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Abstract: Digital images can be distorted or contaminated by noise in various steps of image ac-
quisition, transmission, and storage. Thus, the research of such algorithms, which can evaluate the
perceptual quality of digital images consistent with human quality judgement, is a hot topic in the
literature. In this study, an image quality assessment (IQA) method is introduced that predicts the
perceptual quality of a digital image by optimally combining several IQA metrics. To be more specific,
an optimization problem is defined first using the weighted sum of a few IQA metrics. Subsequently,
the optimal values of the weights are determined by minimizing the root mean square error be-
tween the predicted and ground-truth scores using the simulated annealing algorithm. The resulted
optimization-based IQA metrics were assessed and compared to other state-of-the-art methods on
four large, widely applied benchmark IQA databases. The numerical results empirically corroborate
that the proposed approach is able to surpass other competing IQA methods.

Keywords: full-reference image quality assessment; feature selection; simulated annealing

1. Introduction

Nowadays, people increasingly communicate through media in form of audio, video,
and digital images. Therefore, image quality assessment (IQA) has found many applica-
tions and become a hot research topic in the research community [1]. Namely, IQA methods
evaluate the perceptual quality of digital images and support, among others, image en-
hancement [2], restoration [3], steganography [4], or denoising algorithms [5]. Further, IQA
is also necessary in the benchmarking of many image processing or computer-vision algo-
rithms [6–8]. In the literature, IQA is classified into two groups, i.e., subjective and objective
IQA. Specifically, subjective IQA deals with the collection of users’ quality ratings for a set
of digital images either in a laboratory [1] or in an online crowd-sourcing experiment [9].
Moreover, images’ perceptual quality is expressed as a mean opinion score (MOS), which
is the arithmetic mean of individual quality scores. As a result, subjective IQA provides
quality labelled images with objective IQA as training or test data [10]. Namely, objective
IQA deals with algorithms and mathematical models that are able to predict the quality of a
given image. Conventionally, objective IQA is divided into three classes [11]—full-reference
(FR) [12], reduced-reference (RR) [13], and no-reference (NR) [14]—with respect to the avail-
ability of the reference (distortion-free) images. As the names indicate, FR-IQA methods
have full access to the reference images. In contrast, NR-IQA algorithms evaluate image
quality without any information about the reference images [15], and RR-IQA algorithms
have partial information about them.

1.1. Contribution

The development of objective FR-IQA algorithms can also involve fusion-based
strategies that already take existing FR-IQA metrics and try to create a “super evalua-
tor”. Recently, many complex fusion-based approaches have been published in the litera-
ture [16–19]. The main contribution to this paper is also a fusion-based approach. Namely,
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we demonstrate a solution based on a linear combination of several already existing FR-IQA
metrics optimized with a simulated annealing (SA) algorithm using a root mean square
error (RMSE) objective, which is able to produce well-performing fusion-based FR-IQA
metrics. To be more specific, a linear combination of 16 FR-IQA metrics is used in an
optimization problem to select FR-IQA metrics and find their weights via an SA algorithm
that minimizes the RMSE of the prediction. Unlike the approach of Oszust [20], we apply
simulated annealing instead of a genetic algorithm for performing the fusion of FR-IQA
metrics. Namely, simulated annealing usually achieves better results in the case of continu-
ous function approximation than basic genetic algorithms because they choose one or two
genes at a given location [21]. The proposed fusion-based metrics was evaluated on large,
popular, and widely accepted IQA benchmark databases, such as LIVE [22], TID2013 [23],
TID2008 [24], and CSIQ [25].

1.2. Organization

The rest of this paper is organized as follows. In Section 2, an overview about the
current state of FR-IQA is given. Next, the proposed fusion-based metric is introduced in
Section 3. Our experimental results, together with the description of the applied benchmark
IQA databases, evaluation environment, and performance indices, are given in Section 4.
Finally, a conclusion is drawn in Section 5.

2. Literature Review

In this paper, we follow the classification of FR-IQA algorithms presented in [26].
To be specific, Ding et al. [26] categorized existing FR-IQA algorithms into five distinct
classes, i.e., error visibility, structural similarity, information theoretic, learning-based,
and fusion-based methods.

Error visibility methods measure a distance between the pixels of the distorted and the
reference images to quantify perceptual quality degradation. The representative method of
this class of FR-IQA is the mean squared error (MSE) method, which measures the average
of the squares of the errors. In other words, it is the average squared difference between
the reference and the distorted images in the context of FR-IQA [27]. Another well-known
example is the peak signal-to-noise ratio (PSNR), which is commonly applied to assess
the quality of the reconstruction of lossy compression codecs [28]. Although both MSE
and PSNR have low computational costs and their physical meaning is clear and well
understood, they often mismatch with subjective perceptions of visual quality.

