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Abstract: Reading Indian scene texts is complex due to the use of regional vocabulary, multiple
fonts/scripts, and text size. This work investigates the significant differences in Indian and Latin
Scene Text Recognition (STR) systems. Recent STR works rely on synthetic generators that involve
diverse fonts to ensure robust reading solutions. We present utilizing additional non-Unicode fonts
with generally employed Unicode fonts to cover font diversity in such synthesizers for Indian
languages. We also perform experiments on transfer learning among six different Indian languages.
Our transfer learning experiments on synthetic images with common backgrounds provide an exciting
insight that Indian scripts can benefit from each other than from the extensive English datasets. Our
evaluations for the real settings help us achieve significant improvements over previous methods
on four Indian languages from standard datasets like IIIT-ILST, MLT-17, and the new dataset (we
release) containing 440 scene images with 500 Gujarati and 2535 Tamil words. Further enriching the
synthetic dataset with non-Unicode fonts and multiple augmentations helps us achieve a remarkable
Word Recognition Rate gain of over 33% on the IIIT-ILST Hindi dataset. We also present the results of
lexicon-based transcription approaches for all six languages.

Keywords: scene text recognition; transfer learning; photo OCR; multi-lingual OCR; Indian lan-
guages; indic OCR; non-Unicode fonts; synthetic data

1. Introduction

Multiple computer vision tasks rely on Scene Text Recognition (STR), and several
commercial applications also benefit from it [1]. STR has diverse applications like helping
the visually impaired, data mining of street-view-like images for information used in map
services, and geographic information systems [2]. Conventionally, two steps are involved
in STR. The first step is text detection, which consists of predicting word-level bounding
boxes in the scene images [3]. The second step is text recognition, in which the Regions Of
Interest (ROIs) obtained from the detection step are used to recognize the word text [4].
Our work involves improving text recognition in multiple Indian languages.

Human civilizations often involve reading multi-lingual text in scenes. The growth
in non-Latin STR systems is gradual despite tremendous improvements in recognition
models [5–10]. Developing a practical STR system for low resource languages remains
challenging due to unstructured text appearing in diverse conditions such as scripts, fonts,
sizes, and orientations. Moreover, recent scene-text recognition models are data-hungry
and hence benefit from the use of synthetic data [4]. We also find synthetic data interesting
to study the impact of transfer learning with the change in script or language text. We
analyze such outcomes for transfer from English to Hindi and Gujarati. Our findings show
that it is not beneficial to exploit the variety and scale in English datasets to improve the STR
in Indian languages. We also perform experiments on the transferability of features among
six different Indian languages and find that Indian languages can benefit each others’ STR
systems. Our models further improve by using over 400 additional non-Unicode fonts in
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Devnagari to generate synthetic data. Rendering non-Unicode codes with synthetic engines
requires additional efforts in creating translation tables which we will share with this work.
Augmenting the synthetic dataset with methodologies proposed by et al. [11] further helps
use create generalized STR systems for Indian languages. Figure 1 illustrates the sample
annotated images from the six datasets from IIIT-ILST [4], MLT [12,13], and our work [14].
Below each image, we show the results from previous works followed by the result of our
models. The contributions of this work are as:

1. We investigate the transfer learning of complete scene-text recognition models—
(i) from English to two Indian languages (Hindi and Gujarati) and (ii) among the six
Indian languages, i.e., Gujarati, Hindi, Bangla, Telugu, Tamil, and Malayalam.

2. We also contribute two datasets of around 500 word images in Gujarati and 2535 word
images in Tamil from a total of 440 Indian scenes.

3. On IIIT-ILST Hindi, Telugu, and Malayalam datasets, we achieve gains of 37%, 5%,
and 2% in Word Recognition Rates (WRRs) over prior works [4,15]. We observe the
WRR gains of 8%, 4%, 5%, and 3% over our baseline model on the MLT-19 Hindi
and Bangla datasets as well as Gujarati and Tamil datasets we release, respectively.
Our model also achieves a notable WRR gain of 24% for the MLT-17 Bangla dataset
compared to Bušta et al. [2].

