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Abstract: Advancements in deep learning techniques and the availability of free, large databases
have made it possible, even for non-technical people, to either manipulate or generate realistic facial
samples for both benign and malicious purposes. DeepFakes refer to face multimedia content, which
has been digitally altered or synthetically created using deep neural networks. The paper first outlines
the readily available face editing apps and the vulnerability (or performance degradation) of face
recognition systems under various face manipulations. Next, this survey presents an overview of the
techniques and works that have been carried out in recent years for deepfake and face manipulations.
Especially, four kinds of deepfake or face manipulations are reviewed, i.e., identity swap, face
reenactment, attribute manipulation, and entire face synthesis. For each category, deepfake or face
manipulation generation methods as well as those manipulation detection methods are detailed.
Despite significant progress based on traditional and advanced computer vision, artificial intelligence,
and physics, there is still a huge arms race surging up between attackers/offenders/adversaries
(i.e., DeepFake generation methods) and defenders (i.e., DeepFake detection methods). Thus, open
challenges and potential research directions are also discussed. This paper is expected to aid the
readers in comprehending deepfake generation and detection mechanisms, together with open issues
and future directions.

Keywords: DeepFakes; digital face manipulations; digital forensics; fake news; multimedia manip-
ulations; generative AI; deepfake generation; deepfake detection; deep learning; face recognition;
misinformation; disinformation face morphing attack; biometrics; fake news; information authenticity

1. Introduction

It is estimated that 1.8 billion images and videos per day are uploaded to online
services, including social and professional networking sites [1]. However, approximately
40% to 50% of these images and videos appear to be manipulated [2] for benign reasons
(e.g., images retouched for magazine covers) or adversarial purposes (e.g., propaganda
or misinformation campaigns). In particular, human face image/video manipulation is a
serious issue menacing the integrity of information on the Internet and face recognition
systems since faces play a central role in human interactions and biometrics-based person
identification. Therefore, plausible manipulations in face samples can critically subvert
trust in digital communications and security applications (e.g., law enforcement).

DeepFakes refer to multimedia content that has been digitally altered or synthetically
created using deep learning models [3]. Deepfakes are the results of face swapping, en-
actment/animation of facial expressions, and/or digitally generated audio or non-existing
human faces. In contrast, face manipulation involves modifying facial attributes such as age,
gender, ethnicity, morphing, attractiveness, skin color or texture, hair color, style or length,
eyeglass, makeup, mustache, emotion, beard, pose, gaze, mouth open or closed, eye color,
injury and effects of drug use [4,5], and adding imperceptible perturbations (i.e., adversarial
examples), as shown in Figure 1. The readily-available face editing apps (e.g., FaceApp [6],
ZAO [7], Face Swap Live [8], Deepfake web [9], AgingBooth [10], PotraitPro Studio [11],
Reface [12], Audacity [13], Soundforge [14], Adobe Photoshop [15]), and Deep Neural net-
work (DNN) source codes [16,17] have enabled even non-experts and non-technical people to
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create sophisticated deepfakes and altered face samples, which are difficult to be detected by
human examiners and current image/video analysis forensics tools.
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Figure 1. Examples of different face manipulations: original samples (first row) and manipulated
samples (second row).

Deepfakes are expected to advance present disinformation and misinformation sources
to the next level, which could be exploited by trolls, bots, conspiracy theorists, hyperparti-
san media, and foreign governments; thus, deepfakes could be fake news 2.0. Deepfakes
can be used for productive applications such as realistic dubbing of foreign video films [18]
or historical figure reanimation for education [19]. Deepfakes can also be used for de-
structive applications such as the use of fake pornographic videos to damage a person’s
reputation or to blackmail them [20], manipulating elections [21], creating warmongering
situations [22], generating political or religious unrest via fake speeches [23], causing chaos
in financial markets [24], or identity theft [25]. It is easy to notice that the number of
malevolent exploitations of deepfakes chiefly dominates the benevolent ones. In fact, not
only have recent advances made creating a deepfake with just a still image [26], but also
deepfakes are successfully being misused by cybercriminals in the real world. For instance,
an audio deepfake was utilized to scam a CEO out of $243,000 [27]. The issue of deepfakes
and face manipulations is getting compounded as they can negatively affect the automated
face recognition system (AFRS). For instance, studies have shown that AFRS’s error rates
can reach up to 95% under deepfakes [28], 50–99% under morphing [29], 17.08% under
makeup manipulation [30], 17.05–99.77% under partial face tampering [31], 40–74% under
digital beautification [32], 93.82% under adversarial examples [33], and 67% under GANs
generated synthetic samples [34]. Similarly, automated speaker verification’s accuracy
drops to 40% from 98% under adversarial examples [35].

