dental resin
composites with AlOOH.

Savita Kumari et al. (2023) [474]: Investigated the
addition of aluminum oxyhydroxide to resin
composites, improving mechanical properties for
dental applications.

Key insights include the essential role of friction stir processing (FSP) in enhancing the
mechanical and antibacterial properties of WE43 magnesium-based nanocomposites. This
method is crucial for producing materials that exhibit superior strength and antibacterial
capabilities. In the realm of XLPE/OMMT nanocomposites, the degree of crosslinking is
identified as a critical factor influencing their mechanical and electrical properties, with an
optimal crosslinking period of 15–20 min noted for optimal enhancement.

Incorporating Al2O3 nanoparticles into brass matrix nanocomposites significantly
improves their microhardness, toughness, and elongation. However, this enhancement may
lead to modest increases in wear rates and friction coefficients. Despite these challenges,
the overall benefits of Al2O3 reinforcement are clear.

Additionally, integrating ZnO nanoparticles into PLA/PCL blends yields promising
results regarding structural, thermal, mechanical, and biocompatibility attributes. This
development opens new pathways for applying these composites in environmentally
friendly and biomedical contexts. In dentistry, adding aluminum oxyhydroxide (AlOOH)
to PMMA enhances mechanical strength and tribological properties, marking a step toward
more robust and biocompatible dental materials.

Looking forward, future research should address various aspects of nanocomposites.
Investigating the long-term stability and corrosion resistance of WE43 magnesium-based
nanocomposites post-FSP is vital, particularly for their potential use in biodegradable
orthopedic implants. Optimizing the crosslinking degree in XLPE/OMMT nanocomposites
is essential to balance mechanical and electrical properties. Understanding the impact of
water absorption on the performance of these materials, especially in dental applications,
remains crucial. Additionally, research should focus on understanding and improving
wear mechanisms in nanocomposites, particularly those reinforced with Al2O3 nanopar-
ticles. Efforts to reduce wear rates and friction coefficients while maintaining enhanced
microhardness and toughness will be pivotal in advancing the field of nanocomposites.

5.3. Nanocomposites and Microstructure

This section delves into the pivotal role of microstructure in nanocomposites, fo-
cusing on how crosslinking time impacts their surface characteristics. The scope of this
discussion encompasses various functionalities, notably energy storage, within specified
material systems, exemplified by the presence of “manganese tungstate” with enhanced
performance criteria. Additionally, the terms “zoi” (zone of inhibition) and “UV-Vis an-
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alytical spectroscopy” signify a keen interest in exploring the antimicrobial properties of
nanocomposites through spectroscopic analysis. Furthermore, the term “pure CF” directs
our attention to the significance of pure carbon fibers within nanocomposite architecture.

To facilitate efficient navigation of the extensive literature corpus, we have provided a
set of keywords that serve as a strategic framework. These keywords are intended to guide
researchers in identifying seminal studies that comprehensively understand the current
state of the art in nanocomposites. Each set of keywords has been meticulously designed to
highlight research at the forefront of this field, emphasizing interdisciplinary methodologies,
cutting-edge characterization techniques, and focused material investigations.

5.3.1. Modulation of Electro-Optical Properties in PDLC Films Using MWCNT-Loaded
Reticular Nanofiber Films

In their recent study, Miao et al. (2023) [475] conducted a comprehensive investigation
focused on the modulation of electro-optical properties in polymer-dispersed liquid crystal
(PDLC) films. They achieved this modulation by incorporating multiwalled carbon nan-
otube (MWCNT) loaded reticular nanofiber films. This research is particularly significant
within PDLC technology, where electro-optical performance is critical.

The study’s primary objective was to enhance the electro-optical properties of PDLC
films by addressing the challenges associated with conventional methods of incorporating
MWCNTs. While PDLC films find extensive application in displays and smart windows,
their improvement has historically involved the integration of nanomaterials and adjust-
ments to polymerization conditions. However, the incorporation of MWCNTs, while
holding promise for enhancing electro-optical properties, has faced issues such as agglom-
eration and a reduction in device lifespan. To overcome these limitations, the authors
propose a novel approach: utilizing MWCNT-loaded reticular nanofiber films to optimize
the interaction between MWCNTs and PDLC.

The contributions of this research are multifaceted. Firstly, adding MWCNT-loaded
nanofibers significantly enhances the electro-optical properties of PDLC films, resulting
in improved stability and a heightened contrast ratio. Moreover, the study explores the
influence of different polymer monomer ratios, focusing on the multifunctional monomer
HPMA, on the overall performance of PDLC films. The findings demonstrate that an
increase in HPMA content reduces the polymer network’s size, ultimately improving
electro-optical properties.

The methodological framework employed in this study is both robust and thor-
ough. PDLC films were fabricated using the polymerization-induced phase separation
(PIPS) method, incorporating a prepolymer, liquid crystal, and MWCNT-loaded reticular
nanofiber films. Subsequently, advanced techniques such as scanning electron microscopy
(SEM), polarized light microscopy (POM), transmission electron microscopy (TEM), and
electro-optical curve analysis were employed to analyze the microstructure and electro-
optical profiles of various PDLC samples.