4. We are the first to use over 500 Hindi fonts with an existing synthesizer and show
that the font diversity can significantly improve non-Latin STR. Specifically, on the
IIIT-ILST Hindi dataset, we achieve a remarkable WRR gain of over 33% using more
than 500 fonts and different augmentation techniques.
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Figure 1. Clockwise from top-left: Top: Annotated Scene-text images, Below each image: Baselines’
predictions (row-1) and Transfer Learning models’ predictions (row-2)", from Gujarati, Hindi, Bangla,
Tamil, Telugu and Malayalam. Green, red, and “_" represent correct predictions, errors, and missing
characters, respectively.

in Devnagari to generate synthetic data. Rendering non-Unicode codes with synthetic
engines requires additional efforts in creating translation tables which we will share with
this work. Augmenting the synthetic dataset with methodologies proposed by et al. [11]
further helps use create generalized STR systems for Indian languages. Fig. 1 illustrates
the sample annotated images from the six datasets from IIIT-ILST [4], MLT [12,13], and our
work [14]. Below each image, we show the results from previous works followed by the
result of our models. The contributions of this work are as:

1. We investigate the transfer learning of complete scene-text recognition models - i)
from English to two Indian languages (Hindi and Gujarati) and ii) among the six
Indian languages, i.e., Gujarati, Hindi, Bangla, Telugu, Tamil, and Malayalam.

2. We also contribute two datasets of around 500 word images in Gujarati and 2535 word
images in Tamil from a total of 440 Indian scenes.

3. On IIIT-ILST Hindi, Telugu, and Malayalam datasets, we achieve gains of 37%, 5%,
and 2% in Word Recognition Rates (WRRs) over prior works [4,15]. We observe the
WRR gains of 8%, 4%, 5%, and 3% over our baseline model on the MLT-19 Hindi
and Bangla datasets as well as Gujarati and Tamil datasets we release, respectively.
Our model also achieves a notable WRR gain of 24% for the MLT-17 Bangla dataset
compared to Bušta et al. [2].

4. We are the first to use over 500 Hindi fonts with an existing synthesizer and show
that the font diversity can significantly improve non-Latin STR. Specifically, on the
IIIT-ILST Hindi dataset, we achieve a remarkable WRR gain of over 33% using more
than 500 fonts and different augmentation techniques.

2. Related Work

We now discuss datasets and associated works in the field of photo-OCR.
Works of Photo-OCR on Latin Datasets: As stated earlier, the process of Photo-OCR

conventionally includes two steps: i) Text detection and ii) Text recognition. With the
success of Convolutional Neural Networks (CNN) for object detection, the works have
been extended to text detection, treating words or lines as the objects [16–18]. Liao et al. [19]
extend such works to real-time detection in scene images. Karatzas et al. [20] and Bušta et
al. [21] present more efficient and accurate methods for text detection. Towards reading

Figure 1. Clockwise from top-left: Top: Annotated Scene-text images, Below each image: Baselines’
predictions (row-1) and Transfer Learning models’ predictions (row-2), from Gujarati, Hindi, Bangla,
Tamil, Telugu and Malayalam. Green, red, and “_” represent correct predictions, errors, and missing
characters, respectively.

2. Related Work

We now discuss datasets and associated works in the field of photo-OCR.
Works of Photo-OCR on Latin Datasets: As stated earlier, the process of Photo-OCR

