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Abstract: The degradation of a machine is nonlinear, which brings challenges to its performance
assessment during condition monitoring, especially when there is a run-in period. Technically, the
quantification of mechanical degradation is to define a distance metric from a health baseline. This
paper develops an integrated condition monitoring scheme, where the degradation evaluation and
fault diagnosis are combined by using one technical framework. Specifically, an optimum healthy
state (OHS) is determined based on the clustering center of the self-organizing map (SOM) neural
network instead of the commonly used initial working state. Then, the distance metric deviating
from the OHS is defined as a health index, where the perceptual vibration hashing is improved to
make it more sensitive to degradation. Visualized fault diagnosis is carried out by the SOM when the
health index exceeds the preset threshold. Two cases with experiments are conducted to demonstrate
the accuracy and robustness of the proposed method.

Keywords: degradation assessment; fault diagnosis; perceptual vibration hashing; self-organizing
map; optimum healthy state; health index

1. Introduction

It is a common phenomenon that a run-in period exists for a newly assembled machine
to reach its best performance. The underlying mechanism [1] of the running in and its
impact on the machine performance [2] draw the attention of researchers. However, the
existence of running in also has a systematic influence on the condition-based maintenance
of machines. Firstly, the mechanical degradation is not a simple downward curve; a
health index should be sensitive to the changing of the machine condition, no matter it
is getting better or getting worse. Secondly, it is a wrong convention to adopt the first
sample acquired from a newly installed machine as the baseline for degradation assessment.
Thirdly, condition monitoring should cover a machine’s whole life cycle, during which
versatile decision-making support should be conducted, including running-in recognition,
degradation assessment, fault diagnosis, etc.

Specifically, due to the run-in period, the degradation of a machine is not a linear
process. Reflected on the vibration in the run-in period, the amplitude in the initial working
state is slightly larger than that in the stable stage, which can be explained by certain
undiscovered defects in the components [3], temperature influence or assembly accuracy.
In other words, the machinery optimum healthy condition always appears after the device
has been in operation for a while. Therefore, when utilizing distance metrics to quantify
the machine health state, how the baseline should be defined is a problem to be solved.
Meanwhile, much research has been focused on the practical application of condition-
based maintenance in different aspects such as bearings [4,5], gears [6,7] and motors [8,9].
However, few studies focus on methods that carry out both degradation assessment and
fault diagnosis under one technical framework, which results in lower efficiency of the
condition monitoring during the practical operation.

A good quantification of the machine health condition is based on the effective features
extracted from monitoring data. Basically, the extracted feature is a high information density
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form of the machine condition from the perspective of fault diagnostics and prognostics.
Traditional statistical features in the time and frequency domain such as root mean square,
kurtosis and crest factor are initially used for condition monitoring. Time–frequency
feature extraction methods including short-time Fourier transform [10,11], wavelet-based
methods [12,13] and empirical mode decomposition [14] are proposed, which perform well
in uncovering more latent diagnosis information in nonstationary signals. More advanced
features are further studied, such as Rényi entropy [15] and spectral kurtosis [16]. However,
high data throughput during real-time condition monitoring can easily result in network
congestion and heavy computing burden, which leads to a latency increase and efficiency
decrease in condition monitoring. Perceptual vibration hashing, as an edge computing
method, was developed by Liu et al. [17], which can extract and express the information on
the machine condition while also reducing the data dimensionality by transforming the
vibration signal into compact machine condition hashes (MCHs).

For the degradation assessment, a brand new machine is considered in a healthy state,
deviating from which a health index is usually defined to quantify its degradation level.
Numerous related studies have been conducted. Widodo et al. [18] proposed a health index
by using principal components analysis (PCA) to reduce the feature dimensionality and
calculating deviations between the unknown state and healthy state. Lei et al. [19] used a
SOM to fuse mutual features and constructed a health index by calculating the distance
deviating from its best matching unit (BMU) of the healthy state in the SOM. Dong et al. [20]
used a deep autoencoder (DAE) to achieve feature extraction, expression and reduction.
Then, the Mahalanobis distance was constructed as an index to evaluate the bearing health
state. However, the baseline selection in distance metrics is usually determined based on
experience. For example, samples obtained at the beginning of the operation are commonly
set as the baseline. Based on the above analysis, it can be inferred that it is not the optimal
choice. Therefore, it is needed to find a baseline selection method to obtain a sample which
can represent the OHS of the machinery.