Structural similarity methods measure the similarity between the corresponding
regions of the distorted and reference images using sliding-windows in the images and
correlation measures. The representative and first published method of this class is the
structural similarity index (SSIM) [29], which has become extremely popular in the field
with many extensions and applications [30]. The theorem of SSIM has become extremely
popular in the research community and inspired many variants. For example, the wavelet
domain structural similarity [31] carries out SSIM in the wavelet domain to quantify
perceptual quality. This work was extended by Sampat et al. [32] into the complex wavelet
domain. In [33], information content was utilized as weights in the pooling process of local
image quality scores. In contrast, Wang et al. [34] extended SSIM to multi-scale processing
to improve perceptual quality estimation. Li and Bovik [35] elaborated an FR-IQA metric
by taking the average of SSIMs computed over three different regions of an image, such as
edges, textures, and smooth regions. Kolaman and Yadid-Pecht [36] found an extension of
SSIM to color images by representing red, green, and blue color channels with quaternions.
Later, SSIM was also extended to hyperspectral images [37].

Information theoretic methods approach the FR-IQA task from the point of view of
information communication. For example, Sheikh et al. [38,39] compared the information
content of the reference and distorted images. Namely, perceptual quality was quanti-
fied by how much information is similar between the reference and distorted images.
In contrast, Larson and Chandler [25] classified image distortions as near-threshold and
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supra-threshold. The authors elaborated two quality indexes for both distortion types.
Finally, the overall perceptual quality was determined based on the quality scores of
near-threshold and supra-threshold distortions.

As the terminology suggests, learning-based methods rely on a specific machine learn-
ing algorithm to create a quality model from training images. Next, the obtained quality
model is tested on previously unseen images. For instance, Liang et al. [40] implemented a
special convolutional neural network containing two paths, one for the reference image
and the other for the distorted image. Further, this network was trained on 224× 224-sized
image patches sampled simultaneously from the reference and distorted images. As a
consequence, the perceptual quality of a distorted image was estimated by the average
score of the considered patches. Kim and Lee [41] devised a similar network, but it predicts
a visual sensitivity map that is multiplied by an error map calculated directly from the
reference and the distorted images to estimate perceptual image quality. Ahn et al. [42]
further improved the idea of Kim and Lee [41] by implementing an end-to-end trained
convolutional neural network with three inputs, i.e., reference image, distorted image,
and spatial error map. Similar to [41], a distortion-sensitivity map was predicted from
the inputs and was later multiplied by the spatial error map to give an estimation for the
perceptual image quality. In contrast to the previously mentioned methods, Ding et al. [43]
extracted a set of feature maps from the reference and the distorted images using the
Sobel operator, log Gabor filter, and local pattern analysis. Subsequently, the extracted
feature maps were compared, and from the resulting similarity scores a feature vector was
compiled that was mapped onto perceptual quality scores with a trained support vector
regressor. Tang et al. [44] took a similar approach, but the authors employed a different set
of features (phase congruency maps [45], gradient magnitude maps, and log Gabor maps).
Further, the similarity scores of the feature maps were mapped onto perceptual quality
with a trained random forest regressor.

Fusion-based FR-IQA methods utilize existing FR-IQA metrics to create a new FR-IQA
algorithm. First, Okarma [46] suggested the idea of combined methods. Namely, the author
proposed a combined metric using the product and power of MS-SSIM [34], VIF [38],
and R-SVD [47]. This approach was developed further in [19], where the optimal exponents
in the product were determined by using MATLAB’s fminsearch command. In [48], Oszust
took a similar approach, but the author applied the scores of traditional FR-IQA metrics
as predictor variables in a lasso regression. Instead of lasso regression, Yuan et al. [49]
used kernel ridge regression in a similar layout. The work of Lukin et al. [50] exhibits
the properties of both learning-based and fusion-based methods. Specifically, the authors
created a training and a test set from the images of an IQA benchmark database. Next,
the scores of several traditional FR-IQA metrics were used as image features, and a neural
network was trained to estimate perceptual image quality. Amirshahi et al. [51] elaborated
a special fusion-based FR-IQA metric relying on a pretrained convolutional neural network.
Namely, the authors ran a reference-distorted image pair through an AlexNet [52] network
and compared the activation maps with the help of a traditional FR-IQA metric. Next,
the resulted scores were aggregated to obtain a single score for the perceptual image
quality. Bakurov et al. [53] revisited the classical SSIM [29] and MS-SSIM [34] metrics
by applying evolutionary and swarm intelligence optimization methods to find optimal
hyperparameters for SSIM and MS-SSIM instead of the original settings. Fusion-based
metrics were also proposed for remote sensing images [54], stitched panoramic images [55],
and 3D image quality assessment [18].

