
Citation: Wang, H.; Gao, W.; Wang, Z.;

Zhang, K.; Ren, J.; Deng, L.; He, S.

Research on Obstacle Avoidance

Planning for UUV Based on A3C

Algorithm. J. Mar. Sci. Eng. 2024, 12,

63. https://doi.org/10.3390/

jmse12010063

Academic Editors: Sébastien Lafond

and Sepinoud Azimi

Received: 27 November 2023

Revised: 17 December 2023

Accepted: 19 December 2023

Published: 26 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science
and Engineering

Article

Research on Obstacle Avoidance Planning for UUV Based on
A3C Algorithm
Hongjian Wang 1 , Wei Gao 1,*, Zhao Wang 1 , Kai Zhang 1 , Jingfei Ren 1, Lihui Deng 1,2 and Shanshan He 1

1 College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China;
cctime99@163.com (H.W.); promotion5@foxmail.com (K.Z.); gongchengrendlh@163.com (L.D.)

2 Tianjin Navigation and Instrument Institute, Tianjin 300130, China
* Correspondence: gg19961996@foxmail.com

Abstract: Deep reinforcement learning is an artificial intelligence technology that combines deep
learning and reinforcement learning and has been widely applied in multiple fields. As a type of
deep reinforcement learning algorithm, the A3C (Asynchronous Advantage Actor-Critic) algorithm
can effectively utilize computer resources and improve training efficiency by synchronously training
Actor-Critic in multiple threads. Inspired by the excellent performance of the A3C algorithm, this
paper uses the A3C algorithm to solve the UUV (Unmanned Underwater Vehicle) collision avoidance
planning problem in unknown environments. This collision avoidance planning algorithm can have
the ability to plan in real-time while ensuring a shorter path length, and the output action space can
meet the kinematic constraints of UUVs. In response to the problem of UUV collision avoidance
planning, this paper designs the state space, action space, and reward function. The simulation results
show that the A3C collision avoidance planning algorithm can guide a UUV to avoid obstacles and
reach the preset target point. The path planned by this algorithm meets the heading constraints of
the UUV, and the planning time is short, which can meet the requirements of real-time planning.

Keywords: A3C; UUV; collision avoidance; path planning

1. Introduction

The UUV has strong civilian and military value due to its autonomous navigation
ability, which can obtain information on ocean and seabed environments and detect and
identify moving targets [1]. The capability of obstacle avoidance planning is an important in-
fluencing factor in determining whether UUVs can independently complete preset tasks [2].
Autonomous obstacle avoidance in UUVs refers to the UUV detecting surrounding obsta-
cles and collecting their status information, and planning its paths according to a certain
algorithm to avoid obstacles and ultimately reach the preset target point [3]. Deep reinforce-
ment learning algorithms have good decision-making ability and can learn independently,
which is used to solve continuous decision-making problems. So Deep reinforcement
learning algorithms are very suitable for solving obstacle avoidance planning problems [4].

Deep reinforcement learning is one of the most focused directions in the field of
artificial intelligence in recent years, which combines the perceptual ability of deep learning
with the decision-making ability of reinforcement learning. It can directly control the
behavior of agents through high-dimensional perceptual input learning, providing ideas
for solving perceptual decision-making problems in complex systems [5]. In recent years,
research on deep reinforcement learning algorithms has mainly focused on the DQN (Deep
Q-network) algorithm and its related improvements. Mnih et al., from DeepMind, propose
the DQN algorithm [6], through which the agent can learn to play video games by simply
obtaining raw pixels from images [7]. Mnih introduces a separate Q-function network
and introduces iterative updates into DQN to reduce the correlation between the target
value and the current value, proposing an improved version of DQN, namely Nature

J. Mar. Sci. Eng. 2024, 12, 63. https://doi.org/10.3390/jmse12010063 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse12010063
https://doi.org/10.3390/jmse12010063
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0003-1187-0135
https://orcid.org/0000-0002-6539-1837
https://orcid.org/0009-0004-6482-9261
https://doi.org/10.3390/jmse12010063
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse12010063?type=check_update&version=1

J. Mar. Sci. Eng. 2024, 12, 63 2 of 14

DQN [8]. Wang et al. propose the Dueling DQN model, which separates state values
and action dominance values, enabling better integration of network architecture and RL
algorithms [9]. Hasselt proposes using adaptive normalization learning to address the issue
of not changing the scale of the approximation function during the learning process in DQN,
which affects the quality of the algorithm in different game applications by cutting the
feedback to a predetermined range [10]. Lillicrap proposes the DDPG (Deep Deterministic
Policy Gradient) algorithm, which is a reinforcement learning algorithm of the Actor-Critic
framework that combines the policy gradient algorithm and DQN algorithm, and can
update the policy network in a single step through an off-policy method to achieve the
maximum total reward [11]. Mnih et al. propose the A3C algorithm, which introduces the
technique of distributed parallel training based on the classic Actor-Critic framework [12].
The parallel threads of the A3C algorithm can explore different actions and effectively
improve learning efficiency.

There are many types of traditional collision avoidance planning algorithms, such
as the Dynamic Window method [13], Rapidly-Exploring Random Tree [14], and the
artificial potential field method [15], but these lack the ability to learn and have poor
adaptability to the environment. Heuristic search algorithms commonly used to solve
collision avoidance planning problems include the genetic algorithm [16], Particle Swarm
Optimization Algorithm [17], and Ant Colony Algorithm [18]. It is difficult to achieve real-
time planning for collision avoidance planning based on heuristic search algorithms. The
robot needs to replan the next path point for each time step they take, while heuristic search
algorithms require a longer time for each planning, making it difficult to conduct real-time
planning in the environment. And some heuristic search algorithms are prone to falling into
local optima, resulting in the robot being unable to reach the target point [19]. Some scholars
use neural network algorithms to solve path planning problems. Changjian Lin et al.
propose an improved recurrent neural network for UUV online obstacle avoidance [20].
This algorithm obtains shorter paths, uses less energy through their actuators, and is
insensitive to noise. However, the collision avoidance strategy learned by this algorithm is
based on expert data and lacks adaptability to the environment. The quality of expert data
has a significant impact on collision avoidance effectiveness. Once the expert knowledge
is unreasonable, the collision avoidance strategies learned by the neural network are less
likely to achieve good results.

