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Abstract: Unmanned surface vessels (USVs) are required to follow a path during a task. This is essential
for the USV, especially when following a curvilinear path or considering the interference of waves, and
this work has been proven to be complicated. In this paper, a PID parameter tuning and optimizing
method based on deep reinforcement learning were proposed to control the USV heading. Firstly, the
Abkowite dynamics model with three degrees of freedom (DOF) is established. Secondly, the guidance
law on the line-of-sight (LOS) method and the USV heading control system of the PID controller are
designed. To satisfy the time-varying demand of PID parameters for guiding control, especially when
the USV moves in waves, the soft actor–critic auto (SAC-auto) method is presented to adjust the PID
parameters automatically. Thirdly, the state, action, and reward functions of the agent are designed
for training and learning. Finally, numerical simulations are performed, and the results validated the
feasibility and validity of the feasibility and effectiveness of the proposed method.

Keywords: unmanned surface vehicle; deep reinforcement learning; parameter tuning; path-following
control

1. Introduction

A USV is a kind of ship which navigates on the water and is controlled by an automated
algorithm or a remote device. In recent years, with the rapid development of marine science
and control theory, the USV has been widely used in marine rescue and marine monitoring
due to its advantages of speed and economy [1,2]. Path following is the foundation for a
USV to perform tasks and is also the reflection of the intelligence of a USV.

In recent years, artificial intelligence methods, especially reinforcement learning (RL)
technology, have effectively improved the accuracy of heading control for USVs. Reinforce-
ment learning is a machine learning technique in which the agents gain knowledge about
the specified scenario with training and learning from interactions with the environment
directly; it can be combined with the concept of hierarchical neural networks (HNNs) in
deep learning (DL) to form various types of deep reinforcement learning (DRL) methods,
such as deep Q-learning network (DQN) [3], deep deterministic policy gradient (DDPG) [4],
asynchronous advantage actor–critic (A3C) [5] and soft actor–critic (SAC) [6], etc. These
algorithms have achieved unprecedented success in many challenging areas. In particular,
reinforcement learning techniques are also used in the USV field. Gonzalez-Garcia et al. [7]
proposed a USV guidance control method based on DDPG that combined sliding mode
control. By training the heading command, the path following of the USV is realized. The
results showed that the performance is improved, and the control stability is enhanced.
Zhao et al. [8] proposed a deep Q-learning (DQL) method based on the adaptive gradient
descent function to guide USV navigation. The results showed that the algorithm per-
forms well in reducing the complexity and improving the accuracy of the path following.
Wang et al. [9] proposed an optimal trajectory tracking control algorithm based on deep
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reinforcement learning, with which the tracking error can converge; its effectiveness and su-
periority are proven through simulation. The SAC algorithm is an RL algorithm proposed
by Haarnoja et al., based on AC. The core idea of the algorithm is that entropy information
is combined with the original reward to encourage exploration; the behavior strategy to
maximize the reward with entropy is trained. The algorithm can preserve the randomness
of the behavior strategy to the maximum extent and improve the agent’s ability to perceive
the environment. Zheng et al. [10] proposed a linear active disturbance rejection control
strategy based on the SAC algorithm, which performed the tracking on both a straight and
a circular trajectory for a USV under the wave effect.

The path-following control system comprises guidance laws and controllers [11]. Line-
of-sight (LOS) guidance law [12,13] has been widely used in the design of a path-following
controller for USVs due to its simplicity, efficiency, and ease of implementation. The law
is independent of the controller and does not depend on the mathematical model of the
system. For example, in reference [14], the virtual control law that uses the tracking error is
calculated to design the guidance law; in contrast, in reference [15], the visual angle of the
desired path is calculated for the USV heading controller. The path-following controller
can be designed with self-adaption [16,17], backstepping [18,19], sliding mode [20,21],
and other control methods. However, the robustness of adaptive control methods needs
to be improved. The backstepping algorithm is highly dependent on the model and
needs accurate model parameters. Although sliding mode control does not require a
high-accuracy model, its chattering problem is difficult to eliminate [22]. Moreover, due
to the high cost of the experiment, the difficulty of adjusting the control parameters, the
nonlinearity of the motion model, and the uncertainty of the environment, it is difficult to
guarantee the stability of the system. Therefore, it is difficult for these control algorithms to
show their advantages in practical applications.

