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Abstract: The nonlinearity of clearance has a significant influence on the performance of a system
while ensuring the reliability of the variable-speed transmission, and hinders the development of
the controlled object according to the predetermined trajectory. Aimed at the transmission clearance
problem in different systems, this study summarizes the existing literature and provides a reference for
the research and compensation of clearance characteristics. First, the influence of clearance on system
performance is analyzed and summarized, and it is shown that the existence of clearance causes
problems, such as system response delay and limited cycle oscillation. Then, the control strategies for
studying clearance are introduced, which are mainly divided into the control strategy based on the
clearance model and the non-clearance model control strategy, and these are respectively explained.
Finally, some opinions are proposed for the perfection and development of future clearance nonlinear
control theory. Ideas for realizing the suppression of the adverse effects of clearances have their
characteristics, and in practical applications, the difficulty of implementation and cost control should
be comprehensively considered. In the future, to cope with complex and changeable environments,
the clearance control strategy will continue to be optimized.

Keywords: clearance effect; clearance model; clearance compensation; adaptive control; active
disturbance rejection control; robust control

1. Introduction

With the development of science and technology, servo systems are increasingly
used in many fields, such as aerospace [1], metallurgy, transportation, military, electrical,
electronic, and energy. In engineering practice, the control performance requirements of
servo systems have always been an important issue. There is an urgent need to move
towards the goals of high precision, high-frequency response, high efficiency, high reliability,
and high energy saving [2]. The nonlinearity of the mechanical gap is an important
characteristic of the high precision positioning of the system [3,4].

An electromechanical hydraulic actuation system must satisfy the dynamic transmis-
sion and motion requirements of the system through mechanical mechanisms. Thus, the
mechanical transmission structure is an important component of servo systems. Consid-
ering the manufacturing and assembly errors of the servo system, as well as the hinge
connection or screw connection between the transmission mechanisms, kinematic pair
clearance is inevitably generated [5–8]. The nonlinearity of the clearance is destructive, and
the clearance of the kinematic pair causes the actual motion trajectory of the mechanism
to deviate from the expected trajectory, significantly affecting the response speed, control
accuracy, and motion performance of the system. The existence of kinematic pair clearance
will also lead to a collision between the mechanisms, resulting in elastic vibration, excess
force, noise, and wear [9], which may eventually lead to oil contamination and loss of
control or damage to the system. According to statistical analysis, approximately 30–80% of
equipment damage is due to wear between mechanical components [10], and wear is also
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one of the causes of the subsequent failure of mechanical components [11–13]. Therefore,
it is of great significance to carry out theoretical and technical research on the nonlinear
clearance control of servo systems. When there is clearance nonlinearity in a mechanical
system, the clearance characteristics must be considered in the control strategy to achieve
clearance compensation control, thereby ensuring system control accuracy [14]. To improve
the design, analysis, and prediction methods, it is necessary to have a good understanding
of clearance theory.

Due to the limitations of machining accuracy, installation, test conditions, and other
conditions, there will inevitably be clearances in the actual system, which seriously affects
the control accuracy of the servo system. It is because of the clearances between the
connecting parts in a system, that collisions inevitably occur during movement, resulting
in a large impact force, aggravating the wear of the parts, and further accelerating the
fatigue damage of connecting parts. Collision caused by the clearance at the connection
also produces serious noise. For high-speed mechanisms, the impact of clearance is even
greater. In recent decades, research on clearance and its compensation control scheme has
been an important direction in engineering applications. To improve design performance,
it is necessary to first establish an accurate mathematical model of clearance [15–17] to
summarize the physical phenomena caused by the nonlinearity of clearance. Therefore,
it is of great significance to study the clearance compensation control strategy to realize
high-precision control of the servo system.

The rest of this paper is organized as follows. Section 2 briefly describes the purpose
and implications of clearance nonlinearity. Section 3 presents the literature based on the
clearance model compensation strategy, which includes two parts: the clearance nonlinear
model and the clearance model-based control strategy. Section 4 reviews the literature
based on model-free compensation control strategies, including the mechanism elimination
method and model-free clearance control strategy. Section 5 discusses and compares the
existing backlash compensation control strategies. Section 6 provides a summary and offers
insights into the refinement and development of future clearance nonlinear control theories.

2. Purpose and Connotation of Nonlinear Control of Clearance

Non-linearity is widely present in production and life, and it has various manifes-
tations. Nonlinear problems can be divided into memoryless and memory nonlinear
problems. The reason why the former problems are called memoryless, zero memory, or
static is because the output of a nonlinear system at any time is determined only by the
input at that time, and has nothing to do with the historical input. Typical memoryless
nonlinear characteristics include repeater nonlinearity, saturation nonlinearity, dead-band
nonlinearity, and quantization nonlinearity. The nonlinear characteristic of memory implies
that the output at any time is related to all historical inputs. Typical memory nonlinear
characteristics include hysteresis nonlinearity and clearance nonlinearity. The nonlinear
characteristic of backlash is common in transmission systems, such as gears, and is a typical
nonlinear characteristic. The characteristic of clearance nonlinearity is that when the direc-
tion of the input quantity changes, the output quantity remains unchanged, and the output
quantity does not change until the change in the input quantity exceeds a certain value. A
mechanical transmission generally has clearance, and clearance in gear transmission is the
most obvious example.

Clearance exists widely between the driving and driven parts, which are not directly
connected in mechanical transmission. The existence of clearance nonlinearity causes
phase lag, input saturation, limited cycle oscillation, and other phenomena [18], which
significantly reduce the stability of the system and limit the static and dynamic control
performance. When mechanical resonance is induced by the limited stiffness of the trans-
mission, the existence of clearance nonlinearity further aggravates mechanical resonance,
which has three manifestations in the servo system: axial, lateral, and torque [19]. The
effects of the clearance factors are shown in Figure 1. Various phenomena show that the
clearance characteristic is the key factor affecting the dynamic performance and control
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precision of the servo system, and it is also the main bottleneck in the development of
high-precision electromechanical-hydraulic servo actuation systems. Therefore, in the
research and mechanism design of the actuating system, sufficient attention must be paid
to the influence of clearance, and appropriate strategies should be adopted to reduce or
even eliminate its negative influence.