When there is an abnormality emerging from the distance metric, fault diagnosis
should be carried out immediately to verify and recognize the malfunction for mainte-
nance support. In recent years, intelligent fault diagnosis methods have been extensively
researched, which can not only efficiently analyze enormous volumes of data but also
automatically present the diagnosis results. Xue et al. [21] developed a fault diagnosis
method for rotating machinery, where a deep convolution neural network is utilized for
feature extraction and a support vector machine classifier is used for fault identification.
Dhiman et al. [22] proposed an anomaly detection method for wind turbine gearboxes
based on an adaptive threshold and twin support vector machine which shows excellent
performance. The neural network is widely used for intelligent fault diagnosis because of
its strong generalization ability. A SOM is a kind of unsupervised neural network proposed
by Kohonen [23]. Based on the Mahalanobis–Taguchi system (MTS) and SOM, Hu et al. [24]
developed a dynamic observer for bearing degradation evolution, which is called the
MTS–SOM system. The experiment results showed an excellent visualization ability of the
SOM on fault evolution trajectory tracking. Saucedo-Dorantes et al. [25] proposed a fault
diagnosis method for an electric machine based on a hierarchical SOM, which exhibits a
good fault classification performance.

Based on the above analysis, an integrated condition monitoring scheme for rotating
machinery is introduced in this paper. The major novelties and contributions of this paper
can be summarized in four aspects:

(1) In this proposed integrated condition monitoring method, both degradation evalua-
tion and visualized fault identification are carried out under one technical framework.

(2) For degradation evaluation, an OHS selection method is proposed based on the
clustering center of the SOM neural network instead of the initial working state. Then,
the distance metric deviating from the OHS is set as the health index.
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(3) Based on the original perceptual vibration hashing algorithm, an improved perceptual
vibration hashing is proposed to make it more sensitive to partial differences during
condition monitoring.

(4) Two case studies are conducted. The proposed framework is first verified by the
public bearing run-to-failure dataset. Then, a practical rotary torsional fatigue test is
further carried out to validate the accuracy and robustness of the proposed scheme.

The composition of this paper is as follows. In Section 2, the theoretical foundation of
the improved perceptual vibration hashing (IPVH) and SOM neural network is introduced
in detail. In Section 3, the proposed integrated condition monitoring method is presented
and a detailed description of degradation evaluation and fault identification is given. In
Section 4, two cases with experiments are analyzed to illustrate the application results of
the proposed methods. After it, in Section 5, the conclusions of the paper are given.

2. Preliminaries
2.1. Improved Perceptual Vibration Hashing

The perceptual vibration hashing proposed by Liu et al. [17] is an edge computing
method that extracts health information from raw vibration signals and represents it
with compact machine condition hashes (MCHs). However, a naive implementation
of the perceptual vibration hashing approach may result in MCHs with a high degree
of similarity even when dealing with input signals with partially significant amplitude
differences. As a result, the distance metric between the corresponding MCHs remains
small. Therefore, an IPVH is proposed in this research with more emphasis on partial
differences. Compared with the original perceptual vibration hashing algorithm, a detailed
description of the improved part of the algorithm can be found in the following Step 5,
which is also highlighted in the blue area as illustrated in Figure 1. The process of the IPVH
is shown below:

Step 1: a raw vibration signal s is divided into 2j frequency bands s1, s2, · · · , s2j by the
j-level wavelet packet transform (WPT).

Step 2: one sub-band signal si is sliced up into f blocks. For instance, a 1024-point recon-
structed coefficient si can be divided into four blocks to obtain a matrix si = [s1

i ; s2
i ; s3

i ; s4
i ].

Step 3: A two-dimensional discrete cosine transform (2D-DCT) is implemented on
every block. As a result, a coefficient matrix fi = [f1

i ; f2
i ; f3

i ; f4
i ] can be obtained.

Step 4: the feature is extracted from each fi to obtain a feature vector and is cascaded
to obtain a sub-band feature vector a = [a1, a2, · · · , a2j× f ] for s.

Step 5: hashing with the improved Adaptive Symbolic Aggregate Approximation (ASAX):
For most families of normalized time series, Gaussian distribution is assumed in their

values. In this part, parameters of an unknown Gaussian distribution are estimated to make
it possible that the sub-band features collected in the healthy state can only be compressed
and mapped into a probability interval of 40%.