There exist many deepfake and face manipulation detection methods. However, a
systematic analysis shows that the majority of them have low generalization capability, i.e.,
their performances drop drastically when they encounter a novel deepfake/manipulation
type that was not used during the training stage, as also demonstrated in [36–40]. Also,
prior studies considered deepfake detection a reactive defense mechanism and not as a
battle between the attackers (i.e., deepfake generation methods) and the defenders (i.e.,
deepfake detection methods) [41–43]. Therefore, there is a crucial gap between academic
deepfake solutions and real-world scenarios or requirements. For instance, the foregoing
works are usually lagging in the robustness of the systems against adversarial attacks [44],
decision explainability [45], and real-time mobile deepfake detection [46].

The study of deepfake generation and detection, in recent years, is gathering much
more momentum in the computer vision and machine learning community. There exist
some review papers on this topic (e.g., [5,24,47,48]), but they are focused mainly on deepfake
or synthetic samples using generative adversarial networks. Moreover, most survey articles
(e.g., [4,49,50]) were mainly written from an academic point of view and not from a practical
development point of view. Also, they did not cover the advent of very recent face
manipulation methods and new deepfake generation and detection techniques. Thus,
this paper provides a concise but comprehensive overview from both theoretical and
practical points of view to furnish the reader with an intellectual grasp as well as to
facilitate the progression of novel and more resilient techniques. For example, publicly
available apps, codes, or software information can be easily accessed or downloaded
for further development and use. All in all, this paper presents an overview of current
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deepfake and face manipulation techniques by covering four kinds of deepfake or face
manipulation. The four main types of manipulation are identity swap, face reenactment,
attribute manipulation, and entire face synthesis, where every category manipulation
generation and such manipulation detection methods are summarized. Furthermore, open
challenges and potential future directions (e.g., robust deepfake detection systems against
adversarial attacks using multistream and filtering schemes) that need to be addressed
in this evolving field of deepfakes are highlighted. The main objectives of this article are
to complement earlier survey papers with recent advancements, to impart to the reader
a deeper understanding of the deepfake creation and detection domain, and to use this
article as ground truth to develop novel algorithms for deepfake and face manipulation
generation and detection systems.

The rest of the article is organized as follows. Section 2 presents deepfake and face
manipulation generation as well as detection techniques. In Section 3, the open issues
and potential future directions of deepfake generation and detection are discussed. The
conclusions are described in Section 4.

2. Deepfake Generation and Detection

We can broadly define deepfake as “believable audio-, visual- or multimedia generated
by deep neural networks”. Deepfake/face manipulation can be categorized into four
main groups: identity swap, face reenactment, attribute manipulation, and entire face
synthesis [47], as shown in Figure 2. Several works have been conducted on different
types of deepfake/face manipulation generation and detection. However, in the following
subsections, we have included representative studies based on their novelty, foundational
idea, and/or performance. Also, studies have been incorporated to represent the most up-
to-date research works depicting the state-of-the-art in deepfake generation and detection.

2.1. Identity Swap

Here, an overview of existing identity swap or face swap (i.e., replacing a person’s
face with another person’s face) generation and detection methods is presented.

2.1.1. Identity Swap Generation

This consists of replacing the face of a person in the target image/video with the face
of another person in the source image/video [51]. For example, Korshunova et al. [52]
developed a face-swapping method using Convolutional Neural Networks (CNNs). While
Nirkin et al. [53] proposed a technique using a standard fully convolutional network in
unconstrained settings. Mahajan et al. [54] presented a face swap procedure for privacy
protection. Wang et al. [55] presented a real-time face-swapping method. Natsume et al. [56]
proposed a region-separative generative adversarial network (RSGAN) for face swapping
and editing. Other interesting face swamping methods can be seen in [28,57–61].