Furthermore, the electro-optical properties of the PDLC films were meticulously
evaluated using a liquid crystal comprehensive parameter meter (LCT-5016). This com-
prehensive analysis provided insights into threshold voltage, drive voltage, contrast ratio,
off-state transmittance, and on-state response time. Additionally, the study delved into the
morphological aspects of PDLC films and MWCNTs using SEM, TEM, and POM.

The results underscore the positive impact of MWCNT-loaded reticular nanofiber
films on PDLC films. This impact is evident in the lower driving voltages required, higher
contrast achieved, and faster response times observed. The proportion of liquid crystals in
PDLC films emerged as a critical factor influencing transmittance, threshold and saturation
voltages, and contrast. Additionally, adjusting the multifunctional monomer HPMA ratio
within the polymer matrix proved instrumental in controlling the size of the polymer
network and, consequently, enhancing electro-optical properties.

In conclusion, Miao et al. (2023) present a significant advancement in PDLC films
by exploring MWCNT-loaded reticular nanofiber films. This research sheds light on the
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achieved electro-optical enhancements and provides valuable insights into the influence
of polymer monomer ratios on the overall performance of PDLC films. These findings
pave the way for developing PDLC-based devices with superior response times, enhanced
electro-optical properties, and prolonged stability, expanding their potential applications in
optical windows, displays, energy storage, and flexible devices.

5.3.2. Enhancing Nanocomposites with Well-Crystallized Zinc Oxide Nanorods and
Chitosan/PVP Polymers

In the study conducted by Alghamdi and Rajeh (2023), [476] a comprehensive investi-
gation was undertaken to analyze various parameters, including structural, optical, thermal,
and electrical characteristics, of nanocomposites formed by blending well-crystallized zinc
oxide nanorods (ZnO NRs) with chitosan/polyvinyl pyrrolidone (Cs/PVP) polymers. The
primary objective of this research was to enhance our understanding of the synergistic
effects of combining ZnO nanostructures with Cs/PVP blends and elucidate their potential
applications in energy storage devices and thin-film solar cells.

This study aligns with the increasing interest in environmentally friendly and renew-
able materials for electrochemical devices. It introduces biopolymer-based solid polymer
electrolytes (SPEs), derived from natural sources such as chitosan and polyvinylpyrroli-
done, as a sustainable alternative. Notably, incorporating ZnO nanostructures into these
biopolymer matrices represents a novel approach, considering the favorable properties of
ZnO nanoparticles. The investigation aimed to bridge existing knowledge gaps by unrav-
eling the impact of ZnO nanostructures on the structural, optical, thermal, and electrical
characteristics of Cs/PVP blends.

The contributions of this research are manifold. Firstly, it delves into the structural
aspects, confirming the well-crystallized nature of ZnO NRs through X-ray diffraction (XRD)
analysis while noting an increase in amorphous character within the polymer composites.
The dimensions of the ZnO nanorods, which play a crucial role in their optical and electrical
properties, were determined through transmission electron microscopy (TEM), revealing
lengths ranging from 200 to 300 nm and diameters ranging from 40 to 80 nm.

The optical characteristics of the nanocomposites were comprehensively investigated,
revealing a narrowing of the optical bandgap and an increase in the Urbach energy, ex-
tinction coefficient, refractive index, and optical conductivity upon incorporating ZnO
NRs into the polymer matrix. Photoluminescence (PL) spectra further highlighted a dis-
tinctive photoemission peak around 470 nm in films made of polymer nanocomposites,
emphasizing the intriguing optical properties of the Cs/PVP-ZnO system.

Regarding electrical properties, the Cs/PVP-ZnO nanocomposite exhibited elevated
ionic conductivity at normal temperature, indicating its potential for use in energy storage
devices. Electric modulus and dielectric permittivity studies provided valuable insights into
conductivity relaxation and charge storage characteristics, shedding light on the nuanced
electrical behavior of the nanocomposite.

The results portrayed a comprehensive picture of the Cs/PVP-ZnO nanocomposite,
emphasizing its improved structural, optical, thermal, and electrical characteristics. Notably,
the observed reduction in crystallinity, blue shift in optical reflectance onsets, and enhanced
thermal stability further underscored the suitability of this nanocomposite for applications
in thin-film solar cells and energy storage devices.

In conclusion, Alghamdi and Rajeh (2023) have significantly advanced our under-
standing of nanocomposites by systematically investigating the Cs/PVP-ZnO system. Their
findings contribute to fundamental knowledge regarding the structural and optical modifi-
cations induced by ZnO NRs in the Cs/PVP blend and highlight the enhanced electrical
conductivity and dielectric properties. This positions the Cs/PVP-ZnO nanocomposite as a
promising candidate for various energy storage applications.
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5.3.3. High-Entropy Nanofibers Transforming the Energy Storage Performance of Polymer
Composites

Polymer dielectrics, though flexible and scalable, encounter challenges in high-
temperature environments, prompting the inclusion of fillers to enhance their proper-
ties. This study by Dou et al. (2023) [477] builds upon the high-entropy approach, originally
designed to boost the energy density of ceramic film capacitors to create high-entropy
nanofibers. The primary goal is to transform the energy storage performance of polymer
composites. The central focus is on systematically investigating how these high-entropy
nanofibers impact the microstructure and properties of the polymer matrix, particularly
emphasizing dielectric breakdown properties and cyclic charge–discharge reliability.