The collision avoidance planning policy based on deep reinforcement learning is
autonomously learned by the agent, and the training dataset comes from the interaction
between the agent and the environment. Reasonable setting of the reward function can
achieve good collision avoidance effects. The collision avoidance planning algorithm based
on deep reinforcement learning has good real-time performance and can meet the heading
constraints of robots. Prashant Bhopale proposed a modified Q-learning obstacle avoidance
algorithm for UUVs [21]. This method reduces the chances of a collision with obstacles, but
the action space of this method is discrete, which may result in the resulting path not being
optimal. Jiawei Wang proposed the APF-DQN collision avoidance planning algorithm [22].
This method introduces direction reward to solve the problem of sparse reward in the DQN
algorithm, but the action space of this method is discrete, and the obstacle environment is
relatively simple. Janani Bodaragama proposed a collision avoidance planning algorithm
based on the Random Network Distillation algorithm [23]. However, the action space in
the text is discrete, with an angular velocity of 1.5 rad set, which is very detrimental to the
control of actual robots.

As a type of deep reinforcement learning algorithm, the A3C (Asynchronous Advan-
tage Actor-Critic) algorithm can effectively utilize computer resources and improve training
efficiency by synchronously training Actor-Critic in multiple threads. The A3C algorithm
can effectively solve problems in the field of mobile robots. Yoko Sasaki proposed the A3C
Motion Learning algorithm for an autonomous mobile robot [24]. The experimental results
indicate that the robot can acquire short-term, simple collision avoidance motion. How-
ever, the research object in the article is omnidirectional mobile robots, which reduces the

J. Mar. Sci. Eng. 2024, 12, 63 3 of 14

difficulty of designing collision avoidance algorithms. Z. Zhou proposed a path planning
algorithm based on deep reinforcement learning, aiming at the demand for flexibility and
real-time performance in an unknown aquatorium [25]. This method discretizes the angular
velocity, which is not conducive to USV control and may result in suboptimal paths.

In order to improve the real-time performance of collision avoidance planning algo-
rithms and ensure that the planned path meets the kinematic constraints of UUVs, this
article will use the A3C algorithm to solve the collision avoidance planning problem of
UUVs in unknown environments. This algorithm adopts a continuous action space and
restricts the heading angle of UUVs.

The structure of this article is as follows: Section 2 describes the basic principles of
deep reinforcement learning and the kinematic model of the UUV. Section 3 designs a
UUV collision avoidance planning algorithm based on A3C. Section 4 conducts simulation
experiments in different obstacle environments. The conclusion is given in Section 5.

2. Materials

This section mainly introduces the kinematic modeling of the UUV and the basic
principles of the A3C algorithm.

2.1. UUV Model

This article takes the UUV as the research object, with a total length of 4.5 m, a total
width of 1.1 m, and a height of 0.6 m. In order to study the motion law of the UUV and
determine its underwater motion position information, it is necessary to first establish a
suitable coordinate system and analyze the force and maneuverability of the UUV under
this coordinate system. Usually, the two basic coordinate systems for UUV motion modeling
are fixed coordinate systems and motion coordinate systems, as shown in Figure 1.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 3 of 15

proposed the A3C Motion Learning algorithm for an autonomous mobile robot [24]. The
experimental results indicate that the robot can acquire short-term, simple collision
avoidance motion. However, the research object in the article is omnidirectional mobile
robots, which reduces the difficulty of designing collision avoidance algorithms. Z. Zhou
proposed a path planning algorithm based on deep reinforcement learning, aiming at the
demand for flexibility and real-time performance in an unknown aquatorium [25]. This
method discretizes the angular velocity, which is not conducive to USV control and may
result in suboptimal paths.

In order to improve the real-time performance of collision avoidance planning
algorithms and ensure that the planned path meets the kinematic constraints of UUVs,
this article will use the A3C algorithm to solve the collision avoidance planning problem
of UUVs in unknown environments. This algorithm adopts a continuous action space and
restricts the heading angle of UUVs.

The structure of this article is as follows: Section 2 describes the basic principles of
deep reinforcement learning and the kinematic model of the UUV. Section 3 designs a
UUV collision avoidance planning algorithm based on A3C. Section 4 conducts simulation
experiments in different obstacle environments. The conclusion is given in Section 5.

2. Materials
This section mainly introduces the kinematic modeling of the UUV and the basic

principles of the A3C algorithm.

2.1. UUV Model
This article takes the UUV as the research object, with a total length of 4.5 m, a total

width of 1.1 m, and a height of 0.6 m. In order to study the motion law of the UUV and
determine its underwater motion position information, it is necessary to first establish a
suitable coordinate system and analyze the force and maneuverability of the UUV under
this coordinate system. Usually, the two basic coordinate systems for UUV motion
modeling are fixed coordinate systems and motion coordinate systems, as shown in
Figure 1.

Figure 1. The UUV coordinate system. Figure 1. The UUV coordinate system.

For the convenience of research, this article simplifies the six-degree-of-freedom mo-
tion model of UUVs, only considering the motion of the underactuated UUV in the longitu-
dinal, transverse, and bow directions. Therefore, the assumptions are made:

(1) Neglecting the influence of third-order and higher-order hydrodynamic coefficients
on the UUV;

(2) Neglecting the influence of roll, pitch, and heave movements of the UUV on horizontal
motion.

J. Mar. Sci. Eng. 2024, 12, 63 4 of 14

The movement of the UUV is mainly carried out in three degrees of freedom: longi-
tudinal, transverse, and bow. This article defines the vector η =

[
x y ψ

]T to represent
the generalized position information of the UUV in a fixed coordinate system, The vector
v =

[
u v r

]T represents the generalized velocity of the UUV, where u is the longitudinal
velocity of the UUV, v is the lateral velocity of the UUV, and r is the raw rate. The schematic
diagram of the horizontal movement of the UUV is shown in Figure 2, where vt =

√
u2 + v2

is the UUV’s synthesis speed and β = arctan(v/u) is the drift angle.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 4 of 15

For the convenience of research, this article simplifies the six-degree-of-freedom
motion model of UUVs, only considering the motion of the underactuated UUV in the
longitudinal, transverse, and bow directions. Therefore, the assumptions are made:
(1) Neglecting the influence of third-order and higher-order hydrodynamic coefficients

on the UUV;
(2) Neglecting the influence of roll, pitch, and heave movements of the UUV on

horizontal motion.
The movement of the UUV is mainly carried out in three degrees of freedom:

longitudinal, transverse, and bow. This article defines the vector []=
T

x yη ψ to
represent the generalized position information of the UUV in a fixed coordinate system,
The vector []Tv u v r= represents the generalized velocity of the UUV, where u is the
longitudinal velocity of the UUV, v is the lateral velocity of the UUV, and r is the raw
rate. The schematic diagram of the horizontal movement of the UUV is shown in Figure

2, where 2 2

tv u v= + is the UUV’s synthesis speed and arctan(/)v uβ = is the drift angle.