2.1.2. Identity Swap Detection

Ample studies have been conducted on identity swap deepfake detection. For instance,
Koopman et al. [62] analyzed photo response non-uniformity (PRNU) for detection. Also,
warping artifacts [63], eye blinking [64], optical flow with CNNs [65], heart rate [66], image
quality [28], local image textures [37], long short-term memory (LSTM) and recurrent
neural network (RNN) [67], multi-LSTM and blockchain [68], clustering [69], context [70],
compression artifacts [71], metric learning [72], CNN ensemble [73], Identity-aware [74],
transformers [75], audio-visual dissonance [76], and multi-attentional [77] features were
used. Very few works have been focused on deepfake detection method’s explainability
(e.g., [78]) and generalization capability (e.g., work of Bekci et al. in [38] and Aneja et al. [79]
work using zero-shot learning). Recently, S. Liu et al. [80] proposed a block shuffling
learning method to detect deepfakes, where the image is divided into blocks, and using
random shuffling where intra-block and inter-block-based features are extracted.



J. Imaging 2023, 9, 18 4 of 16

J. Imaging 2023, 9, x FOR PEER REVIEW 4 of 17 
 

 

Aneja et al. [79] work using zero-shot learning). Recently, S. Liu et al. [80] proposed a 
block shuffling learning method to detect deepfakes, where the image is divided into 
blocks, and using random shuffling where intra-block and inter-block-based features are 
extracted.  

 
Figure 2. Real and fake examples of each deepfake/face manipulation group. The fake sample in 
“Entire face synthesis” group is obtained from the method in [81]. 

2.2. Face Reenactment 
Here, an overview of prior face reenactment (i.e., changing the facial expression of 

the individual) generation and detection techniques is provided. 

2.2.1. Face Reenactment Generation 
This consists of replacing the facial expression of a person in the target image/video 

with the facial expression of another person in the source image/video [47]. It is also 
known as expression swap or puppet master. For instance, Thies et al. [82] developed real-
time face reenactment RGB video streams. Whereas encoder-decoder, RNN, unified land-
mark converter with geometry-aware generator, GANs, and task-agnostic GANs-based 
schemes were designed by Kim et al. [83], Nirkin et al. [84], Zhang et al. [85], Doukas et 
al. [86], and Cao et al. [87], respectively.  

2.2.2. Face Reenactment Detection  
Face reenactment detection methods were designed by Cozzolino et al. [88] using 

CNNs; Matern et al. [89] using visual features with logistic regression and MLP; Rossler 
et al. [90] using mesoscopic, steganalysis, and CNN features; Sabir et al. [91] using RNN; 
Amerini et al. [65] using Optical Flow + CNNs; Kumar et al. [92] using multistream CNNs; 
and Wang et al. [93] using 3DCNN. In contrast, Zhao et al. [94] designed a spatiotemporal 
network, which can utilize complementary global and local information. In particular, the 
framework uses a spatial module for the global information, and the local information 
module extracts features from patches selected by attention layers.  

2.3. Attribute Manipulation 
Here, an overview of existing attribute manipulation or face retouching, or face edit-

ing (i.e., altering certain face attributes such as skin tone, age, and gender) generation and 
detection techniques is presented. 

2.3.1. Attribute Manipulation Generation  
This consists of modifying some facial attributes, e.g., color of hair/skin, gender, age, 

adding glasses [95–97]. It is also known as face editing or face retouching. Xiao et al. [98] 
presented a multi-attribute manipulation GANs-based system. Moreover, spatial atten-
tion in GANs [99], variational autoencoder (VAE) + GANs [100], multi-domain GANs 
[101], geometry-aware GANs [102], mask-guided GANs [103], 3D face morphable model 
[104], and GIMP animation [105] based methods have been designed.  

  

Source Target

Fake

Real Real

FakeFakeReal RealFake
Identity swap                                                     Face reenactment                                           Attribute manipulation Entire face synthesis

Figure 2. Real and fake examples of each deepfake/face manipulation group. The fake sample in
“Entire face synthesis” group is obtained from the method in [81].