Therefore, it is significant to propose an adaptive control method with a simple system,
good robustness, and low requirement on model accuracy. PID control is widely used in a
ship’s heading control. Miao et al. [23] designed a self-adapting expert S-PID controller
for a mini-USV to perform heading control and verified the effectiveness and reliability of
the designed motion control system through experiments. Based on the LOS guidance law,
Zhu et al. [24] conducted a simulation analysis on three control algorithms, incremental
PID, fuzzy PID, and variable-length-ratio-fuzzy PD, the results showed that the third has
more anti-interference advantages than the other two. Fan et al. [25] designed a track
control algorithm combining LOS and fuzzy adaptive PID and conducted a real boat test.
The results show that the algorithm reduces the influence of time-varying drift angle on
track control, however, some steering overshoot and position deviation still emerged at the
corner of the path.

At present, the existing algorithms are not practical in automatically optimizing the
PID parameters, and little research has been done on the application of the RL method
to the heading control of USVs. For this reason, a PID parameter optimization method
based on the SAC algorithm for USVs is proposed to achieve adaptive heading control. The
remainder of this paper is organized as follows. In Section 2, the USV kinematic model
based on Abkowite is introduced and the path-following guidance system is designed.
Then the PID parameter optimization algorithm based on SAC is proposed. In Section 3, the
simulation training process and the simulation results under three different working condi-
tions are performed to verify the feasibility and effectiveness of the proposed algorithm.
Finally, the concluding remarks are provided in Section 4.

2. The Design of the DRL

In this section, the overall design diagram for the proposed system is presented, and,
to solve the tedious process of PID parameter tuning, an adaptive SAC-PID control method
is introduced to solve the mechanical tuning problem of PID parameters. The overall flow
diagram of the proposed method is given in Figure 1.
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Figure 1. The overall flow diagram for the proposed method.

As shown in Figure 1, the Abkowitz holistic model is established, and considering
the integral saturation condition of the PID controller, the control system is based on the
LOS guidance and the PD controller is designed to control the USV heading. To obtain
reasonable PD parameters, a neural network based on the SAC algorithm is established,
and the agent is trained to interact with the abovementioned control system. The final
network is used for the experimental simulation in which the required control parameters
are inputted for the control parameters by online transmission.

2.1. Dynamic Model of USV

Since the USV is a kind of ship that navigates on water, a hydrodynamic model with
three degrees of freedom can be used to describe the relationship between the USV’s motion
state and the power, external force, fluid force, and corresponding torque on the USV in the
local coordinate system of the USV. After ignoring the pitch, roll, and heave of the USV,
the two-dimensional coordinate description of ship motion is shown in Figure 2, where
o− xy is the global coordinate system (Earth coordinate system), and o0 − x0y0 is the local
coordinate system of the USV.
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The motion equation of the USV with three degrees of freedom can be described by
the following equation: 

X = m
( .
u− rv− xGr2)

Y = m
( .
v + ru + xG

.
r
)

N = Iz
.
r + mxG

( .
v + ru

) (1)

where m is the total weight of the USV, xG is the longitudinal coordinate of the center of
gravity, and Iz is the moment of inertia of the vertical axis over the center of gravity of the
USV. X, Y, and N are the hydrodynamic and torque components of the USV on the 3-DOF
of the three motion directions of u, v, and r, respectively.

The integral-type Abkowitz model refers to the motion model proposed by Abkowitz,
which takes the ship as an entirety under force to process the mechanical analysis. In theory,
the hydrodynamic derivative of the infinite order derived from the Taylor expansion equals the
real value. Still, a large amount of research shows that the accuracy is satisfied for engineering
applications when the hydrodynamic is derived from the third derivative [26,27]. The third-
order Taylor series expansion model is shown in Equation (2). ∆u represents the difference
between the current speed and the designed speed, which can be described as Equation (3).



m
( .
u− rv− xGr2) = Xu∆u + Xuu(∆u)2 + Xuuu(∆u)3 + X .

u
.
u + Xvvv2 + Xrrr2 + Xvrvr

+Xδδδ2 + Xvδvδ + Xrδrδ

m
( .
v + ru + xG

.
r
)
= Yvv + Yvvvv3 + Y .

v
.
v + Yrr + Yrrrr3 + Y.