For more detailed studies about FR-IQA, we refer readers to the book of Xu et al.’s [56]
and to the study of Pedersen and Hardeberg [57]. Further, Zhang et al. [58] provide
an evaluation of several state-of-the-art FR-IQA algorithms on various IQA benchmark
databases. Zhai and Min provided an comprehensive overview of classical algorithms
in [59]. For the quality assessment of screen content images [60], Min et al. gave an overview
in [61].
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3. Proposed Method

As already mentioned, an FR-IQA metric should deliver perceptual quality scores
consistent with the human judgement using both the distorted and reference images. Let
us express the aggregated decision of n different FR-IQA metrics by a weighted sum as:

Q =
n

∑
i=1

αiqi, (1)

where qi(i = 1, 2, . . . , n) stands for the quality scores provided by the FR-IQA metrics.
Further, α = (α1, α2, . . . , αn) is a real vector of weights whose values are found via an
optimization procedure to ensure an effective fusion of FR-IQA metrics. Namely, an opti-
mization fusion was carried out in our study using n = 16 open-source FR-IQA metrics,
such as FSIM [62], FSIMc [62], GSM [63], IFC [38], IFS [64], IW-SSIM [33], MAD [25],
MS-SSIM [34], NQM [65], PSNR, RFSIM [66], SFF [67], SR-SIM [12], SSIM [29], VIF [39],
and VSI [68].

In the literature, Pearson’s linear correlation coefficient (PLCC), Spearman’s rank-order
correlation coefficient (SROCC), Kendall’s rank order correlation coefficient (KROCC), and root
mean square error (RMSE) are often considered to characterize the consistency between the
ground-truth quality scores of an IQA benchmark database and the quality scores predicted
by an FR-IQA metric [22]. From these performance indices, RMSE was applied as an objective
function in the proposed optimization based metric. Figures 1 and 2 depict flowcharts
where the compilation of the proposed fusion-based metrics and its application for FR-IQA
are demonstrated.

Figure 1. In the offline optimization stage, the proposed fusion-based metric is obtained by using
20% of the reference with its corresponding distorted counterparts. Next, a simulated annealing (SA)
optimization process selects FR-IQA metrics and provides them with weights. The resulting metric is
codenamed as LCSA-IQA to refer to the fact that is the linear combination of selected FR-IQA metrics
where the weights were assigned using simulated annealing.

Figure 2. The optimal linear combination of the selected FR-IQA metrics is applied to estimate
perceptual image quality.

Formally, the optimization problem can be written as

min
α

RMSE(F(Qp, β), S),

subject to αi ∈ R, n ∈ N, β ≥ 0,
(2)

where Qp is vector containing the quality scores of a set of images obtained by Equation (1)
and S contains the corresponding ground-truth scores. Further, prior to the calculation of
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RMSE, a non-linear regression is also applied [22] since a non-linear relationship exists
between the ground-truth and predicted scores. Formally, it can be written

Q = β1

(
1
2
− 1

1 + eβ2(Qp−β3)

)
+ β4Qp + β5, (3)

where β1, ..., β5 stand for the parameters of the regression model. In addition, Q and Qp are
the fitted and predicted scores, respectively. Since we use four large, widely accepted IQA
benchmark databases, i.e., LIVE [22], TID2013 [23], TID2008 [24], and CSIQ [25], in this
paper, four optimization-based fusion FR-IQA metrics are proposed, respectively. To this
end, approximately 20% of the reference images were randomly selected from a given
benchmark IQA database. More precisely, Q and S were compiled based on those distorted
images whose reference counterparts were randomly selected. Although 20% is a common
choice for parameter setting in the literature [69,70], there are also researchers who applied
30% [62] or 80% [71] for parameter tuning. However, we evaluate all the fusion based
metrics on all the databases to demonstrate results independent from the database.

Next, the optimization problem was solved described by Equation (2) to determine the
αi weights for Equation (1). Since the number of possible solutions increases exponentially
with number of the considered FR-IQA metrics, simulated annealing (SA) [72,73] was used
to solve the above-described optimization task. Namely, SA is a probabilistic optimization
technique for estimating the global optimum of a given function. The stochastic nature
of this algorithm enables the usage of nonlinear objective functions where many other
methods do not operate well. SA was inspired by the physical model of heating a material
and then slowly decreasing the temperature to eliminate imperfections from the material.
Hence, minimizing the system’s energy is the main goal. More precisely, the SA randomly
generates a new point at each iteration. Based on a probability distribution with a scale
proportional to the temperature, the new point’s distance from the present point or the size
of the search is determined. All new points that reduce the objective are accepted by the
algorithm, but points that increase the objective can also be accepted with a pre-defined
probability. Due to this property of the method, SA is prevented from being stuck in local
minima in early iterations. In our implementation, the SA was performed using MATLAB
R2020a with a Global Optimization Toolbox using αi = 0 for i = 1, 2, ..., n as initial point and
defining no lower or upper bounds for the method. After 100 runs of SA, the best solution—
αbest

d —was selected, where d denotes the database from which 20% of the reference images
was chosen randomly.