2.2. Face Reenactment

Here, an overview of prior face reenactment (i.e., changing the facial expression of the
individual) generation and detection techniques is provided.

2.2.1. Face Reenactment Generation

This consists of replacing the facial expression of a person in the target image/video
with the facial expression of another person in the source image/video [47]. It is also known
as expression swap or puppet master. For instance, Thies et al. [82] developed real-time
face reenactment RGB video streams. Whereas encoder-decoder, RNN, unified landmark
converter with geometry-aware generator, GANs, and task-agnostic GANs-based schemes
were designed by Kim et al. [83], Nirkin et al. [84], Zhang et al. [85], Doukas et al. [86], and
Cao et al. [87], respectively.

2.2.2. Face Reenactment Detection

Face reenactment detection methods were designed by Cozzolino et al. [88] using
CNNs; Matern et al. [89] using visual features with logistic regression and MLP; Rossler
et al. [90] using mesoscopic, steganalysis, and CNN features; Sabir et al. [91] using RNN;
Amerini et al. [65] using Optical Flow + CNNs; Kumar et al. [92] using multistream CNNs;
and Wang et al. [93] using 3DCNN. In contrast, Zhao et al. [94] designed a spatiotemporal
network, which can utilize complementary global and local information. In particular, the
framework uses a spatial module for the global information, and the local information
module extracts features from patches selected by attention layers.

2.3. Attribute Manipulation

Here, an overview of existing attribute manipulation or face retouching, or face editing
(i.e., altering certain face attributes such as skin tone, age, and gender) generation and
detection techniques is presented.

2.3.1. Attribute Manipulation Generation

This consists of modifying some facial attributes, e.g., color of hair/skin, gender, age,
adding glasses [95–97]. It is also known as face editing or face retouching. Xiao et al. [98]
presented a multi-attribute manipulation GANs-based system. Moreover, spatial attention
in GANs [99], variational autoencoder (VAE) + GANs [100], multi-domain GANs [101],
geometry-aware GANs [102], mask-guided GANs [103], 3D face morphable model [104],
and GIMP animation [105] based methods have been designed.

2.3.2. Attribute Manipulation Detection

In [36], authors studied the efficacy of different deep learning models’ efficacy for
attribute manipulation detection. The Deep Boltzmann machine by Bharati et al. [106],
CNN by Dang et al. [107], LBP + landmarks + CNNs by Rathgeb et al. [108], adaptive
manipulation traces by Guo et al. [109], encoder-decoder by Mazaheri et al. [110], facial
boundary features by Kim et al. [111], and PRNU by Scherhag et al. [112] were exploited.
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2.4. Entire Face Synthesis

Here, an overview of prior entire face synthesis (i.e., creating non-existent face samples)
generation and detection techniques is provided.

2.4.1. Entire Face Synthesis Generation

This consists of generating entire non-existent face images [113–115]. Berthelot et al. [116]
developed boundary equilibrium GANs to create synthetic faces. Similarly, various ap-
proaches have been devised, e.g., coupled GANs [117], invertible convolution [118],
U-Net [119], from speech to face GANs [120], high-resolution deep convolutional GANs [121],
interactive anycost GANs [122], and structured disentanglement framework for face genera-
tion and editing [123].

2.4.2. Entire Face Synthesis Detection

Many studies have also focused on entire face synthesis detection. For example, Mc-
Closkey et al. [124] presented a color cues-based system. While GAN fingerprint + CNNs [125],
PRNU [126], co-occurrence matrices [127], neuron behaviors [128], incremental learning +
CNNs [129], and self-attention mechanism [130] were also utilized. Table 1 presents a sum-
mary of deepfake and face manipulation generation and detection techniques. Guo et al. [131]
showed that GANs-generated faces could be detected by analyzing the irregular pupil shapes,
which may be caused by the lack of physiological constraints in the GANs models.