Machines 2022, 10, 492 3 of 23 
 

 

resonance, which has three manifestations in the servo system: axial, lateral, and torque 
[19]. The effects of the clearance factors are shown in Figure 1. Various phenomena show 
that the clearance characteristic is the key factor affecting the dynamic performance and 
control precision of the servo system, and it is also the main bottleneck in the development 
of high-precision electromechanical-hydraulic servo actuation systems. Therefore, in the 
research and mechanism design of the actuating system, sufficient attention must be paid 
to the influence of clearance, and appropriate strategies should be adopted to reduce or 
even eliminate its negative influence. 

Motor side Transmission mechanism (including clearance) Load side

Mechanical resonance, impact noise

Increased power consumption, 
decreased system life, etc.

Limit cycle oscillation, positioning 
accuracy decline phenomenon

 
Figure 1. Schematic diagram of the effect of clearance. 

The clearance characteristic sources exhibit random and difficult-to-measure 
properties. Many researchers have qualitatively analyzed this feature from the aspect of 
structure [20–22], but it is accompanied by an increase in cost and complexity of structural 
design, and the high requirement of machining accuracy has discouraged many scholars. 
Then, from the control point of view [23–25], for systems with clearances, we study control 
methods to improve and enhance the performance of closed-loop systems. Clearance 
compensation control strategies are often divided into two types: clearance model and 
model-free compensation. 

3. Control Strategy Based on Clearance Model 
3.1. Clearance Model 

The clearance contact model is based on the mechanical model and is represented by 
describing the interaction force between the components in the case of mutual contact. 

3.1.1. Two-State Model of Contact-Separation 
Research on clearance nonlinearity can be traced back to the year 1977. Between 1973 

and 1977, Dubowsky [26–29] proposed a nonlinear ‘contact-separation’ two-state model 
of clearance by studying the effect of clearance on the connection force of the planar 
mechanism. 

3.1.2. Three-State Model of Contact-Separation-Collision 
Miedema et al. [30] proposed a three-state model of ‘contact-separation-collision’ 

with higher precision clearance nonlinearity when studying mechanical hinge clearance. 
The establishment principle of the model is to divide the relative motion of each 
component between the kinematic pairs into contact, separation, and collision. Based on 
this division mode, a three-state model of the clearance was established. 

Soong et al. [31] conducted theoretical analysis and experimental research on the 
dynamic effects of spherical hinges with radial clearance on the crank-slider mechanism. 
Combined with theoretical analysis and experimental research results, the three-state 
model of ‘contact-separation-collision’ of clearance was refined and expanded into four 

Figure 1. Schematic diagram of the effect of clearance.

The clearance characteristic sources exhibit random and difficult-to-measure proper-
ties. Many researchers have qualitatively analyzed this feature from the aspect of struc-
ture [20–22], but it is accompanied by an increase in cost and complexity of structural
design, and the high requirement of machining accuracy has discouraged many scholars.
Then, from the control point of view [23–25], for systems with clearances, we study control
methods to improve and enhance the performance of closed-loop systems. Clearance
compensation control strategies are often divided into two types: clearance model and
model-free compensation.

3. Control Strategy Based on Clearance Model
3.1. Clearance Model

The clearance contact model is based on the mechanical model and is represented by
describing the interaction force between the components in the case of mutual contact.

3.1.1. Two-State Model of Contact-Separation

Research on clearance nonlinearity can be traced back to the year 1977. Between
1973 and 1977, Dubowsky [26–29] proposed a nonlinear ‘contact-separation’ two-state
model of clearance by studying the effect of clearance on the connection force of the
planar mechanism.

3.1.2. Three-State Model of Contact-Separation-Collision

Miedema et al. [30] proposed a three-state model of ‘contact-separation-collision’ with
higher precision clearance nonlinearity when studying mechanical hinge clearance. The
establishment principle of the model is to divide the relative motion of each component
between the kinematic pairs into contact, separation, and collision. Based on this division
mode, a three-state model of the clearance was established.

Soong et al. [31] conducted theoretical analysis and experimental research on the
dynamic effects of spherical hinges with radial clearance on the crank-slider mechanism.
Combined with theoretical analysis and experimental research results, the three-state model
of ‘contact-separation-collision’ of clearance was refined and expanded into four states of
contact, separation, collision, and transition, and a nonlinear dynamic model of clearance
was established based on the four states of the radial clearance of the spherical hinge.



Machines 2022, 10, 492 4 of 22

3.1.3. Hysteresis Model

The hysteresis clearance model [32] describes the relative displacement values of
inputs and outputs. When the mechanism moves in one direction in the active part, to
drive the follower to move the active part, the active part must move until the relative
displacement breaks through the clearance area, to obtain contact with the follower. The
output signal must produce a phase-lag phenomenon from the perspective of the dynamic
response of the system. The input and output characteristic curves are shown in Figure 2,
where b1 is the left clearance of the system, b2 is the right clearance of the system, a2 is
the positive maximum input of the clearance, a1 is the negative maximum input of the
clearance, and y is the output displacement of the clearance.
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As shown in Figure 2, the mathematical expression for the hysteresis model describing
the clearance is:

y =


k(x(t)− b2),

.
x(t) > 0, x(t) > −(a1 − b1 − b2)

k(x(t) + b1),
.
x(t) < 0, x(t) < (a2 − b1 − b2)

k(a2 − b2),
.
x(t)< 0, x(t) >(a2 − b1 − b2)

k(−a1 + b1),
.
x(t) > 0, x(t) < −(a1 − b1 − b2)

(1)

where x(t) is the input displacement of the clearance.
The mathematical expression of another hysteresis clearance model is:

.
y(t) =


k
( .
x(t)

)
,

.
x(t) > 0, x(t) > −(a1 − b1 − b2).

x(t) < 0, x(t) < (a2 − b1 − b2)
0, otherwise

(2)

3.1.4. Vibro-Shock Model

The vibration-impact model [33,34] is another mathematical model that describes
the nonlinearity of clearance and is analyzed from a mechanical point of view. First, the
system was connected rigidly. According to the law of conservation of momentum, it
can be considered that the energy deficit in the system can be described by the reflection
coefficient. Subsequently, we consider the transmission mechanism. When the transmission
mechanism is linear, it can be represented by the dead-zone model of clearance nonlinearity.
When the transmission mechanism is nonlinear, a variable stiffness coefficient is introduced,
and the nonlinearity of the clearance must be simultaneously described as time-varying
and nonlinear at the same time. When rigidly connected, the master-slave mechanism is
as follows: .