conventionally includes two steps: (i) Text detection and (ii) text recognition. With the suc-
cess of Convolutional Neural Networks (CNN) for object detection, the works have been ex-
tended to text detection, treating words or lines as the objects [16–18]. Liao et al. [19] extend
such works to real-time detection in scene images. Karatzas et al. [20] and Bušta et al. [21]
present more efficient and accurate methods for text detection. Towards reading scene-text,
Wang et al. [22] propose an object recognition pipeline based on a ground truth lexicon.
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It achieves competitive performance without the need for an explicit text detection step.
Shi et al. [23] propose a Convolutional Recurrent Neural Network (CRNN) architecture,
which integrates feature extraction, sequence modeling, and transcription into a unified
framework. The model achieves remarkable performances in both lexicon-free and lexicon-
based scene-text recognition tasks. Liu et al. [24] introduce Spatial Attention Residue
Network (STAR-Net) with spatial transformer-based attention mechanism to remove image
distortions, residue convolutional blocks for feature extraction, and an RNN block for de-
coding the text. Shi et al. [10] propose a segmentation-free Attention-based method for Text
Recognition (ASTER) by adopting Thin-Plate-Spline (TPS) as a rectification unit. It tackles
complex distortions and reduces the difficulty of irregular text recognition. The model
incorporates ResNet to improve the network’s feature representation module and employs
an attention-based mechanism combined with a Recurrent Neural Network (RNN) to form
the prediction module. Uber-Text is a large-scale Latin dataset that contains around 117K
images captured from 6 US cities [25]. The images are available with line-level annota-
tions. The French Street Name Signs (FSNS) data contains around 1000K annotated images,
each with four street sign views. Such datasets, however, contain text-centric images.
Reddy et al. [26] recently release RoadText-1K to introduce challenges with generic driving
scenarios where the images are not text-centric. RoadText-1K includes 1000 video clips
(each 10 s long at 30 fps) from the BDD dataset, annotated with English transcriptions [27].
Ghosh et al. [28] proposes a dataset consisting 1154 images of movie posters spanning over
multiple scripts.

Works of Photo-OCR on Non-Latin Datasets: Recently, there has been an increas-
ing interest in scene-text recognition for non-Latin languages such as Chinese, Korean,
Hindi, Japanese, etc. Several datasets like RCTW (12 K scene images), ReCTS-25k (25 K
signboard images), CTW (32 K scene images), and RRC-LSVT (450 K scene images) from
ICDAR’19 Robust Reading Competition (RRC) exist for Chinese [29–32]. Arabic datasets
like ARASTEC (260 images of signboards, hoardings, and advertisements) and ALIF (7 K
text images from TV Broadcast) also exist in the scene-text recognition community [33,34].
Korean and Japanese scene-text recognition datasets include KAIST (2385 images from
signboards, book covers, and English and Korean characters) and DOST (32 K sequential
images) [35,36]. The MLT dataset available from the ICDAR’17 RRC contains 18 K scene
images (around 1–2 K images per language) in Arabic, Bangla, Chinese, English, French,
German, Italian, Japanese, and Korean [12]. The ICDAR’19 RRC builds MLT-19 over top of
MLT-17 to contain 20 K scene images containing text from Arabic, Bangla, Chinese, English,
French, German, Italian, Japanese, Korean, and Hindi [13]. The RRC also provides 277 K
synthetic images in these languages to assist the training. Singh et al. [37] propose a large
and diverse OCR dataset with over 1 M annotations including multilingual scene text data.
Mathew et al. [4] train the conventional encoder-decoder, where Convolutional Neural
Network (CNN) encodes the word image features. An RNN decodes them to produce text
on synthetic data for Indian languages. Here an additional connectionist temporal classifi-
cation (CTC) layer aligns the RNN’s output to labels. The work also releases an IIIT-ILST
dataset for testing that reports Word Recognition Rates (WRRs) of 42.9%, 57.2%, and 73.4%
on 1 K real images in Hindi, Telugu, and Malayalam, respectively. Bušta et al. [2] proposes
a CNN (and CTC) based method for text localization, script identification, and text recogni-
tion. The model is trained and tested on 11 languages of MLT-17 dataset. The WRRs are
above 65% for Latin and Hangul and are below 47% for the remaining languages. The WRR
reported for Bengali is 34.20%. Recently, an OCR-on-the-go model and obtain the WRR of
51.01% on the IIIT-ILST Hindi dataset and the Character Recognition Rate (CRR) of 35% on
a multilingual dataset containing 1000 videos in English, Hindi, and Marathi [15]. Around
2322 videos in these languages recorded with controlled camera movements like tilt, pan,
etc., are additionally shared. Ghosh et al. propose a LWSINet [38] for video data and a
shallow convolutional neural network (SCNN)-based architecture [39] for image data for
script identification allows improved functionality over low-resource scripts, especially
Indic scripts. Huang et al. [40] propose a scalable end-to-end trainable Multilingual Mask
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TextSpotter, which optimizes script identification while maintaing multiple recognition
heads for different scripts.