Table 1. Representative works on deepfake and face manipulation generation and detection tech-
niques. SWR = successful swap rate; MS-SSIM = multi-scale structural similarity; Acc = accuracy;
LL = Logloss; AUC = area under the curve; CL = contextual loss; RMSE = root mean square error;
AU = Facial action unit; CSIM = Cosine Similarity between IMage embeddings; EER = Equal error
rate; FID = Frechet inception distance; AP = Average Precision; KID = kernel inception distance;
PSNR = Peak Signal-to-Noise Ratio.

Study Approach Dataset Performance Source Code Year

Deepfake Generation

Wang et al. [55]
Real-time face

swapping using
CANDIDE-3

COFW [132], 300W
[133], LFW [134] SWR = 87.9%. × 2018

Natsume et al.
[56]

Face swapping and
editing using RSGAN CelebA [135] MS-SSIM = 0.087 × 2018

Chen et al. [61] High fidelity
encoder-decoder VGGFace2 [136] Qualitative

Analysis

https://github.com/
neuralchen/SimSwap

(accessed on 4 January 2023)
2021

Xu et al. [137]
Lightweight

Identity-aware
Dynamic Network

VGGFace2 [136]
FaceForensics++ [90] FID = 6.79%

https:
//github.com/Seanseattle/
MobileFaceSwap (accessed

on 4 January 2023)

2022

Shu et al. [138]

Portrait, identity, and
pose encoders with

generator and feature
pyramid network

VoxCeleb2 [139] PSNR = 33.26
https://github.com/jmliu8

8/heser (accessed on 4
January 2023)

2022

Deepfake Detection

Afcha et al. [140] CNNs FaceForensics++ [90] Acc = 98.40%
https://github.com/
DariusAf/MesoNet

(accessed on 4 January 2023)
2018

Zhao et al. [77] Multi-attentional FaceForensics++ [90]
DFDC [3]

Acc = 97.60%
LL = 0.1679

https://github.com/
yoctta/multiple-attention

(accessed on 4 January 2023)
2021

https://github.com/neuralchen/SimSwap
https://github.com/neuralchen/SimSwap
https://github.com/Seanseattle/MobileFaceSwap
https://github.com/Seanseattle/MobileFaceSwap
https://github.com/Seanseattle/MobileFaceSwap
https://github.com/jmliu88/heser
https://github.com/jmliu88/heser
https://github.com/DariusAf/MesoNet
https://github.com/DariusAf/MesoNet
https://github.com/yoctta/multiple-attention
https://github.com/yoctta/multiple-attention
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Table 1. Cont.

Study Approach Dataset Performance Source Code Year

Miao et al. [141]
Transformers via
bag-of-feature for

generalization

FaceForensics++ [90],
Celeb-DF [142],

DeeperForensics-1.0
[143]

Acc = 87.86%
AUC = 82.52%
Acc = 97.01%

× 2021

Prajapati et al.
[144]

Perceptual Image
Assessment + GANs DFDC [3] AUC = 95%

Acc = 91%

https:
//github.com/pratikpv/

mri_gan_deepfake (accessed
on 4 January 2023)

2022

Wang et al. [75]
Multi-modal
Multi-scale

Transformer (M2TR)
FaceForensics++ [90] Acc = 97.93%

https:
//github.com/wangjk666

/M2TR-Multi-modal-Multi-
scale-Transformers-for-

Deepfake-Detection
(accessed on 4 January 2023)

2022

Reenactment Generation

Zhang et al. [145] Decoder + warping
CelebA-HQ [146]

FFHQ [147]
RAF-DB [148]

AU = 75.1%
AU = 70.9%
AU = 71.1%

https://github.com/bj8
0heyue/One_Shot_Face_

Reenactment (accessed on 4
January 2023)

2019

Ngo et al. [149] Encoder-decoder 300VW [150] CL= 1.46 × 2020

Tripathy et al.
[151]

Facial attribute
controllable GANs FaceForensics++ [90] CSIM = 0.747 × 2021

Bounareli et al.
[152] 3D shape model VoxCeleb [153] FID = 0.66 × 2022

Agarwal et al.
[154]