θ
(
t+
)
−

.
θp
(
t+
)
= −k[

.
θ
(
t−
)
−

.
θp
(
t−
)
] (3)
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J
[ .
θ
(
t+
)
− θp

(
t−
)]

+ m2 Jp

[ .
θ
(
t+
)
− θp

(
t−
)]

= 0 (4)

where k is the reflection coefficient, t− is the moment before the collision, t+ is the moment
after the collision, J is the moment of inertia of the driving part, and Jp is the moment of
inertia of the driven part.

3.1.5. Dead Zone Model

The dead zone model [35] reflects the relationship between the displacement and
the transmission force, the torque transfer relationship between the input and output
subsystems, and the effects of stiffness and damping in the mechanism. When the input
signal is at zero position, no signal output is generated. When the input signal is greater
than, or less than, the dead-zone value, the system generates an approximately linearly
correlated signal. The input and output curves of the dead zone model are shown in
Figure 3, where b1 is the left clearance of the system, b2 is the right clearance of the system,
and k is the clearance gain coefficient.
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As shown in Figure 3, the mathematical expression for the dead zone model describing
the clearance is:

M =


k(∆θ − α) + c∆

.
θ, ∆θ > α

0, |∆θ| ≤ α

k(∆θ + α) + c∆
.
θ, ∆θ < −α

(5)

where c is the clearance gain coefficient, α is the dead zone value, ∆θ is the relative displace-
ment of the input signal, m is the output torque, ∆θ(t) = θ(t)− θp(t)/m.

3.1.6. Hertz Contact Law Model

Wan et al. [36] used a contact force model based on Hertz’s contract law to describe
the clearance characteristics of an electromechanical aileron actuation system. The model
not only considers the influence of the nonlinear energy dissipation process but also solves
the programming difficulty of the contact force model for collision detection. This equation
can be expressed as follows:

FN = |δ|1.5Kstsgn(δ) (6)

Kst =

√
|KD| ∗ [1− 1−e2

1+e2 tan h( 5vpen
2veps

)]

CE[
3
4 (1− |cos(θ)|2.17657)

0.24586
]
1.5 (7)

CE =
1− v2

b
EB

+
1− v2

j

EJ
(8)
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KD =
1.5

1
RB

+ 1
RJ

+ 1.
RB

+ 1.
RJ

(9)

cos(θ) =


KD
1.5 [(

1
R1
− 1.

R1
)

2
+ ( 1

R2
− 1.

R2
)

2
+

2( 1
R1
− 1.

R1
)( 1

R2
− 1.

R2
) cos(2ϕ)]0.5 (10)

where FN is the normal contact force, δ is the relative penetration depth, and Kst is the
generalized contact stiffness. The value e is the restitution coefficient, vpen is the relative
penetration velocity, veps is the transition velocity, vb and vj are Poisson’s ratios of bearing
and journal, respectively. Values EB and EJ are Young’s moduli of bearing and journal,
respectively, RB and RJ are the maximum curvature radii of bearing and journal at the
contact point, respectively and

.
RB and

.
RJ are the minimum curvature radii of bearing and

journal at the contact point, respectively. Finally, ϕ is the angle of the tangent plane of
bearing and journal at the contact point.

3.1.7. Logarithmic Clearance Model

Margielewicz et al. [37] used a logarithmic function-based function approximation to
describe clearance features in numerical experiments. The use of logarithmic functions is
another approach in the study of clearance models that adequately describes the dynamics
of the system. Undoubtedly, the advantage of the logarithmic function is that when the
coefficients are fitted, it approximates the clearance characteristics, which reduces the
computation time. A large value of a1 improves the convergence of the solution with
respect to the discontinuous model, but increases the numerical computation time. A
schematic of the gear clearance is shown in Figure 4.
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As shown in Figure 4, R1 and R2 are the diameters of the disc, J1 and J2 are the
moments of inertia, cZ is the spring element, bZ is the dissipative element, e(t) is the gear
fit error, MN is the driving torque, and MO is the load torque. Furthermore, the clearance
model can be described as follows:

LZ f (x) =


x + 1, x < −1
0,−1 ≤ x ≤ 1

x− 1, x > 1
(11)

f (x) =
1
a1

ln(
1 + ea1(x−1)

1 + ea1(x+1)
) (12)

where LZ is a constant equal to half the clearance value, x = LZ/u, variable u is displace-
ment. The introduction of variable x, dependent on the dimensionless time, affects the
width of the dead zone of the tooth clearance, now falling within the range limited by the
values −1 and 1.
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3.1.8. Hunt-Crossly Nonlinear Spring-Damping Model

Liu et al. [38] ignored the vibration of a cradle and reflected the effect of barrel vibration
through the equivalent stiffness integrated into the clearance contact model. The Hunt-
Crossly nonlinear spring damping model is a classic contact collision model used to describe
the contact force between the barrel and base according to the Lankaran-Nikravesh contact
force model proposed by the Hunt-Crossly contact force model. The model considers
aspects such as material properties, geometry, elastic deformation, energy dissipation,
and coefficient of restitution. Therefore, the actual clearance acting stiffness is the series
equivalent stiffness of the clearance contact stiffness and base equivalent stiffness, which is
called the effective stiffness of the clearance nonlinearity. For the clearance nonlinear force,
which represents the interaction force in the case of mutual contact and mutual separation,
the expression is given by:

ft(t) =



kc(x(lc, t)− dc)
t + · · ·+

ccon(x(lc, t)− dc)
t· .x(lc, t), x(lc, t) ≥ dc

0,−dc < x(lc, t) < dc

kc(x(lc, t) + dc)
t + · · ·+

ccon(x(lc, t) + dc)
t· .x(lc, t), x(lc, t) ≤ −dc

(13)

where dc denotes the clearance value, ccon denotes the contact damping coefficient, and kc
denotes the effective stiffness of clearance nonlinearity. Then, x(lc, t) and

.
x(lc, t) are the

displacement response and velocity response at clearance location, respectively.

