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Abstract: The smart ocean has been regarded as an integrated sensing, communication, and comput-
ing ecosystem developed for connecting marine objects in surface and underwater environments.
The development of the smart ocean is expected to support a variety of marine applications and
services such as resource exploration, marine disaster rescuing, and environment monitoring. How-
ever, the complex and dynamic marine environments and the limited network resources raise new
challenges in marine communication and computing, especially for these computing-intensive and
delay-sensitive tasks. Recently, the space–air–ground–sea integrated networks have been envisioned
as a promising network framework to enhance the communication and computing performance.
In this paper, we conduct a comprehensive survey on the integrated sensing, communication, and
computing networks (ISCCNs) for smart oceans based on the collaboration of space–air–ground–sea
networks from four domains (i.e., space layer, aerial layer, sea surface layer, and underwater layer),
and five aspects (i.e., sensing-related, communication-related, computation-related, security-related,
and application-related). Specifically, we provide the key technologies for the ISCCNs in smart
oceans, and introduce the state-of-the-art marine sensing, communication, and computing paradigms.
The emerging challenges with the potential solutions of the ISCCNs for smart oceans are illustrated
to enable the intelligent services. Moreover, the new applications for the ISCCNs in smart oceans are
discussed, and potential research directions in smart oceans are provided for future works.

Keywords: smart oceans; space–air–ground–sea integrated networks; integrated sensing, communi-
cations, and computing

1. Introduction
1.1. Background of Smart Oceans

As an extension of terrestrial networks, the increasing number of marine objects
has been deployed for different marine activities, thus yielding the paradigm of smart
oceans [1], which have developed rapidly and enabled numerous applications and services,
such as marine transportation, undersea explorations, monitoring and management, disas-
ter prevention, etc. In smart oceans, a large number of marine objects monitor the ocean
environment and generate a large amount of oceanic data for analyzing and processing [2],
resulting in the requirements for data transmission and computational analysis. The tra-
ditional terrestrial communications cannot meet the needs of large-scale and low-delay
transmission due to the complex and dynamic characteristics of ocean environments [3].
Smart oceans, which connect the marine objects with sensing, communication, and comput-
ing capacities, have been envisioned as the promising paradigm to enhance the convenience
of marine activities for human beings, and it has attracted much attention of the govern-
ments, industries, and academia. Although the unique characteristics of a smart ocean can
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provide lots of benefits, there remains a lack of efficient communication and computing
modes for smart oceans.

The space–air–ground–sea integrated networks hold the potential for enabling the de-
velopment of smart oceans by integrating the functionalities of the space layer, the air layer,
and the ground layer [4]. Specifically, the satellites in the space layer can provide wide cov-
erage and emergency communication services for marine objects in remote oceans. Thanks
to the flexibility and mobility, these unmanned aerial vehicles (UAVs)/airships/balloons
in the air layer can offer real-time communication and computing services for sea surface
nodes. With powerful computing and storage capacities, these offshore base stations (BSs)
deployed on the ground can support a large number of computing tasks offloaded by
the marine objects. Therefore, the design and collaboration of the space–air–ground–sea
integrated networks are the promising network framework to promote the development of
smart oceans.

The multilayer hybrid networks for smart oceans provide an efficient prospect to
enhance the ocean capacities. However, in consideration of the characteristics of multi-
layer hybrid networks, the open environment and time-varying topology cause the smart
oceans to face some critical challenges (e.g., energy efficiency, network security, data pri-
vacy, etc.). Specifically, these underwater sensor nodes (USNs) deployed at the seabed
are generally powered by batteries, which significantly influence the endurance for data
collection. The energy consumption of underwater data transmission through acoustic
transmission is larger than the computing overheads, and the batteries cannot be conve-
niently recharged owing to the limitations of seawater environments. It is necessary to
design efficient energy-harvesting and transferring approaches to prolong the lifetime of
USNs. Moreover, the underwater acoustic transmission suffers from long propagation
delay and high packet loss probability, which degrades the communication efficiency [5].
Furthermore, a large number of valuable ocean data are collected, uploaded, and then
processed; however, the data security and privacy may be destroyed by the malicious nodes
in marine environments. It is still an important problem to pay attention to the security
and privacy issues of ocean data collection and transmission.

There exist some works investigating the design and implementation of smart oceans.
For instance, Yu et al. [6] proposed a crowdsourcing privacy protection scheme to enhance
privacy protection in the data sharing of smart oceans. In [7], Hu et al. presented a secure
data collection, transmission, and storage scheme in a smart ocean to resist the single point
failure attack. In [8], Fang et al. investigated a heterogeneous autonomous underwater
vehicles (AUVs)-aided information collection system by optimizing the AUV trajectory and
resource allocation, with the objective of maximizing the energy efficiency of marine nodes.
In [9], Alfouzan proposed an energy-efficient collision avoidance scheme for underwater
sensor networks. In [10], Luo et al. summarized the recent air/water cross-boundary
communications for underwater sensor networks. In [3], Zhou et al. exploited an energy-
efficient routing protocol for underwater wireless sensor networks (UWSNs). The above
works investigated the privacy, security, and energy-efficiency issues in ocean environments
and proposed different solutions to address the problems under investigation. However,
the integrated sensing, communication, and computing networks (ISCCNs) for smart
oceans should be further discussed.

1.2. Existing Surveys

There have been many survey papers investigating the UAV networks, space–air–
ground integrated networks (SAGINs), and satellite/air–ground networks. These works
have exploited the fundamental network architecture, network security, and applications.
For instance, in [11], Mozaffari et al. provided the potential benefits and applications
forUAV-enabled wireless networks. In [12], Hayat et al. surveyed the characteristics
and requirements of UAV networks for envisioned civil applications. In [4], Guo et al.
reviewed the security threats for the space–air–ground–sea integrated networks. In [13],
Wang et al. exploited the secure applications for the SAGINs–Internet of Things (IoT).
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In [14], Zhang et al. reviewed the air–ground integrated mobile edge networks. In [15],
Wei et al. investigated the demand for the satellite–terrestrial maritime communication
networks. Table 1 summarizes the comparisons between our paper and previous relevant
surveys; however, a comprehensive survey on the ISCCNs for smart oceans has not yet
been investigated.

Table 1. Comparison of existing surveys and our work.

Network Feature Reference Main Contributions

UAV networks
[11] Reviewed the fundamental tradeoffs in UAV-enabled

wireless networks.

[12] Reviewed the general UAV networking related requirements
and characteristics.

Space–air–ground integrated
networks (SAGINs)

[4] Reviewed the state-of-the-art of security issues for SAGINs.

[13] Reviewed the promising blockchain-based solutions for
SAG–IoT security.

Satellite/air–ground networks
[14] Reviewed the UAV-assisted air-ground integrated mobile

edge networks.

[15] Reviewed the communication demand in satellite-terrestrial
maritime communication networks

Satellite–air–sea integrated
networks for smart oceans Our work

Surveyed the architecture of the ISCCNs for smart oceans from
four domains and five aspects and provided the state-of-the-
art marine sensing, communication, and computing
paradigms for smart oceans.

1.3. Motivations and Contributions

Although existing surveys have presented the hybrid network architecture related
to satellite networks, aerial networks, terrestrial networks, and oceans networks, they all
have common limitations. In particular, these works mainly focus on the integration of two-
tiered segments such as air–ground network and satellite–terrestrial network, three-tiered
segments such as SAGINs, and four-tiered segments such as satellite–air–sea integrated
networks. However, the ISCCNs for smart oceans are not fully discussed.

In this paper, we conduct a comprehensive survey for the ISCCNs in smart oceans from
the aspects of network architecture, key technologies, challenges, and solutions. The main
contributions of this work are summarized as follows.