Figure 2. Schematic diagram of horizontal movement of UUV.

In the absence of interference, the kinematic model of the UUV in the horizontal plane
is as follows:

cos() sin()

sin() cos()

x u v

y u v

r

ψ ψ

ψ ψ

ψ

= −

= +

=

 (1)

The corresponding dynamic equations are as follows:

Figure 2. Schematic diagram of horizontal movement of UUV.

In the absence of interference, the kinematic model of the UUV in the horizontal plane
is as follows:

.
x = u cos(ψ)− v sin(ψ)
.
y = u sin(ψ) + v cos(ψ)

.
ψ = r

(1)

The corresponding dynamic equations are as follows:

.
u =

F
mu
− du

mu
.
v = −murur

mv
− dv

mv
.
r =

T
mr
− dr

mr

(2)

where mu = m−X .
u, mv = m−Y.

v, mr = Iz−N.
r, mur = m−Yr, mr = Iz−N.

r, mur = m−Yr,
du = −Xuuu2 − Xvvv2, dv = −Yvuv− Yv|v|v|v|, dr = −Nvuv− Nv|v|v|v| − Nrur. m is the
mass of the UUV, with a value of 2234.5 kg; Iz is the mass moment of inertia with regard to
the Z axis of the body-fixed frame; X{·}, Y{·} and N{·} are the hydrodynamic coefficients;
and F and T are the longitudinal thrust and turning moment of the UUV, respectively.

The INFANTE AUV model is the research object of this article [26]. The mass of the
UUV is 2234.5 kg and the relevant hydrodynamic coefficients are shown in the Table 1.

When controlling the UUV, the traditional PID control algorithm was used, with
heading angle ψ and longitudinal velocity u as the controlled variables. Taking the expected
longitudinal speed ucom = 1 m/s and the expected heading angle ψcom = 0.5 rad as an
example, the PID control effect is shown in the Figure 3.

J. Mar. Sci. Eng. 2024, 12, 63 5 of 14

Table 1. Hydrodynamic coefficient.

hydrodynamic
parameter X .

u/Kg Y .
v/Kg N .

r/N ·m2 Xuu/Kg ·m−1 Xvv/Kg ·m−1 Yv/Kg ·m−1

parameter value −142 −1715 −1350 −35.4 −128.4 −346

hydrodynamic
parameter Yv|v|/Kg ·m−1 Yr/Kg Nr/Kg ·m Nv|v|/Kg Iz/N ·m2 Nv/Kg

parameter value −667 435 −1427 443 2000 −686

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 5 of 15

u

u u

ur v

v v

r

r r

F d
u

m m

m ur d
v

m m

T d
r

m m

= −

= − −

= −

 (2)

where u um m X= − , v vm m Y= − , r z rm I N= − , ur rm m Y= − , r z rm I N= − , ur rm m Y= − ,
2 2

u uu vvd X u X v= − − , v v v vd Y uv Y v v= − − , r v v v rd N uv N v v N ur= − − − . m is the mass of the UUV,

with a value of 2234.5 kg; zI is the mass moment of inertia with regard to the Z axis of the
body-fixed frame; { }X ⋅ , { }Y ⋅ and { }N ⋅ are the hydrodynamic coefficients; and F and T are
the longitudinal thrust and turning moment of the UUV, respectively.

The INFANTE AUV model is the research object of this article [26]. The mass of the
UUV is 2234.5 kg and the relevant hydrodynamic coefficients are shown in the Table 1.

Table 1. Hydrodynamic coefficient.

hydrodynamic
parameter uX / Kg vY / Kg rN / 2N m⋅ uuX / 1Kg m −⋅ vvX / 1Kg m−⋅ vY / 1Kg m−⋅

parameter value −142 −1715 −1350 −35.4 −128.4 −346
hydrodynamic

parameter v vY / 1Kg m−⋅ rY / Kg rN / Kg m⋅ v vN / Kg
zI / 2N m⋅ vN / Kg

parameter value −667 435 −1427 443 2000 −686
When controlling the UUV, the traditional PID control algorithm was used, with

heading angle ψ and longitudinal velocity u as the controlled variables. Taking the
expected longitudinal speed 1comu = m / s and the expected heading angle 0.5radcomψ =
as an example, the PID control effect is shown in the Figure 3.

Figure 3. PID control effect diagram.
Figure 3. PID control effect diagram.

As shown in the above figure, the PID controller can adjust the controlled quantity to
the given value within 10 s.

2.2. A3C
2.2.1. Reinforcement Learning

The principle of reinforcement learning is shown in Figure 4. When an agent completes
a task, it first generates action At, which will have an impact on the environment, causing
the agent to reach a new state St. At this point, the agent will receive an immediate reward
Rt from the environment. If repeated like this, the continuous interaction between the
intelligent agent and the environment will generate a large amount of data, including
status, rewards, and actions. The reinforcement learning algorithm uses the generated data
to modify its own action strategy. The agent interacts with the environment again based on
the new strategy, generating a new round of data, and improving its own strategy again
using the new round of data. After multiple iterations, the strategy gradually converges,
and the agent can learn the optimal strategy to complete the corresponding task.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 6 of 15

As shown in the above figure, the PID controller can adjust the controlled quantity
to the given value within 10 s.

2.2. A3C
2.2.1. Reinforcement Learning

The principle of reinforcement learning is shown in Figure 4. When an agent
completes a task, it first generates action tA , which will have an impact on the
environment, causing the agent to reach a new state tS . At this point, the agent will receive
an immediate reward tR from the environment. If repeated like this, the continuous
interaction between the intelligent agent and the environment will generate a large
amount of data, including status, rewards, and actions. The reinforcement learning
algorithm uses the generated data to modify its own action strategy. The agent interacts
with the environment again based on the new strategy, generating a new round of data,
and improving its own strategy again using the new round of data. After multiple
iterations, the strategy gradually converges, and the agent can learn the optimal strategy
to complete the corresponding task.