3.2. Control Strategy Based on Clearance Model

To sum up the introduction of the clearance model, the existing mathematical models
are mostly based on the hysteresis model, the vibration-shock model, and the dead zone
model. Three types of nonlinear clearance models were studied and improved. As shown
in Table 1, the hysteresis model focuses on describing the relative lag of the output, the
position difference, and the lag of the master and slave parts during the transmission
process. The dead zone model can more comprehensively express the influence of the
clearance in the motion control system on the output performance. The vibro-impact model
is suitable for multi-body dynamics studies. Three types of nonlinear clearance models
were studied and improved. However, in practical applications, there are many limitations,
such as the time-varying system position, velocity, and acceleration in actual motion and
the accuracy of model parameter identification. A single nonlinear model of clearance is
not sufficient to deal with the clearance disturbance, and it is necessary to study a control
method to improve the performance of the system with clearance from the perspective of
the control strategy.

Table 1. Performance analysis of clearance models.

Model [References] Mean Application Field Computational Complexity Precision Cost Application Field
Two-state [26–29] 3.25 4 4 1 4 The planar mechanism
Three-state [30,31] 3 2 4 2 4 Manipulator

Hysteresis [32] 3 4 3 2 3 Motion control system
Vibro-Shock [33,34] 2.25 3 1 4 1 Multi-body dynamics

Dead Zone [35] 3.75 5 3 3 4 Gear transmission
Hertz Contact Law [36] 3.25 4 2 4 3 Multi-body dynamics

Logarithmic [37] 3 4 1 4 3 Gear transmission
Hunt-Crossly [38] 3.25 3 2 5 3 Motion control system

Note:

1 

 

 

 

 
 

 

 

.

3.2.1. Feedforward Compensation Method

The idea of feedforward compensation control is to compensate the control system
according to the magnitude of the disturbance after the disturbance is generated and before
the controlled variable changes according to the nonlinear model of the clearance.
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Selmic et al. [39] developed a clearance compensation method with a dynamic in-
version structure and feedforward neural network compensation, as shown in Figure 5,
where the inversion error approximated the recoil inversion error and filter dynamics
required for the inversion design. The neural network controller does not require prelim-
inary offline training and its tuning is based on a modified Hebbian tuning law, which
reduces the amount of control system computation compared to backpropagation. The
feedforward neural network compensation controller uses actual filtered derivatives and
provides rigorous stability proofing, using the Lyapunov theory. Simulation results show
that the proposed compensation scheme improves the tracking performance of a nonlinear
clearance system.
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Mei et al. [40] discussed a method based on the clearance feedforward compensation.
On this basis, clearance compensation was achieved by adding the number of compensation
pulses corresponding to the clearance measured at the initial and reverse direction points of
the desired trajectory of the joint. Feedforward control, combined with clearance prediction
technology, reduced the maximum position error of the system by 92.9% using low-cost
gearboxes and had high positioning accuracy.

Rakotondrabe et al. [41] proposed a multivariate approach for rate-independent hys-
teresis modeling and feedforward control in multi-degree-of-freedom (multi-DOF) piezo-
electric actuators. To do this, the classic Prandtl-Ishlinskii (CPI) lag model was extended to
multivariate analysis. Subsequently, based on the inverse multiplication structure and mul-
tivariate CPI model, a compensator was proposed. Furthermore, the inversion of the model
was avoided. In addition to hysteresis suppression, the multivariate compensator allows for
reduced cross-coupling between the axes, which is not possible using standard techniques.
Figure 6 shows the block diagram of the multivariable feedforward control structure.

Chen et al. [42] designed an insulated gate bipolar transistor (IGBT) parameter identifi-
cation method, a dead zone compensation method, and an inverter device. Compared with
the traditional control strategy, it does not need to judge the current direction according
to the sampling signal, and there is no reciprocating zero-crossing phenomenon, thereby
avoiding its influence on the compensation effect.

This control method depends on the accuracy of the clearance model, and the adjust-
ment effect of the feedback control method lags behind the disturbance effect, which is an
unavoidable problem in the feedforward control.
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3.2.2. Inverse Model Compensation Method

The idea behind clearance inverse compensation is to consider the clearance model
as the object of inverse compensation. By introducing the model inverse into the control
signal to offset the influence of clearance nonlinearity, the system is pseudo-linearized, and
an appropriate control strategy is selected according to the specific system.

Katsura et al. [43] computed the inverse system output based on a model and controls
to provide positive feedback on the object position, based on the inverse system output.
Ramakrishnan et al. [44] provided a method for backlash compensation in a motion control
system, including homing the payload of the motion control system and performing tooth
pitch nonuniformity identification correction on the motion control system. A backlash
look-up table was generated for backlash correction during the normal operation of the
motion control system. The backlash table is generated using a training process that
includes selecting a move sequence to operate the motion control system, and executing
the move sequence using nonuniformity correction. The training process also includes
calculating the backlash measurements, describing the backlash measurements of one or
more components of the motion control system during the movement sequence, and storing
the backlash measurements in a backlash lookup table.

Farouki et al. [45] developed a method to analyze the effect of gear clearance on
positional accuracy in a Cartesian computer numerical control (CNC) machine tool axis
drive system. The method is based on solving machine dynamics equations in the context of
a corner dead zone clearance model and an oscillatory circle approximation of smooth paths
in the neighborhood, which allows a fundamentally accurate solution of the P-controller,
smoothly suppressing the feed rate near each path turning point.

Although this method introduces bounded errors, it reduces the complexity of the con-
trol design, facilitates the implementation of control strategies, and enhances practicability.

3.2.3. Switching Control Compensation Method

Guo et al. [46] intelligently selected a recovery strategy, according to the failure sce-
narios of the distributed control plane in the network and the robustness of the failure
recovery strategy, to improve controller utilization. This control strategy has prompted
the development of nonlinear clearance compensation strategies. Tang et al. [47] provided
an electromagnetic interference control method and related equipment that responded to
the detected electromagnetic interference, determined the real-time requirements of the
preset scene, and obtained an interference control strategy that adapted to the real-time
requirements of the preset scene.