In the end of the SA optimization processes using LIVE [22], TID2013 [23], TID2008 [24],
and CSIQ [25] databases, the following FR-IQA metrics can be obtained, which are code-
named LCSA, referring to the fact that they are linear combinations of FR-IQA measures
selected by simulated annealing:

LCSA1 = αbest
LIV E = −561.0123 ·VSI + 281.826 · FSIMc− 116.1501 · IFC− 846.6376 ·MAD

+349.6191 ·MSSSIM− 262.6766 · NQM + 41.6348 · PSNR− 308.9426 · SSIM

+722.4479 ·VIF,

(4)

LCSA2 = αbest
T ID2013 = 1774.8368 ·VSI + 467.5433 · FSIMc− 332.1863 · GSM− 63.4379 · IFC

+84.7954 · IWSSIM− 346.5585 ·MAD− 126.5188 · NQM + 381.0923 · PSNR

−626.9841 · SSIM + 380.3341 ·VIF + 524.6484 · IFS + 342.7968 · SFF,

(5)

LCSA3 = αbest
T ID2008 = 1253.2402 ·VSI + 217.0877 · IWSSIM− 168.1779 ·MAD

−75.6832 · NQM + 276.9035 · PSNR− 28.5915 · RFSIM− 454.7619 · SSIM + 203.0893 ·VIF

+500.4323 · IFS− 153.3686 · SFF,

(6)
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LCSA4 = αbest
CSIQ = 266.3256 · FSIM− 119.8937 · FSIMc− 15.6937 · IWSSIM

−529.1806 ·MAD− 656.4991 ·MSSSIM− 73.009 · NQM + 381.0923 · PSNR

−626.9841 · SSIM + 380.3341 ·VIF + 524.6484 · IFS + 342.7968 · SFF.

(7)

The corresponding β vectors are as follows:

βLIV E = (106.1735, 36.8421, 30.0447, 15.7705, 139.3613), (8)

βT ID2013 = (56.413, 193.7249, 14.9834, 147.7736, 89.8778), (9)

βT ID2008 = (13.4153, 115.9834, 45.4464, 22.0253, 269.7624), (10)

βCSIQ = (13.5361, 105.4132, 70.1095, 150.7645, 11.5291). (11)

4. Results

In this section, our experimental results are presented. First, the applied IQA bench-
mark databases and evaluation protocol are described in Section 4.1. Next, Section 4.2
presents a comparison to other competing state-of-the-art methods on four large IQA
benchmark databases, i.e., LIVE [22], TID2013 [23], TID2008 [24], and CSIQ [25].

4.1. Applied IQA Benchmark Databases and Evaluation Protocol

The main properties of the applied IQA benchmark databases are outlined in Table 1.
These databases consist of a set of reference images, whose visual quality are considered
perfect and flawless. Further, distorted images are generated artificially from the ref-
erence images using different distortion types (i.e., JPEG compression noise, JPEG2000
compression noise, salt and pepper, motion blur, Gaussian, Poisson, etc.) at different
distortion levels. Figure 3 depicts the empirical MOS distributions of the applied bench-
mark databases.

(a) (b)

(c) (d)

Figure 3. Empirical MOS distributions in the used benchmark IQA databases: (a) LIVE, (b) TID2013,
(c) TID2008, and (d) CSIQ.
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Table 1. Summary of benchmark databases used in this study.

LIVE [22] TID2013 [23] TID2008 [24] CSIQ [25]

No. of reference
images 29 25 25 30

No. of distorted
images 779 3000 1700 866

No. of
distortions 5 24 17 6

No. of levels 5 5 4 4-5
No. of observers 161 917 838 35

Resolution ∼ 768× 512 512× 384 512× 384 500× 500

In the literature, PLCC, SROCC, and KROCC is widely used and accepted to charac-
terize the performance of FR-IQA methods. They are measured between the ground-truth
scores of an IQA benchmark database and the predicted scores. Moreover, prior to the cal-
culation of PLCC a non-linear regression is also applied [22] since a non-linear relationship
exists between the ground-truth and predicted scores. This non-linear relationship was also
defined by Equation (3). Further, Q and Qp are the fitted and predicted scores, respectively.
PLCC between vectors x and y with length m is defined as

PLCC(x, y) =
xTy√

x̄TȳȳT x̄
, (12)

where x̄ and ȳ are the mean subtracted version of vectors x and y, respectively. On the
other hand, SROCC can be defined as

SROCC(x, y) = 1− 6 ∑m
i=1(xi − yi)

2

m(m2 − 1)
, (13)

where xi and yi are the ith entries of vectors x and y, respectively. In contrast, KROCC
uses the number of concordant pairs (mc) and the number of discordant pairs (md) between
vectors x and y and is defined as

KROCC(x, y) =
mc −md

1
2 m(m− 1)

. (14)

As already mentioned, the proposed fusion-based metrics were implemented using
MATLAB R2020a and its Global Optimization Toolbox. The computer configuration applied
in our experiments is summarized in Table 2.

Table 2. Computer configuration applied in our experiments.