Figure 4. The schematic diagram of reinforcement learning.

In a broad sense, reinforcement learning can be considered a sequential decision
problem, with the goal of finding the decision sequence that maximizes the expected
cumulative return. Sequential decision problems have a lot of content, and, specifically,
they should be incorporated into the framework of the Markov Decision Process (MDP)
[27].

The goal of reinforcement learning is to find a strategy that can achieve the maximum
expected cumulative return. The strategy can be understood as a mapping relationship
from state tS to action tA , which means that the probability of action in the state can be
determined based on the strategy. The strategy can usually be represented by the symbol
π .

(|) [|]t ta s P A a S sπ = = = (3)

The overall process of the MDP is summarized as follows: set the initial state of the
intelligent agent to 0s ; obtain the current action 0a according to the designed strategy

(|)a sπ ; then obtain the state 1s at the next moment based on the probability of state

transition 1(| ,)t t tP s s a+ ; at the same time, the intelligent experience receives the reward

feedback 1r from environment. The entire process continues to loop until the final state

Ts , ultimately resulting in a trajectory sequence 0 0 1(, , ,...,)Ts a s sτ = . After obtaining
the complete trajectory sequence, the cumulative return can be calculated, which is

1

0

T

t

t
tR rγ

−

=

= . The expected cumulative return is shown in the following equation:

1

0

[]
T

R

t

t

t
E E rγ

−

=

= (4)

The strategy that the agent ultimately seeks is the one that maximizes the expected
cumulative return:

Figure 4. The schematic diagram of reinforcement learning.

J. Mar. Sci. Eng. 2024, 12, 63 6 of 14

In a broad sense, reinforcement learning can be considered a sequential decision
problem, with the goal of finding the decision sequence that maximizes the expected
cumulative return. Sequential decision problems have a lot of content, and, specifically,
they should be incorporated into the framework of the Markov Decision Process (MDP) [27].

The goal of reinforcement learning is to find a strategy that can achieve the maximum
expected cumulative return. The strategy can be understood as a mapping relationship
from state St to action At, which means that the probability of action in the state can be
determined based on the strategy. The strategy can usually be represented by the symbol π.

π(a|s) = P[At = a|St = s] (3)

The overall process of the MDP is summarized as follows: set the initial state of the
intelligent agent to s0; obtain the current action a0 according to the designed strategy π(a|s) ;
then obtain the state s1 at the next moment based on the probability of state transition
P(st+1|st, at) ; at the same time, the intelligent experience receives the reward feedback r1
from environment. The entire process continues to loop until the final state sT , ultimately
resulting in a trajectory sequence τ = (s0, a0, s1, . . . , sT). After obtaining the complete

trajectory sequence, the cumulative return can be calculated, which is R =
T−1
∑

t=0
γtrt. The

expected cumulative return is shown in the following equation:

ER = E[
T−1

∑
t=0

γtrt] (4)

The strategy that the agent ultimately seeks is the one that maximizes the expected
cumulative return:

π∗ = max
π

Eπ [
T−1

∑
t=0

γtrt] (5)

2.2.2. A3C

Deep learning belongs to the connectionist school, which mainly focuses on intelligent
perception and optimization objectives are mostly continuous functions. Reinforcement
learning is an intelligent decision-making approach that belongs to the behaviorist school of
thought, with optimization objectives being discrete functions. Although deep learning and
reinforcement learning both belong to machine learning, reinforcement learning has certain
advantages compared to supervised and unsupervised learning in deep learning [28]. The
deep reinforcement learning method combines the powerful perception ability of deep
learning with the decision-making ability of reinforcement learning. This algorithm is
more intelligent and can solve more complex tasks, making it a more human-like artificial
intelligence method [29].

As a type of deep reinforcement learning, the A3C algorithm can effectively utilize
computer resources and improve training efficiency by synchronously training Actor-Critic
in multiple threads. The A3C algorithm is a reinforcement learning algorithm based on
the Actor-Critic framework [30]. The Actor-Critic framework can be divided into two
different systems, Actor and Critic, which can be replaced by different neural networks [31].
The Critic can be used to learn the reward and punishment mechanism. After learning,
the Actor uses the strategy function to generate actions according to the state. Then, the
parameter values of the policy function are updated according to the knowledge learned by
the Critic, and the Critic network updates its own parameters while evaluating the Actor.
The schematic diagram of the Actor-Critic framework is shown in Figure 5.

J. Mar. Sci. Eng. 2024, 12, 63 7 of 14
J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 8 of 15

Figure 5. Actor-Critic framework.

The A3C is a new lightweight parallel algorithm. In order to break the correlation of
data, an asynchronous method was adopted, which can ensure that the data is not
generated synchronously. The A3C [32] framework sets up a Global Network (Global
Neural Network Model) at the top level of the algorithm. The Global Neural Network
Model is an Actor-Critic structure, mainly used to collect the experience learned by each
sub Actor-Critic model and update its parameters for the sub Actor-Critic. The sub Actor-
Critic model can be seen as a local model under multi-threading, where each sub thread
corresponds to a set of algorithm models and training environments. Each sub thread does
not interfere with each other, and in order to make the model converge faster, some
method can be used to make the training environment of each sub thread different, so that
the sub threads can interact with different environments as much as possible, learn
different experiences, and accelerate the learning of the global model. After interacting
with the environment, the sub thread updates the learned experience to the global neural
network. The structure diagram of the A3C algorithm is shown in Figure 6.

Figure 6. A3C algorithm structure diagram.

Figure 5. Actor-Critic framework.