Chen [48] studied a switching control system based on the inequality with a multiple
smooth inverse model (ISI) to solve the compensation problem of the clearance nonlin-
earity in the control strategy and proposed a new type of interconnected smooth inverse
compensator. Subsequently, by combining the proposed inverse model with the common
Lyapunov method, a new adaptive neural decentralized controller was proposed to ensure
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the stability of the system. Using the common Lyapunov method, an adaptive neural
controller based on ISI was proposed, and the stability of the system in a fixed time could
be proved.

Li et al. [49] designed a robust asynchronous switching model predictive controller
for multi-stage batch processing with uncertainties, unknown perturbations, and time-
varying setpoints. First, an asynchronous switching model with stable and unstable cases
was established for the effects of time-varying setpoints and disturbances. Based on the
switching model, a robust asynchronous switching model predictive control law was
designed. These LMI conditions were then solved online to obtain the control gain of each
phase, the shortest running time of each stable condition, and the longest-running time
of each unstable condition. The simulation results showed that, given the signal before
the system state switching, the controller switches in advance. It can effectively avoid
situations in which the system state is out of synchronization with the controller, so that
the system can run efficiently, stably, and accurately.

Wen et al. [50] designed a worry-free switching design method for linear controllers,
which included PID, LQG, LADRC, H∞, MRAC, and open-loop control. According to
the differential results output by each controller, the appropriate controller is selected to
connect to the closed-loop control loop and then smooth the controller switching process
through the common integrator. It effectively solves problems, such as sudden changes
in the transient response of the system and instability of the control loop caused by the
switching of multiple linear controllers.

The switching control is an ideal control method. In theory, this ensures the continuity
of transmission as much as possible and minimizes its negative impact on the process.
However, this strategy requires a particularly large amount of calculation during clearance
and is complex. It is more difficult to design this method when clearance is relatively small.

3.2.4. Disturbance Observation Compensation Method

To realize state feedback, the state variable needs to be measured, and only after the
measurement can the accuracy of the feedback be ensured. However, in practical systems,
the clearance nonlinearity is unmeasurable and time-varying. To realize state feedback, the
model must be used for state variable estimation.

Guo et al. [51] configured a sliding-mode disturbance observer to estimate the value
of the sum of the flexible vibration and environmental disturbance and composited the
nominal controller with the sliding mode disturbance observer to obtain a composite
controller, which can effectively solve flexible vibration and environmental disturbances.
Kang et al. [52] reorganized a humanoid robot system and analyzed the rebound effect
of the electromechanical system components for a reorganized system. The system was
then reconfigured to detect and compensate for clearances, and a new type of disturbance
observer was proposed in the retrofitted system. The results showed that the effectiveness
of the backlash was decreased when the time constant of the filter was 0.0003. According to
the variation in the Q-filter design, the performance of the interference removal and the
measurement noise removal were investigated. The estimated clearance disturbance was
fed to the input signal to compensate for the disturbance, as shown in Figure 7.

Park et al. [53] regarded the clearance nonlinearity as a dead zone, and the designed
disturbance observer included an adaptive filter with at least one dead zone, which pro-
vided a shoot-through response with a scalar gain of less than one.

Qiu et al. [54] investigated vibration suppression strategies for rotating flexible dual-
beam systems. A piecewise fifth-order spline polynomial was considered as the fundamen-
tal trajectory for joint planning. An adaptive genetic algorithm was used to optimize the
basic trajectory parameters. Thus, the optimal trajectory was obtained. A fuzzy predictive
controller was designed to suppress residual vibration by considering the clearance and
hysteresis characteristics of the dual-beam system. The experiments verified the effective-
ness and feasibility of the proposed control strategy. An overall block diagram of the fuzzy
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predictive control algorithm for a single-input single-output (SISO) system is shown in
Figure 8.
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Al-Saggaf et al. [55] disclosed a fractional-order linear active disturbance rejection
control (FOLADRC) system in which the disturbance cancellation feedback signal is trans-
mitted to a multiplier that exists in the forward path of the controller circuit.

Demirtaş et al. [56,57] combined recursive least squares (RLS) and forgetting factor
algorithms to remove the limiting characteristics of classical perturbation observers for
non-minimum phase systems. The results showed that the system stability was maintained
in the presence of disturbances and time delays.

This method can suppress the negative impact caused by clearance, but the disadvan-
tage is that the introduced differential link inevitably brings a large amount of measurement
noise, which needs to be filtered.

4. Model-Free Clearance Control Strategies

As clearance has become a prominent factor affecting the high performance of servo
systems, the compensation control strategy of servo systems with clearance has become
a research hotspot in recent years. Considering the time-varying and complex clearance
nonlinearity in an actual electromechanical-hydraulic actuation system, it is difficult to
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measure and mathematically model it accurately. In the following section, we introduce
the model-free compensation methods.

4.1. Mechanical Structure Scheme Compensation Method

From the perspective of mechanical schemes, some scholars have eliminated clearance
using a suitable anti-clearance structure, or adopted a suitable transmission scheme.

Lin et al. [58] invented an automatic backlash detection system. In the initial state,
the control commands are outputted to the servo driver through the control device. The
servo driver drives the lead screw to move the nut seat in the first direction and changes
the direction of the nut seat in the opposite second direction through the servo driver.
The recoil phenomenon period is defined according to the time point when the nut seat
starts to move in the second direction and another time point when the nut seat drives the
platform to move. The displacement of the nut seat corresponding to the backlash period
was defined as the backlash value.

Gil [59] set the bottom surface with slide rails on the guide part of a model car, and
the guide rails on the upper surface respond to rise and fall when driving to make constant
contact between the bottom surface of the model car and the surface clearance and make
up the clearance. The magnetic body is provided on the clearance compensation part and
lower side of the panel, with the panel coupled with the guide member movable in the
horizontal direction by the magnetic force. When the clearance between the bottom surface
of the model car and the panel surface is narrowed and widened by the shape of the model
car or the racetrack, the clearance is compensated. The magnet keeps in contact with the
upper surface of the panel and maintains the magnetic force between the guide member
and the magnet, thereby improving the running performance of the model car.