Computer model STRIX Z270H Gaming
Operating system Windows 10

Memory 15 GB
CPU Intel(R) Core(TM) i7-7700K CPU 4.20 GHz (8 cores)
GPU Nvidia GeForce GTX 1080

4.2. Comparison to the State-of-the-Art

In this subsection, the proposed fusion-based metrics are compared to several state-of-
the-art FR-IQA whose original source codes were made publicly available by the authors.
Moreover, we reimplemented the fusion-based SSIM-CNN [51] method in MATLAB R2020a
(available at: https://github.com/Skythianos/SSIM-CNN (accessed on 12 May 2022)).
The PLCC, SROCC, and KROCC performance comparisons of the proposed fusion-based
FR-IQA metrics with the state-of-the-art are summarized in Tables 3 and 4. Specifically,
Table 3 demonstrates the results on LIVE [22] and TID2013 [23], while Table 4 contains the

https://github.com/Skythianos/SSIM-CNN
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obtained results for TID2008 [24] and CSIQ [25] databases. The obtained results clearly
show that the proposed LCSA metrics are able to outperform the state-of-the-art. Specif-
ically, those LCSA metrics that were parameter-tuned on database d always deliver the
highest correlation values, while another LCSA not parameter-tuned on database d usually
provides the second-best results.

Table 3. PLCC, SROCC, and KROCC performance comparison of the proposed fusion-based FR-IQA
metrics with the state-of-the-art. The best results are typed in bold, and the second best results
are underlined.

LIVE [22] TID2013 [23]

FR-IQA Metric PLCC SROCC KROCC PLCC SROCC KROCC

2stepQA [74] 0.937 0.932 0.828 0.736 0.733 0.550
CSV [75] 0.967 0.959 0.834 0.852 0.848 0.657

DISTS [76] 0.954 0.954 0.811 0.759 0.711 0.524
ESSIM [77] 0.963 0.962 0.840 0.740 0.797 0.627
FSIM [62] 0.960 0.963 0.833 0.859 0.802 0.629
FSIMc [62] 0.961 0.965 0.836 0.877 0.851 0.667
GSM [63] 0.944 0.955 0.831 0.789 0.787 0.593
IFC [38] 0.927 0.926 0.758 0.554 0.539 0.394
IFS [64] 0.959 0.960 0.825 0.879 0.870 0.679

IW-SSIM [33] 0.952 0.956 0.817 0.832 0.778 0.598
MAD [25] 0.967 0.967 0.842 0.827 0.778 0.600

MS-SSIM [34] 0.941 0.951 0.804 0.794 0.785 0.604
NQM [65] 0.912 0.909 0.741 0.690 0.643 0.474

PSNR 0.872 0.876 0.687 0.616 0.646 0.467
ReSIFT [78] 0.961 0.962 0.838 0.630 0.623 0.471
RFSIM [66] 0.935 0.940 0.782 0.833 0.774 0.595
RVSIM [79] 0.641 0.630 0.495 0.763 0.683 0.520

SFF [67] 0.963 0.965 0.836 0.871 0.851 0.658
SR-SIM [12] 0.955 0.962 0.829 0.859 0.800 0.631

SSIM [29] 0.941 0.951 0.804 0.618 0.616 0.437
SSIM-CNN [51] 0.965 0.963 0.838 0.759 0.752 0.566
SUMMER [80] 0.967 0.959 0.833 0.623 0.622 0.472

VIF [39] 0.941 0.964 0.828 0.774 0.677 0.515
VSI [68] 0.948 0.952 0.805 0.900 0.894 0.677

LCSA1 0.974 0.974 0.857 0.820 0.788 0.607
LCSA2 0.846 0.962 0.828 0.916 0.903 0.731
LCSA3 0.947 0.969 0.843 0.770 0.821 0.647
LCSA4 0.967 0.970 0.844 0.859 0.823 0.649

Table 4. PLCC, SROCC, and KROCC performance comparison of the proposed fusion-based FR-IQA
metrics with the state-of-the-art. The best results are typed in bold, and the second best results
are underlined.

TID2008 [24] CSIQ [25]

FR-IQA Metric PLCC SROCC KROCC PLCC SROCC KROCC

2stepQA [74] 0.757 0.769 0.574 0.841 0.849 0.655
CSV [75] 0.852 0.848 0.657 0.933 0.933 0.766

DISTS [76] 0.705 0.668 0.488 0.930 0.930 0.764
ESSIM [77] 0.658 0.876 0.696 0.814 0.933 0.768
FSIM [62] 0.874 0.881 0.695 0.912 0.924 0.757
FSIMc [62] 0.876 0.884 0.699 0.919 0.931 0.769
GSM [63] 0.782 0.781 0.578 0.896 0.911 0.737
IFC [38] 0.575 0.568 0.424 0.837 0.767 0.590
IFS [64] 0.879 0.869 0.678 0.958 0.958 0.817

IW-SSIM [33] 0.842 0.856 0.664 0.804 0.921 0.753
MAD [25] 0.831 0.829 0.639 0.950 0.947 0.797

MS-SSIM [34] 0.838 0.846 0.648 0.899 0.913 0.739
NQM [65] 0.608 0.624 0.461 0.743 0.740 0.564

PSNR 0.447 0.489 0.346 0.853 0.809 0.599
ReSIFT [78] 0.627 0.632 0.484 0.884 0.868 0.695
RFSIM [66] 0.865 0.868 0.678 0.912 0.930 0.765
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Table 4. Cont.