r
.
r + Yvrrvr2 + Yvvrv2r + Yδδ

+Yδδδδ3 + Yuδuδ + Yvδδvδ2 + Yvvδv2δ + Yrδδrδ2 + Yrrδr2δ

Iz
.
r + mxG

( .
v + ru

)
= Nvv + Nvvvv3 + N .

v
.
v + Nrr + Nrrrr3 + N .

r
.
r + Nvrrvr2 + Nδδ

+Nδδδδ3 + Nuδuδ + Nvδδvδ2 + Nvvδv2δ + Nrδδrδ2 + Nrrδr2δ

(2)

∆u = u− u0 (3)

Move all terms that are proportional to translational accelerations
.
u,

.
v, and

.
r in Equa-

tion (2) to the left of the equation, while the inertial force, the lift force, and the drag force
of the fluid on the hull have been moved to the right of the equation. Then the Abkowitz
mathematical model of ship motion can be given as shown in Equation (4). The USV model
parameters are shown in Table 1. Table 2 contains the hydrodynamic coefficients.

(m− X .
u)

.
u = FX(u, v, r, δ)

(m−Y .
v)

.
v + (mxG −Y.

r) = FY(u, v, r, δ)
(mxG − N .

v)
.
v + (Iz − N.

r)
.
r = FN(u, v, r, δ)

(4)

where X .
u, Y .

v, Y.
r, N .

v, and N.
r are the hydrodynamic derivatives.

Table 1. Main parameters of the USV.

Parameters Values

USV Weight m 3.273 t
Length L 7.0 m
Width b 1.27 m

Draught Depth T 0.455 m
Motor Rated Speed tr 16.687◦/s

Designed speed u0 1.242 m/s
Moment of inertia Iz 10.0178 Kg·m2

Center of gravity xG 0.2485 m

Table 2. Hydrodynamic Coefficients.

Parameters Values Parameters Values

X .
u −0.00135 Xvδ 0.001609

Y .
v −0.014508 Xrδ −0.001034

Y.
r −0.001209 Yv −0.019
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Table 2. Cont.

Parameters Values Parameters Values

N .
v −0.000588 Yvvv −0.129

N .
r −0.000564 Yr 0.005719

Xu −0.0022 Yrrr −0.000048
Xuu 0.0015 Yvrr −0.02429
Xuuu 0.0 Yvvr 0.0211
Xvv 0.00159 Yδ 0.00408
Xrr 0.000338 Yδδδ −0.003059
Xvr 0.01391 Yuδ −0.00456
Xδδ −0.00272 Yvδδ 0.00326
Nv −0.007886 Yvvδ 0.003018

Nvvv 0.000175 Yrδδ −0.002597
Nr −0.003701 Yrrδ 0.000895

Nrrr −0.000707 Nδ −0.001834
Nvrr 0.00372 Nδδδ 0.001426
Nuδ 0.00232 Nvδδ −0.001504
Nvvδ −0.001406 Nrδδ 0.001191
Nrrδ −0.000398

2.2. Path Following

The USV path-following control problem is defined as controlling the USV to the
desired path S. The line-of-sight (LOS) guidance law is a classical and effective navigation
algorithm that does not depend on any dynamic control model and is insensitive to high-
frequency white noise. The guidance law can efficiently calculate the desired course and
pass it to the controller to achieve the control goal in real time owing to the reason that the
desired course is only related to the desired route and the real-time position of the USV.
LOS guidance algorithms can be divided into two types, which are based on the lookahead
distance and the enveloping circle. The former type is adopted in this paper. The figure of
LOS guidance law is shown in Figure 3.
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Figure 3. LOS guidance law. o− xy is the global coordinate system. od − xdyd is the carrier coordinate
system. ψd is the desired heading angle. ϕ is the angle between the bow of the USV and the vertical axis
of the global coordinate system. ye is the lateral error about path tracking. αk is the tangential angle at
the od point on the desired path. U is the actual velocity of the USV. ∆ is the lookahead distance, usually
set as an integer multiple of the ship’s length. In this paper, we take the multiple as 2.
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The PID controller is a linear regulator that compares the desired heading angle ψd(t)
with the actual heading angle ϕ(t) to form the heading angle deviation e(t):

e(t) = ψd(t)− ϕ(t) (5)

The desired rudder angle can be expressed as Equation (6):

δ(k) = Kpe(k) + Ki

k

∑
i=0

e(i)− Kd(e(k)− e(k− 1)) (6)

Considering the integral saturation condition of the PID controller, the PD parameters are
adjusted to ensure the USV quickly tends to the desired track and keeps the USV navigating
within the error range. Therefore, Equation (6) can also be expressed as Equation (7),

δ = Kpe + Kd
(
e− e′

)
(7)

where e′ is the error at the last time. The neural network is performed to produce the
appropriate PD parameters.