This research offers several noteworthy contributions. Firstly, it introduces a high-
entropy approach for synthesizing nanofibers, presenting a unique strategy to control the
microstructure of ceramic fillers within polymer composites. This approach significantly
improves dielectric breakdown properties and cyclic charge–discharge reliability, directly
influencing fatigue resistance and overall composite reliability. The study imparts valuable
insights into designing high-performance dielectric polymer nanocomposites by manipu-
lating filler characteristics, such as crystal phase, grain size, and the amorphous-like region.

Regarding methodology, high-entropy nanofibers are synthesized using an electro-
spinning method followed by calcination, resulting in 1D ceramic nanofibers with diverse
crystal structures. Rigorous analysis of dielectric properties and energy storage performance
of resulting polymer composites is conducted through various techniques. Morphology
characterization utilizes optical and SEM images, while dielectric performance is evaluated
through dielectric constant and dissipation factor measurements, considering their fre-
quency and temperature dependencies. Dielectric breakdown properties are assessed using
a two-parameter Weibull statistical distribution function, and P-E loops are employed to
measure the polarization-electric field behavior of the composites.

The results demonstrate the effectiveness of high-entropy nanofibers in enhancing the
dielectric and energy storage performance of polymer composites. Adding high-entropy
nanofibers results in a refined microstructure characterized by an increased proportion of
the amorphous-like phase and reduced grain size, leading to a smoother surface and im-
proved properties. Notably, the PEIHEnf composite film exhibits superior cycling stability
and fatigue resistance compared to pure polymer films, displaying minimal performance
variation in energy density and efficiency.

In conclusion, Dou et al. (2023) have pioneered the utilization of high-entropy nanofibers
to revolutionize the energy storage performance of polymer nanocomposites. Their findings
pave the way for developing advanced energy storage materials, influencing the design
and performance of electric devices and power systems. High-entropy nanofibers emerge
as promising candidates for the next generation of dielectric polymer nanocomposites.

5.3.4. Surface Decoration of MnNiWO4 Nanostructures on Carbon Nanofiber for
Photocatalytic Dye Removal

In the study titled ‘Surface decoration of MnNiWO4 nanostructures on carbon nanofiber
to build nanocomposites towards the removal of anionic azo and cationic dyes under light
illumination,’ conducted by Sai Kumar A. et al. (2023) [478], the primary focus is on the
synthesis and characterization of MnNiWO4 hybrid nanostructures attached to carbon
nanofibers (CNFs). The overarching goal is to enable the photocatalytic removal of anionic
azo and cationic dyes when exposed to light. This research addresses the increasing con-
cerns regarding water contamination, particularly from industrial activities such as the
textile sector, and aims to overcome the limitations of traditional water treatment methods.
Leveraging the cost-effectiveness and environmental friendliness of photocatalysis, the
researchers explore the potential of MnNiWO4/CNF hybrid nanocomposites for efficient
dye removal.

This study makes multifaceted contributions. Primarily, it involves the synthesis and
detailed characterization of MnNiWO4 hybrid nanostructures on CNFs, achieved through
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hydrothermal and wet impregnation methods. The investigation encompasses an array
of factors, including the crystal structure, optical and electrical properties, microstructure,
elemental composition, and structural characteristics of the prepared photocatalysts. To
achieve this, a range of advanced techniques, such as XRD, UV–Vis DRS, FL, FESEM, EDS,
XPS, and TEM, are employed to unravel the factors influencing the superior photocatalytic
performance of the MnNiWO4/CNF hybrid nanocomposite. These factors include size,
surface charge, electronic effects, and effective charge-transfer abilities.

The methodology section provides a comprehensive overview of the synthesis process,
involving the creation of manganese tungstate (MnWO4) nanosheets, nickel tungstate
(NiWO4) nanoparticles, and manganese nickel tungstate (MnNiWO4) hybrid nanostruc-
tures via a hydrothermal method. The attachment of these hybrid nanostructures to CNFs
is achieved through a wet impregnation method. Extensive characterization techniques,
including XRD, UV–Vis DRS, FL, FESEM, EDS, XPS, and TEM, are employed to scrutinize
the crystal structure, optical and electrical properties, microstructure, elemental compo-
sition, and structural characteristics of the photocatalysts. Photocatalytic activity tests
assess the degradation efficiency of the synthesized samples toward anionic azo dyes
(Orange II sodium salt) and cationic dyes (methyl orange and methylene blue) under light
illumination, utilizing a commercial solar simulator as the light source.

The results of the study reveal the exceptional performance of the MnNiWO4/CNF
hybrid nanocomposite, with an 85% degradation efficiency for the anionic azo dye Orange
II sodium salt under light illumination, surpassing the performance of other photocatalysts.
Additionally, the hybrid nanocomposite exhibits high degradation efficiencies for anionic
dye methyl orange (77%) and cationic dye methylene blue (61%). The photocatalytic
degradation process follows pseudo-first-order reaction kinetics. Distinctive characteristics
of the MnNiWO4/CNF hybrid nanocomposite, such as a substantial red shift in absorption,
a reduced energy band gap, and higher crystallinity, contribute to its superior performance.