Nakamura and Ikai [60] set the position detection device of the active and driven parts
on the motor, respectively, and determined the initial difference by calculating the position
detection value of the two parts, They then calculated the compensation gain according
to the acceleration command, which was used to calculate the clearance compensation
amount to compensate for the clearance.

Zhang et al. [61] developed a device and method for controlling the braking of an
electric vehicle. The device includes a clearance state determination module, clearance
compensation control module, elastic compensation control module, and control-time de-
tection module. The clearance state is determined by the clearance state judgment module,
and, according to the clearance state of the gear meshing position in the transmission
system, clearance compensation control or elastic compensation control is performed on the
transmission system through the clearance. The compensation control module or elasticity
compensation control module reduces the risk of clearance and elasticity of the driveline
causing shock and vibration of the corresponding wheel regenerative braking torque.

Ye et al. [62] proposed a synchronous control method for the lifting and lowering of
continuous casting tundish hydraulic cylinders based on a synchronous control system.
The method jointly corrects the position deviation between the master hydraulic cylinder
and the slave hydraulic cylinder according to the master hydraulic cylinder synchronous
position deviation speed correction unit and slave hydraulic cylinder synchronous position
deviation speed correction unit to ensure that the set range is not exceeded.

The use of an anti-clearance mechanism, synchronous drive, or double-chain drive to
eliminate clearance has a unique role in, and offers advantages to, engineering; however, it
often increases the complexity of the system and increases the design and manufacturing
costs. Therefore, in view of the influence of clearance on system performance, in addition
to the clearance elimination method for mechanical transmission structures, methods based
on the control theory have been widely studied. A good control compensation strategy can
significantly reduce dependence on the mechanical structure, thereby simplifying the servo
system structure.
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4.2. Model-Free Clearance Compensation Control Strategy
4.2.1. Robust Control Method

The robust control method regards the influence of clearance on the system as an exter-
nal disturbance and reduces its influence on the control performance through compensator
suppression.

Bi et al. [63] considered operator-based robust control of nonlinear uncertain systems
with unknown class clearance lags. In detail, it has been proven that continuous recoil-like
lag operators correspond to one-to-one operators, that is, they are suitable for control theory
based on operator theory. Furthermore, an internal model control (IMC) structure with
one parallel compensation operator was proposed, using an operator-based robust right-
coprime factorization method. Based on the proposed control scheme, the designed system
was robust and stable, and could simultaneously achieve the desired output tracking
performance. Finally, a nonlinear simulation example with clearance was presented to
demonstrate the feasibility of the robust control method. The internal model control
structure is illustrated in Figure 9.
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Rascón et al. [64] applied a nonlinear H∞ discontinuous control system, and the de-
signed procedure proved to be very suitable for solving the problem of position regulation
of mechanical systems with a degree of underrun under discontinuous friction and clear-
ance, as well as stabilization around the desired position problem, while also attenuating
the clearance difference and dead zone model of external perturbations.

Based on error transformation, Zhao and Ren [65] proposed adaptive robust control
(ARC) to achieve near-optimal temporal output tracking of transient performance under
the L2 norm. Uncertain nonlinearity and actuation faults could be resolved simultaneously
without fault diagnosis. In addition, a nonlinear synchronization scheme and a biasing
torque, based on state feedback, were designed to achieve speed synchronization and clear-
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ance compensation with low energy consumption, respectively. It could be observed from
the simulation and experiments that the proposed ARC improved the control performance.

Laleg and Elmetennani [66] proposed a robust Lyapunov controller consisting of an
internal closed-loop Lyapunov controller and an external closed-loop error stabilizer. An
estimated system control input is generated from a defined output reference, using the
estimated system control input and compensation terms, and adjusted according to the
system control input to force the system output to track the desired value. The controller
is beneficial for an uncertain system control. The structural block diagram is shown in
Figure 10.
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Ahmed et al. [67] solved the asymptotic stability and robust tracking control problems
of uncertain robotic manipulator systems with external disturbances and time-varying
delays by applying the proposed H∞ performance adaptive control and obtaining the linear
matrix inequality (LMI) and delay-dependent condition of the adaptation law. Finally, a
comparison of the simulation results verified the importance of the proposed method.

Sun et al. [68] designed the H∞ control law based on a closed-loop feedback control
system and designed a Smith prediction compensator with an improved structure to form a
composite controller, which was used to predict the large deviation between the parameters
of the model and the controlled object and between its real model and its parameters. In
the control system, a deviation correction controller, designed with a PID control law, is
added to stabilize the controlled object, and a comparison is made between the controlled
object and the model output signal for adaptive correction, thereby further enhancing the
robustness of the system.

Robust control has a low dependence on the clearance model. However, its design is
relatively conservative, making it difficult for the system to operate in the optimal state.
When the system performance requirements are high, the design difficulty of a robust
controller increases.

4.2.2. Adaptive Control Method

For parameter-uncertain control systems with clearances, adaptive control suppresses
the negative effects of clearances and optimizes system performance through online correc-
tion or estimation mechanisms. If the clearance parameters are determined, the classical
adaptive control strategy can be implemented after converting them into a pseudo-linear
system by pre-compensating the nonlinear part of the system. If the parameters of the
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clearance are uncertain, but its upper and lower bounds are known, the parameter error
can be regarded as a bounded disturbance to implement a robust adaptive strategy.

Lu et al. [69] proposed an adaptive noise cancellation strategy to reduce the noise
pollution caused by mechanism clearance, coupling a preset fixed response filter and a
variable filter to simplify the control system. Subsequently, Alderson et al. [70] proposed a
novel adaptive noise cancellation strategy combined with a switching control strategy. The
controller may enable adaptation of the adaptive coefficient control block if the degree of
convergence of the adaptive response is below a certain threshold, and disable adaptation of
the adaptive coefficient control block if the degree of convergence of the adaptive response
is above a certain threshold. The controller may be configured to determine the degree of
convergence of the adaptive coefficient control block to control the adaptive response of
the adaptive noise cancellation system, effectively reducing energy consumption.