2.3. SAC Algorithm

Figure 4 clearly describes the interaction process between the reinforcement learning
agent and the environment, which is also called the Markov Decision Process (MDP) [25].
(S, A, ρ, r) is an important tuple in MDP, in which S is all the states in the environment,
A is the set of all the actions, ρ represents the probability density of the next state, and
st+1 ∈ S is given the current state st ∈ S, and the action at ∈ A. r is a bounded immediate
payoff at each time when one state transfers to another. ρπ(st, at) represents the state-
action distribution generated by policy π. At time t, the agent obtains the state st from
the environment and inputs it into the policy π to obtain the action at. The action at is
executed and the reward rt of the current step is obtained, while the agent enters the next
state st+1. γ represents the discount factor, so the total reward at time t can be described as
Equation (8). The state value function, shown in Equation (9), can be used to evaluate the
quality of the current state, while the state-action-value function, shown in Equation (10),
can be used to represent whether the action made in the current state is of high quality. The
transformation between these two can be described as Equations (11) and (12).

Rt =
∞

∑
k=0

γkrt+k (8)

Vπ(s) = Eπ

[
∞

∑
k=0

γkrt+k

∣∣∣∣∣st = s

]
= E[Rt|st = s] (9)

Qπ(s, a) = E[Rt|st = s, at = a] (10)

Vπ(s) = E[Qπ(s, a)|st = s] (11)

Qπ(s, a) = Rt+1 + γ ∑
st+1∈S

Pa
ss′Vπ(st+1) (12)

where Pa
ss′ = P[st+1 = s′

∣∣st = s, at = a] , and P is a state transition probability matrix. The
optimization objective in reinforcement learning is to maximize the long-term reward R.
According to the MDP solution process, the optimal strategy π is the policy that maximizes
the reward R, which can be described as Equation (13).

π = arg max
T

∑
t=0

E(st ,at)∼ρπ

[
γtr(st, at)

]
(13)
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Compared with other strategies, the core idea of SAC is that entropy information
which encourages the agent to explore for maximizing the entropy reward is combined
with the original reward. Thus, Equation (13) can be updated as Equation (14),

π = arg max
T

∑
t=0

E(st ,at)∼ρπ

[
γtr(st, at) + αH(π(st))

]
(14)

where α is the entropy coefficient, which controls the weight between the entropy term and
the revenue term and also influences the randomness of the strategy. H is entropy, which
represents the randomization of the current policy, expressed as Equation (15).

H(P) = Ex∼P[− log P(x)] (15)

In this paper, the SAC algorithm is mainly composed of five networks, including two
value networks (one V network, one target-V network), two action-value networks (Q
network), and one actor network (π network). The V network is used to calculate the value
of the value function. The Q network is used to calculate the value of the action-value
function. The network π outputs the policy value that guides the action of the agent. The
overview of the SAC system is shown in Figure 5.
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2.3.1. Training and Updating of the Actor Network

The strategy π is a Gaussian distribution with mean µ and covariance σ calculated by
the neural network. The sampling of each policy πφ(·|st) is a function calculated from the
state s, policy parameter φ, and independent noise ξ ∈ N(0, 1), which can be described as
Equation (16). The loss function of the actor network training is given as Equation (17).

ãφ(s, ξ) = tan h
(
µφ(s) + σφ(s)� ξ

)
(16)

Loss = Eξ∈N

[
αlog πφ

(
ãφ(s, ξ)

∣∣s)−Q
(
s, ãφ(s, ξ)

)]
(17)

Compared with other RL methods, obtaining action ã to calculate the Loss instead of
selecting the action from the sampled mini-batch data, the actor network is reused to predict
all of the possible actions. The optimization objective of the actor network can be expressed
as Equation (18). The gradient calculation formula of the actor network is expressed as
Equation (19).