The Actor also can be called strategy π. The Actor can be parameterized directly,
represented by θ here. Then the action a of the agent can be obtained by sampling the
strategy π, which can be expressed in the following form:

a ∼ π(s, a, θ) (6)

In the Actor-Critic framework, in order to evaluate the performance of the agent,
the concept of Q value in reinforcement learning can be used. At this point, the role of
the Critic is to fit the Q value and evaluate the score of the actor’s behavior, which can
be approximated by using a neural network. The gradient expression of the Actor is
as follows:

∇Rθ =
1
m

m

∑
n=1

Tn

∑
t=1

Qπθ (sn
t , an

t)∇ log pθ(an
t |sn

t) (7)

In order to update the strategy by the Actors, it is necessary for the Critic to fit the Q
value. The updated method of the Critic is achieved through the Temporal Difference (TD)
error, and its loss function is as follows:

Loss =
1
m

m

∑
n=1

Tn

∑
t=1

(rn
t + max

aπ
t+1

Qπθ (sn
t+1, an

t+1)−Qπθ (sn
t , an

t))
2 (8)

The A3C is a new lightweight parallel algorithm. In order to break the correlation
of data, an asynchronous method was adopted, which can ensure that the data is not
generated synchronously. The A3C [32] framework sets up a Global Network (Global
Neural Network Model) at the top level of the algorithm. The Global Neural Network
Model is an Actor-Critic structure, mainly used to collect the experience learned by each
sub Actor-Critic model and update its parameters for the sub Actor-Critic. The sub Actor-
Critic model can be seen as a local model under multi-threading, where each sub thread
corresponds to a set of algorithm models and training environments. Each sub thread does
not interfere with each other, and in order to make the model converge faster, some method
can be used to make the training environment of each sub thread different, so that the
sub threads can interact with different environments as much as possible, learn different
experiences, and accelerate the learning of the global model. After interacting with the
environment, the sub thread updates the learned experience to the global neural network.
The structure diagram of the A3C algorithm is shown in Figure 6.

J. Mar. Sci. Eng. 2024, 12, 63 8 of 14

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 8 of 15

Figure 5. Actor-Critic framework.

The A3C is a new lightweight parallel algorithm. In order to break the correlation of
data, an asynchronous method was adopted, which can ensure that the data is not
generated synchronously. The A3C [32] framework sets up a Global Network (Global
Neural Network Model) at the top level of the algorithm. The Global Neural Network
Model is an Actor-Critic structure, mainly used to collect the experience learned by each
sub Actor-Critic model and update its parameters for the sub Actor-Critic. The sub Actor-
Critic model can be seen as a local model under multi-threading, where each sub thread
corresponds to a set of algorithm models and training environments. Each sub thread does
not interfere with each other, and in order to make the model converge faster, some
method can be used to make the training environment of each sub thread different, so that
the sub threads can interact with different environments as much as possible, learn
different experiences, and accelerate the learning of the global model. After interacting
with the environment, the sub thread updates the learned experience to the global neural
network. The structure diagram of the A3C algorithm is shown in Figure 6.

Figure 6. A3C algorithm structure diagram. Figure 6. A3C algorithm structure diagram.

The A3C algorithm process is shown in Algorithm 1:

Algorithm 1 A3C

// Assume global shared parameter vectors θ and θv and global shared counter T = 0
// Assume thread-specific parameter vectors θ′ and θ′v
Initialize thread step counter t← 1
repeat

Reset gradients: dθ ← 0 and dθv ← 0 .
Synchronize thread-specific parameters θ′ = θ and θ′v = θv
tstart = t
Get state st
repeat

Perform at according to policy π(at|st; θ′)
Receive reward rt and new state st+1
t← t + 1
T ← T + 1

until terminal st or t− tstart == tmax

R =

{
0 f or terminal st

V(st, θ′v) f or non− terminal st
for i ∈ {t− 1, . . . , tstart} do

R← ri + γR
Accumulate gradients wrt θ′: dθ ← dθ +∇θ′ log π(ai|si; θ′)(R−V(si; θ′v))

Accumulate gradients wrt θ′v: dθv ← dθv + ∂(R−V(si; θ′v))
2/∂θ′v

end for
Perform asynchronous update of θ using dθ and of θv using dθv

until T > Tmax

3. The A3C Collision Avoidance Planning Algorithm

In order to achieve autonomous obstacle avoidance for the UUV, this paper uses the
A3C reinforcement learning algorithm. This section introduces the selection of state space,
the design of reward function, the construction of the environment, and the design of
action space.

J. Mar. Sci. Eng. 2024, 12, 63 9 of 14

3.1. State Space

The state information includes observation information obtained from the environment
and target point information, which has a significant impact on the final effect. The UUV
carries the SeaBat 8125-H forward-looking sonar model from RESON company, which
can detect a horizontal 120◦ fan-shaped area with a vertical opening angle of 17◦. The
state information selected in this article includes the distance between the UUV and the
obstacle, the angle at which the robot’s heading deviates from the obstacle, the distance
between the UUV and the target point, and the angle at which the robot’s heading deviates
from the target. Because the obstacle data returned by the forward-looking sonar have a
higher dimension, and the A3C algorithm needs to spend more time learning the data. In
reactive collision avoidance planning algorithms, the high-dimensional obstacle data are
not necessary, so obstacle data are simplified through partitioning. The 120◦ fan-shaped
area is divided at intervals of 10◦. The expressions of distance ρt between the UUV and
target point, and the angle θt at which the robot’s heading deviates from the target are
as follows.

ρt =

√(
xr − xg

)2
+

(
yr − yg

)2 (9)

θt = θr − arctan
yg − yr

xg − xr
(10)

where (xr, yy) are the coordinates of the UUV in the global coordinate system, and (xg, yg)
are the coordinates of the target point in the global coordinate system.

3.2. Action Space

The action strategy selection used in this section is designed as a continuous action
space. If the action space includes the linear velocity and angular velocity, which are both
continuous, the deep reinforcement learning algorithm is difficult to converge. Therefore,
the A3C collision avoidance planning algorithm keeps the linear velocity unchanged and
only changes the heading of the UUV, that is, the action space includes the angular velocity
item. Considering the actual situation, the angular velocity of the UUV is limited between
−5◦/s and 5◦/s.

3.3. Reward Function

The design of the reward function is of utmost importance in reinforcement learning,
and the quality of reinforcement learning training results is closely related to the reward
function. The purpose of reinforcement learning is to obtain the maximum long-term
cumulative reward. The reward function evaluates each action based on its interaction
with the environment, so the quality of the reward function affects the quality of the
final strategy.

The reward function settings in this section are as follows:

R = Rr + RdRc + Rs (11)

Rr represents the reward received by the agent when it reaches the final target point;
Rc represents the reward received by the agent when colliding with obstacles in the en-
vironment; Rd = kdis · disobs, and disobs indicate the distance between the UUV and the
nearest obstacle, and kdis is the obstacle reward coefficient. The main purpose of the Rd is
to successfully avoid obstacles. Rs = kstep · step_count represents the penalty of the reward
function on the number of steps and can ensure that the number of steps for the UUV to
reach the target point is minimized as much as possible, kstep is the penalty coefficient for
the number of steps, and step_count is the current cumulative number of steps.