Firstly, calculate the mean value µ1 of the first sub-band feature a1 during condition
monitoring. For any Gaussian distribution, the probability P(µ− tσ ≤ x ≤ µ + tσ) only
depends on the value of parameter t, which has nothing to do with the mean value µ and
standard deviation σ. By looking up the normal distribution table, it can be known that
P(µ− 0.48σ ≤ x ≤ µ + 0.48σ) ≈ 40%. So, set

max{|a1(1)− µ1|, |a1(2)− µ1|, · · · ,> | a1(2
j× f )− µ1|} =0.48σ (1)

Then, the parameters of the Gaussian distribution can be estimated, which are shown
in Equations (2) and (3):

µ = µ1 (2)

σ =
max{|a1(1)− µ1|, |a1(2)− µ1|, · · · , |a1(2

j× f )− µ1|}
0.48

(3)



Machines 2022, 10, 1025 4 of 21

Thirdly, normalize the sub-band features using the estimated µ and σ, and reduce their
dimension via piecewise aggregate approximation (PAA) [26]. Fourthly, an equiprobability
theory is used for discretization [27]. The distribution space under the Gaussian curve
is divided into k equal probability intervals. Finally, symbolic representation. A number
size of k is utilized to describe the equal probability intervals so that any PAA coefficients
located in any interval can be represented by a number.

By using the ASAX, a piece of compact MCH p can be obtained. Given two pieces of
MCHs p1 and p2, the differences between the MCHs can be quantified by defining low-
bounding distance functions in feature space as illustrated in Equation (4), where the m and z
are the dimensions of the sub-band feature a and MCH p. Their lower bounding approxi-
mation to the Euclidean distance can be obtained by accumulating the piecewise distances.
For example, when the Gaussian distribution space is divided into four equal probability
intervals (k = 4), it means four numbers (1, 2, 3, 4) are used for symbolic representation. If
p1

1 = 1 and p1
2 = 3, according to the look-up table in Table 1, the dist(1,3) is 0.67.

Distance =

√
m
z

√
z

∑
i=1

(dist(pi
1, pi

2))
2 (4)
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Table 1. An illustration of the look-up table for dist() function.

1 2 3 4

1 0 0 0.67 1.34
2 0 0 0 0.67
3 0.67 0 0 0
4 1.34 0.67 0 0

In the end, a piece of the 1024-point raw signal is converted into a piece of MCH with
several numbers. It can achieve not only a comprehensive representation of raw vibration
signals but also more storage resources saving.
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2.2. Self-Organizing Maps Neural Network

An SOM is an adaptive unsupervised neural network suitable for data clustering
and was proposed by Kohonen. The basic idea of the algorithm is considered a nonlinear
transformation from the input feature with high dimensionality to an output space with
low dimensionality. It has two layers including an input layer and a competitive layer. The
competitive layer consists of a two-dimensional array of neurons which are interconnected
with each other. Each neuron can be represented by a weight vector w.

By using an SOM, all the input vectors can be clustered in groups based on the distance.
The unified distance matrix (U-matrix) can reflect the distance between neurons, which
provides visualization of the whole cluster structure of the SOM. Through neurons which
are labeled by various types of colors or letters, different clusters can be identified.

3. Proposed Framework of the Integrated Condition Monitoring Method

As shown in Figure 2, under the same technical framework, both degradation evalua-
tion and visualized fault identification are carried out. In a condition monitoring scenario,
raw vibration signals are constantly collected and transformed into MCHs through the
IPVH algorithm. With the advance of the condition monitoring process, an optimum health
state (OHS) is determined according to the clustering characteristics of the monitored data.
Then, a health index is defined as the distance metric deviating from the OHS value. The
visualized fault diagnosis will be triggered when the health index exceeds the threshold.
The detailed description is illustrated in Sections 3.1 and 3.2.
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3.1. Degradation Assessment Based on OHS

In order to obtain an OHS sample as the health baseline, an OHS selection method
based on the SOM is proposed.

Step 1: initialize four empty matrixes B1 = B2 = B3 = D = []
Step 2: During the condition monitoring, the sets B1 and B2 keep collecting sub-band

feature ai and MCH pi in Section 2.1. In this research, all ai is 128-dimensional and pi is
32-dimensional.

Step 3: As shown in Equation (5), when the quantity of samples in B1 and B2 equals
the preset θ, add all samples in B2 to D. The parameter θ can be set based on the estimated
operation time of the machine.