Jπ(φ) = E
ξ∈N

[
αlog πφ

(
ãφ(s, ξ)

∣∣s)−min
i=1,2

Qθ_i
(
s, ãφ(s, ξ)

) ]
(18)

∇̂φ Jπ(φ) = ∇φα log
(
πφ(at|st)

)
+

(
∇at α log

(
πφ(at|st)

)
−∇at min

i=1,2
Qθ− i(st, at)

)
∇φ ãφ(s, ξ) (19)

2.3.2. Training and Updating of V Networks

As shown in Figure 5, the V network is updated with the mini-batch, which is the
data sampled from the experience pool. The combination of the probability π(at|st) of
performing action at in the current state st, the probability log(π(at|st)) after taking the
logarithm, and the minimum value of the state-action value Q1 and Q2 is taken as the true
value of the V network. The MSE method is adopted for loss function calculation and V
network training. The objective function can be expressed as Equation (20):

JV(ψ) = Est∼D

[
1
2

(
Vψ(st)− Eat∼πφ

[
min
i=1,2

Qθ−i(st, at)− αlogπφ(at

∣∣∣∣st)

])2
]

(20)

where ψ is the parameter in the V network. D is the experience pool. at ∼ πφ means that
instead of sampling from the experience pool, the actions are sampled according to the current
policy. The gradient calculation formula of the V network is expressed as Equation (21).

∇̂ψ JV(ψ) = ∇ψVψ(st)
(
Vψ(st)−Qθ(st, at) + logπφ(at|st)

)
(21)

2.3.3. Training and Updating of Critic-Q Network

As shown in Figure 5, the Q network is updated with the mini-batch, which is the data
sampled from the experience pool. Q′ = rt + γV(st+1) is used to calculate the true value of
the state st, and Q1 and Q2 at the same action at are used to estimate the predictive value
of the state st. The objective function can be expressed as Equation (22):

JQ(θ) = E(st ,at)∼D

[
1
2
(Qθ(st, at)−Q′(st, at))

2
]

(22)

where θ is the parameter in the Q network. Q′(st, at) is presented as Equation (23):

Q′(st, at) = r(st, at) + γEst+1∼P
[
VΨ(st+1)

]
(23)

where Ψ is the parameter of the target-V network in the state st+1. The gradient calculation
formula for the Q network is expressed as Equation (24).

∇̂θ JQ(θ) = ∇θQθ(st, at)
(
Qθ(st, at)− r(st, at)− γVΨ(st+1)

)
(24)
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Leaving the entropy coefficient α unchanged would be unreasonable because constant
change in reward would negatively affect the whole training process. Therefore, it is
necessary to automatically adjust α. To improve the learning speed and improve the
stability of the agent, this article designed a neural network to adaptively adjust the size of
the entropy coefficient α based on the theory of reference [26]. Specifically, when the agent
enters a new solution area where the agent’s exploration ability should be enhanced to find
the best action, α should increase so that the agent will not be trapped in the local optimum.
When the agent has almost finished the exploration in a solution area where the learning
ability of the agent should be improved, to accumulate experience from the best action, α
should be decreased. The optimization function maximizes the expected return under the
constraint of the minimum expected entropy, which can be expressed as Equation (25):

max
π0:T

Eρπ

[
T
∑

t=0
γtr(st, at)

]
s.t. E(st ,at)∼ρπ [− log (πt(at|st))] ≥ H0, ∀t

(25)

where H0 is a constant, representing the preset minimum entropy value. To solve Equation (25),
the Lagrange multiplier method is performed to transform the optimization problem into the
primal problem and its dual problem. Then the final optimization result can be obtained as
Equation (26).

α∗t = argmin
αt

T

∑
t=0

Eρ∗t
[−αt logπ∗t (at|st)− αtH0] (26)

where ρ∗t indicates the state-action pair of the optimal policy. Then the network for α is
setup and the stochastic gradient descent is performed as in Equation (26), which can be
dubbed Equation (27).

∇̂α J(α) = ∇αEat∼πt [−αt logπt(at|st)− αtH0]
α← α− η∇α J(α)

(27)

where at is derived from the current policy πt(st), but st is selected from the mini-batch. The
Adam algorithm is used for optimization and the learning rate lrα is set to 0.0001.