Transfer Learning in Photo-OCR: With the advent of deep learning in the last decade,
transfer learning became an essential part of vision models for tasks such as detection and
segmentation [41,42]. The CNN layers pre-trained from the Imagenet classification dataset
are conventionally used in such models for better initialization and performance [43].
The scene-text recognition works also use the CNN layers from the models pre-trained on
Imagenet dataset [10,23,24]. Ghosh et al. [28] proposes a transfer learning-based approach
for graphic-rich text localization whereas we focus on text recognition. However, to our
best knowledge, there are no significant efforts on transfer learning from one language
to another in the field of scene-text recognition, although transfer learning seems to be
naturally suitable for reading low resource languages. We investigate the possibilities of
transfer learning in all the layers of deep photo-OCR models.

3. Motivation

We now discuss the motivation for our work.
Transfer Learning amongst Indian scripts: As discussed earlier in Section 2, most

of the scene-text recognition works use the pre-trained Convolutional Neural Networks
(CNN) layers for improving results. We now motivate the need for transfer learning of the
complete recognition models discussed in Section 1 and the models we use in Section 5
among different languages. As discussed in these sections, the Recurrent Neural Networks
(RNNs) form another integral component of such reading models. Therefore, we illustrate
the distribution of character-level n-grams they learn in Figure 2 ( For plots on the right, we
use moving averages of 10, 100, 1000, 1000, 1000 for 1-grams, 2-grams, 3-grams, 4-grams,
and 5-grams, respectively) for the first five languages we discussed in the previous section
(we notice that the last two languages also follow a similar trend). On the left, we show the
frequency distribution of top-5 n-grams, (n ∈ [1, 5]). On the right, we show the frequency
distribution of all n-grams with n ∈ [1, 5]. We use 2.5 M words from English and Hindi for
these plots. The total number of English letters is of the same order as Indian languages.
The x-values (≤100) for the drops in 1-gram plots (blue curves) of Figure 2 also illustrates
this. So, it becomes possible to compare the distributions. The overall distributions are
similar for all the languages. Hence, we propose that the RNN layers’ transfer among the
models of different languages is worth an investigation.
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Figure 2. Distribution of Char. n-grams (n ∈ [1, 5]) from 2.5M words in English and Hindi (top to
bottom): Top-5 (left) and All (right).
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Figure 2. Distribution of Char. n-grams (n ∈ [1, 5]) from 2.5 M words in English and Hindi (top to
bottom): Top-5 (left) and All (right).

It is essential to note the differences between the n-grams of English and Indian
languages. Many of the top-5 n-grams in English are the complete word forms, which is



J. Imaging 2022, 8, 86 5 of 20

not the case with Indian languages owing to their richness in inflections (or fusions) [44].
Additionally, note that the second 1-gram for Hindi in Figure 2 (left), known as halanta, is a
common feature of top-5 n-grams in Indian languages. The halanta forms an essential part
of joint glyphs or aksharas (as advocated by Vinitha et al. [44]). In Figure 1, the vowels,
or portions of the joint glyphs for word images in Indian languages, often appear above
the top-connector line or below the generic consonants. All this, in addition to complex
glyphs in Indian languages, makes transfer learning from English to Indian languages
ineffective, which is detailed in Section 7. Thus, we also investigate the transferability of
features among the Indian scene-text recognition models in the subsequent sections.

Significance of the variety of fonts: To study the effect of fonts and training examples,
we extend the analysis in Gunna et al. [45] on English fonts obtained from previous
works [46,47] for Hindi fonts we use in this work. The results are shown in Figure 3.
We observe that on the IIIT5K dataset, with 100 and 1000 fonts (blue and red plots),
the WRR increase when the number of samples increases from 0.5 M to 5 M and then
becomes constant for 20 M samples. However, the increase in WRR on the IIIT5K dataset is
significant when the number of fonts increases from 1000 to 1400 (blue plot). The higher
font diversity (1400 fonts) also helps in improving the results with an increase in the number
of samples from 5 M to 20 M.

50

55

60

65

70

75

80

85

0 5 10 15 20

100 Fonts 1000 Fonts 1400 Fonts Hindi

Figure 3. Comparing STAR-Net’s performance on IIIT5K [48] dataset (blue, red, and yellow plots)
and IIIT-ILST [4] Hindi dataset (green plot) when trained on synthetic data created using a varying
number of fonts and training samples.