TID2008 [24] CSIQ [25]

FR-IQA Metric PLCC SROCC KROCC PLCC SROCC KROCC

RVSIM [79] 0.789 0.743 0.566 0.923 0.903 0.728
SFF [67] 0.871 0.851 0.658 0.964 0.960 0.826

SR-SIM [12] 0.859 0.799 0.631 0.925 0.932 0.773
SSIM [29] 0.669 0.675 0.485 0.812 0.812 0.606

SSIM-CNN [51] 0.770 0.737 0.551 0.952 0.946 0.794
SUMMER [80] 0.817 0.823 0.623 0.826 0.830 0.658

VIF [39] 0.808 0.749 0.586 0.928 0.920 0.754
VSI [68] 0.898 0.896 0.709 0.928 0.942 0.785

LCSA1 0.886 0.874 0.685 0.966 0.956 0.819
LCSA2 0.896 0.906 0.727 0.897 0.949 0.800
LCSA3 0.923 0.921 0.755 0.964 0.961 0.827
LCSA4 0.906 0.909 0.737 0.977 0.973 0.857

Table 5 illustrates the direct and weighted average of correlation values measured on
LIVE [22], TID2013 [23], TID2008 [24], and CSIQ [25]. From the results of direct averages,
it can be clearly seen that the proposed LCSA2 and LCSA4 provide the best results in two
out of three performance indices, while LCSA3 is able to produce second best KROCC value.
The results of weighted averages are biased towards those FR-IQA measures that perform
well on TID2013 [23] since it is the largest database from the applied benchmarks. Similarly,
LCSA2 is the best-performing method in this respect because it provides the best results for
SROCC and KROCC. Further, LCSA4 delivers the second best PLCC and KROCC values,
while LCSA3’s performance is equivalent in terms of SROCC and KROCC to those of LCSA4.

Table 5. PLCC, SROCC, and KROCC performance comparison of the proposed fusion-based FR-
IQA metrics with the state-of-the-art. The best results are typed in bold, the second best results
are underlined.

Direct Average Weighted Average

FR-IQA Metric PLCC SROCC KROCC PLCC SROCC KROCC

2stepQA [74] 0.818 0.821 0.652 0.781 0.783 0.605
CSV [75] 0.901 0.897 0.729 0.877 0.873 0.694

DISTS [76] 0.837 0.816 0.647 0.792 0.759 0.582
ESSIM [77] 0.794 0.892 0.733 0.756 0.857 0.691
FSIM [62] 0.901 0.893 0.729 0.883 0.860 0.689
FSIMc [62] 0.908 0.908 0.743 0.893 0.885 0.710
GSM [63] 0.853 0.859 0.685 0.821 0.823 0.638
IFC [38] 0.723 0.700 0.542 0.644 0.625 0.473
IFS [64] 0.919 0.914 0.750 0.900 0.893 0.715

IW-SSIM [33] 0.857 0.878 0.708 0.846 0.840 0.664
MAD [25] 0.894 0.880 0.720 0.862 0.838 0.667

MS-SSIM [34] 0.868 0.874 0.699 0.838 0.839 0.659
NQM [65] 0.738 0.729 0.560 0.703 0.684 0.516

PSNR 0.697 0.705 0.525 0.634 0.654 0.480
ReSIFT [78] 0.776 0.771 0.622 0.705 0.700 0.550
RFSIM [66] 0.886 0.878 0.705 0.865 0.841 0.663
RVSIM [79] 0.779 0.740 0.577 0.777 0.723 0.558

SFF [67] 0.917 0.908 0.745 0.895 0.880 0.703
SR-SIM [12] 0.900 0.873 0.716 0.880 0.838 0.675

SSIM [29] 0.760 0.764 0.583 0.698 0.700 0.518
SSIM-CNN [51] 0.861 0.849 0.687 0.814 0.800 0.626
SUMMER [80] 0.808 0.809 0.647 0.745 0.746 0.582

VIF [39] 0.863 0.828 0.671 0.825 0.765 0.605
VSI [68] 0.919 0.921 0.744 0.909 0.908 0.716
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Table 5. Cont.

Direct Average Weighted Average

FR-IQA Metric PLCC SROCC KROCC PLCC SROCC KROCC

LCSA1 0.912 0.898 0.742 0.877 0.857 0.688
LCSA2 0.889 0.930 0.772 0.899 0.917 0.751
LCSA3 0.901 0.918 0.768 0.859 0.885 0.725
LCSA4 0.927 0.919 0.772 0.901 0.885 0.725

In the following, we examine the performance of the proposed and the other state-of-
the-art methods on the individual distortion types of the applied IQA benchmark databases.
The distortion types and their abbreviations used by the databases are summarized in
Table 6. Further, Tables 7–10 contain detailed results on the different distortion types of
LIVE [22], TID2013 [23], TID2008 [24], and CSIQ [25], respectively. To be more specific,
the SROCC values are given for each individual distortion types.

Table 6. Distortion types used in the applied benchmark IQA databases (LIVE [22], TID2013 [23],
TID2008 [24], and CSIQ [25]).