2.3.4. The Design of State, Action Space, and Reward

During path following, the USV will be disturbed by wind, waves, currents, and other
environmental factors. To make the output parameters of the agent more accurate, the
environmental information should be considered in the state space design as much as
possible. Based on the USV model constructed in Section 2, the state space is defined as
Equation (28).

s =
[
u, v, r, ϕ, ye, αk, δ,

.
δ, e,

.
e
]

(28)

Similarly, the action space is defined as a =
[
Kp, Kd

]
, and Kp ranging from [−0.5, 0.5],

and Kd ranges from [−50, 50]. The reward function r has two parts, one is rpsi, the other is
rye ; rpsi and rye are designed as shown in Equations (30) and (31).

r = rpsi + rye (29)

rpsi =

{
0, e ≤ 0.1

−e− 0.1e′, e ≥ 0.1
(30)

rye =

{
0, ye ≤ 1
−0.1, ye ≥ 1

(31)

The design of the actor network and the critic network are shown in Figures 6 and 7.
It can be seen that they share the same structure. The dimension of the input layer in the
actor network is set as 10. The hidden layer consists of two layers with 400 and 300 neuron
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nodes, respectively. The dimension of the output layer is set to 2. The dimension of the
input layer in the critic network is set as 12. The hidden layer includes two layers with 400
and 300 neuron nodes, respectively. The dimension of the output layer is set to 1. In order
to prevent gradient saturation and gradient disappearance, ReLU is used as the activation
function of hidden layers in both actor and critic, and tanh is adopted as the activation
function of the output layer.
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3. Training and Simulation Results
3.1. Network Training

The algorithm code was written based on Pycharm (Jetbrains, Czech Republic) and
TensorFlow 2.0.1 (Google Brain, USV) and was used as the framework, and the code runs
on a computer with 8GB RAM. The maximum time step of each training was 2500 and
the number of training runs was set to 1500. On average, it takes 154 min to complete the
training for each path following. The Adam optimizer based on gradient descent was used
to learn the parameters of the deep neural network during training. To test the superiority
of the SAC algorithm, training and learning based on the DDPG algorithm were performed
for comparison. The hyperparameters of the agents are shown in Table 3.

At the initial times of the network training, the strategy was almost random, and the
agent could not learn much useful experience, so the effect of following the desired path
was not good. Figure 8 shows the training process diagram. To better highlight the average
performance and fluctuation range of the algorithm, it was designed as a mean–variance
curve. The vertical coordinate was designed as the average return per 10 training sessions. The
return was calculated after each training, and the parameters of each network were updated
for NT times according to the reward. Note that the reward represents an immediate return
on the action taken. The return is the sum of the immediate returns after the training.
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Table 3. Hyperparameters of the algorithms.

Agent DDPG SAC SAC-Auto

Discount factor γ 0.99 0.99 0.99
Hidden layer 1 400 400 400
Hidden layer 2 300 300 300

Activation function ReLU ReLU ReLU
Batch size 100 100 100

Experience pool
capacity 106 106 106

τ 0.0001 0.0001 0.0001
lra 0.001 0.001 0.001
lrc 0.001 0.001 0.001
α none 0.2 auto
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Figure 8. Training process.

It can be seen from Figure 8 that all three algorithms can converge. SAC-auto converges
faster than the DDPG. The average return and mean square deviation (MSD) after training
are shown in Table 4. The higher average return and smaller MSD indicate that the
agent based on the SAC algorithm can better complete the path-following task and has a
better stability.

Table 4. Comparison of results after training.

Agent DDPG SAC SAC-Auto

Average return −0.263 −0.248 −0.190
MSD 0.116 0.078 0.05

3.2. Simulation Results

In this section, the effectiveness of the proposed method is verified by the linear and
circular path-following simulation in the simulated wind and wave environment, where
u0 = 1.242 m/s, v0 = 0 m/s, and r0 = 0 m/s at the beginning. Under the same guidance
law, the abovementioned control method with three trained RL parameters is compared
with the adaptive PID parameter controller [28].