• We investigate the architecture of the ISCCNs for smart oceans from four domains
(i.e., the satellite layer, the aerial layer, the sea surface layer, and the underwater layer)
and five aspects (i.e., sensing-related, communication-related, computation-related,
security-related, and application-related).

• We provide the key technologies of the ISCCNs for smart oceans, including the state-
of-the-art marine sensing, communication, and computing paradigms. We discuss
the emerging challenges from security and energy-efficiency points of view in marine
networks and provide potential solutions to guarantee the intelligent services.

• We introduce the emerging applications for the ISCCNs in smart oceans to promote
marine services. We also discuss the potential research directions for future works in
marine networks.

As illustrated in Figure 1, the remainder of this survey is organized as follows.
Section 2 presents the framework of ISCCNs in smart oceans. Section 3 introduces the key
technologies of ISCCNs for smart oceans. The challenges and potential solutions of ISCCNs
for smart oceans are discussed in Section 4. Section 5 provides the applications and open
research directions of ISCCNs for smart oceans. Section 6 closes this paper with conclusions.
For convenience, important abbreviations used in this paper are listed in Table 2.
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Figure 1. Organization of this paper.

Table 2. Summary of important abbreviations used in this paper.

Acronyms Meanings Acronyms Meanings

AI Artificial intelligence NOMA Nonorthogonal multiple access

AUG Automatic underwater glider OFDMA Orthogonal frequency division
multiple access

AUV Autonomous underwater vehicle QoS Quality of service

BS Base station RF Radio frequency

B-UAV Bottom-UAV RL Reinforcement learning

CET Cloud–edge–terminal RSS Received signal strength

DT Digital twin SAGE Space–air–ground–edge

EE Energy efficiency SAGIN Space–air–ground integrated network

EOCA Energy optimization clustering algorithm SDN Software-defined networking

FL Federated learning SN Sink node

IoT Internet of Things SWIPT Simultaneous wireless information
and power transfer

IRS Intelligent reflecting surface TDMA Time division multiple access

ISAC Integrated sensing and communication TENG Triboelectric nanogenerator
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Table 2. Cont.

Acronyms Meanings Acronyms Meanings

ISCCN Integrated sensing, communication,
and computing network T-UAV Top-UAV

LSTM Long short-term memory UAV Unmanned aerial vehicle

MEC Mobile edge computing UASN Underwater acoustic sensor network

MEC3 Mobile edge communications,
computing, and caching USN Underwater sensor node

M-IoT Marine Internet of Things USV Unmanned surface vehicle

MWN Maritime wireless network UWSN Underwater wireless sensor network

NDN Named data networking UWA-CSN Underwater acoustic cooperative
sensor network

NFV Network function virtualization WPT Wireless power transfer

2. Framework of ISCCNs for Smart Oceans

Figure 2 shows the framework of the ISCCNs for smart oceans with SDN assistance,
which includes the space layer, the aerial layer, the sea surface layer, and the underwater
layer. Specifically, the functionality of each layer is introduced as follows.

• Space layer. The space layer comprises diverse types of satellites, and the corresponding
ground infrastructures, i.e., the ground/offshore BS and the control centers. The
wide coverage characteristic of satellites guarantees the ubiquitous communication
connection for smart oceans. In ocean disasters, satellites can provide emergency
communication services in the deep sea. Moreover, these satellites are solar-powered,
which enables the service endurance for marine objects.

• Aerial layer. The aerial layer consists of multiple aircrafts, UAVs, and balloons, which
can establish the connections between marine objects and ground infrastructures,
and can exchange information with the satellite layer. These UAVs deployed in the air
can work separately or form a cluster to provide navigation, data relay, and computing
services for ground/sea devices. Moreover, due to the high flexibility and the short
distance between the aerial layer and sea surface layer, UAVs have the advantages of
short response time and high throughput.

• Sea surface layer. The marine devices deployed at the sea surface layer can be vessels,
unmanned surface vehicles (USVs), and buoys, which can collect the data from USNs
and provide computing services for these resource-constrained maritime terminals
through radio frequency (RF) transmission. Moreover, these marine devices in the sur-
face layer can collect ocean environment information and complete harsh tasks. They
can communicate with offshore BS and UAVs or offload workloads for processing.

• Underwater layer. A large number of USNs are deployed at the seabed for collecting
oceanic data in the underwater layer. These USNs are generally powered by batteries,
which cannot support data procession for a long time due to the difficulty of recharging
in marine environments. The collected data are uploaded to the sea surface devices
through acoustic transmission for storage and execution.
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Figure 2. Framework of ISCCNs for smart oceans with SDN assistance.

The physical objects (e.g., satellites, UAVs, USVs, and USNs) in each layer can com-
municate with each other, and the connections and information exchange among the four
layers can be established, which enables the collaboration of ISCCNs for smart oceans.
To enhance the agility and resilience of ISCCNs and realize the unified architecture, stan-
dard, and management, the software-defined networking (SDN) technology, which consists
of the application plane, control plane, and data plane, has the ability for programming
ISCCNs via a logic controller. SDN provides a centralized configuration with on-demand
services. Specifically, the data plane is responsible for perceiving and collecting data from
physical objects in ISCCNs. The control plane comprises a large number of controllers
for resource management (e.g., energy management and load balancing). The application
plane supports types of application designs. Various services (e.g., navigation and content
delivery) can be provided by the application plane to serve physical objects.

Based on the existing studies about multitier collaboration in marine networks, we
divide the existing studies into three categories, i.e., two-tier for sea–air collaboration, three-
tier for sea–ground–air collaboration, and four-tier for sea–ground–air–space collaboration.
The details for two-tier for sea–air collaboration are presented in Section 2.1. Section 2.2
introduces three-tier for sea–ground–air collaboration, followed by four-tier for sea–ground–
air–space collaboration in Section 2.3.

2.1. Two-Tier for Sea–Air Collaboration

The sea–air collaboration in a smart ocean exploits the communication and computing
resource of devices deployed at the sea surface and aerially, e.g., USVs, buoys, vessels,
and UAVs. The collaboration scenarios can be divided into “underwater-to-sea surface”
and “sea surface-to-aerial”. For instance, in [16], the authors employed USVs as marine
data collectors for large-scale environment sensing in a remote ocean monitoring network,
where a USV collects data from multiple monitoring terminals while avoiding collisions
with monitoring terminals and obstacles. In addition, this paper formulated a trajectory
optimization problem with practical constraints, including collision avoidance, steering
angle, and velocity limitation, with the objective of minimizing energy consumption and
data loss. A UAV-aided maritime data collection system with a fixed-wing UAV dispatched
to collect data from marine buoys was studied in [17], with the objective of minimizing
the UAV’s energy consumption by jointly optimizing the communication time scheduling
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among the buoys and the UAV’s flight trajectory subject to wind effect. In addition to two-
tier collaboration for maritime data collection, the USVs and the UAVs can also provide the
computing services for the resource-constrained marine terminals. In [18], an OFDM-based
maritime broadband edge computing system model was developed to provide computing
services to the surrounding USVs, and a USV energy consumption minimization problem
was formulated by jointly optimizing the task offloading and resource allocation. In [19],
the authors proposed a collaborative computation offloading scheme with the UAVs and
the USV fleets in maritime communication networks. In [20], the authors studied the issue
of computation task offloading for vessel terminals, with the objective of minimizing the
energy consumption of vessel terminals and the execution delay of computation tasks.