In conclusion, Sai Kumar A. et al. (2023) provide valuable insights into the devel-
opment of MnNiWO4/CNF hybrid nanocomposites as efficient photocatalysts for the
removal of anionic azo and cationic dyes. Their contributions extend to the synthesis
and comprehensive characterization of these nanocomposites, elucidating the key factors
influencing their superior photocatalytic performance. These findings hold significant
promise for addressing water contamination challenges stemming from industrial dye
discharge, offering a promising avenue for advanced water treatment technologies.

5.3.5. Synthesis and Characterization of ZnO:GO/rGO Composite Thin Films for
Energy Harvesting

The investigation carried out by Joshi et al. (2023) [479] focuses on the synthesis
and characterization of graphene oxide (GO) and reduced graphene oxide (rGO) and
their impact on the structural and optical properties of zinc oxide (ZnO) thin films. This
study’s primary objective is to assess these nanocomposites’ potential for energy harvesting
applications, particularly in the context of photovoltaic technology and dye-sensitized solar
cells (DSSCs).

The paper’s objectives are multifaceted. Firstly, it explores the synthesis and character-
ization of GO and rGO, followed by an investigation into their influence on ZnO thin films.
These thin films are deposited on glass substrates using the practical and straightforward
spin coating method. The structural properties of the films are analyzed using Fourier
transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD), revealing the presence
of oxygen functionalities and a hexagonal wurtzite crystal structure.

The study further examines the optical properties of the films, demonstrating their
high transmittance in the UV–visible region, making them suitable for optoelectronic
applications. Moreover, the electrical properties are analyzed, revealing that an increase in
GO and rGO weight percentage leads to an increase in crystallite size and a decrease in
resistivity. Additionally, the surface microstructure of the GO and rGO-inserted samples is
scrutinized using high-resolution electron microscopy.
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The investigation resulted in several key findings regarding composite thin films’
structural, optical, and electrical properties. Firstly, concerning structural properties, both
undoped and doped ZnO thin films exhibited a hexagonal wurtzite crystal structure, as con-
firmed through X-ray diffraction (XRD) analysis. Notably, the insertion of graphene oxide
(GO) and reduced graphene oxide (rGO) led to an increase in crystallite size, consequently
enhancing the conductivity of the thin films.

Moving on to optical properties, the study revealed a noteworthy enhancement in the
optical transmittance of rGO/ZnO thin films due to the increased presence of sp2 carbon
domains in rGO. This improved optical property renders these films suitable for utilization
as photoelectrodes in solar cells and various optoelectronic devices.

Lastly, the investigation into electrical properties demonstrated a reduction in resistiv-
ity upon adding GO and rGO in ZnO. This decrease in resistivity signifies an increase in
conductivity. The observed improvement in conductivity can be attributed to the interface
formed between GO/rGO and the ZnO surface, which facilitates the flow of charge carriers.
Furthermore, this reduction in resistivity correlates with the increase in crystallite size
obtained from the XRD results, further underlining the suitability of these composite thin
films for applications as photoelectrodes in energy devices.

These findings suggest that ZnO:GO/rGO composite thin films exhibit favorable
structural, optical, and electrical properties, positioning them as promising candidates for
photoelectrodes in energy harvesting applications.

In conclusion, the study underscores the significant contributions of incorporating GO
and rGO into ZnO thin films for energy harvesting applications. The optimized structural
and optical properties and improved electrical characteristics make these nanocomposites
potential candidates for photoelectrodes in solar cells and other optoelectronic devices,
contributing to the advancement of sustainable and renewable energy solutions.

5.3.6. Promoting Cell Growth with Laser-Synthesized Magnesium Nanoparticles for
Tissue Engineering

The article by Nyabadza et al. (2023) [480] is centered on producing magnesium
nanoparticles (MgNPs) using laser ablation techniques. These MgNPs are subsequently
employed for immobilizing amino acids and enzymes to enhance biochemical reactions
and enable targeted delivery to tissues.

The primary objective of this study is to investigate the growth-promoting effects of
MgNPs on human dermal fibroblast cells, along with assessing the dynamic reciprocity
environment created by these MgNPs. The immobilization of amino acids and enzymes
onto the MgNPs is achieved through adsorption, resulting in composites characterized
by highly connected needle-like structures, as observed through field emission scanning
electron microscopy (FESEM).

This paper offers noteworthy contributions, detailing the fabrication of MgNPs through
laser ablation and showcasing their potential for tissue engineering applications, evidenced
by their cell growth-promoting effects and improved cell adhesion. Furthermore, the study
sheds light on the adsorption mechanism for immobilizing amino acids and enzymes onto
MgNPs and visualizes the resulting composites through FESEM.