B1 = [a1, a2, · · · , aθ ]
B2 = [p1, p2, · · · , pθ ]

(5)

Step 4: Update the sample subscripts in D = [p1, p2, · · · , pβ] in times sequence and
put all samples in D into the SOM network for clustering. By Equation (6), the mean
distance di from the neuron i to all other neurons is calculated, where the wi and wj are
weight vectors of the neuron i and j. The n is the total quantity of neurons in the competitive
layer of the SOM network. Then, as shown in Equation (7), a position function is defined
to output the subscript c of the minimum value in [d1, d2, · · · , dn]. The neuron c with the
weight vector wc is considered the center neuron.

di =

n
∑

j=1
‖ wi −wj ‖2

n
, i = 1, 2, · · · n (6)

c = position(min([d1, d2, · · · , dn])) (7)

Step 5: Calculate the distance eq between the MCH pq and center neuron c as illustrated
in Equation (8). Then, through the position function, the subscript of the minimum value
in [e1, e2, · · · , eβ] is outputted as OHS. The MCH pOHS is considered to represent the
machine OHS.

eq =‖ wc − pq ‖2, q = 1, 2, · · · β (8)

OHS = position(min([e1, e2, · · · , eβ])) (9)

Step 6: The OHS sample may need to be updated with the monitored data volume
rising with time because the length of the run-in period varies from parts. To avoid endless
updates, a trigger mechanism is designed. For all samples in B1, as shown in Equation (10),
an RMS is calculated and added to the B3. Then, we initialize the B1 = B2 = [].

r =

√√√√√ θ

∑
i=1

(|ai|2)
2

θ
(10)

Step 7: Repeat step 2 to step 6. When the latest two changing rates of RMS in B3 is
lower than a preset threshold l for two times, as shown in Equation (11), the pOHS will not
be updated. The o is the size of B3, which increases by 1 every time the step 2 to step 6
are completed.

ro

ro−1
< l and

ro−1

ro−2
< l, o ≥ 3 (11)
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After the OHS sample pOHS = [p1
OHS, p2

OHS, · · · , p32
OHS] is determined, we are given

any piece of MCH p = [p1, p2, · · · , p32]. As shown in Equation (12), the distance metric
deviating from the OHS is defined as the health index.

HI =
√

m
z

√
z

∑
i=1

(dist(pi
OHS, pi))

2 (12)

During a condition monitoring scenario, the health index curve can be calculated in
real time, with which the degradation trend can be clearly monitored. For the calculation
of the degradation threshold, it is also based on the OHS. v points in the distance curve
that are closest to the OHS are selected instead of the points obtained in the initial working
state. Then, the degradation threshold can be determined by using the µ + 4σ method [28]
on the selected v points. When the degradation threshold is exceeded, the visualized fault
diagnosis is triggered.

3.2. Visualized Fault Diagnosis Method Based on SOM

As illustrated in Figure 2, besides the use for the OHS sample selection, an SOM is also
used for visualized fault diagnosis, which makes the developed method more integrative
than other ordinary data-driven fault diagnosis using an SOM. In a specific condition
monitoring application, before the different deteriorative machine conditions appear, the
SOM is used to identify the optimum health condition, but with more MCHs under different
machine conditions accumulated, a diagnostic SOM model can be established. Furthermore,
the capability of the diagnostic SOM can also be updated with the continuously emerging
new machine conditions. Finally, the machine condition can be recognized by the diagnostic
SOM neural network automatically, with which the neurons with labels indicate machine
conditions and the U-matrix can be used as an auxiliary method to estimate the fault type
of data that is not located in the labeled neurons.

4. Experiments

To validate the reliability and efficiency of the proposed scheme, the XJTU-SY dataset [29]
was used to demonstrate its theoretical viability. Its adaptability was verified through a
practical rotary torsional fatigue test.

4.1. Case 1: XJTU-SY Dataset
4.1.1. Data Description of XJTU-SY Dataset

The overview of the test bench used to generate the XJTU-SY dataset is shown in Figure 3.
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Table 2 shows the datasets chosen in this paper. The tested bearings were LDK UER204.
Five run-to-failure tests were conducted under the working condition of a rotating speed at
2100 r/min and radial force of 12 kN. It contained three types of bearing faults including
an outer race fault (Bearing 1_1, Bearing 1_2, Bearing 1_3), cage fault (Bearing 1_4) and
mixed fault (Bearing 1_5, outer race fault and inner race fault). The data sampling rate was
25.6 kHz. A piece of 1.28-s vibration data (32,768 datapoints) was collected every 1 min.
Because of that, the load was applied in a horizontal direction, and the vibration signals
obtained in this direction were used.

Table 2. Description of the XJTU-SY dataset.