For the IIIT-ILST Hindi dataset, we use three settings for our experiment: 2 M samples
with 97 fonts, 7 M samples with 552 fonts, and augmented 20 M samples with 552 Fonts
for our analysis. The results are shown in the green plot in Figure 3. Increasing the fonts
from 97 to 552 and training samples from 2 M to 7 M improve the Hindi WRR from 58%
to 71% (similar to English). We also reduce the WRR gap due to 552 Hindi fonts and 1400
Latin fonts by applying augmentations discussed in Section 5. As we will see in Section 5,
the stretching/compressing augmentation deals with varying the width of image parts,
thus creating an effect like having multiple fonts in a word image. We, therefore, observe
that WRR gains due to augmentation in Hindi are similar to increased fonts and training
samples in Latin. Finally, we achieve the WRR of over 80% for the IIIT-ILST Hindi dataset
with augmented 20 M samples created using 552 Fonts.

4. Datasets

Synthetic Datasets: As shown in Table 1, we generate 2.5 M, or more, word images
each in Hindi, Bangla, Tamil, Telugu, and Malayalam (For Hindi, Telugu and Malayalam,
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our models trained on 2.5 M word images achieved results lower than previous works, so
we generate more examples equal to (and to fairly compare with) Mathew et al. [4].) with
the methodology proposed by Mathew et al. [4]. For each Indian language, we use 2 M
images or more for training our models and the remaining set for testing.

Sample images of our synthetic data are shown in Figure 4. For English, we use the
models pre-trained on the 9 M MJSynth and 8 M SynthText images [46,47]. We generate
0.5 M synthetic images in English with over 1200 fonts for testing. As shown in Table 1,
English has a lower average word length than Indian languages. We list the Indian lan-
guages in the increasing order of language complexity, with visually similar scripts placed
consecutively, in Table 1. Gujarati is chosen as the entry point from English to Indian
languages as it has the lowest word length among all Indian languages. Subsequently, like
English, Gujarati does not have a top-connector line that connects different characters to
form a word in Hindi and Bangla (refer to Figures 1 and 4).

Figure 4. Clockwise from top-left: synthetic word images in Gujarati, Hindi, Bangla, Tamil, Telugu,
and Malayalam. Notice that a top-connector line connects the characters to form a word in Hindi
or Bangla. Some vowels and characters appear above and below the generic characters in Indian
languages, unlike English.

Table 1. Statistics of synthetic data. #, µ, σ represent number of samples, mean and standard deviation.

Language # Images Train Test µ, σ Word Length # Fonts

English 17.5 M 17 M 0.5 M 5.12, 2.99 >1200
Gujarati 2.5 M 2 M 0.5 M 5.95, 1.85 12
Hindi 7.5 M 7 M 0.5 M 8.73, 3.10 97
Bangla 2.5 M 2 M 0.5 M 8.48, 2.98 68
Tamil 2.5 M 2 M 0.5 M 10.92, 3.75 158
Telugu 5 M 5 M 0.5 M 9.75, 3.43 62
Malayalam 7.5 M 7 M 0.5 M 12.29, 4.98 20

Additionally, the number of Unicode fonts available in Gujarati is fewer than those
available in other Indian languages. Next, we choose Hindi, as Hindi characters are
similar to Gujarati characters and the average word length of Hindi is higher than Gujarati.
Bangla has comparable word length statistics with Hindi and shares the property of the
top-connector line with Hindi. Still, we keep it after Hindi in the list as its characters are
visually dissimilar and more complicated than Gujarati and Hindi. We use less than 100
for fonts in Hindi, Bangla, and Telugu. We list Tamil after Bangla because these languages
share similar vowels’ appearance (see the glyphs above general characters in Figure 4).
Tamil and Malayalam have the highest variability in word length and visual complexity
compared to other languages. Please note that we have over 150 fonts available in Tamil.