In this paper, in order to verify the anti-interference and navigation stability of the
system, the interference of

[
−0.2× 103, 0.2× 103]N was added to the transverse force, and

the interference of
[
−0.2× 103, 0.2× 103]N·m was added to the turning moment. The



J. Mar. Sci. Eng. 2022, 10, 1847 12 of 17

transverse disturbing force is shown in Figure 9. The turning disturbing moment is shown
in Figure 10.
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3.2.1. Linear Path Following

The linear reference path was designed as the line segment between the points (20, 20)
and (160, 20). The initial position of the USV is (0, 0), and its initial heading is parallel to
the path. Figure 11 is the path following the comparison figures between the controllers
mentioned above. Figures 12 and 13 are the comparisons of the heading angle and rudder
angle during the path-following process. The path-tracking errors of the four controllers
are shown in Table 5. The controller based on the reinforcement learning algorithm takes
about 2 to 3 s to complete a path-following task, which is not much different from the
calculation time in the literature [28], but the actual time still needs to prevail.
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Table 5. Data comparison table of four algorithms.

Controller Transverse Error
Mean/(m)

Heading Deviation
Mean/(◦)

Average Operation
Time per Step/(ms)

SAC-auto 0.128 0.221 1.63
SAC 0.136 0.376 1.65

DDPG 0.292 0.888 1.61
Self-adaptive PID 0.449 2.085 1.89

It can be seen from Figure 11 that in the presence of a disturbing force, the tracking
trajectories obtained with four controllers finally approached the desired paths within the
specified error range. The rudder angle is rapidly operated to overcome the disturbance of
waves. Compared to the adaptive controller, the RL-based controller has less overshoot
during steering and produces smoother trajectories. Compared to the DDPG algorithm
controller, the SAC-auto controller has better performance in both heading control and
rudder maneuvering. According to Table 5, compared to the SAC controller, the steady-
state performance of the SAC-auto controller is improved, with which, when the desired
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direction changes, the improved parameter can provide the USV with a fast adjustment to
the desired direction and a stable path-following effect on the desired path, and the average
deviation of the direction angle when stable is limited to 0.5◦. It can also be concluded
from Figure 13 that the fluctuation of the rudder angle with SAC-auto is the smoothest,
and the maximum fluctuation of the rudder angle is less than 5◦, indicating that the rudder
is slightly frayed and the control gear can be well-protected.

The parameter curves of Kp and Kd output by SAC-auto are shown in Figure 14. Figure 15
shows the transverse force and turning moment of the USV. It can be seen that under the
control of the SAC-auto algorithm, the transverse force and turning moment of the USV
fluctuate less; the reason is that the maneuvering fluctuation of the rudder angle is smaller.
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3.2.2. Curve and Polyline Path Following

The above simulation results verify the feasibility and anti-interference ability of the
SAC-auto algorithm when following a straight path. In order to verify the performance of
the algorithm when following other desired paths which are more complex, and to inspect
whether the SAC-auto algorithm can adaptively produce appropriate PD parameters, the
path-following simulations of zigzag and turning are performed.
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Scenario 1. The desired path of the zigzag is designed as the polyline between points
(20, 20), (100, 100), (180, 20), and (260, 100). The initial position of the USV is located at
(0, 0), and the initial heading is parallel to the Y-axis.

Scenario 2. The turning path is a circle with points (0, 0) as the center and 40m as the radius.
The initial position of the USV is (0, 0), and the initial heading is parallel to the Y-axis.

Figure 16 shows the graphs for path following, rudder angle, heading angle, and
curves of Kp and Kd for different algorithms in the tracking process.
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It can be seen from the simulations that the SAC-auto controller has a better per-
formance in both heading control and rudder maneuvering under the condition of path
following of zigzag and turning when considering the disturbance of the wave. The fluctu-
ation of the rudder angle with SAC-auto is the smoothest, indicating that the SAC-auto
control method performs well when following a complex desired path.

4. Conclusions

The classic adaptive PID control method used for path following does not perform
well under complex conditions such as following a curvilinear path or considering wave
interference. Concerning this issue, this paper presents a path-following control method based
on SAC for PID parameter setting. First, a 3-DOF USV dynamics model based on Abkowite
was established. Second, the guidance system using the line-of-sight method and the USV
heading control system in the PID controller was designed. Third, the SAC algorithm was then
used, and the state space, action space, and reward function were designed for the training of
the RL on the path-following scenarios; the SAC is promoted to adaptively and rapidly adjust
the PID parameter during the simulation. Finally, the algorithm was proven in the simulation
experiments under path following in a straight line, zigzag, and turning with disturbance
of wave scenarios, which verify the feasibility and robustness of the proposed method. In
further research, the experiment should be conducted.
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