Zhao and Wang [71] first proposed a novel adaptive controller that combines a projec-
tion algorithm with backstepping control, and analyzed its stability. A block diagram of
the system is shown in Figure 11. In the simulation analysis, triangular waves, sawtooth
waves, and random signals were selected as input signals, and the test results verified their
stronger adaptability and robustness compared with the simple backstepping control.
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Chuei and Cao [72] proposed an extreme learning machine-based super-twisting
repetitive control (ELMSTRC), as shown in Figure 12, to improve the performance of
tracking periodic signals as well as to compensate for viscous friction and nonlinear
friction. First, repetitive control was designed to track a periodic reference and compensate
for viscous friction. Subsequently, a stable extreme learning machine learning-based
hypertension control was constructed to compensate for aperiodic perturbations, nonlinear
friction, clearances, and parameter uncertainties. Comparative studies showed that the
proposed ELMSTRC exhibited excellent performance in tracking periodic signals, aperiodic
disturbance compensation, friction compensation, clearance compensation, and robustness
against system uncertainties.

Guo et al. [73] proposed a new generalized clearance model that considered both
nonlinear perturbations and unidentifiable couplings, which captured the actual clearance
properties more accurately. An adaptive compensation control structure and a new smooth
clearance inverse model, based on comprehensive neural network learning, were proposed,
as shown in Figure 13. An adaptive neural controller combined with a novel gap model
was proposed to guarantee that all the signals of the closed-loop system were bounded
and that the tracking error gradually converged to zero residuals. The simulation results
verified the effectiveness of the proposed control scheme.
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Prior knowledge of the clearance model on which the adaptive control is based is
limited. After online identification and control, the system gradually adapts and adjusts
to a satisfactory state. However, owing to the need for online adjustment, the operation is
complicated, design difficulty increases, and cost increases.

4.2.3. Active Disturbance Rejection Control Method

The active disturbance rejection controller consists of three parts: tracking differen-
tiator, extended state observer, and nonlinear feedback control law. The use of active
disturbance rejection control to compensate for the clearance uses the extended state ob-
server to estimate the disturbance caused by the clearance and to compensate for estimated
disturbance through the nonlinear feedback control law.

Ma et al. [74] proposed a dual-loop control structure. The outer loop control adopts
active disturbance rejection control to compensate for external disturbance, and the inner
loop control adopts model predictive control to compensate for saturation and clearance
dead zone characteristics of the input and output of the servo system to ensure that the
servo system can accurately and quickly track the required angle.

Ahi and Haeri [75] disclosed a linear active disturbance rejection control with fractional-
order integration (FOI-LADRC), which inputs process control variables and applies dis-
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turbances to output signals, feeds back the output signals, and tunes the setpoint tracking
controller and the ESO to remove interference from the output signal.

Zhang et al. [76] proposed a linear active disturbance rejection control (LADRC)
method with a variable gain load torque sliding mode observer (VLTSMO). The LADRC
was used as the velocity loop controller, and a linear extended state observer (LESO) was
used to observe the total disturbance. A block diagram is shown in Figure 14. The proposed
VLTSMO could output a feedforward compensation signal to improve the observer’s
observation ability. The simulation and experimental results showed that the control
strategy could effectively improve the dynamic performance and stability of the speed
control system.
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Wang et al. [77] designed a quality adaptive control method, as shown in Figure 15,
which combines robust sliding mode control (SMC) and linear active disturbance rejection
control (LADRC). First, a mass-adaptive law was designed to remove the effects of mass
variation. Second, SMC could enhance the robustness of the controller, improve the anti-
jamming performance, and overcome the problem of low control accuracy caused by the
bandwidth limitation of the LADRC. Third, to simplify the parameter setting, adaptive
control was introduced in the LADRC, and the controller parameters were adjusted in
real-time, which was beneficial to the stability analysis of the control system. The results
showed that this scheme had less overshoot and a faster response, proving its superiority.
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The advantage of the active disturbance rejection controller is that it does not depend
on the clearance model, and the estimated total disturbance has great significance in
improving the control performance of the actual system, which is suitable for engineering.

5. Discussion

In the compensation strategy for clearance, the mechanical anti-clearance method
strives to reduce the clearance value from the physical space to suppress its negative
influence. In this way, system performance can often be improved, but the cost of struc-
tural design and adjustment will increase significantly. Moreover, compared with the
compensation of the control strategy, the mechanical clearance reduction method reduces
the mechanical clearance in space, but the elastic connection of the transmission and other
problems still exist. Therefore, the mechanical clearance reduction method has limitations
in improving the overall performance of the system. The control compensation strategy
involves designing the controller based on the clearance characteristic, exerting an effect
from the control point of view, or considering its influence as a disturbance. These methods
have characteristics for realizing the idea of suppressing the adverse effects of clearance.
In practical applications, the difficulties of implementation and cost control should be
comprehensively considered.

The adjustment methods of feedforward compensation control and inverse model
control are both responsible for the disturbance effect. Disturbance observation control
can overcome this shortcoming, but the introduced differential link is difficult to offset.
Based on switching control, it is necessary to consider the smoothness and continuity of the
transition as much as possible, thereby increasing the complexity of the control strategy.
The control strategy based on the clearance model often relies excessively on the accuracy
of the model, and the model-free control strategy can effectively avoid this shortcoming.
Robust control is difficult in the face of nonlinearity. Adaptive control can effectively
reduce the amount of control calculation, but it relies excessively on online adjustment.
Active disturbance rejection control is completely independent of the clearance model, and
can maintain good control performance by observing the total disturbance. In practical
engineering, a control strategy can be comprehensively selected based on the design cost
and control requirements.

According to Table 2, combined with actual engineering problems, the comprehensive
selection of the clearance compensation control strategy is carried out.

Table 2. Performance analysis table of each control strategy.

Control Strategy Mean Accuracy Experiment Complexity Cost Model-Dependent Applicable Scope
Feedforward compensation 3.2 2 4 5 1 4

Inverse model compensation 2.6 2 5 4 1 1
Switching control compensation 2.8 4 2 3 2 3

Disturbance observation compensation 3.4 4 2 4 3 4
Mechanical Structure Scheme Compensation 3 5 1 1 5 3

Robust control 3.4 3 3 3 4 4
Adaptive control 3.2 4 3 3 3 3

Active disturbance rejection control 3.8 5 2 2 5 5

Note:

1 

 

 

 

 
 

 

 .