In addition to the collaboration in the vertical direction in the above studies, there are
also some studies investigating the collaboration in both vertical and horizontal directions.
In [21], taking into account two transmission segments, i.e., underwater layer and air layer,
a UAV-assisted multiaccess computation offloading for marine communication networks
was proposed, with the objective of minimizing the energy consumption of ocean devices.
In [22], an orthogonal frequency division multiple access (OFDMA)-assisted multiaccess
edge computing offloading method for offshore scenarios was proposed, and a multiuser
multihop unicast offloading model was established to alleviate the congestion of data un-
loading. In [23], the authors proposed a voyage-based computation offloading mechanism
for the computation-intensive applications at sea, in which the edge nodes and the base
stations are deployed on vessels to dynamically provide mobile edge computing services
for nearby users to implement efficient computation offloading for secure maritime edge
networks. In [24], a two-layer UAV maritime communication network with a centralized
top-UAV (T-UAV) and a group of distributed bottom-UAVs (B-UAVs) was established,
which aims to solve the latency minimization problem for both communication and com-
putation in this maritime UAV swarm mobile edge computing (MEC) network. The above
works investigated the framework for sea–air collaboration and proposed efficient schemes,
which thus can enhance the communication and computation services for smart oceans.

2.2. Three-Tier for Sea–Ground–Air Collaboration

The sea–ground–air collaboration in smart oceans focuses on the integration of sea–
edge–cloud to provide the communication and computation resource for marine IoT ap-
plications. In [25], the authors investigated the UAV-assisted data offloading for smart
containers in offshore maritime communications, where the UAV acts as a relay node
between smart containers and onshore BS. The mobility of the container vessel was con-
sidered in the offshore region and a UAV-assisted data offloading model was established.
In [26], the authors presented the UAV-aided ocean monitoring network for remote oceanic
data collection, in which monitoring data are transmitted first from battery-powered USNs
to sea surface sink nodes (SNs) in a data collection cycle using underwater acoustic com-
munication, and then a UAV hovering in the air collects all the data from SNs and relays
them to a ground base station via wireless communication links. In [27], a maritime com-
munication network framework was proposed, which combines the edge computing and
center cloud to provide efficient computing capability for developing the ocean applications
with different quality of service (QoS) requirements. In [28], the authors adopted the edge
computing network architecture for maritime IoT, which migrates heavy-computation
maritime applications to suitable servers by means of cloud–edge–end cooperation. In [29],
the authors proposed an integrated satellite–maritime cloud–edge–terminal (CET) architec-
ture, and considered the mobility of maritime vehicles in network resource management,
including integrated transmission optimization, CET offloading, and proactive caching
with resource-sharing marine edge clusters. Therefore, with the assistance of the aerial
layer, the collaboration among sea–ground–air can further improve the communication
and computing performance in smart oceans.
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2.3. Four-Tier for Sea–Ground–Air–Space Collaboration

The feature of the sea–ground–air–space collaboration in smart oceans is the space
layer, which involves the satellite communication with the consideration of the tough
environment of the ocean. In [30], the authors proposed a space–air–ground–edge (SAGE)
maritime communication network architecture which allows the underwater sensors to of-
fload computing-intensive applications to the UAV edge servers in the marine environment.
In [31], the authors introduced a space–air–ground–sea integrated network architecture
with edge and cloud computing components to provide flexible hybrid computing ser-
vices for maritime service. In this integrated network, the satellites and UAVs provide the
edge computing and network access services. In [32], a heterogeneous space–air–ground–
sea integrated network was adopted in the service-oriented maritime network, which
adopts state-of-the-art technologies such as SDN, network slicing, and edge computing
to construct an artificial intelligence (AI)-empowered digital twin for marine networks.
The communication coverage can be enhanced by the satellites. Therefore, the integration
among sea–ground–air–space promotes the communication and computing services for
smart oceans.

2.4. Multitier Collaboration of ISCCNs for Smart Oceans

According to the studies on multitier collaboration of ISCCNs for smart oceans, Table 3
enumerates the classification of multitier collaboration of ISCCNs in smart oceans. Most
existing studies focus on the two-tier collaboration for data collection and computing ser-
vices (i.e., [16–24]), and few studies investigate the four-tier collaboration, which integrates
the resources of the space–air–ground–sea (i.e., [30–32]). Thus, the space–air–ground–sea
integrated network is still an open research direction in the future that can adopt the ad-
vanced technologies to provide intelligent services for marine applications. In the following
section, we provide the key technologies of ISCCNs for smart oceans.

Table 3. Categories of multitier collaboration of ISCCNs in smart oceans.

Category Ref. Framework Performance Metrics

Sea–Air

[16] USN–USV
Minimize energy
consumption and data loss

[17] Buoys–UAV
Minimize the energy
consumption

[18] USV–USV
Minimize energy
consumption

[19] USV–UAV
Minimize the overall
execution time

[20] USV–EN
Minimize the energy
consumption and delay

[21] USN–SN–UAV
Minimize the energy
consumption

[22] USV–USV–EN Minimize total delay

[23] USV–USV–Cloud Minimize the total cost

[24] USV–UAV–UAV Minimize latency
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Table 3. Cont.

Category Ref. Framework Performance Metrics

Sea–Ground–Air

[25] USV–UAV–BS Minimize average delay

[26] USN–USV–UAV Maximize network lifetime

[27] USV–Edge–Cloud
Tradeoff between latency
and energy consumption

[28] USV–Edge–Cloud
Minimize weighted energy
consumption and delay

[29] USV–Edge–Cloud
Optimize the resource
management

Sea–Ground–
Air–Space

[30] Space–Air–Ground–Sea Computing services

[31] Space–Air–Ground–Sea Hybrid computing services

[32] Space–Air–Ground–Sea
AI-empowered maritime
network

3. Key Technologies of ISCCNs for Smart Oceans
3.1. ISAC-Enabled Marine Sensing Technology

In smart oceans, the sensing environment plays an important role in data collection.
Recently, the integration of sensing and communication (ISAC) technology by integrating
the radar system and communication system has attracted wide research interest, and can
be adopted in smart oceans for data sensing and communication. By jointly designing the
dual function of the radar sensing and communication in UAVs, ISAC empowered the
traditional wireless communication system with the ability to “see” the ocean surroundings.
In ISAC, the radar sensing signal and communication signal share the same frequency
spectrum, which improves the spectrum efficiency and the throughput. Figure 3 provides
an illustration of ISAC-enabled marine sensing in smart oceans, in which the ISAC base
station has the abilities for both radar sensing and communication over the same spectrum
channel. Moreover, the intelligent reflecting surface (IRS), which comprises a large number
of reflecting elements, can enhance the performance of radar sensing. Thanks to the ISAC
and IRS technologies, various marine environmental parameters (e.g., ship trajectories,
water quality, temperature, turbidity, conductivity, dissolved oxygen, etc.) can be perceived
for different applications. These marine environmental parameters are collected by the
ISAC base station and then processed by the colocated edge servers. For instance, a marine
fish farm monitoring system can be established to monitor water qualities. The collected
information then informs the manager to make decisions. Ship trajectories can be detected
for path planning and resource exploration in the ocean.
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Figure 3. An illustration of ISAC-enabled marine sensing in smart oceans.

There are several studies which investigate UAV-enabled ISAC for marine aerial net-
works. Liu et al., in [33], proposed to offload the sensing data generated by the sensors
on the vehicle to the edge server, with the assistance of UAV. An energy-efficient compu-
tation offloading strategy in the vehicular-to-everything networks was proposed in [33].
Meng et al., in [34], proposed a novel integrated periodic sensing and communication
mechanism to achieve a critical tradeoff among the radar sensing and communication
functionalities. The authors in [35] investigated the UAV-assisted ISAC, where multiple
UAVs are equipped with dual-functional access points which transmit the composite signal
of both the radar sensing and the communication functionalities. In [35], the transmit
beamforming and the UAV trajectory were jointly optimized to maximize the average
weighted sum-rate, meanwhile satisfying the requirement of the beampattern gain. The au-
thors in [36] studied the UAV-assisted ISAC network where the UAV senses the target
and offloads the data to the base station for analysis. In [36], the impact of the freshness
of sensed data on the analysis accuracy was characterized by introducing the peak age
of information. Moreover, the tradeoff between the radar sensing performance and the
communication performance is challenging in the UAV-enabled ISAC for marine aerial
networks. The authors in [37] utilized IRS to address the performance degradation due to
the mutual interference between the radar sensing signal and data offloading transmission,
and jointly optimized the IRS phase shift, the offloaded computation workloads, and the
computation capacity allocation of the edge server. Since the processing and analysis of
radar sensing data requires enormous computation resource, Ding et al., in [38], consid-
ered offloading radar sensing data generated by the ISAC terminals to the edge server
for processing.