Bearing Type Working Condition Dataset File Count Fault Type Practical Life

LDK UER204
Radial force: 12 kN

Rotating speed: 2100 r/min

Bearing 1_1 123
Outer race fault

2 h 3 min
Bearing 1_2 161 2 h 41 min
Bearing 1_3 158 2 h 38 min
Bearing 1_4 122 Cage fault 2 h 2 min
Bearing 1_5 52 Mixed fault 52 min

The whole vibration signals of the five run-to-failure tests are plotted in Figure 4. The
signal amplitude in a healthy state was generally stable with random fluctuations. A slight
decrease in amplitude from the start can be observed in Figure 4b of Bearing1_2, which
denotes a clear existence of a run-in period. The increase in vibration amplitude means the
degradation of bearings. As shown in Figure 4, most of the tested bearings had a clear and
long degradation time, except for Bearing1_4. A slight increase could be observed from the
vibration signals of Bearing 1_4, followed with a dramatic increase. It is also common in
practical engineering that a weak damage leads to abrupt failure.
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4.1.2. Degradation Assessment Based on an OHS

The IPVH method introduced in Section 2.1 was utilized to convert the vibration
signals into MCHs. Specifically, 32 sub-bands were initially obtained by processing each
1024-point raw signal through a 5-level WPT. Each sub-band was cut into four blocks
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for 2D-DCT and feature extraction. After that, a 128-dimensional feature was obtained.
By calculating the mean value of every 10 pieces of sub-band features, as presented in
Figure 5, an average sub-band feature was displayed in a feature evaluation map. Then,
each sub-band feature was transformed into MCHs with the ASAX with a 32-segment PAA
and 80-size symbolic approximation. Finally, a 32-dimensional MCH was obtained from
each feature.
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set as 10, which means the OHS was updated with every 10 new samples col-
lected. The threshold for the changing rates of RMS γ  was set as 4%. When the 
selection of the OHS was finished, as shown in Figure 6, the changing rates of 
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Bearing 1_2, (e) sub-band features of Bearing 1_3, (f) MCHs of Bearing 1_3, (g) sub-band features of
Bearing 1_4, (h) MCHs of Bearing 1_4, (i) sub-band features of Bearing 1_5, (j) MCHs of Bearing 1_5.
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As mentioned in Section 3.1, a trigger mechanism was used to determine when the
update of the OHS should have been stopped. In this part, the θ was set as 10, which means
the OHS was updated with every 10 new samples collected. The threshold for the changing
rates of RMS γ was set as 4%. When the selection of the OHS was finished, as shown in
Figure 6, the changing rates of RMS during the whole process were illustrated. Through
the method in Section 3.1, as shown in Table 3, the MCHs put into the SOM network were
clustered and the MCH located in the clustering center of the SOM network was obtained
as the baseline for degradation quantification.
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Table 3. Results of OHS selection.

Dataset Total Quantity of Samples Quantity of Samples Put into
the SOM Network (NO.)

Sample Located in the Clustering
Center of SOM Network

Bearing 1_1 393 130 59th
Bearing 1_2 515 70 30th
Bearing 1_3 505 30 18th
Bearing 1_4 390 50 22nd
Bearing 1_5 166 40 17th

The distance metric can be calculated as the health index once the baseline has been
established. Figure 7 compares the distance curves based on the first MCH with the ones
based on the OHS.
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Figure 7. Distance curves based on the first sample: (a) Bearing 1_1, (c) 
Bearing 1_2, (e) Bearing 1_3, (g) Bearing 1_4, (i) Bearing 1_5; distance curves 
based on the OHS sample: (b) Bearing 1_1, (d) Bearing 1_2, (f) Bearing 1_3, (h) 
Bearing 1_4, (j) Bearing 1_5. 

 

Figure 7. Distance curves based on the first sample: (a) Bearing 1_1, (c) Bearing 1_2, (e) Bearing
1_3, (g) Bearing 1_4, (i) Bearing 1_5; distance curves based on the OHS sample: (b) Bearing 1_1,
(d) Bearing 1_2, (f) Bearing 1_3, (h) Bearing 1_4, (j) Bearing 1_5.

As shown in Figure 7, the change in the machine condition was much clearer and
reasonable in the health index curve based on the OHS. First, earlier degradation could
be more clearly detected in the distance curves based on the OHS. Comparative early
degradation detection results are shown in Table 4. Second, the distance curves based on
the OHS were more stable before degradation occurred. As shown in Figure 8, the standard
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deviation of the distance in a healthy stage based on the OHS was smaller, which means
the curve fluctuation was smaller. Thirdly, the developing trend of the distance curve
denoted the machine condition more reasonably. To be more specific, the curve downtrend
at the beginning better illustrated the run-in period of the tested bearings, which could
be noticed in Figure 7b of Bearing 1_1 and Figure 7j of Bearing 1_5. During the healthy
state, the distance metric remained within a narrower range so as to give prominence to
the curve change, i.e., the machine condition change detection was more sensitive. For
instance, the distance curves with the first sample as a health baseline in Figure 7c,g kept
a generally increasing trend, which made the weak change inconspicuous. However,
the corresponding curves based on the OHS could evidently present these changes for
decision-making support.