4. Experiments and Results

The experiments are conducted to verify the A3C collision avoidance planning al-
gorithm. The experiments take the UUV model in Section 2 as the research object. The

J. Mar. Sci. Eng. 2024, 12, 63 10 of 14

obstacle environments include dense irregular obstacle environments and narrow passage
obstacle environments. The performance of the algorithms is evaluated from the aspects of
path length, average solution time, and whether the target point has been reached.

In order to demonstrate the advantages of the algorithm in this article, this section
uses the artificial potential field method and genetic algorithm as comparisons. In the
experiment, the longitudinal velocity u of the UUV remains fixed at 1 m/s, and only the
heading angle of the UUV is changed to achieve obstacle avoidance. The experiments use
the PID controller to control the heading angle and the longitudinal speed of the UUV.

The simulation results are as follows:
Figure 7 shows the reward function curve, from which it can be seen that after a

certain number of iterations, the reward function converges, proving the feasibility of the
algorithm proposed in this article. In the Figure 8, it can be seen that the A3C collision
avoidance planning algorithm can plan a safe and collision-free path in a dense and
irregular obstacle environment, while the APF algorithm cannot adapt to such obstacle
environments due to its lack of learning ability to the environment. In Figure 9, it can
be seen that three algorithms can successfully reach the target point in narrow channel
obstacle environments. However, due to the addition of turning restrictions, the A3C
algorithm has a relatively smooth change in heading angle and trajectory, while the APF
algorithm and GA algorithm do not have turning restrictions, resulting in a significant
difference between the expected heading angle obtained and the current heading angle. On
the one hand, it puts higher requirements on the UUV controller, and on the other hand, it
will cause the UUV to perform a significant turning action, which puts higher requirements
on the performance of the UUV. Tables 2 and 3 show the performance comparison of three
algorithms. From the perspective of path length, the three algorithms are equally matched.
From the perspective of average execution time, the execution time of the A3C algorithm
and APF algorithm is similar, while the execution time of the GA algorithm is longer.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 11 of 15

Figure 7 shows the reward function curve, from which it can be seen that after a
certain number of iterations, the reward function converges, proving the feasibility of the
algorithm proposed in this article. In the Figure 8, it can be seen that the A3C collision
avoidance planning algorithm can plan a safe and collision-free path in a dense and
irregular obstacle environment, while the APF algorithm cannot adapt to such obstacle
environments due to its lack of learning ability to the environment. In Figure 9, it can be
seen that three algorithms can successfully reach the target point in narrow channel
obstacle environments. However, due to the addition of turning restrictions, the A3C
algorithm has a relatively smooth change in heading angle and trajectory, while the APF
algorithm and GA algorithm do not have turning restrictions, resulting in a significant
difference between the expected heading angle obtained and the current heading angle.
On the one hand, it puts higher requirements on the UUV controller, and on the other
hand, it will cause the UUV to perform a significant turning action, which puts higher
requirements on the performance of the UUV. Tables 2 and 3 show the performance
comparison of three algorithms. From the perspective of path length, the three algorithms
are equally matched. From the perspective of average execution time, the execution time
of the A3C algorithm and APF algorithm is similar, while the execution time of the GA
algorithm is longer.

Figure 7. Reward function curve.

(a) (b)

Figure 7. Reward function curve.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 11 of 15

Figure 7 shows the reward function curve, from which it can be seen that after a
certain number of iterations, the reward function converges, proving the feasibility of the
algorithm proposed in this article. In the Figure 8, it can be seen that the A3C collision
avoidance planning algorithm can plan a safe and collision-free path in a dense and
irregular obstacle environment, while the APF algorithm cannot adapt to such obstacle
environments due to its lack of learning ability to the environment. In Figure 9, it can be
seen that three algorithms can successfully reach the target point in narrow channel
obstacle environments. However, due to the addition of turning restrictions, the A3C
algorithm has a relatively smooth change in heading angle and trajectory, while the APF
algorithm and GA algorithm do not have turning restrictions, resulting in a significant
difference between the expected heading angle obtained and the current heading angle.
On the one hand, it puts higher requirements on the UUV controller, and on the other
hand, it will cause the UUV to perform a significant turning action, which puts higher
requirements on the performance of the UUV. Tables 2 and 3 show the performance
comparison of three algorithms. From the perspective of path length, the three algorithms
are equally matched. From the perspective of average execution time, the execution time
of the A3C algorithm and APF algorithm is similar, while the execution time of the GA
algorithm is longer.

Figure 7. Reward function curve.

(a) (b)

Figure 8. Cont.

J. Mar. Sci. Eng. 2024, 12, 63 11 of 14

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 12 of 15

(c) (d)

(e) (f)

Figure 8. The experiment results in the dense irregular obstacle environment. (a) comparison of the
collision avoidance trajectory; (b) comparison curve of the heading angle ψ ; (c) comparison curve
of the longitudinal speed u ; (d) comparison curve of the yaw rate r ; (e) comparison curve of the
longitudinal thrust F ; and (f) comparison curve of the turning moment T .

(a) (b)

(c) (d)

Figure 8. The experiment results in the dense irregular obstacle environment. (a) comparison of the
collision avoidance trajectory; (b) comparison curve of the heading angle ψ; (c) comparison curve
of the longitudinal speed u; (d) comparison curve of the yaw rate r; (e) comparison curve of the
longitudinal thrust F; and (f) comparison curve of the turning moment T.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 12 of 15

(c) (d)

(e) (f)

Figure 8. The experiment results in the dense irregular obstacle environment. (a) comparison of the
collision avoidance trajectory; (b) comparison curve of the heading angle ψ ; (c) comparison curve
of the longitudinal speed u ; (d) comparison curve of the yaw rate r ; (e) comparison curve of the
longitudinal thrust F ; and (f) comparison curve of the turning moment T .

(a) (b)

(c) (d)

Figure 9. Cont.

J. Mar. Sci. Eng. 2024, 12, 63 12 of 14

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 13 of 15

(e) (f)

Figure 9. The simulation results in the narrow passage obstacle environment. (a) comparison of the
collision avoidance trajectory; (b) comparison curve of the heading angle ψ ; (c) comparison curve
of the longitudinal speed u ; (d) comparison curve of the yaw rate r ; (e) comparison curve of the
longitudinal thrust F ; and (f) comparison curve of the turning moment T .

Table 2. The performance in the dense irregular obstacle environment.