In addition to ISAC-enabled marine sensing technology, to improve the performance
of marine network sensing and data collection, underwater wireless sensor networks have
been established by deploying a large number of sensors on the seabed [39]. Moreover,
an increasing number of marine wireless devices has been widely deployed, and these
underwater sensor nodes can collect data from ocean environments and upload them to
buoys or unmanned surface vehicles (USVs). Due to limited computing capacity, buoys and
USVs can offload the workloads to a server center for further processing, which improves
the computing efficiency.

3.2. 6G-Enabled Marine Communication Technology

With the growing increase of maritime activities, various ocean devices are deployed
to collect oceanic data, which introduces high requirements for marine Internet of Things
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(M-IoTs) with limited resources. In marine networks, there exist two transmission modes,
i.e., the underwater transmission and the radio frequency transmission [26]. For underwater
transmission, the acoustic transmission is leveraged as an effective approach for data
transmission, since the radio frequency signal would suffer rapid attenuation in underwater
transmission. These deployed underwater nodes collect oceanic data and then upload
data to the surface nodes through acoustic links. Due to the complex ocean environment,
the underwater acoustic transmission would suffer from low data rate and long propagation
delay, which degrades the on-demand services. For radio frequency transmission, these
surface nodes send their collected data to UAVs or offshore station for processing.

3.2.1. 6G-Enabled Marine Communications

By extending the concept of IoTs to marine networks, the coming 6G communication
technology leads to the applications of M-IoTs with ultra-low latency and ultra-high speed,
which is beneficial for exploring natural resources in the deep sea. Thanks to edge comput-
ing technology, marine 6G edge intelligence is an efficient paradigm to process massive
ocean data to meet the requirements of different maritime applications. In maritime net-
works, by deploying computing nodes (e.g., offshore station, unmanned vehicles) at the
edges of oceans, these delay-sensitive workloads can be processed with short response time.
The integration of 6G and marine edge computing would provide ubiquitous services for
emerging maritime applications such as ocean resource exploration, marine environmental
monitoring, and marine disaster rescuing.

The 5G-enabled communication networks have received much attention from both
academia and industry in recent years, and have been commercialized in maritime ap-
plications such as marine disaster rescue. However, 5G networks are unable to achieve
the omnipotent extension of IoT. In sea surface transmission, the communication is based
on radio frequency links. The 6G communication performance (e.g., ultra-high speed
and ultra-low latency) can be guaranteed between sea surface nodes and offshore base
stations/UAVs. The 6G-enabled marine wireless networks, which integrate hybrid satellite–
terrestrial–marine communication networks, have gained much attention to promote the
rapid development of M-IoTs. Many advanced studies are proposed to meet the perfor-
mance requirements. A two-phase data-driven machine learning scheme was proposed [40]
for vessel trajectory reconstruction, which promotes the intelligent vessel traffic services
in 6G-enabled M-IoT systems. An edge computing network framework for M-IoTs based
on the space–air–ground–sea integrated network of 6G was investigated [28] to enhance
the energy efficiency. A cooperative coverage path planning method based on 6G-enabled
cooperative autonomous underwater vehicles was studied [41] to balance the mission
executions. A novel nonstationary 6G UAV channel model was proposed [42] for maritime
communications to enhance the communication systems. In [43], the authors investigated
the UAV-assisted maritime wireless communication to satisfy 6G requirements for ubiqui-
tous wireless connectivity and extensive coverage. The main comparisons of 5G-enabled
M-IoTs and 6G-enabled M-IoTs are summarized in Table 4.

Table 4. Comparisons of 5G-enabled M-IoTs and 6G-enabled M-IoTs.

Category 5G-Enabled M-IoTs 6G-Enabled M-IoT

Satellite Integration N Y

Service Objects Connections for People
and Maritime Things

Interactions for People
and Maritime World

Traffic Capacity 10 Mbps/m2 About 1–10 Gbps/m3

Peak Data Rate 20 Gbps ≥1 Tbps

Uniform User Experience 50 Mpbs 2D everywhere 10 Gpbs 3D everywhere
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Table 4. Cont.

Category 5G-Enabled M-IoTs 6G-Enabled M-IoT

Latency 1 msec 0.1 msec

Energy/bit Not Specified 1 pJ/bit

Localization Precision 10 cm on 2D 1 cm on 3D

Mobility Support 500 km/h ≥1000 km/h

Application Scenario

Maritime Internet of Things Maritime Internet of Everything

Support Underwater Communications Efficient Underwater Communications

Remote Deep Sea Navigation Autonomous Deep Sea Navigation

3.2.2. IRS-Enabled Marine Surface Communications

In marine surface communications, due to the long distance between marine devices
and the ground BSs, the channel conditions are often very weak. It is an important
issue to enhance the channel conditions in marine networks. Thanks to their flexibility,
UAVs bring significant advantages compared with the terrestrial communications, which
can help an offshore BS establish a high-speed connection with these marine devices
through adjusting its location or trajectory to enhance the data transmission performance.
IRS technology, which comprises a larger number of reflecting metasurfaces, provides a
promising paradigm to address this issue in marine networks [44]. By adjusting the phase
shift of the metasurface, the incident signal can be manually controlled to enhance the
desired signal and suppress the interference [45]. By deploying IRS on UAVs, the wireless
channel can be enhanced by providing the additional reflecting link. IRS-enabled marine
surface communications combine both the advantages of the flexible mobility of UAV and
the capacity of IRS to reconfigure marine wireless propagation environments, which shows
great potential in the 6G marine network.

Dong et al., in [46], investigated the UAV-enabled IRS-assisted IoT communication,
jointly optimizing the UAV’s trajectory and the deployment of IRS to minimize the energy
consumption. In [46], the adaptive whale optimization algorithm and the elastic ring
self-organizing map algorithm were introduced to compute the solutions. Xu et al., in [47],
studied the master–auxiliary UAV-assisted IoT communication, where IRS is mounted
on the UAV to improve the data transmission from the master UAV to the auxiliary UAV.
In [47], a modified multiagent deep reinforcement learning algorithm, named preactivation
penalty multiagent deep deterministic policy gradient, was proposed to maximize the
sum rate. The authors in [48] utilized an UAV to extend the coverage of the IRS-assisted
network, where the reliability of the connections with massive IoT devices was enhanced
by adjusting the phase shifts of IRS. In [48], the achievable symbol error rate and the outage
probability were derived as well as the bounds of the average performance of the signal-
to-noise ratio. The authors in [49] investigated the coexistence of a legacy primary system
and the secondary ambient backscattering system, whose performance was improved by
an IRS-mounted UAV. Two technologies’ applications for the IRS-enabled marine surface
communications are provided as follows.