Abbreviation Description LIVE [22] TID2013 [23] TID2008 [24] CSIQ [25]

AGN additive Gaussian noise X X X X
ANC additive noise in color components X X X
SCN spatially correlated noise X X
MN masked noise X X
HFN high-frequency noise X X

IN impulse noise X X
QN quantization noise X X

FF simulated fast fading Rayleigh
channel X

GB Gaussian blur X X X
GCD global contrast decrement X
DEN image denoising X
JPEG JPEG compression noise X X X X
JP2K JPEG2000 compression noise X X X X
JGTE JPEG transmission errors X X
J2TE JPEG2000 transmission errors X X

NEPN non-eccentricity pattern noise X X

BLOCK local block-wise distortions of
different intensity X X

MS mean shift X X
CC contrast change X X

CCS change of color saturation X
MGN multiplicative Gaussian noise X
CN comfort noise X

LCNI lossy compression of noisy images X
ICQD image color quantization with dither X

CA chromatic aberration X
SSR sparse sampling and reconstruction X

Table 7. Comparison on LIVE’s [22] distortion types. SROCC values are given. The highest values
are typed in bold, while the second highest ones are underlined.

FSIM FSIMc IFS MS-
SSIM SFF VIF VSI LCSA1 LCSA2 LCSA3 LCSA4

AGN 0.965 0.972 0.988 0.973 0.986 0.986 0.984 0.976 0.961 0.962 0.965
FF 0.950 0.952 0.940 0.947 0.953 0.965 0.943 0.984 0.978 0.988 0.980
GB 0.971 0.971 0.967 0.954 0.975 0.973 0.953 0.978 0.989 0.997 0.996
JPEG 0.983 0.984 0.978 0.982 0.979 0.985 0.976 0.974 0.973 0.964 0.965
JP2K 0.972 0.970 0.969 0.963 0.967 0.970 0.960 0.952 0.969 0.967 0.978

All 0.963 0.965 0.960 0.951 0.965 0.964 0.952 0.974 0.962 0.969 0.970
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Table 8. Comparison on TID2013’s [23] distortion types. SROCC values are given. The highest
values are typed in bold, while the second highest ones are underlined.

FSIM FSIMc IFS MS-
SSIM SFF VIF VSI LCSA1 LCSA2 LCSA3 LCSA4

AGN 0.897 0.910 0.938 0.865 0.907 0.899 0.946 0.908 0.932 0.925 0.925
ANC 0.821 0.854 0.854 0.773 0.817 0.830 0.871 0.846 0.854 0.853 0.857
SCN 0.875 0.890 0.934 0.854 0.898 0.884 0.937 0.908 0.940 0.933 0.915
MN 0.794 0.809 0.796 0.807 0.819 0.845 0.770 0.792 0.769 0.811 0.801
HFN 0.898 0.904 0.914 0.860 0.898 0.897 0.920 0.904 0.914 0.909 0.903
IN 0.807 0.825 0.839 0.763 0.787 0.854 0.874 0.574 0.795 0.790 0.728
QN 0.872 0.881 0.834 0.871 0.861 0.785 0.875 0.854 0.886 0.844 0.863
GB 0.955 0.955 0.966 0.967 0.968 0.965 0.961 0.954 0.956 0.959 0.970
DEN 0.930 0.933 0.918 0.927 0.909 0.891 0.948 0.917 0.937 0.913 0.937
JPEG 0.932 0.934 0.929 0.927 0.927 0.919 0.954 0.921 0.930 0.929 0.932
JP2K 0.958 0.959 0.961 0.950 0.957 0.952 0.971 0.950 0.965 0.957 0.953
JGTE 0.846 0.861 0.893 0.848 0.883 0.841 0.922 0.854 0.891 0.863 0.859
J2TE 0.891 0.892 0.901 0.889 0.871 0.876 0.923 0.909 0.916 0.913 0.916
NEPN 0.792 0.794 0.784 0.797 0.767 0.772 0.806 0.826 0.815 0.815 0.822
BLOCK 0.549 0.553 0.100 0.480 0.179 0.531 0.171 0.452 0.353 0.328 0.185
MS 0.753 0.749 0.658 0.791 0.665 0.628 0.770 0.554 0.678 0.455 0.620
CC 0.469 0.468 0.447 0.463 0.469 0.839 0.475 0.535 0.448 0.631 0.423
CCS 0.275 0.836 0.826 0.410 0.827 0.310 0.810 0.712 0.829 0.813 0.813
MGN 0.847 0.857 0.879 0.779 0.843 0.847 0.912 0.875 0.900 0.882 0.875
CN 0.912 0.914 0.904 0.853 0.901 0.895 0.924 0.911 0.923 0.904 0.906
LCNI 0.947 0.949 0.943 0.907 0.926 0.920 0.956 0.951 0.958 0.945 0.957
ICQD 0.876 0.882 0.901 0.856 0.880 0.841 0.884 0.891 0.903 0.891 0.900
CA 0.872 0.893 0.886 0.878 0.879 0.885 0.891 0.862 0.873 0.870 0.874
SSR 0.957 0.958 0.956 0.948 0.952 0.935 0.963 0.948 0.957 0.965 0.955

All 0.802 0.851 0.870 0.785 0.851 0.677 0.894 0.788 0.903 0.821 0.823

Table 9. Comparison on TID2008’s [24] distortion types. SROCC values are given. The highest
values are typed in bold, while the second highest ones are underlined.