Table 4. Quantitative comparison of early degradation detection.

Dataset
Early Degradation Detection

Distance Based
on OHS

Distance Based on
the First Sample RMS Pk-Pk Crest Factor Kurtosis

Bearing 1_1 227 227 227 232 Null Null
Bearing 1_2 100 101 116 141 Null Null
Bearing 1_3 187 187 187 187 199 193
Bearing 1_4 257 288 268 267 255 257
Bearing 1_5 110 110 104 107 Null 124
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Moreover, the proposed method was compared with an RMS, peak-to-peak value,
crest factor and kurtosis, which are commonly used health indexes in condition-based
maintenance. As shown in Figure 9, the early degradation assessment results are illustrated
with thresholding. Additionally, a quantitative comparison result is given in Table 4, where
the number indicates the first datapoint exceeding the preset threshold and “Null” means
no meaningful early failure detection. Compared with the distance curve based on the
OHS, the method of the RMS and peak-to-peak value could achieve a similar effectiveness
on the degradation trend, but it was not sensitive to weak degradation. For Bearing 1_1,
Bearing 1_2 and Bearing 1_5, the methods of crest factor and kurtosis were influenced by
fluctuation a lot and were even unable to capture the degradation trend. Therefore, the
proposed method based on OHS can detect early degradation effectively and present a
more explainable degradation curve.
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Figure 9. Results of early degradation detection using other healthy indexes: (a) Bearing 1_1,
(b) Bearing 1_2, (c) Bearing 1_3, (d) Bearing 1_4, (e) Bearing 1_5. Four commonly used features are
utilized to be compared with the proposed method. Methods of RMS and peak-to-peak value can
achieve similar effectiveness on degradation trend, but it is not sensitive enough to weak degradation.
Methods of crest factor and kurtosis are very easily influenced by fluctuation and are even unable to
capture the correct degradation trend.
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4.1.3. Fault Diagnosis Based on IPVH and SOM

When the degradation occurs, fault diagnosis needs to be carried out to ensure the
safe operation of the machinery. Among a machine’s whole life cycle, different failure types
may be encountered; thus, the diagnostic capability of the SOM model can be updated with
the accumulated data. In this part, the bearing data from the five run-to-failure tests were
assumed as the accumulated faulty data. As is shown in Table 5, all the MCHs exceeding
the thresholds were selected for the method effectiveness validation.

Table 5. Fault types and the sample size for training and testing data.

Dataset Fault Type
Quantity of Samples Exceeding

the Preset Threshold (No.)
Sample Size (No.)

Training Data Testing Data

Bearing 1_3 Normal 200 160 40
Bearing 1_1 Outer race fault 165 132 33
Bearing 1_2 Outer race fault 415 332 83
Bearing 1_3 Outer race fault 315 252 63
Bearing 1_4 Cage fault 130 104 26
Bearing 1_5 Mix fault 55 44 11

The generation of training and testing data was based on five-fold cross-validation.
Samples of each fault type were arranged at random and divided into five folds. In total,
four folds were used for training and one fold was left to further test the accuracy of the
trained SOM neural network.

One of the results is illustrated in Figure 10. The U-matrix presents the distance between
different neurons. The color shift from blue to yellow denotes an increase in distance value.
The letters “N, O, C, and M” in hexagons mean the normal state, bearing outer race fault,
cage fault and mixed fault, respectively. The trained SOM neural network can identify which
neuron the input testing data should be located in. The colors “blue, green, pink, yellow,
orange, and purple” represent testing samples of the normal state, outer race fault in Bearing
1_1, outer race fault in Bearing 1_2, outer race fault in Bearing 1_3, cage fault and mixed fault,
respectively. It is obvious that the majority of the samples fell into the right hexagon with the
exception of a few samples. It is also possible to determine which fault type the misclassified
samples belong to by analyzing the U-matrix and labeled neurons.
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The testing results of the trained diagnosis model under five-fold cross-validation
is presented in Table 6, and an overall accuracy of 95.99% was achieved. The results
showed that the developed method based on the IPVH and SOM could also achieve
excellent performance on classification and visualization, in addition to its degradation
assessment capability.

Table 6. Diagnosis accuracy of the proposed method under five-fold cross-validation.