• IRS-enabled marine surface communications can benefit from the simultaneous wireless in-
formation and power transfer (SWIPT) technology. Leveraging the mobility of a UAV,
the IRS on the UAV can be flexibly deployed to reinforce the SWIPT. Liu et al., in [50],
studied the UAV-mounted IRS-assisted power transfer and information transmission
in SWIPT, where different devices are scheduled by a time division multiple access
(TDMA) protocol. Li et al., in [51], utilized IRS to enhance the channel to improve
the coverage area of the UAV and the energy transfer efficiency via nonorthogonal
multiple access (NOMA) transmission, by jointly optimizing the transmit power of
the UAV, the successive interference cancellation decoding order, and the phase shift
of the IRS. Mei et al., in [52], studied the downlink UAV-enabled IRS-assisted SWIPT
system, where the charging process of the mobile devices and the data transmission
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are performed by leveraging the time switching mechanism. Yu et al., in [53], inves-
tigated the IRS-assisted SWIPT system, where multiple IRSs are deployed on UAVs
and high buildings to improve both the performance of information transmission and
energy transfer. In [53], the active beamforming on the transmitter, the phase shift
of IRS, the power splittingratio, and the trajectories of UAVs are jointly optimized to
maximize the average data rate.

• IRS-enabled marine surface communications can also benefit from the NOMA technology,
which allows marine devices to connect to the offshore BS. Jiao et al., in [54], investigated
the UAV-enabled IRS-assisted NOMA downlink transmission, where the rate of the
user with good channel condition is maximized meanwhile the requirement of the
rate of the user with bad channel condition can be satisfied. In [54], the position of the
UAV, the active beamforming, and the phase shift of IRS are alternatively optimized
via the successive convex approximation technique. Liu et al., in [55], analyzed the
converge performance of multiple IRSs which were mounted on multiple UAVs,
where a tier of UAVs served several devices via NOMA. The authors in [56] utilized
IRS to assist the NOMA transmission in the scenario of multiple UAVs, where the
users were divided into multiple NOMA clusters. The results in [56] showed that the
interference of two UAVs can be reduced by adjusting their distance. The authors
in [57] analyzed the outage probability and the ergodic spectral efficiency in the UAV-
assisted NOMA transmission, where the IRS on the UAV served as a relay to assist the
NOMA transmission. Cai et al., in [58], investigated the UAV-assisted NOMA network,
utilizing IRS to reduce the overall energy consumption. The results in [58] illustrate
that NOMA can provide more degrees of freedom in system design compared with
the orthogonal multiple access scheme, and IRS helps to save the communication
power of UAV.

The existing proposals of ISAC-enabled marine sensing technology and IRS-enabled
marine surface communications in marine networks are discussed in Table 5.

Table 5. Existing proposals of ISAC-enabled marine sensing technology and IRS-enabled marine
surface communications in marine networks.

Topic Focused on Network Model Ref. Optimization Objective Proposed Approach

ISAC-enabled
marine sensing
technology

Integrated periodic
sensing and
communication

[34] System achievable
rate

Two-layer penalty-based
algorithm

UAVs-enabled aerial
dual-functional
access points

[35] Average weighted
sum-rate throughput

Successive convex approximation
and semidefinite relaxation

IRS-assisted
performance
improvement

[37] Energy consumption
Block coordinate descent
and difference-convex
programming

ISAC-assisted
data offloading [38] Energy consumption Block coordinate descent

IRS-enabled
marine surface
communications

UAV-enabled IRS-
assisted IoT
communication

[46] Energy consumption
Adaptive whale optimization
algorithm and elastic ring
self-organizing map algorithm

IRS-assisted
master–auxiliary
UAV network

[47] Total throughput
Preactivation penalty
multiagent deep deterministic
policy gradient

UAV-assisted IRS
for SWIPT [50] Minimum average

achievable rate
Successive convex approximation
and block coordinate descent

NOMA and energy
harvesting model [51] Achievable sum-rate

maximization

Successive convex approximation
penalty function method and
difference-convex programming
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3.3. Integrated Communication and Computing Offloading Technology

In marine seabeds, lots of USNs are deployed to monitor ocean environments. These
collected data are uploaded to USVs through acoustic links. At the sea surface, USVs
sailing on the sea can collect or receive data from USNs. In the aerial layer, UAVs have high
flexibility and mobility which can be easily and quickly deployed over the sea. Using short-
range LoS communication links, UAVs can support computing services as the aerial base
stations. In [59], the authors proposed a hybrid satellite–UAV–terrestrial network for 6G
ubiquitous coverage, with the objective of minimizing the total energy consumption. In [60],
the authors investigated the computing architecture of SAGINs from the characteristics of
each network segment and the computing interactions among different network segments.
In [61], the authors investigated UAV-assisted mobile edge communications, computing,
and caching (MEC3) schemes to reduce the system latency. To further improve the efficiency
of offloading transmission, many advanced technologies for enabling spectrum-efficient
yet massive-connectivity transmission, e.g., NOMA, have been leveraged for multiaccess
computation offloading [62–64]. In [27], the authors investigated the tradeoff between
latency and energy consumption in low-cost, large-scale maritime communication, with the
objective of optimizing the resource allocation under limited energy and sensitive latency.

In marine networks, huge amounts of ocean data need to be processed. The tradi-
tional marine communication networks adopt the centralized cloud computing framework,
in which the data storage and processing are executed in the cloud data center. How-
ever, offloading computation workloads to remote cloud servers may place high pressure
on the backbone networks and bring inevitable long delay, and the network resources
of marine communications are limited, which affect the real-time service performance.
Multiaccess edge computing has been envisioned as an essential technology for marine
networks that allows ocean devices to offload their workloads to different edge computing
servers simultaneously. Thanks to NOMA transmission technology, it has been envisioned
as an efficient multiple access approach for enabling massive connectivity in maritime
networks. Specifically, NOMA enables ocean devices to reuse the same resource block for
data transmission, which improves the channel efficiency and transmission throughput
in maritime networks. Ocean devices can form the NOMA cluster for data transmission
and procession.

Existing works have investigated multiaccess edge computing in marine networks.
Specifically, an NOMA scheme between sea surface nodes and UAV transmissionfor
data collection was studied [26], with the objective of minimizing the transmission delay.
An NOMA-based maritime UAV communication scheme was exploited [65] to maximize
the minimum ship throughput by formulating a joint transmit power and transmission
duration allocation problem. In [66], the authors studied an NOMA-based hybrid satellite–
UAV–terrestrial maritime network for on-demand coverage to maximize the sum rate of
the system. In [67], the authors exploited the seamless and reliable demand for commu-
nication and computation in maritime wireless networks. In [68], the authors presented
a software-defined maritime fog computing architecture to provide localized services for
maritime devices. In [69], the authors investigated the IRS-aided wireless inland ship
MEC network architecture to support USVs’ communication and computation, with the
objective of minimizing the network energy consumption. Existing proposals of integrated
communication and computation offloading in marine networks are summarized in Table 6.
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Table 6. Existing proposals of integrated communication and computation offloading in marine networks.

Topic Focused on Solutions Ref. Proposal

Multiple access

NOMA transmission [65]
NOMA-based maritime UAV
communication model for maximizing
the minimum ship throughput

FDMA transmission [70] Single-carrier FDMA design for
underwater acoustic communications

OFDMA transmission [22]
Multiaccess edge computing offloading based
on OFDMA technology for alleviating
the congestion of data unloading

OFDM transmission [18] OFDM-based maritime broadband
MEC system model for task offloading

Performance
evaluation

Energy optimization
[71]

An improved energy optimization clustering
algorithm for the multihop underwater
acoustic cooperative sensor networks

[72] Energy-efficient image recognition system
for ensuring a high recognition accuracy

Delay optimization
[27] Two-stage offloading optimization for

energy–latency tradeoff in M-IoTs

[73] Shipping lane approach for optimizing
the route selection in delay-tolerant routing

Resource allocation

Channel allocation [74] An energy-efficient channel allocation-
based data aggregation

Computing offloading
allocation [75] Energy harvesting for MEC-enabled maritime

task offloading

Power allocation [76]
QoS-guarantee power optimization
for improving the NOMA transmission
rate for each beam

Task allocation [77] A novel task-allocation-scheme-based game
theory for smart ocean IoT

4. Challenges and Solutions of ISCCNs for Smart Oceans
4.1. Challenges of ISCCNs for Smart Oceans

Different from the traditional cloud computing, MEC technology enables marine
objects to offload tasks to the edge of marine networks. However, since most edge devices
(e.g., UAVs and USNs) are manufactured using more economical circuits, this class of
devices is more vulnerable to attack. Considering the vulnerability of marine devices,
it is critical to protect the data security and privacy for MEC. Recently, there have been
a lot of studies investigating the data security and privacy of MEC, including the data
confidentiality and data integrity [78–80].