J. Imaging 2022, 8, 86 7 of 20

To test the role of fonts in scene-text recognition performance, we collect 455 additional
non-Unicode fonts, through a region-based search, for experiments in Hindi. Using non-
Unicode fonts in the data generation process is difficult because of their non-existent
Unicode equivalents. Even most of the recent synthetic data generation engines [47,49,50]
do not have a fix to employ non-Unicode fonts properly, especially for non-Latin languages.
We create table-based converters to convert the non-Unicode characters to Unicode text.
However, much work went into effectively handling the matras (e.g., vowel signs and
halanta) in the language, as they change based on their positions. These mappings help
utilize all the fonts to render synthetic images without errors (like incorrectly ordered
joint glyphs or empty box images instead of characters). Sample images of a few of the
fonts that went into the training process are shown in Figure 5. We combine the Unicode
fonts (as mentioned in Table 1) and the new non-Unicode fonts to create synthetic data for
the experiments based on the number of fonts. We generate 7 M samples with a total of
552 fonts (Unicode and non-Unicode) with the same vocabulary mentioned previously.

Figure 5. Examples of non-Unicode Hindi fonts used for synthetic data generation.

Real Datasets: We also perform experiments on the real datasets from IIIT-ILST,
MLT-17, and MLT-19 datasets (refer to Section 2 for these datasets). To enlarge scene-text
recognition research in complex and straight forward low-resource Indian Languages, we
release 500 and 2535 annotated word images in Gujarati and Tamil. We crop the word
images from 440 annotated scene images, which we obtain by capturing and compiling
Google images. We illustrate sample annotated images of different datasets in Figure 1.
Similar to MLT datasets, we annotate the Gujarati and Tamil datasets using four corner
points around each word (see Tamil image at bottom-right of Figure 1). IIIT-ILST dataset
has two-point annotations leading to an issue of text from other words in the background
of a cropped word image as shown in the Telugu scene at the bottom-middle of Figure 1.

5. Methodology

This section explains the two models we use for transfer learning in Indian languages,
a plug-in module we propose for learning the correction mechanism in the recognition
systems and an augmentation pipeline to improve data diversity.

CRNN Model (Baseline 1): The first baseline model we train is Convolutional-
Recurrent Neural Network (CRNN), which is the combination of CNN and RNN as shown
in Figure 6 (left). The CRNN network architecture consists of three fundamental compo-
nents, (i) an encoder composed of the standard VGG model [51], (ii) a decoder consisting
of RNN, and (iii) a Connectionist Temporal Classification (CTC) layer to align the decoded
sequence with ground truth. The CNN-based encoder consists of seven layers to extract
feature representations from the input image. The model abandons fully connected layers
for compactness and efficiency. It replaces standard squared pooling with 1× 2 sized
rectangular pooling windows for 3rd and 4th max-pooling layer to yield feature maps
with a larger width. A two-layer Bi-directional Long Short-Term Memory (BiLSTM) model,
each with a hidden size of 256 units, then decodes the features. The CTC layer provides
non-parameterized supervision during the training phase to align the decoded predictions
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with the ground truth. We use greedy decoding during the testing time. We use the PyTorch
implementation of the model by Shi et al. [23].

 அண்ணாசாைல

VGG

Input Image
100 X 32

CNN Layers

Feature 
Sequence
25 X 1 X 256

BiLSTM
2 X 256

CTC

Predicted Text

Input Image
150 X 48

LOCALIZATION 
NETWORK

LOCALIZATION 
NETWORK

VGGVGG
SAMPLERX

INTERPOLATOR

Transformed Image 
100 X 32

VGG CNN Layers

Feature Sequence
25 X 1 X 256

VGGinception-resnet

BiLSTM
1 X 256

inception-resnet

CTC

Predicted Text
 அண்ணாசாைல

Correction
BiLSTM 

1 X 256

Spatial
Transformer

Figure 6. CRNN model (left) and STAR-Net with a correction BiLSTM (right).

STAR-Net (Baseline 2): As shown in Figure 6 (right), the STAR-Net model (our sec-
ond baseline model) consists of three components, (i) a Spatial Transformer to handle image
distortions, (ii) a Residue Feature Extractor consisting of a residue CNN and an RNN,
and (iii) a CTC layer to align the predicted and ground truth sequences. The transformer
consists of a spatial attention mechanism achieved via a CNN-based localization network,
a sample, and an interpolator. The localizer predicts the parameters of an affine trans-
formation. The sampler and the nearest-neighbor interpolator use the transformation to
obtain a better version of the input image. The transformed image acts as the input to the
Residue Feature Extractor, which includes the CNN and a single-layer BiLSTM of 256 units.
The CNN used here is based on the inception-resnet architecture, which can extract robust
image features required for the task of scene-text recognition [52]. The CTC layer finally
provides the non-parameterized supervision for text alignment. The overall model consists
of 26 convolutional layers and is end-to-end trainable [24].