The methods employed in this study encompass the laser ablation technique for MgNP
synthesis, nanoparticle characterization utilizing Dynamic Light Scattering (DLS) and FE-
SEM with energy-dispersive X-ray (EDX) analysis, and the examination of optical properties
and concentration via UV–Vis and Fourier transform infrared (FTIR) spectroscopy. Ad-
ditionally, an image processing algorithm developed in MATLAB aids in quantitatively
extracting data from FESEM images. The study involves physical and chemical elution
processes, analyzing microstructural changes in MgNP-trypsin and MgNP-glutamine
composites before and after elution. Specific details about Pulsed Laser Ablation in Liq-
uid (PLAL) are provided, encompassing parameters such as laser fluence, pulse width,
repetition rate, and laser scan speed.
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The results of this study demonstrate the promising cell growth-promoting effects and
improved cell adhesion achieved by the synthesized MgNPs. FESEM visualizations reveal
the presence of highly interconnected needle-like structures in MgNP composites, and
the microstructure of MgNP-trypsin composites remains stable post-elution. At the same
time, morphological changes are observed in MgNP-glutamine composites. Successful
bonding of MgNPs with trypsin and glutamine suggests potential applications in enzyme
and amino acid delivery.

In conclusion, Nyabadza et al. (2023) establish the potential utility of laser-synthesized
MgNPs for immobilizing and delivering enzymes and amino acids, with implications for
various biomedical applications. Their research underscores the importance of MgNPs
in creating dynamic reciprocity environments, enhancing cell adhesion, and providing a
foundation for future investigations, including microbial lysis efficacy and biocompatibil-
ity studies.

5.3.7. Enhancing Bio-Based PLA Composites with Graphene-Based Materials and
Wheat Straw

The article authored by Chougan et al. (2023) [481] delves into the enhancement of
wheat straw’s compatibility with a polylactic acid (PLA) matrix through the utilization
of graphene-based materials (GBMs) for surface functionalization. This endeavor aims
to elevate PLA bio-based composites’ mechanical and thermal performance. The study
compares composites with and without GBM surface functionalization of straw particles,
demonstrating superior thermal stability, flexural strength, tensile strength, and tensile
toughness in the former, signifying improved interfacial bonding between straw and
PLA matrix.

The primary objective of this paper is to investigate the potential of graphene-based
materials as surface-modifying agents to enhance the performance of bio-based PLA com-
posites. The authors built upon their prior research, which established wheat straw as a
partial replacement for the PLA polymer matrix. This study introduces a physical pre-
treatment (HthS) to modify wheat straw’s surface chemical functional groups, reducing
hydrophobic components. Notably, the research demonstrates the effectiveness of GBMs in
functionalizing the surface of pretreated straw particles, resulting in noteworthy improve-
ments in the mechanical and physical properties of straw-PLA composites.

The employed methods encompass dry-mixing and pre-heating PLA polymer pellets
and wheat straw particles, with and without GBM surface functionalization, followed
by hot-pressing. Tensile and flexural experiments, morphology assessments, and tests
for dimension stability (thickness swelling and water absorption) contribute to the com-
prehensive evaluation of the modified composites. The integration of the area under the
stress–strain curve is employed to assess tensile toughness.

The results confirm the positive impact of GBM surface functionalization on wheat
straw, leading to improved mechanical and thermal performance of PLA bio-based com-
posites. Graphene oxide-functionalized straw particles, in particular, exhibit significant
enhancements, with a 27% increase in flexural strength, a 66% increase in tensile strength,
and a remarkable 322% increase in tensile toughness compared to control samples. Mor-
phological assessments affirm improved straw/PLA matrix interfacial bonding induced
by GBMs, while water absorption and thickness swelling tests underscore the improved
dimension stability of functionalized straw-PLA composites.

In conclusion, the study demonstrates the efficacy of surface modification of wheat
straw with GBMs to enhance bio-based PLA composites’ performance significantly. The
findings have implications for developing sustainable and high-performance materials,
bridging the gap in the literature regarding the use of graphene-based materials for surface
functionalization in wheat straw bio-based composites.
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5.3.8. Improving Carbon Foam with Multiwalled Carbon Nanotubes and Functionalized
Nanodiamonds

The article authored by Aslam et al. (2023) [482] delves into the enhancement of pitch-
derived carbon foam (CF) through the incorporation of multiwalled carbon nanotubes
(MWCNTs) and functionalized nanodiamonds (FNDs). The study, rooted in improving CF
properties at the microstructural level, explores the ensuing impact on mechanical, thermal,
electrical, and photocatalytic properties.

The primary objective of this investigation is to scrutinize the structural, morphological,
and catalytic attributes of CF composites featuring MWCNTs and FNDs as double hybrid
nano-reinforcements. By comparing CF/MWCNTs, CF/MWCNTs-FNDs, and pure CF
samples, the study aims to elucidate the impact of these nanofillers on the properties of CF
composites. Additionally, the paper aims to contribute to the scientific understanding of
the photocatalytic activity of CF samples, particularly in the degradation of Alizarin red
(AR) dye.