4.1.1. Data Confidentiality

As a fundamental requirement in the marine networks, the data confidentiality re-
quires that the data cannot be read by any unauthorized and unlawful user. To enhance the
data confidentiality, the encryption theory is exploited by many studies. Generally, with the
encryption technology, the data are first encrypted before being sent to the target user.
The target user needs to decrypt the data using a decoding method that is jointly specified
with the sender. In [81], Feng et al. proposed an attribute-based encryption model with
parallel outsourced decryption to address the response time requirement of edge intelligent
networks. In [82], Liu et al. proposed a multikeyword attribute-based searchable encryp-
tion scheme through cloud–edge coordination to address the issue of the large computing
overhead of the existing attribute-based searchable encryption. In [83], Wu et al. proposed
a differential aggregation encryption model to ensure the security of terminal data. In [84],
Hu et al. proposed a privacy protection strategy based on homomorphic encryption to
prevent the privacy of user data from being leaked during the wireless channel propagation
process and relay forwarding. In addition to the encryption technology, there are also
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some other technologies to enhance the data confidentiality of MEC. In particular, due to
the potential advantages, the cooperative jamming scheme [85,86] and federated learning
(FL) [87] have attracted a lot of interests. We introduce these two technologies in detail in
Sections 4.2.1 and 4.2.2.

4.1.2. Data Integrity

Data integrity refers to ensuring that data are not maliciously damaged or modified
during data transmission or storage. Specifically, the adversary can violate the data integrity
through intervening attacks or relay attempts. Thus, there are many studies focusing on
the solutions for addressing the data integrity violation. In [88], Cui et al. proposed an
inspection and corruption localization scheme for edge data integrity, and theoretically
proved its correctness and probabilistic integrity guarantees. In [89], Li et al. proposed
an approach for app vendors to inspect the integrity of their edge data replicas across
edge servers and localize corrupted ones. In [90], Yu et al. exploited a data-time sampling
strategy for data integrity checking in decentralized storage. In [91], the authors investi-
gated a data integrity auditing scheme that guarantees sure data sharing with sensitive
information hiding. In [92], Tong et al. proposed a remote data integrity checking protocol
for edge storage, and an extended protocol for efficient batch verification of multiple edges.
In addition to the above traditional methods, blockchain [93,94] has been developed as
another promising technology based on linked data structure to enhance the data integrity,
which will be introduced in Section 4.2.3.

4.1.3. Energy Efficiency

With the unprecedented growth of ocean applications, e.g., ocean exploration, envi-
ronment monitoring, etc., these marine activities introduce high requirements for energy
efficiency of marine devices. It is necessary to establish the low-cost marine networks
to enhance the endurance of marine devices. There exist many works investigating the
energy efficiency in marine networks. Specifically, in [95], the authors investigated the
collaborative relay communication in distributed maritime wireless networks (MWNs)
to maximize the energy efficiency (EE) for resource allocation. In [96], the authors pro-
posed an energy-efficient probabilistic depth-based routing for underwater sensor networks
(UWSNs) to save energy consumption. In [97], an adaptive deep Q-network-based energy-
and latency-aware routing protocol was proposed to reduce network overhead. In [71],
an improved energy optimization clustering algorithm (EOCA) was exploited for the mul-
tihop underwater acoustic cooperative sensor networks (UWA-CSN), with the objective of
adaptively controlling the energy consumption of data transmission for each hop. In [98],
the authors investigated the dynamic clustering K-means algorithm to cluster the under-
water sensor nodes, with the objective of minimizing the overall energy consumption of
the system. In [99], the authors studied the deployment of underwater acoustic sensor net-
works (UASNs) on the named data networking (NDN) to explore the energy consumption
performance. In [100], an energy-efficient mobile data collection scheme based on node
cooperation protocol was proposed in an underwater acoustic sensor network. In [101],
the energy allocation in underwater acoustic nodes powered by energy harvesting was
presented to maximize the expected total amount of delivered data over finite time slots.

4.2. Solutions of ISCCNs for Smart Oceans
4.2.1. Cooperative Jamming for Security

Due to the broadcast nature of wireless networks, the malicious nodes can capture the
edge device’s transmission signals and decode them in a brute-force manner when the edge
users offload their computation workloads to the edge server. In particular, in the marine
edge computing networks, when the USNs offload the computation workloads to the USVs
and the USVs forward the computation workloads to the UAVs, their transmission is able to
be eavesdropped on by some eavesdroppers on the underwater layer, sea surface layer, or
the aerial layer. As a result, to counter the eavesdropping attack, physical layer security is
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an efficient method to guarantee the secrecy demands from the perspective of information
theory. During the offloading period of marine devices in MEC, the marine helper devices
can send artificial noise to the eavesdropper to degrade the overhearing capacity of the
eavesdroppers, while increasing the secrecy offloading throughput. Through ingenious
design, cooperative jamming can theoretically realize the confidentiality of computation
offloading even though the eavesdroppers have significant computational power. In [102],
Zhang et al. proposed a cooperative jamming lightweight mechanism based on MEC
to prevent eavesdropping attacks for the random mobile nodes in industrial wireless
networks. In [103], Qian et al. investigated the secrecy-based MEC via NOMA transmission
and optimized the selection of the wireless devices for cooperative jamming to reduce the
total energy consumption. In [104], Li et al. utilized the cooperative jamming between
NOMA user pairs to offload tasks in two time slots securely. In [105], Cui et al. proposed
a fountain-coding-based strategy combined with cooperative jamming for secure service
migration in MEC.

4.2.2. Federated Learning for Data Privacy

In traditional distributed machine learning, data of all participants need to be gathered
together first, and then used by the central server to train the AI network. A significant issue
of the above paradigm is that data sharing leads to the disclosure of participants’ privacy.
To address the issue, a novel paradigm of distributed machine learning, i.e., FL, provides
a promising solution [106–108]. Different from traditional distributed machine learning,
FL does not require the participants to share their data. Therefore, in the framework
of FL, the marine client devices do not offload their data to servers, and they train the
local models using the raw data and only upload the trained models to servers, which
protects the data privacy. In particular, as shown in Figure 4, in FL, each USV individually
trains the global model received from the UAV server with its own dataset to update the
local model, and then sends the updated local model to the UAV server. The UAV server
aggregates all the local models received from the participants to update a new global model
and broadcasts the updated global model to the participants. The iterative training is
terminated until the AI model meets the accuracy requirement. Assisted by FL, in MEC,
when the edge users collaborate to generate an AI model, they are not required to offload
their data to the edge server. In addition, compared to transmitting a large amount of raw
data, only uploading model parameters to the edge server saves communication resources
significantly. Considering the potential advantages of FL, there have been many studies
investigating the application of FL to MEC. In [109], Bao et al. proposed an MEC-based
joint FL client selection scheme for vehicular networks. In [110], Zhou et al. proposed a
differentially private FL model against poisoning attacks for MEC deployment. In [111],
Mills et al. proposed a multitask FL algorithm for personalized deep neural networks in
MEC. In [112], He et al. designed a privacy-preserving and low-latency scheme in MEC to
address the privacy threats. In [113], Zhang et al. proposed an FL-based MEC platform
for cyberphysical systems. In [114], Ye et al. proposed optimization algorithms for FL
based on MEC to tackle the issue of large computational cost in mobile devices. In [115],
Ahmed et al. proposed a federated transfer learning model for heterogeneous MEC. In [116],
Amannejad et al. proposed an automated solution of building and evaluating FL models for
MEC. Existing proposals of FL for air–sea integrated networks are summarized in Table 7.
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UAV server
Global model

USV client 1

USV client 2
USV client 3

USV client 4

Upload local models

Broadcast global model

Figure 4. An illustration of FL for data privacy in smart oceans.