Audio-Visual Face
Reenactment GAN VoxCeleb [153] FID = 9.05

https://github.com/mdv3
101/AVFR-Gan/ (accessed

on 4 January 2023)
2023

Reenactment Detection

Nguyen et al.
[155] Autoencoder FaceForensics++ [90] EER = 7.07%

https://github.com/nii-
yamagishilab/ClassNSeg

(accessed on 4 January 2023)
2019

Dang et al. [156] CNNs + Attention
mechanism FaceForensics++ [90] AUC = 99.4%

EER = 3.4%

https:
//github.com/Jstehouwer/
FFD_CVPR2020 (accessed

on 4 January 2023)

2020

Kim et al. [157] Knowledge
Distillation FaceForensics++ [90] Acc = 86.97% × 2021

Yu et al. [158] U-Net Structure FaceForensics++ [90] Acc = 97.26% × 2022

Wu et al. [159] Multistream Vision
Transformer Network FaceForensics++ [90] Acc = 94.46% × 2022

Attribute Manipulation Generation

Lample et al.
[160] Encoder-decoder CelebA [135] RMSE = 0.0009

https://github.com/
facebookresearch/

FaderNetworks (accessed
on 4 January 2023)

2018

Liu et al. [161] Selective transfer
GANs CelebA [135] Acc = 70.80%

https://github.com/
csmliu/STGAN (accessed

on 4 January 2023)
2019

https://github.com/pratikpv/mri_gan_deepfake
https://github.com/pratikpv/mri_gan_deepfake
https://github.com/pratikpv/mri_gan_deepfake
https://github.com/wangjk666/M2TR-Multi-modal-Multi-scale-Transformers-for-Deepfake-Detection
https://github.com/wangjk666/M2TR-Multi-modal-Multi-scale-Transformers-for-Deepfake-Detection
https://github.com/wangjk666/M2TR-Multi-modal-Multi-scale-Transformers-for-Deepfake-Detection
https://github.com/wangjk666/M2TR-Multi-modal-Multi-scale-Transformers-for-Deepfake-Detection
https://github.com/wangjk666/M2TR-Multi-modal-Multi-scale-Transformers-for-Deepfake-Detection
https://github.com/bj80heyue/One_Shot_Face_Reenactment
https://github.com/bj80heyue/One_Shot_Face_Reenactment
https://github.com/bj80heyue/One_Shot_Face_Reenactment
https://github.com/mdv3101/AVFR-Gan/
https://github.com/mdv3101/AVFR-Gan/
https://github.com/nii-yamagishilab/ClassNSeg
https://github.com/nii-yamagishilab/ClassNSeg
https://github.com/Jstehouwer/FFD_CVPR2020
https://github.com/Jstehouwer/FFD_CVPR2020
https://github.com/Jstehouwer/FFD_CVPR2020
https://github.com/facebookresearch/FaderNetworks
https://github.com/facebookresearch/FaderNetworks
https://github.com/facebookresearch/FaderNetworks
https://github.com/csmliu/STGAN
https://github.com/csmliu/STGAN
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Table 1. Cont.

Study Approach Dataset Performance Source Code Year

Kim et al. [162] Real-time style map
GANs

CelebA-HQ [146]
AFHQ [163]

FID = 4.03
FID = 6.71

https://github.com/naver-
ai/StyleMapGAN (accessed

on 4 January 2023)
2021

Huang et al.
[164]

Multi-head encoder
and decoder

CelebA-HQ [146]
StyleMapGAN [162]

MSE = 0.023
FID = 7.550 × 2022

Sun et al. [165]
3D-aware generator
with two decoupled

latent codes
FFHQ [147] FID = 28.2

https://github.com/
MrTornado24/FENeRF

(accessed on 4 January 2023)
2022

Attribute Manipulation Detection

Wang et al. [166] CNNs Own dataset Acc = 90.0%
https://github.com/

peterwang512/FALdetector
(accessed on 4 January 2023)

2019

Du et al. [167] DFT + CNNs

Deepfake-in-the-wild
[168]

Celeb-DF [142]
DFDC [3]

Acc = 78.00%
Acc = 96.00%
Acc = 81.00%

× 2020

Akhtar et al. [36] DNNs Own dataset Acc = 99.31 × 2021

Rathgeb et al.
[169]

Human majority
voting FERET [170] CCR = 62.8% × 2022

Guo et al. [171]