The contributions of this work are multifaceted. Firstly, the paper delves into the
structural and morphological characterizations of CF composites containing MWCNTs
and FNDs, emphasizing a comparative analysis with pure CF samples. Noteworthy is the
demonstration that including nanofillers, particularly FNDs, enhances the microstructure,
pore size, and dispersion of CF composites, leading to improved mechanical, thermal,
and electrical attributes. The best performance is observed in the CF/MWCNTs-FNDs
hybrid samples. Furthermore, the study explores the photocatalytic activity of CF samples
against AR dye, elucidating the synergistic effects of MWCNTs and FNDs in achieving a
remarkable decolorization rate of approximately 88%.

The employed methods encompass the synthesis of pretreated CF pitches using coal
tar pitch, followed by forming, carbonization, and graphitization techniques. The structural
and morphological properties of CF composites are characterized through scanning electron
microscopy (SEM) and energy-dispersive X-ray (EDX) analysis, confirming elemental
composition. X-ray diffraction (XRD) analysis verifies the crystalline structure, while
thermal conductivity is measured using Laser Flash Technology. The investigation of
photocatalytic activity against AR dye involves repeated measurements to ensure the
reliability and accuracy of the results.

The results underscore the success of incorporating MWCNTs and FNDs into the CF
matrix, leading to improved structural and morphological properties. The CF/MWCNTs-
FNDs hybrid composites exhibit superior thermal, mechanical, and electrical properties,
with remarkable compressive strength, electrical conductivity, and thermal conductivity.
Moreover, the photocatalytic activity of CF/MWCNTs-FNDs composites, particularly with
4 wt% loading, stands out with an 88% decolorization rate of AR dye. This decolorization
is influenced by catalyst dosage, pH, and initial dye concentration.

In conclusion, the study demonstrates that incorporating MWCNTs and FNDs into
CF composites significantly enhances their mechanical, electrical, thermal, and photocat-
alytic properties. The findings contribute to understanding hybrid nanomaterial reinforce-
ments in carbon foam, offering insights for applications demanding superior multifunc-
tional properties.

5.3.9. Partial Conclusions

Table 4 provides an expansive view of how microstructural elements critically influ-
ence the functional attributes of nanocomposites. This compilation of research highlights
the integral role of microstructure in defining these materials’ mechanical, optical, electrical,
and biomedical properties.
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Table 4. Synoptic summary of studies on nanocomposites and microstructure.

Subsection Key Insights Specific Studies and Findings

5.3.1. PDLC Films with
MWCNT-Loaded Reticular
Nanofiber

Enhancement of electro-optical properties
in PDLC films using MWCNT-loaded
nanofibers.

Miao et al. (2023) [475]: Investigated improved
electro-optical properties of PDLC films by
optimizing the interaction between MWCNTs and
PDLC using reticular nanofiber films.

5.3.2. Zinc Oxide Nanorods in
Cs/PVP Polymers

Structural, optical, thermal, and electrical
enhancement of nanocomposites using
ZnO nanorods with Cs/PVP.

Alghamdi and Rajeh (2023) [476]: Analyzed the
synergistic effects of ZnO nanorods in Cs/PVP
polymer blends for potential applications in
energy storage and thin-film solar cells.

5.3.3. High-Entropy Nanofibers
in Polymer Composites

Transformation of energy storage
performance in polymer composites
using high-entropy nanofibers.

Dou et al. (2023) [477]: Introduced high-entropy
nanofibers to improve dielectric breakdown
properties and cyclic charge–discharge reliability
in polymer composites.

5.3.4. MnNiWO4 on Carbon
Nanofiber for Photocatalytic
Dye Removal

Efficient photocatalytic dye removal
using MnNiWO4 nanostructures on
carbon nanofibers.

Sai Kumar A. et al. (2023) [478]: Synthesized
MnNiWO4 hybrid nanostructures on CNFs for
photocatalytic removal of dyes under
light illumination.

5.3.5. ZnO:GO/rGO Composite
Thin Films for Energy
Harvesting

Synthesis and characterization of GO and
rGO with ZnO for advanced energy
harvesting applications.

Joshi et al. (2023) [479]: Explored the impact of GO
and rGO on ZnO thin films, assessing their
potential in photovoltaic technology and DSSCs.

5.3.6. Magnesium
Nanoparticles for Tissue
Engineering

Production and application of
magnesium nanoparticles for tissue
engineering and biochemical reactions.

Nyabadza et al. (2023) [480]: Produced MgNPs
using laser ablation techniques for tissue
engineering applications, enhancing cell growth
and biochemical reactions.

5.3.7. Bio-Based PLA
Composites with GBMs and
Wheat Straw

Enhancement of bio-based PLA
composites using graphene-based
materials and wheat straw.

Chougan et al. (2023) [481]: Investigated the use of
GBMs for surface functionalization of wheat straw
to improve the mechanical and thermal
performance of PLA bio-based composites.

5.3.8. Carbon Foam with
MWCNTs and FNDs

Improvement of carbon foam properties
with the addition of MWCNTs and
functionalized nanodiamonds.

Aslam et al. (2023) [482]: Explored the
enhancement of pitch-derived carbon foam
through MWCNT and FND integration, focusing
on mechanical, thermal, electrical, and
photocatalytic properties.