Table 7. Existing proposals of FL for air–sea integrated networks.

Topic Focused on Purpose Ref. Proposal

FL for aerial
networks

Counter potential security and
privacy threats [117] Propose a secure FL framework for

UAV-assisted mobile crowdsensing

Predict the air quality
index accurately and timely [118] Propose a new FL-based aerial–ground

air quality sensing framework

Improve the reliability and
efficiency of data sharing [119] Develop an asynchronous FL framework

for multi-UAV-enabled networks

Mitigate resource consumption
for UAVs and user devices [120]

Propose deep-reinforcement-learning-based
framework to enable sustainable FL
with energy-harvesting user devices

Realize the dynamic
resource allocation [121]

Design an FL-based multiagent method
for realizing information interaction and
combined dispatching in UAV networks

Address jamming attack detection
in flying ad hoc network [122]

Propose an FL-based on-device jamming
attack detection security architecture
for flying ad hoc network

FL for marine
networks

Solve the problem of worker
selection in FL [123]

Propose a secure sharing method
for M-IoT under an edge computing
framework based on FL

Address multiagent cooperation
and privacy protection issues [124]

Propose a part-FL scheme combining
the advantages of FL algorithm
and split learning algorithm

Diagnose device failures in
Internet of Ships [125]

Design the Paillier-based communication
scheme to encrypt the transmission
parameters in Internet of Ships

Predict the ships’ positions
securely [126]

Propose a new cooperative collision
avoidance system based on FL for
inland ships at MEC level

4.2.3. Blockchain for Data Integrity

Using technologies such as cryptography and consensus mechanisms, blockchain
subdivides data into shared blocks linked together with unique identifiers in the form
of cryptographic hashes, and thereby creates a peer-to-peer storage network for large
amounts of data. Blockchain provides more secure data storage due to its encryption and
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common authentication mechanisms [127]. Specifically, data cannot be altered without the
verified permission of a sufficient number of legal marine devices. Once a marine device
attempts to change the data, all nodes in the blockchain are aware of the action. Therefore,
blockchain can effectively prevent fraud and data tampering. Due to the advantages
of blockchain in terms of the data integrity, a lot of studies focus on the exploitation of
blockchain in MEC. In [128], Yuan et al. proposed a decentralized system to support and
drive collaborative edge storage based on blockchain. In [129], He et al. proposed a general
framework for blockchain-based MEC-enabled IoT scenarios and designed a smart contract
within a private blockchain network. In [130], Ni et al. studied the design method of
using blockchain for safe and efficient resource sharing in the context of 6G, which can
be used in MEC by balancing the impossible triangle of blockchain. In [131], Guo et al.
proposed a resource management scheme for mobile blockchain in MEC. In [132], Guo et al.
proposed a distributed and trusted authentication system with blockchain and MEC.
In [133], Wu et al. identified and addressed key challenges of task offloading in blockchain-
enabled heterogeneous IoT–MEC environments. In [134], Sheng et al. constructed a
near-online tracking framework with co-occurrence constraints for blockchain-based MEC.

4.2.4. Energy Harvesting and Energy Transfer

In marine information services, marine nodes are generally powered by limited re-
sources such as battery and oil; the limited lifetime of marine nodes is the critical challenge
for implementing marine applications. Through energy harvesting, these marine de-
vices can harvest energy from solar or water waves, which can enhance the endurance
of marine devices for sensing and data collection. Network resource allocation plays an
important role in designing energy-harvesting wireless sensor networks, and researchers
have focused on designing energy-saving techniques to minimize the energy consump-
tion in marine networks. Specifically, in [135], the authors developed a prototype of the
energy-harvesting unit and the wireless communication unit for self-sustaining broadband
long-range maritime communication. In [136], the authors proposed an energy-efficient
routing protocol through energy-harvesting intelligent relay selection protocol in UWSNs.
In [137], the authors investigated a received signal strength (RSS)-based localization frame-
work for energy-harvesting underwater optical wireless sensor networks, in which these
sensor nodes with insufficient battery harvest ambient energy and start communicating
once they have sufficient storage of energy. In [138], the optimal power allocation problem
is proposed to maximize the long-term end-to-end sum rate of an underwater full-duplex
energy-harvesting relay network. In [139], the authors presented a novel localization tech-
nique for energy-harvesting hybrid acoustic–optical underwater wireless sensor networks.
In [140], a contact-separation mode triboelectric nanogenerator (TENG) was exploited to
create an efficient energy harvester to transform the mechanical energy of vibrating pipes
into electrical energy. In [141], the authors proposed an undersea wireless power and data
transfer system with the shared channel, in which the power and data can be transferred
with the same channel based on the time-division multiplexing theory. In [142], the authors
proposed a wireless power transfer (WPT) system to address the voltage difference between
the generated power and the energy storage system power. In [143], the authors exploited
the wireless power transfer systems and presented a coil structure utilizing two transmitter
coils placed symmetrically adjacent to each side of the receiver coil.

5. Applications and Open Research Directions of ISCCNs for Smart Oceans
5.1. Applications of ISCCNs for Smart Oceans
5.1.1. Marine Resource Exploration

Marine resource exploration and mining play a vital role in the sustainable develop-
ment of smart oceans. The traditional method for marine resource exploration is to deploy
ships, observation stations, marine buoys, etc., to obtain marine environment data. How-
ever, this approach is generally high in cost, long in duration, and limited in scope, which
makes it difficult to achieve large-area and real-time ocean observations. The emerging
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space–air–ground–sea integrated networks have the potential to improve the efficiency
and effectiveness for marine resource exploration. ISCCNs can obtain the marine data (e.g.,
water quality, turbulence, coral reef) in real time for resource exploration and decision-
making. Specifically, the huge data streaming collected by UWSs can be uploaded to the
ground layer, the aerial layer, or the space layer for processing and analyzing. The ad-
vanced 5G and the coming 6G communication technology can enhance the throughput
of marine communications, and the results will be transferred to the observation station.
Researchers have proposed some works to improve the performance of resource explo-
ration. In [144], Huang et al. proposed an implementation scheme of a marine wireless
sensor network monitoring system, in which the collected data were sent to the server
visualization platform for analysis. In [145], a control model based on artificial neural
network was proposed to improve the control effect of the marine resource exploration
through artificial neural network. In [146], Zhao et al. investigated the fundamental geolog-
ical conditions of deep marine carbonate reservoirs for the higher-than-expected resource
potential therein. In [147], Liu et al. exploited the safety analysis of shrinkage monitoring
equipment in marine resource exploration. In [148], Pan et al. studied the autonomous
learning model of the learning robot for marine resource exploration based on the adaptive
neural network controller.