Fault Type Test 1 (%) Test 2 (%) Test 3 (%) Test 4 (%) Test 5 (%)

Normal 97.50 90.00 92.50 95.00 85.00
Outer race fault_1 (Bearing 1_1) 100.00 100.00 93.94 93.94 96.97
Outer race fault_2 (Bearing 1_2) 97.59 96.39 97.59 93.98 98.80
Outer race fault_3 (Bearing 1_3) 84.13 93.65 96.83 95.24 93.65

Cage fault (Bearing 1_4) 100.00 100.00 100.00 96.15 100
Mixed fault (Bearing 1_5) 100.00 100.00 100.00 100 90.91

4.2. Case 2: Rotary Torsional Fatigue Test
4.2.1. Experiment Setup

A rotary torsional fatigue test, which is presented in Figure 11a, was devoted to
proving the validity of the proposed method in practical engineering application, which
is mainly composed of a data acquisition unit, a control unit and a test bench. The data
acquisition unit was utilized to collect vibration signals. The required rotating speed and
specified torque in the test can be adjusted by the control unit.
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Figure 11. Experiment setup: (a) experiment equipment, (b) detailed schematic diagram of the
test bench.

The structural composition of the test bench is illustrated in Figure 11b. It mainly
consisted of a motor, a torque sensor, a loading device and two gearboxes. An 11 kw three-
phase induction motor acted as a drive. The torque needed could be adjusted by the torque
sensor and loading device. A pair of gears with 17 and 19 teeth in gearbox 1 was the gears
used for the test. Two pairs of bearings were deployed in each gearbox. To acquire the
vibration signal, three accelerometers were placed on the gearboxes, where accelerometers
2 and 3 collected vertical signals and accelerometer 1 collected both vertical and horizontal
signals. In total, four channels of vibration signals were acquired with the sampling frequency
at 20 kHz. Two-second-long vibration signals were collected every 10 min.

As shown in Figure 12, two sets of vibration data were obtained to validate the
developed method, which were named Dataset 1 and Dataset 2. A detailed description
of the data is listed in Table 7. The vibration signals of Dataset 1 were collected from the
vertical direction of accelerometer 1 under the working load of 400 Nm, and the signals of
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Dataset 2 were collected from the horizontal direction of accelerometer 2 under the working
load of 420 Nm. The rotating speed for both was 1480 rpm. When the experiment was
finished, as shown in Figure 13, compound faults of the bearing including an inner race
fault, outer race fault and ball fault were discovered in the experiment of Dataset 1, and
gear pitting was discovered in the experiment of Dataset 2.
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Table 7. Data description of the rotary torsional fatigue test.

Dataset
Working Condition

Fault Type
Rotating Speed (rpm) Working Load (Nm)

Dataset 1 1480 400 Mixed bearing fault
Dataset 2 1480 420 Gear pitting
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4.2.2. Degradation Assessment

As shown in Figure 14, the same IPVH method used in Section 4.1.2 was implemented
to transform the two vibration datasets into 128-dimensional sub-band features and then
they were hashed into 32-dimensional MCHs.

In this part, the, the θ was set as 200, which means the OHS was updated with every
200 new samples collected. The threshold of changing rates was set as 4%. As is shown
in Figure 15 and Table 8, when the selection of the OHS was finished, the quantity of the
samples put into the SOM and which sample was located in the clustering center are given.

As shown in Figure 16, the distance curves based on different baselines are illustrated.
As listed in Table 9, the distance curve based on the OHS could achieve a comparative
earlier degradation detection.

To further illustrate the effectiveness of the proposed scheme for degradation assess-
ment, as shown in Figure 17a, the distance curve based on the OHS was more sensitive to
the overall fluctuation in the frequency domain compared with the one based on the first
sample. In Figure 17b, for the distance curve based on the OHS, the run-in period is clearly
illustrated, whose trend was more consistent with the bathtub curve. For the amplitude
increment in the low-frequency band around the 3000th sample, the distance curve based
on the OHS was more sensitive to capturing its changes. However, in the distance curve
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based on the first sample, when early degradation occurred, some weak fluctuation was
always neutralized or averaged out of the existence of the run-in period, which prevents
the distance curve from accurately reflecting its true tendency.
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Dataset Total Quantity of Samples Quantity of Samples Put into
the SOM Network
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Center of SOM Network
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Table 9. Quantitative comparison of early degradation detection results.

Dataset
Early Degradation Detection

Distance Curve Based on the First Sample Distance Curve Based on the OHS

Dataset 1 8543 7884
Dataset 2 5088 5088
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4.2.3. Fault Diagnosis

When the distance metric exceeded the preset threshold, in this part, 300 pieces of
MCHs were selected from each machine condition, including healthy state, gear pitting
and mixed bearing fault. A five-fold cross-validation method was used. For each fault
type, as shown in Table 10, four folds including 240 samples were selected to train the SOM
network and one fold including 60 samples was left to test the trained diagnostic model.