Critical insights from these studies demonstrate that microstructural considerations,
such as crosslinking time and the incorporation of specific nanostructures, are pivotal in
determining the overall performance of nanocomposites. Advanced analytical methods,
including UV–Vis analytical spectroscopy, have been employed to explore these materials’
antimicrobial properties, offering new perspectives on their potential applications.

The significance of pure carbon fibers within the architecture of nanocomposites is
particularly noteworthy, underlining their essential contribution to enhancing the materials’
overall properties. These fibers represent a critical component in the development of
advanced nanocomposite systems.

The array of research presented in the table underscores the interdisciplinary nature
of nanocomposite science, bridging gaps between various scientific domains. This intercon-
nection is crucial in the evolution of scientific inquiries and the development of innovative
solutions.

In the biomedical field, applying laser-synthesized magnesium nanoparticles and
other graphene-based nano-functional materials illustrates the transformative potential of
nanocomposites. These materials have shown promising results in applications ranging
from tissue engineering to polymer science and structural engineering.
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Integrating machine learning techniques with nanomaterials research is also high-
lighted, showcasing an emerging synergy that could lead to breakthroughs in material
science and other related fields.

The research on ZnO:GO/rGO composite thin films reveals promising structural,
optical, and electrical properties, making them suitable candidates for energy harvesting
applications, particularly in photovoltaic technology and dye-sensitized solar cells.

The effectiveness of MnNiWO4/CNF hybrid nanocomposites in photocatalytic dye
degradation demonstrates their potential in advancing water treatment technologies, mark-
ing a significant step toward sustainable solutions.

Future research should explore the intersection of nanotechnology with various scien-
tific disciplines to address contemporary challenges and advance the field of nanocomposite
research. Investigations into the photocatalytic behavior of carbon foam composites, par-
ticularly for dye degradation, and the electrical properties of nanocomposites for energy
devices remain areas of high potential.

The exploration of graphene-based materials in zinc oxide thin films for energy-
related applications and the enhancement of carbon foam composites with MWCNTs
and FNDs at the microstructural level present promising avenues for future study. Addi-
tionally, the potential of graphene-based surface modifications in bio-based composites,
specifically with wheat straw, opens up opportunities for developing sustainable, high-
performance materials.

5.4. Results Overview

This study has significant practical implications across various technological do-
mains, particularly highlighting nanocomposites’ increasing recognition and potential
applications in sectors such as microelectronics, optoelectronics, power transmission, and
optoelectronic devices.

It offers valuable insights into the intricate interplay between nanocomposites’ material
composition, structure, and functionality, thereby facilitating the development of materials
tailored to specific technological requirements.

Furthermore, a meticulous analysis of crosslinking time’s impact on nanocomposite
attributes underscores the critical importance of optimizing crosslinking degrees. This
optimization can result in fine-tuning electrical properties and improved durability in
power systems, thereby delivering tangible benefits in technological applications.

Integrating graphene nanoparticles into aluminum conductors is a promising avenue
for enhancing their mechanical and electrical properties, especially for high-capacity power
transmission. Investigating the fatigue behavior of nanocomposites at elevated tempera-
tures holds the potential for addressing challenges related to fatigue failure in commercial
aluminum conductors.

Moreover, the study suggests a promising direction for future research involving
synthesizing and characterizing CdO:Sn nanocomposites using laser ablation. These
endeavors deepen our understanding of these materials’ structural, optical, and electrical
properties, potentially opening new avenues for technological advancement.

Beyond technological applications, this research underscores the versatility of nanocom-
posites, spanning diverse domains, including eco-friendly and biomedical applications.
Notably, they promise improved dental healthcare by being employed in denture materials.

In light of these findings, future research should prioritize optimizing crosslinking
degrees in nanocomposites, investigating the impact of water absorption on performance,
and devising strategies to mitigate wear rates and friction coefficients while preserving
enhanced material properties.

Concurrently, the study presents an extensive bibliometric and sentiment analysis of
nanocomposite literature, revealing evolving trends and heightened recognition within the
academic discourse.
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A thematic analysis of the Scopus database underscores the substantial emphasis
on microstructural studies in nanocomposite research, highlighting the significance of
understanding microscopic organization and its correlation with material properties.

Moreover, focused attention on the electrical properties of nanocomposites sheds light
on their critical attributes and intricate relationship with microstructure.

Furthermore, the analysis emphasizes the necessity of investigating nanocomposites’
mechanical behavior, especially their responses to varying stress conditions.

Notably, sentiment analysis of abstracts reveals a gradual shift toward more positive
sentiment over time, indicative of researchers’ improved articulation of the significance of
their work or enthusiasm for their findings.

In summary, this study significantly contributes to a deeper understanding of nanocom-
posite research themes, fosters interdisciplinary collaborations, and underscores the ex-
panding interest in nanocomposites across various fields.

6. Conclusions

The analysis of bibliometric data concerning nanocomposites, with a focus on their
electrical attributes, unveils significant patterns and novel areas worthy of attention. The
significance of crosslinking duration in defining nanocomposite performance stands out,
pinpointing it as a prime subject for subsequent exploration. Delving deeper into the nexus
between microstructure and electrical properties while fine-tuning crosslinking variables
emerges as imperative.