Algorithm Path Length/m Execution Time/ms Whether the Target Point Has Been Reached
A3C 545 1.2 √
APF / 1.1 ×
GA 546 311 √

Table 3. The performance in the narrow passage obstacle environment.

Algorithm Path Length/m Execution Time/ms Whether the Target Point Has Been Reached
A3C 503 1.3 √
APF 506 1.3 √
GA 505 310 √

5. Conclusions
This article proposes the A3C local collision avoidance planning algorithm for UUVs,

which maintains the fixed longitudinal velocity of the UUV and only changes its heading.
For the problem of collision avoidance planning, this article designs state space, action
space, and reward function. In order to smooth the collision avoidance trajectory of the
UUV and reduce the difficulty of controlling the UUV, this article applies yaw restrictions
to the final output of the algorithm, controlling the angular velocity between 5− o / s and
5o / s . In order to verify the effectiveness of the algorithm proposed in this article,
simulation experiments were conducted and compared with the artificial potential field
method and genetic algorithm. The simulation results show that the A3C collision
avoidance planning algorithm can plan smooth collision avoidance paths in dense and
irregular obstacle environments, as well as narrow channel obstacle environments. The
execution time of the A3C collision avoidance planning algorithm is in milliseconds, and
the planned yaw rate is small, which can ensure the smoothness of the trajectory.

Author Contributions: H.W.: conceptualization, supervision, funding, and acquisition. W.G.:
methodology, investigation, software, and writing—original and draft. Z.W.: writing—original and
draft, and software. K.Z.: formal analysis and data curation. J.R.: conceptualization, and writing—
reviewing and editing. L.D.: methodology, software, and investigation. S.H. validation,
investigation, and writing—original and draft. All authors have read and agreed to the published
version of the manuscript.

Funding: This research work is supported by National Science and Technology Innovation Special
Zone Project (21-163-05-ZT-002-005-03), the National Key Laboratory of Underwater Robot

Figure 9. The simulation results in the narrow passage obstacle environment. (a) comparison of the
collision avoidance trajectory; (b) comparison curve of the heading angle ψ; (c) comparison curve
of the longitudinal speed u; (d) comparison curve of the yaw rate r; (e) comparison curve of the
longitudinal thrust F; and (f) comparison curve of the turning moment T.

Table 2. The performance in the dense irregular obstacle environment.

Algorithm Path Length/m Execution Time/ms Whether the Target Point Has Been Reached

A3C 545 1.2
√

APF / 1.1 ×
GA 546 311

√

Table 3. The performance in the narrow passage obstacle environment.

Algorithm Path Length/m Execution Time/ms Whether the Target Point Has Been Reached

A3C 503 1.3
√

APF 506 1.3
√

GA 505 310
√

5. Conclusions

This article proposes the A3C local collision avoidance planning algorithm for UUVs,
which maintains the fixed longitudinal velocity of the UUV and only changes its heading.
For the problem of collision avoidance planning, this article designs state space, action
space, and reward function. In order to smooth the collision avoidance trajectory of the
UUV and reduce the difficulty of controlling the UUV, this article applies yaw restrictions to
the final output of the algorithm, controlling the angular velocity between −5◦/s and 5◦/s.
In order to verify the effectiveness of the algorithm proposed in this article, simulation
experiments were conducted and compared with the artificial potential field method and
genetic algorithm. The simulation results show that the A3C collision avoidance planning
algorithm can plan smooth collision avoidance paths in dense and irregular obstacle
environments, as well as narrow channel obstacle environments. The execution time of the
A3C collision avoidance planning algorithm is in milliseconds, and the planned yaw rate is
small, which can ensure the smoothness of the trajectory.

Author Contributions: H.W.: conceptualization, supervision, funding, and acquisition. W.G.:
methodology, investigation, software, and writing—original and draft. Z.W.: writing—original
and draft, and software. K.Z.: formal analysis and data curation. J.R.: conceptualization, and
writing—reviewing and editing. L.D.: methodology, software, and investigation. S.H. validation,
investigation, and writing—original and draft. All authors have read and agreed to the published
version of the manuscript.

J. Mar. Sci. Eng. 2024, 12, 63 13 of 14

Funding: This research work is supported by National Science and Technology Innovation Special
Zone Project (21-163-05-ZT-002-005-03), the National Key Laboratory of Underwater Robot Technol-
ogy Fund (No. JCKYS2022SXJQR-09), and a special program to guide high-level scientific research
(No. 3072022QBZ0403).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors would like to thank the anonymous reviewers and the handling
editors for their constructive comments that greatly improved this article from its original form.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Zhu, D.; Yang, S.X. Bio-Inspired Neural Network-Based Optimal Path Planning for UUVs Under the Effect of Ocean Currents.

IEEE Trans. Intell. Veh. 2021, 7, 231–239. [CrossRef]
2. Yue, Y.; Hao, W.; Guanjie, H.; Yao, Y. UUV Target Tracking Path Planning Algorithm Based on Deep Reinforcement Learning. In

Proceedings of the 2023 8th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), Xi’an, China, 7–9 July 2023; pp. 65–71.
3. Li, D.; Wang, P.; Du, L. Path Planning Technologies for Autonomous Underwater Vehicles-A Review. IEEE Access 2019, 7,

9745–9768. [CrossRef]
4. Cai, Y.; Zhang, E.; Qi, Y.; Lu, L. A Review of Research on the Application of Deep Reinforcement Learning in Unmanned Aerial

Vehicle Resource Allocation and Trajectory Planning. In Proceedings of the 2022 4th International Conference on Machine
Learning, Big Data and Business Intelligence (MLBDBI), Shanghai, China, 28–30 October 2022; pp. 238–241.

5. Zhu, K.; Zhang, T. Deep reinforcement learning based mobile robot navigation: A review. Tsinghua Sci. Technol. 2021, 26, 674–691.
[CrossRef]

6. Lample, G.; Chaplot, D.S. Playing FPS Games with Deep Reinforcement Learning. arXiv 2016, arXiv:1609.05521. [CrossRef]
7. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with Deep

Reinforcement Learning. Comput. Sci. 2013, 201–220. [CrossRef]
8. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]
9. Wang, Z.; Schaul, T.; Hessel, M.; Hasselt, H.; Lanctot, M.; Freitas, N. Dueling network architectures for deep reinforcement

learning. Proc. Mach. Learn. Res. 2015, 48, 1995–2003.
10. Hasselt, H.V.; Guez, A.; Hessel, M.; Mnih, V.; Silver, D. Learning functions across many orders of magnitudes. arXiv 2016,

arXiv:1602.07714.
11. Lillicrap, T.; Hunt, J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep reinforcement

learning. arXiv 2015, arXiv:1509.02971.
12. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.P.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous Methods for

Deep Reinforcement Learning. arXiv 2016, arXiv:1602.01783.
13. Dobrevski, M.; Skočaj, D. Adaptive Dynamic Window Approach for Local Navigation. In Proceedings of the 2020 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021;
pp. 6930–6936.