Table 10. Fault types and sample size for training and testing SOM on rotary torsional fatigue test.

Fault Type Samples in Total Training Samples Testing Samples

Healthy state 300 240 60
Mixed bearing fault 300 240 60

Gear pitting 300 240 60

Through the same method in Section 4.1.3, all training data were put into the SOM
network, and then the testing data were put into the trained SOM network. As is shown in
Figure 18, the colors blue, pink and green represent the normal state (N), mixed bearing
fault (M) and gear pitting (G), respectively. Most of the machine conditions were correctly
recognized. Diagnosis results under five-fold cross-validation are presented in Table 11.
The proposed fault diagnosis method could achieve an overall diagnosis accuracy of 97.44%.

Machines 2022, 10, x FOR PEER REVIEW 23 of 25 
 

 

samples were selected to train the SOM network and one fold including 60 sam-
ples was left to test the trained diagnostic model. 

Table 10. Fault types and sample size for training and testing SOM on rotary torsional fatigue test. 

Fault Type Samples in Total Training Samples Testing Samples 
Healthy state 300 240 60 

Mixed bearing fault 300 240 60 
Gear pitting 300 240 60 

Through the same method in Section 4.1.3, all training data were put into the 
SOM network, and then the testing data were put into the trained SOM network. 
As is shown in Figure 18, the colors blue, pink and green represent the normal 
state (N), mixed bearing fault (M) and gear pitting (G), respectively. Most of the 
machine conditions were correctly recognized. Diagnosis results under five-fold 
cross-validation are presented in Table 11. The proposed fault diagnosis method 
could achieve an overall diagnosis accuracy of 97.44%. 

 
Figure 18. Illustration of training and testing results of SOM. 

Table 11. Diagnosis accuracy of the proposed method on the rotary torsional fatigue test. 

Fault type Test 1 (%) Test 2 (%) Test 3 (%) Test 4 (%) Test 5 (%) 
Normal 100.00 96.67 96.67 93.33 100.00 

Mixed fault 98.33 95.00 100.00 98.33 96.67 
Gear pitting 95.00 91.67 100.00 100.00 100.00 

5. Conclusions 
This paper proposes an integrated condition monitoring method for rotating 

machinery based on the IPVH and SOM. Firstly, in terms of the issue that the 
existing methods always focus on either degradation assessment or fault diagno-
sis, the proposed method achieves both under one technical framework, which 
improves the efficiency of the whole condition monitoring process. Secondly, for 
degradation assessment, the run-in period exists because of the influence of tem-
perature, assembly accuracy or other reasons, which indicates that the best ma-
chine condition is not always the state at the beginning of the operation. Experi-
mental results showed that the distance metric based on the OHS could achieve a 
more stable indication of the machine condition and a more robust performance 

Figure 18. Illustration of training and testing results of SOM.

Table 11. Diagnosis accuracy of the proposed method on the rotary torsional fatigue test.

Fault type Test 1 (%) Test 2 (%) Test 3 (%) Test 4 (%) Test 5 (%)

Normal 100.00 96.67 96.67 93.33 100.00
Mixed fault 98.33 95.00 100.00 98.33 96.67
Gear pitting 95.00 91.67 100.00 100.00 100.00

5. Conclusions

This paper proposes an integrated condition monitoring method for rotating machin-
ery based on the IPVH and SOM. Firstly, in terms of the issue that the existing methods
always focus on either degradation assessment or fault diagnosis, the proposed method
achieves both under one technical framework, which improves the efficiency of the whole
condition monitoring process. Secondly, for degradation assessment, the run-in period
exists because of the influence of temperature, assembly accuracy or other reasons, which
indicates that the best machine condition is not always the state at the beginning of the
operation. Experimental results showed that the distance metric based on the OHS could
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achieve a more stable indication of the machine condition and a more robust performance
on detecting early degradation compared with features extracted from the time domain
and distance metric based on the first sample. Moreover, the degradation trend was always
neutralized or averaged in the distance metric based on the first sample, which makes
it hard to reflect the degradation process accurately. The distance curve based on the
OHS reflected the deviation of the current state from the best machine condition, which
could alleviate the issue effectively. Thirdly, for fault diagnosis, when the distance curve
exceeded the threshold for identifying early degradation, the corresponding MCHs needed
to be transmitted to the diagnostic SOM neural network for machine condition recognition.
Through the experiment validation, the proposed fault diagnosis method based on the
IPVH and SOM could achieve a 95.99% and 97.44% average classification accuracy and
good visualization performance, respectively. It also has implications for further work such
as more intelligent methods to select the OHS and the remaining useful life prediction
based on the distance metric combined with the OHS.
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