5.1.2. Marine Environment Information Prediction

Marine information and services are the basis for human society to understand and
develop the ocean, and include marine information detection and collection, marine infor-
mation dissemination and networking, marine information processing and fusion, marine
information application services, etc. The marine environment has the characteristics of
dynamic, three-dimensional, and fuzzy. Through visualization of marine environmental
data, ISCCNs enable us to query, count, and forecast marine environmental information,
thus providing fast and intuitive decision-support information. The recent advances in
computing capability and big data processing technology will lead to a big development
in ocean data visualization. However, the visualization of ocean information implies the
need for faster and more accurate ocean information collection techniques. Therefore,
the adoption of 6G network technology in the marine environment is an unstoppable trend.
There have been many studies investigating the marine information and service prediction.
In [149], Lyu et al. proposed a mother-ship-assisted cooperative transmission scheme to
mitigate the impact of limited resources and path loss on the estimation performance.
In [150], Zeng et al. established the systematic USV kinetics and information transmis-
sion models, and maximized the minimum expected throughput over allships by jointly
optimizing the trajectory and communication resource allocation. In [151], Arienzo et al.
proposed a cognitive-relay-based architecture to enhance the data transmission by increas-
ing the throughput and the real-time reception capacity, which was shown to enhance
the current maritime surveillance systems. In [152], Yang et al. proposed a novel SAGE
integrated maritime network architecture to offload computation-intensive IoT services at
sea, significantly reducing offloading latency and weighted latency–energy costs. In [153],
Duan et al. proposed a cooperative multicast communication scheme for maritime users
relying on joint beamforming optimization and relay design to increase the throughput
and the energy efficiency.

5.2. Open Research Directions of ISCCNs for Smart Oceans
5.2.1. Digital Twin for Smart Oceans

Digital twin (DT) plays an important role in marine networks for creating the real-time
digital simulation models of marine objects in the digital space, thus realizing the com-
munication, cooperation, and information sharing, and supporting the decision-making
in smart oceans [154,155]. Moreover, DT has the ability to predict future events by contin-
uously estimating and analyzing the real-time state in marine networks. Several works
have explored utilizing DT to enhance the performance of marine communication net-
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works. In [156], Dai et al. studied the DT-envisioned secure federated aerial learning for
air–ground integrated networks via an aerial blockchain approach. In [157], Fan et al.
proposed a DT-empowered MEC architecture to train the lane-changing strategy with
the deep reinforcement learning approach. In [158], the authors studied the end-to-end
latency minimization issue of DT-aided offloading in edge networks supported by mul-
tiantenna UAVs under the strict constraints of ultra-reliable low-latency communication
links. In [159], the authors investigated FL-assisted DT edge networks and formulated an
optimization problem to reduce the communication costs. However, most of these studies
remain in the application of aerial networks and ground networks.

In [160], Liu et al. explored the safety performance of the maritime transportation
system based on DT, aiming to promote the development of intelligent and digital maritime
transportation. In [161], Wen et al. established a DT of multi autonomous underwater
glider monitoring tasks, which improved the independent monitoring capability of marine
equipment. At present, DT still lacks research in the field of marine networks. Inspired
by DT’s application in aerial and ground wireless networks, such as maritime navigation,
maritime disaster prediction, maritime emergency rescue, and maritime real-time tracking
and positioning, other marine applications have the opportunity to mature. It can be pre-
dicted that the construction of smart oceans can be further improved under the promotion
of DT. These bring more possibilities to the application of DT in marine networks and the
construction of intelligent aerial and marine networks.

5.2.2. Artificial Intelligence for Smart Oceans

As marine networks continuously incorporate different devices, the heterogeneity
of marine networks becomes a great challenge. Therefore, the future marine network
should have strong adaptiveness in order to efficiently adapt to different devices and
protocols. Moreover, unlike traditional terrestrial networks, the energy capacity of marine
and airborne devices is severely limited. In order to solve the energy limitation problem
of marine network equipment, one way is to improve the efficiency of energy utilization
through resource optimization, and another way is to improve the energy reserve of
equipment through energy harvesting. Another difference with terrestrial networks is that
due to the complexity of the marine environment, the equipment is more fragile and is
difficult to repair in time. Therefore, the marine network should be more robust, especially
in case of failure of some equipment nodes.

In addition to the above research directions, another feature of the future marine
networks is that more artificial intelligence techniques are exploited to improve the perfor-
mance of the marine networks. Recently, there have been many studies investigating the
artificial intelligence used in marine networks, e.g., reinforcement learning (RL), transfer
learning, and metalearning. In [162], Sun et al. developed an underwater image enhance-
ment framework based on reinforcement learning. In [163], Wang et al. proposed a data-
driven performance-prescribed reinforcement learning control scheme for the unmanned
surface vehicle system. In [164], Cheng et al. proposed a supervised transfer-learning-
based framework for sea state estimation. In [165], Zurowietz et al. proposed a method for
unsupervised knowledge transfer to improve the performance of marine object detection.
In [166], Guo et al. proposed a few-shot classification model based on transfer learning
for marine plankton images. In [167], Zhang et al. proposed a metalearning method for
few-shot classification of aerial scene images.

5.2.3. Big Data Processing for Smart Oceans

Smart oceans produce a large amount of oceanic cognitive big data which can be
developed into various maritime applications, such as maritime navigation, maritime
disaster prediction, maritime emergency rescues, and maritime real-time tracking and
positioning. To further exploit the oceanic big data and improve the performance of the
corresponding applications, the state-of-the-art software-defined networking (SDN) and
network function virtualization (NFV) technologies can provide promising solutions in
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different aspects [168]. In [169], the SDN and edge computing were employed to support the
interoperability of heterogeneous maritime networks and provide a deep understanding of
maritime network connectivity characteristics and edge capabilities. In addition to the SDN
technology, a blockchain-enabled framework was investigated in [170] for analysis of real-
time maritime data at the edge of the networks while meeting the security and privacy issue
of maritime transportation systems. Moreover, a new generation of artificial intelligence
wireless communication technology in marine monitoring platforms was studied in [171],
and a reinforcement-learning-based trajectory optimization was adopted to effectively
increase the coverage of the trajectory of the automatic underwater gliders (AUGs). Thus,
more advanced network protocol technologies, e.g., network slicing, can be applied to
manage the maritime resource and provide the various intelligent computing services
for marine networks. Moreover, the deep-learning-based methods, e.g., long short-term
memory (LSTM) and reinforcement learning, can be used to solve the time-dependent
prediction tasks in marine networks and provide intelligent task-scheduling strategies.

5.2.4. Semantic Communications for Smart Oceans

In marine networks, the communication channels often suffer from low bandwidth and
high latency due to the characteristics of acoustic transmission technology. The fast-growing
amount of data in marine networks calls for a new communication paradigm to support
efficient data transmission for the smart ocean. Semantic communication is an emerging
communication technology that aims to extract and deliver the semantic information of the
data [172]. In semantic-aware marine networks, the irrelevant information of the sensing
data can be filtered out before transmission, which can significantly save the bandwidth
and reduce the latency of the communication links [173]. Unlike classical communication
systems, semantic-based transmission technology may rely on prior knowledge (e.g., deep
learning model) to extract the compact and accurate information of the data. This imposes
new challenges on how to train comprehensive semantic extraction models for diversity
application in marine networks. In addition, the on-device inference of the extraction model
raises intensive computation overhead for USNs. To tackle these issues, future work may
focus on employing transfer learning and domain adaption to improve the performance
of semantic-aware marine networks [174]. Moreover, computation-efficient management
methods and lightweight deep learning models should be investigated to enhance the
resource utilization for the on-device semantic extraction [175].

6. Conclusions

In this paper, we conducted a comprehensive survey on the ISCCNs for smart oceans.
Specifically, we exploited a collaborative framework based on space–air–ground–sea in-
tegrated networks from four domains (i.e., the space layer, the air layer, the ground
layer, and the sea layer) and five aspects (i.e., sensing-related, communication-related,
computation-related, security-related, and application-related). Next, we presented the
key technologies and the state-of-the-art integrated communications and computing in
smart oceans. Then, we discussed the challenges in smart oceans from the point of view of
security and energy-efficiency issues, and provided potential solutions to guarantee the
intelligent services in marine networks. Finally, we introduced the emerging applications
in smart oceans, and discussed some future research directions in smart oceans.
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