14. Rodriguez, S.; Tang, X.; Lien, J.-M.; Amato, N.M. An Obstacle-based Rapidly-exploring Random Tree. In Proceedings of the 2006
IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May 2006; pp. 895–900.

15. Igarashi, H.; Kakikura, M. Path and Posture Planning for Walking Robots by Artificial Potential Field Method. In Proceedings of
the IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, 26 April–1 May 2004.

16. Hu, Y.; Yang, S.X. A Knowledge Based Genetic Algorithm for Path Planning of a Mobile Robot. In Proceedings of the IEEE
International Conference on Robotics and Automation, New Orleans, LA, USA, 26 April–1 May 2004.

17. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the 1995 IEEE International Conference, Perth, WA,
Australia, 27 November–1 December 1995; pp. 1942–1948.

18. Li, S.; Su, W.; Huang, R.; Zhang, S. Mobile Robot Navigation Algorithm Based on Ant Colony Algorithm with A* Heuristic
Method. In Proceedings of the 2020 4th International Conference on Robotics and Automation Sciences, Wuhan, China, 12–14
June 2020; pp. 28–33.

19. Tang, B.; Zhanxia, Z.; Luo, J. A Convergence-guaranteed Particle Swarm Optimization Method for Mobile Robot Global Path
Planning. Assem. Autom. 2017, 37, 114–129. [CrossRef]

20. Lin, C.; Wang, H.; Yuan, J.; Yu, D.; Li, C. An Improved Recurrent Neural Network for Unmanned Underwater Vehicle Online
Obstacle Avoidance. Ocean Eng. 2019, 189, 106327. [CrossRef]

https://doi.org/10.1109/TIV.2021.3082151
https://doi.org/10.1109/ACCESS.2018.2888617
https://doi.org/10.26599/TST.2021.9010012
https://doi.org/10.1609/aaai.v31i1.10827
https://doi.org/10.48550/arXiv.1312.5602
https://doi.org/10.1038/nature14236
https://www.ncbi.nlm.nih.gov/pubmed/25719670
https://doi.org/10.1108/AA-03-2016-024
https://doi.org/10.1016/j.oceaneng.2019.106327

J. Mar. Sci. Eng. 2024, 12, 63 14 of 14

21. Bhopale, P.; Kazi, F.; Singh, N. Reinforcement Learning Based Obstacle Avoidance for Autonomous Underwater Vehicle. J. Mar.
Sci. Appl. 2019, 18, 228–238. [CrossRef]

22. Wang, J.; Lei, G.; Zhang, J. Study of UAV Path Planning Problem Based on DQN and Artificial Potential Field Method. In
Proceedings of the 2023 4th International Symposium on Computer Engineering and Intelligent Communications, Nanjing,
China, 18–20 August 2023; pp. 175–182.

23. Bodaragama, J.; Rajapaksha, U.U.S. Path Planning for Moving Robots in an Unknown Dynamic Area Using RND-Based Deep
Reinforcement Learning. In Proceedings of the 2023 3rd International Conference on Advanced Research in Computing (ICARC),
Belihuloya, Sri Lanka, 23–24 February 2023; pp. 13–18.

24. Sasaki, Y.; Matsuo, S.; Kanezaki, A.; Takemura, H. A3C Based Motion Learning for an Autonomous Mobile Robot in Crowds. In
Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019.

25. Zhou, Z.; Zheng, Y.; Liu, K.; He, X.; Qu, C. A Real-time Algorithm for USV Navigation Based on Deep Reinforcement Learning. In
Proceedings of the 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China,
11–13 December 2019; pp. 1–4.

26. Lapierre, L.; Soetanto, D. Nonlinear path-following control of an AUV. Ocean Eng. 2007, 34, 1734–1744. [CrossRef]
27. White III, C.C.; White, D.J. Markov Decision Process. Eur. J. Oper. Res. 1989, 39, 1–16. [CrossRef]
28. Siraskar, R.; Kumar, S.; Patil, S.; Bongale, A.; Kotecha, K. Reinforcement learning for predictive maintenance: A systematic

technical review. Artif. Intell. Rev. 2023, 56, 12885–12947. [CrossRef]
29. Yu, K.; Jin, K.; Deng, X. Review of Deep Reinforcement Learning. In Proceedings of the 2022 IEEE 5th Advanced Information

Management, Communicates, Electronic and Automation Control Conference (IMCEC), Chongqing, China, 16–18 December
2022; pp. 41–48.

30. Peters, J.; Schaal, S. Natural actor-critic. Neurocomputing 2008, 71, 1180–1190. [CrossRef]
31. Bhatnagar, S.; Sutton, R.S.; Ghavamzadeh, M.; Lee, M. Natural actor–critic algorithms. Automatica 2009, 45, 2471–2482. [CrossRef]
32. Chen, T.; Liu, J.Q.; Li, H.; Wang, S.R.; Niu, W.J.; Tong, E.D.; Chang, L.; Chen, Q.A.; Li, G. Robustness Assessment of Asynchronous

Advantage Actor-Critic Based on Dynamic Skewness and Sparseness Computation: A Parallel Computing View. J. Comput. Sci.
Technol. 2021, 36, 1002–1021. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s11804-019-00089-3
https://doi.org/10.1016/j.oceaneng.2006.10.019
https://doi.org/10.1016/0377-2217(89)90348-2
https://doi.org/10.1007/s10462-023-10468-6
https://doi.org/10.1016/j.neucom.2007.11.026
https://doi.org/10.1016/j.automatica.2009.07.008
https://doi.org/10.1007/s11390-021-1217-z

	Introduction
	Materials
	UUV Model
	A3C
	Reinforcement Learning
	A3C

	The A3C Collision Avoidance Planning Algorithm
	State Space
	Action Space
	Reward Function

	Experiments and Results
	Conclusions
	References