6. Conclusions

In recent years, increasing attention has been paid to the effect of clearance nonlinearity
on servo systems. In-depth research on the cause and control of clearance can improve the
performance of the system and eliminate the negative impact of clearance by selecting an
appropriate method. This article discusses the negative effects of clearances on the system,
such as mechanical resonance and loss of positioning accuracy. The control strategies of the
servo system are introduced, which are mainly divided into control strategies based on the
clearance model and model-free control strategies, and the advantages and limitations of
these methods are analyzed.
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Based on summarizing the relevant results, combined with the current control strategy
and mechanical structure, the author believes that the future nonlinear control strategy of
the clearance can focus osn the following issues:

Energy Saving Control

Improvement of the mechanical structure increases the processing and manufacturing
costs, optimization of the control strategy increases time complexity, and the control system
design increases difficulty. Therefore, in the field of mechanical engineering, considering
the energy savings of the control strategy is also the focus of follow-up research.

Accurate Model

Accurate clearance models require inactive control methods, such as feedforward
compensation and inverse model compensation. For complex nonlinear structures, such
as servo systems, traditional kinematic modeling and parameter identification methods
cannot obtain accurate models. However, the meta heuristic algorithm widely used in
recent years has a strong nonlinear fitting ability; therefore, an identification strategy,
combined with a novel and efficient intelligent algorithm, could be studied to accurately
model the nonlinear clearance factor.

Multi-Source Feedback

In a clearance control system, the selection of the control feedback signal affects the
stability of the system, and the traditional control method typically adopts a single feedback
signal. However, multi-source data, such as displacement, velocity, acceleration response
signals, and excitation force signals of multiple points can be used as control feedback
signals. Multi-source data have different characteristics, and a single feedback signal cannot
fully utilize the multi-source information of the system. Therefore, research on the control
method of fusing multi-source nonlinear data as a feedback signal will also become a
potential means to improve the performance of the clearance control system.

Through the improvement and development of the clearance nonlinear control theory
in the future, it is expected that ideas and solutions will be provided to solve the problem
of poor performance of the servo system owing to clearance factors.
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57. Demirtaş, Ö.; Önder Efe, M. Online Time Delay and Disturbance Compensation for Linear Non-Minimum Phase Systems. Acta

Polytech. Hung. 2021, 18, 163–182. [CrossRef]
58. Lin, Y.Y.; Shiu, S.J.; Hsu, C.W.; Wu, P.H.; Lee, C.Y. Backlash Automatic Detection System and Method Using the Same. TW I576199,

1 April 2017.
59. Gil, S.C. Gap Compensation Device for Model Car. EP 3967383, 6 March 2022.
60. Nakamura, T.; Ikai, S. Motor Control Device for Compensating Backlash. U.S. Patent 9785125, 10 October 2017.
61. Zhang, J.Z.; Zhang, Z.S.; Ma, R.H. Apparatus and Method for Controlling Braking of Electric Automobile. U.S. Patent 2021086622,

25 March 2021.
62. Ye, G.P.; Wang, G.Y.; Qian, X.B.; Wu, J.; Zhang, L.J.; Zhan, F.; Wang, Z.Y.; Gu, Z.J.; Xu, H.; Tang, Y.B.; et al. Synchronous Control

Method Based on Synchronous Control System for Lifting Hydraulic Cylinders of Tundish in Continuous Casting. EP 3643930, 24
June 2020.

63. Bi, S.; Wang, L.; Zhao, Y.; Deng, M. Operator-based robust control for nonlinear uncertain systems with unknown backlash-like
hysteresis. Int. J. Control Autom. Syst. 2016, 14, 469–477. [CrossRef]

64. Rascón, R.; Alvarez, J.; Aguilar, L.T. Discontinuous H∞ control of underactuated mechanical systems with friction and backlash.
Int. J. Control Autom. Syst. 2016, 14, 1213–1222. [CrossRef]

65. Zhao, W.; Ren, X. Adaptive robust control for four-motor driving servo system with uncertain nonlinearities. Control Theory
Technol. 2017, 15, 45–57. [CrossRef]

66. Laleg, T.M.; Elmetennani, S. Robust Lyapunov Controller For Uncertain Systems. U.S. Patent 2019026644, 24 January 2019.
67. Ahmed, S.; Wang, H.; Aslam, M.S.; Ghous, I.; Qaisar, I. Robust adaptive control of robotic manipulator with input time-varying

delay. Int. J. Control Autom. Syst. 2019, 17, 2193–2202. [CrossRef]

http://doi.org/10.1007/s12206-019-0105-8
http://doi.org/10.1007/s11071-019-04973-z
http://doi.org/10.1007/s12206-021-0302-0
http://doi.org/10.1007/s00170-003-1820-x
http://doi.org/10.1007/s11071-017-3466-5
http://doi.org/10.1007/s00170-021-08515-z
http://doi.org/10.1007/s10489-021-02996-x
http://doi.org/10.1007/s12555-020-0689-x
http://doi.org/10.1007/s12555-011-0416-8
http://doi.org/10.1007/s42417-021-00420-9
http://doi.org/10.12700/APH.18.4.2021.4.9
http://doi.org/10.12700/APH.18.8.2021.8.9
http://doi.org/10.1007/s12555-014-0449-x
http://doi.org/10.1007/s12555-014-0498-1
http://doi.org/10.1007/s11768-017-5120-7
http://doi.org/10.1007/s12555-018-0767-5


Machines 2022, 10, 492 22 of 22

68. Sun, X.M.; Du, X.; Ma, Y.H. Aeroengine H∞ Control Method Based on Improved Smith Predictor. WO 2021097738, 27 May 2021.
69. Lu, Y.; Hellman, R.A.; Zhou, D.Y. Feedback Adaptive Noise Cancellation (ANC) Controller and Method Having a Feedback

Response Partially Provided by a Fixed-Response Filter. U.S. Patent 10026388, 17 July 2018.
70. Alderson, J.D.; Hendrix, J.D.; Zhou, D. Systems and Methods for Selectively Enabling and Disabling Adaptation of an Adaptive

Noise Cancellation System. U.S. Patent 10181315, 15 January 2019.
71. Zhao, H.; Wang, C. A new adaptive control of dual-motor driving servo system with backlash nonlinearity. Sādhanā 2018, 43, 155.
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