Gradient operator
convolutional network

with tensor
pre-processing and
manipulation trace
attention module

FaceForensics++ [90] Acc = 94.86%
https://github.com/

EricGzq/GocNet-pytorch
(accessed on 4 January 2023)

2023

Entire face synthesis generation

Li et al. [172] Conditional
self-attention GANs CelebA-HQ [146] KID = 0.62

https://github.com/
LiYuhangUSTC/Lines2Face
(accessed on 4 January 2023)

2019

Karras et al. [81] StyleGAN FFHQ [147] FID = 3.31
https://github.com/

NVlabs/stylegan2 (accessed
on 4 January 2023)

2020

Xia et al. [173] Textual descriptions
GANs CelebA-HQ [146] FID = 106.37

https://github.com/
IIGROUP/TediGAN

(accessed on 4 January 2023)
2021

Song et al. [174] Text-to-speech system LibriTTS dataset [175]
AISHELL-3 [176] FPS = 30.3 × 2022

Li et al. [177]
StyleT2I: High-Fidelity

Text-to-Image
Synthesis

CelebA-HQ [146] FID = 18.02
https://github.com/

zhihengli-UR/StyleT2I
(accessed on 4 January 2023)

2022

Entire face synthesis detection

Wang et al. [178] CNNs StyleGAN2 [81]
ProGAN [146]

AP = 99.10%
AP = 100%

https:
//github.com/peterwang5
12/CNNDetection (accessed

on 4 January 2023)

2020

Pu et al. [179] Incremental clustering PGGAN [146] F1 Score =
99.09%

https://github.com/jmpu/
NoiseScope (accessed on 4

January 2023)
2020

Yousaf et al.
[180] Two-Stream CNNs StarGAN

[101] Acc = 96.32% × 2021

https://github.com/naver-ai/StyleMapGAN
https://github.com/naver-ai/StyleMapGAN
https://github.com/MrTornado24/FENeRF
https://github.com/MrTornado24/FENeRF
https://github.com/peterwang512/FALdetector
https://github.com/peterwang512/FALdetector
https://github.com/EricGzq/GocNet-pytorch
https://github.com/EricGzq/GocNet-pytorch
https://github.com/LiYuhangUSTC/Lines2Face
https://github.com/LiYuhangUSTC/Lines2Face
https://github.com/NVlabs/stylegan2
https://github.com/NVlabs/stylegan2
https://github.com/IIGROUP/TediGAN
https://github.com/IIGROUP/TediGAN
https://github.com/zhihengli-UR/StyleT2I
https://github.com/zhihengli-UR/StyleT2I
https://github.com/peterwang512/CNNDetection
https://github.com/peterwang512/CNNDetection
https://github.com/peterwang512/CNNDetection
https://github.com/jmpu/NoiseScope
https://github.com/jmpu/NoiseScope
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Table 1. Cont.

Study Approach Dataset Performance Source Code Year

Nowroozi et al.
[181]

Cross-band and spatial
co-occurrence

matrix + CNNs

StyleGAN2 [81]
VIPPrint [182]

Acc = 93.80%
Acc = 92.56% × 2022

Boyd et al. [183]

Human-annotated
saliency maps into a

deep learning
loss function

StyleGAN2 [81],
ProGAN [146],

StyleGAN [147],
StyleGAN2-ADA
[184], StyleGAN3
[185], StarGANv2

[163],
SREFI [186]

AUC = 0.633
https://github.com/

BoydAidan/CYBORG-Loss
(accessed on 4 January 2023)

2023

3. Open Issues and Research Directions

Although great efforts have been made in devising deepfake generation and detection,
there are several issues yet to be addressed successfully. In the following, some of them
are discussed.

3.1. Generalization Capability

It is easy to notice in the literature that most of the existing deepfake detection frame-
works’ performances decrease remarkably when tested under deepfakes, manipulations, or
databases that were not used for the training. Thus, detecting unknown novel deepfakes or
deepfake generation tools is yet a big challenge. The generalization capability of deepfake
detectors is vital for dependable precision and public trust in the information being shared
online. Some preliminary generalization solutions have been proposed, but their ability to
tackle novel emerging deepfakes is still an open issue.