The sentiment analysis uncovers a favorable research ambiance, implying effective
communication of findings within the research community. It is advisable for upcoming
research endeavors to adopt a long-term sentiment analysis strategy, correlating sentiment
trajectories with technological landmarks and policy modifications.

The exploration into cooperative research accentuates the vital role of bridging various
disciplines. Crafting a structured approach for these interdisciplinary liaisons through
digital channels can elevate the cumulative research efficacy and real-world applications.

However, this investigation has its limitations. A predominant reliance on the Scopus
database and the literature penned in English presents certain boundaries. It is recom-
mended that subsequent inquiries broaden their scope, incorporating varied databases
and embracing literature from multiple languages to capture a more comprehensive
global snapshot.

Venturing into domains like cutting-edge characterization methodologies, applications
in the medical sphere, integration with optoelectronics, and the development of conductive
nanocomposites holds promise. Channeling efforts into these arenas, with a spotlight on
materials amplified by nanoparticles, can propel progress in vital sectors such as healthcare
and sustainable energy solutions.

To encapsulate, this inquiry enriches the comprehension of the nanocomposite research
landscape, steering the direction of future academic pursuits. The ramifications of this study
span both technological evolution and broader societal advancements, underscoring the
premise that sustained growth and collaboration in this domain are pivotal for bolstering
global technological prowess.

The investigation conclusively demonstrates the critical role of microstructure, elec-
trical, and mechanical properties in nanocomposites, aligning with pre-established expec-
tations without significant deviations. This corroboration solidifies the methodology’s
validity and sets a course for multidisciplinary research expansion, underpinning the
study’s foundational strength and forward momentum in nanocomposite science. Adopt-
ing fuzzy logic and neural networks for subsequent research is recommended, recognizing
the intricate dynamics within nanocomposite studies. These advanced computational
approaches will refine analytical depth by assimilating varied data forms, thereby deep-
ening the understanding of nanocomposite attributes. Emphasizing cross-disciplinary
collaboration, enhanced computational strategies, and an expanded database and linguistic
spectrum, the study aims to streamline research methodologies, augment efficiency in
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scientific exploration, and widen the accessibility of intricate domains. Future endeavors
will quantitatively evaluate these methodologies, aiming to substantiate their efficacy in
optimizing research productivity and reducing costs, further endorsing the imperative of
such sophisticated techniques in fostering technological innovation and societal progress.
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BM Ball Milling
CF Carbon Fiber or Carbon Foam
CP Catalytic Performance
CSV Comma-Separated Values
DE Euclidean Distance
DNA Deoxyribonucleic Acid
DOCTYPE Document Type
DOCX Microsoft Word Document File Format
DOI Digital Object Identifier
Dye Organic compound used for coloring
EC Electrocatalyst
EDS Energy-Dispersive X-ray Spectroscopy
EDX Energy-Dispersive X-ray
EM Electron Microscopy
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ENR Epoxidized Natural Rubber
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FT-IR or FTIR Fourier Transform Infrared Spectroscopy

https://www.mdpi.com/article/10.3390/ma17051088/s1
https://www.mdpi.com/article/10.3390/ma17051088/s1
https://github.com/ftir-mc/Nano-MEM
https://github.com/ftir-mc/Nano-MEM


Materials 2024, 17, 1088 62 of 81

H2O2 Hydrogen Peroxide
HN Hybrid Nanocatalyst
LDA Latent Dirichlet Allocation
LSBI Link Strength Between Items
LST Low Shear Stress
MAP file Visualization file format used by VOSviewer
MWCNT Multiwalled Carbon Nanotube
NaN Not a Number
NET file Network file format used by VOSviewer
NiO Nickel Oxide
NiWO4 Nickel Tungstate
NLP Natural Language Processing
NLTK Natural Language Toolkit
NMR Nuclear Magnetic Resonance
ORCID Open Researcher and Contributor ID
PA Photocatalytic Activity
PBAT Polybutylene Adipate Co-terephthalate
PBVS Python Boosted Visualization of Similarities
PMMA Polymethyl Methacrylate
PN Polymer Nanocomposite
PP Polypropylene
Pt Platinum
PU Polyurethane
R2 Coefficient of Determination
RIS Research Information Systems File
RMSE Root Mean Squared Error
ROS Reactive Oxygen Species
Scopus A bibliographic database for academic research
SEM Scanning Electron Microscopy
TEM Transmission Electron Microscopy
TITLE-ABS-KEY Search for terms only in Titles, Abstracts,

and Keywords in the Scopus database
TLS Total Link Strength
TXT Text File
UV Ultraviolet
UV–Vis Ultraviolet–Visible Spectroscopy
UV–Vis Analytical Ultraviolet–Visible Analytical Spectroscopy
Spectroscopy
VL Visible Light
VOSviewer Visualization of Similarities Viewer
XLPE Crosslinked Polyethylene
XPS X-ray Photoelectron Spectroscopy
XRD X-ray Diffraction
XRF X-ray Fluorescence
ZnO Zinc Oxide
ZOId Diameters of Zone of Inhibition
ZOI Zone of Inhibition
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