FSIM FSIMc IFS MS-
SSIM SFF VIF VSI LCSA1 LCSA2 LCSA3 LCSA4

AGN 0.857 0.876 0.917 0.809 0.873 0.880 0.923 0.887 0.916 0.906 0.905
ANC 0.853 0.893 0.896 0.805 0.863 0.876 0.912 0.887 0.890 0.893 0.889
SCN 0.848 0.871 0.931 0.821 0.894 0.870 0.930 0.894 0.915 0.936 0.918
MN 0.802 0.826 0.802 0.811 0.837 0.868 0.773 0.782 0.733 0.857 0.817
HFN 0.909 0.916 0.922 0.869 0.912 0.908 0.925 0.901 0.909 0.922 0.917
IN 0.745 0.772 0.814 0.691 0.748 0.833 0.830 0.396 0.729 0.752 0.618
QN 0.856 0.873 0.797 0.859 0.845 0.797 0.873 0.825 0.859 0.855 0.854
GB 0.947 0.947 0.960 0.956 0.962 0.954 0.953 0.933 0.944 0.953 0.963
DEN 0.960 0.962 0.949 0.958 0.938 0.916 0.969 0.936 0.956 0.964 0.963
JPEG 0.928 0.929 0.928 0.932 0.932 0.917 0.962 0.921 0.942 0.939 0.937
JP2K 0.977 0.978 0.978 0.970 0.977 0.971 0.985 0.975 0.991 0.986 0.977
JGTE 0.871 0.876 0.874 0.868 0.857 0.859 0.916 0.886 0.914 0.893 0.904
J2TE 0.854 0.856 0.878 0.861 0.839 0.850 0.894 0.889 0.885 0.911 0.901
NEPN 0.749 0.751 0.704 0.738 0.697 0.762 0.770 0.831 0.773 0.805 0.796
BLOCK 0.849 0.846 0.087 0.755 0.537 0.832 0.630 0.826 0.631 0.742 0.672
MS 0.672 0.655 0.522 0.734 0.523 0.510 0.671 0.460 0.383 0.554 0.497
CC 0.648 0.651 0.627 0.638 0.646 0.819 0.656 0.630 0.604 0.732 0.577

All 0.881 0.884 0.869 0.846 0.851 0.749 0.896 0.874 0.906 0.921 0.909

Table 10. Comparison on CSIQ’s [25] distortion types. SROCC values are given. The highest values
are typed in bold, while the second highest ones are underlined.

FSIM FSIMc IFS MS-
SSIM SFF VIF VSI LCSA1 LCSA2 LCSA3 LCSA4

AGN 0.926 0.936 0.959 0.947 0.947 0.958 0.964 0.965 0.971 0.967 0.976
ANC 0.923 0.937 0.953 0.933 0.955 0.951 0.964 0.912 0.948 0.962 0.969
GB 0.973 0.973 0.962 0.971 0.975 0.975 0.968 0.983 0.972 0.971 0.981
GCD 0.942 0.944 0.949 0.953 0.954 0.935 0.950 0.975 0.959 0.972 0.963
JPEG 0.965 0.966 0.966 0.963 0.964 0.971 0.962 0.967 0.983 0.981 0.979
JP2K 0.968 0.970 0.971 0.968 0.976 0.967 0.969 0.956 0.950 0.941 0.950

All 0.924 0.931 0.958 0.913 0.960 0.920 0.942 0.956 0.949 0.961 0.973

5. Conclusions

In this study, we presented a novel fusion-based FR-IQA metric using simulated
annealing. Specifically, an optimization problem was solved based on the weighted sum of
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several FR-IQA metrics by minimizing the root mean squared error between the predicted
and ground-truth perceptual quality scores. The evaluation of the proposed fusion-based
metrics on four large publicly available and widely accepted IQA benchmark databases
empirically corroborated that the proposed metrics are able to produce competitive results
compared to the state-of-the-art in terms of various performance indices, such as PLCC,
SROCC, and KROCC. Future research could involve other optimization techniques and
their combination for improved perceptual quality prediction. Another direction is the
generalization of the proposed method for other types of media.
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Abbreviations
The following abbreviations are used in this manuscript:

FR-IQA full-reference image quality assessment
IQA image quality assessment
KROCC Kendall’s rank order correlation coefficient
MOS mean opinion score
MSE mean squared error
NR-IQA no-reference image quality assessment
PLCC Pearson’s linear correlation coefficient
PSNR peak signal-to-noise ratio
RMSE root mean square error
RR-IQA reduced-reference image quality assessment
SA simulated annealing
SROCC Spearman’s rank order correlation coefficient
SSIM structural similarity index
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