3.2. Explainability of Deepfake Detectors

There is a lack of work on the deepfake detection framework’s interpretability and
dependability. Most deep-learning-based deepfake or face manipulation detection methods
in the literature usually do not explain the reason behind the final detection outcome. It
is mainly due to deep learning techniques being the black box in nature. Current deep-
fake or face manipulation detectors only give a label, confidence percentage, or fakeness
probability score but not the insight description of results. Such a description would be
useful to know why the detector made a certain decision. Also, deepfake or face manip-
ulation (e.g., applying digital makeup) can be performed either for benign or malicious
intentions. Nonetheless, present deepfake or face manipulation detection techniques
cannot distinguish the intent. For deepfake detection framework’s interpretability and
dependability, various advanced combinations of techniques such as fuzzy inference sys-
tems [187], layer-wise relevance propagation [188], and the Neural Additive Model [189]
could be helpful.

3.3. Next-Generation Deepfake and Face Manipulation Generators

Improved deepfake and face manipulation generation techniques will help develop
more advanced and generalized deepfake detection methods. Some of the shortcomings
of current datasets and generation methods are the lack of ultra-high-resolution samples
(e.g., existing methods are usually generating 1014 × 1024 resolution samples, which is not
sufficient for the next generation of deepfakes), limited face attribution manipulations (i.e.,
face attribute manipulation types are dependent on the training set, thereby manipulation
characteristics and attributes are limited, and novel attributes cannot be generated), video
continuity problem (i.e., the deepfake/face manipulation, especially identity swap, tech-
niques neglects the continuation of video frames as well as physiological signals), and no

https://github.com/BoydAidan/CYBORG-Loss
https://github.com/BoydAidan/CYBORG-Loss
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obvious deepfake/face manipulations (i.e., present databases are not composed of obvious
fake samples such as a human face with three eyes).

3.4. Vulnerability to Adversarial Attacks

Recent studies have shown that deep learning-based deepfake and face manipulation
detection methods are vulnerable to adversarial examples [44]. Though current detectors
are capable of handling several degradations (e.g., compression and noise), their accuracy
goes to extremely low levels under adversarial attacks. Thus, next-generation techniques
should be not only able to tackle deepfakes but also adversarial examples. To this aim,
developing various multistream and filtering schemes could be effective.

3.5. Mobile Deepfake Detector

The neural networks-based deepfake detection methods, which are capable of attaining
remarkable accuracy, are mostly unsuited for mobile platforms/applications owing to the
huge number of parameters and computational cost. Compressed, yet effective, deep
learning-based detection systems, which could be used on mobile and wearable devices,
will greatly help counteract deepfakes and fake news.

3.6. Lack of Large-Scale ML-Generated Databases

Most studies on AI-synthesized face sample detection compiled their own database
with various GANs. Thereby, different published studies have different performances on
GANs samples, because the quality of GANs-generated samples varies and are mostly
unknown. Several public GANs-generated fake face sample databases should be produced
to help the advancement of this demanding research field.

3.7. Reproducible Research

In machine learning and the deepfake research community, the reproducible results
trend should be urged by furnishing the public with large datasets with larger human
scores/reasons, experimental setups, and open-source tools/codes. It will surely aid in
outlining the true progress in the field and avoid overestimation of the performances by
the developed methods.

4. Conclusions

AI-synthesized or digitally manipulated face samples, commonly known as Deep-
Fakes, are a significant challenge threatening the dependability of face recognition systems
and the integrity of information on the Internet. This paper provides a survey on recent
advances in deepfake and facial manipulation generation and detection. Despite noticeable
progress, there are several issues remaining to be resolved to attain highly effective and
generalized generation and defense techniques. Thus, this article discussed some of the
open challenges and research opportunities. The field of deepfakes still has to go a long way
for dependable deepfake and face manipulation detection frameworks, which will need
interdisciplinary research efforts in various domains, such as machine learning, computer
vision, human vision, psychophysiology, etc. All in all, this survey may be utilized as a
ground truth for developing novel AI-based algorithms for deepfake generation and detec-
tion. Also, it is hoped that this survey paper will motivate budding scientists, practitioners,
researchers, and engineers to consider deepfakes as their domain of study.
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