Transfer Learning: We initially train individual models for each language to analyze
the performance and the features learned by the models for further transfers. For the
transfer learning experiments among languages, we finetune all network layers.

Correction BiLSTM: After training the STAR-Net model on a real dataset, we add a
correction BiLSTM layer (of size 1× 256), an end-to-end trainable module, to the end of
the model (see Figure 6 top-right). We re-train the complete model on the same dataset to
implicitly learn the error correction mechanism.

Augmentation Pipeline: As discussed in the previous section, we use 455 additional
fonts to increase font diversity in the synthetic training dataset for Hindi. We apply aug-
mentations to the synthetic data for inducing more variety into the training samples. It also
helps prevent the model from over-fitting. We use a total of 9 augmentation techniques
as proposed by [11], which include blur, noise, distortion, inversion, curving, rotation,
stretching/compressing, perspective, and shrinking. As discussed earlier in Section 3,
the stretching/compressing augmentation creates an effect similar to using multiple fonts
in a single image and hence improves the font diversity further. We sample three augmen-
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tation functions from nine and apply them one after the other to each image in the batch.
We avoid using all nine augmentations on a single image as it will cause indistinguishable
damage to the input. For each image, we produce three augmented images. In addition to
augmented images, we also use original word images in our training samples. A few of the
techniques mentioned above change the image dimensions, so we resize the image to the
input sizes of the baseline models while maintaining the aspect ratio.

6. Experiments

The images, resized to 150× 48, form the input of STAR-Net, which we refer to as
baseline 2. The spatial transformer module, as shown in Figure 6 (right), then outputs
the image of size 100× 32. The size of inputs to the CNN Layers of baseline 1 (CRNN)
and baseline 2 are the same, i.e., 100× 32, and the common output size is 25× 1× 256.
The localization network in baseline 2 has four plain convolutional layers with 16, 32, 64,
and 128 channels. Each layer has the filter size, stride, and padding size of 3, 1, and 1,
followed by a 2× 2 max-pooling layer with a stride of 2. Finally, a fully connected layer
of size 256 outputs the parameters which transform the input image. We train all our
models on 2 M or more synthetic word images as discussed in Section 4. We use the batch
size of 16 and the ADADELTA optimizer for stochastic gradient descent (SGD) for all
the experiments [53]. Epochs vary between 10 to 15 for different experiments. We test
our models on 0.5 M synthetic images for each language. We use the word images from
IIIT-ILST, MLT-17, and MLT-19 datasets to analyze the performance on real datasets.

We fine-tune the Bangla models on 1200 training images and test them on 673 vali-
dation images from the MLT-17 dataset to fairly compare with Bušta et al. [21]. Similarly,
we fine-tune only our best Hindi transfer learning model on the MLT-19 dataset and test
it on the IIIT-ILST dataset to compare with OCR-on-the-go (since it is also trained on real
data) [15]. To demonstrate generalizability, we also test our models on 3766 Hindi images
and 3691 Bangla images available from MLT-19 datasets [13]. For Gujarati and Tamil, we
use 75% of word images to fine-tune our models and the remaining 25% for testing. Our
experiments include transfer learning from English to two Indian languages (Gujarati and
Hindi) and transfer learning among the six Indian languages. As discussed in the previous
section, we also perform experiments with Correction BiLSTM in Bangla and multiple fonts
and augmentations in Hindi. We finally improve present the improvements in results for
all six Indian languages with lexicon-based transcription approaches [22,48,54].

7. Results

In this section, we discuss the results of our experiments with (i) individual models
for each language, (ii) the transfer learning from English to two Indian languages, (iii) the
transfer learning among six Indian languages, (iv) correction BiLSTM, (v) increasing font
diversity with augmentations, and (vi) lexicon-based transcription approaches.

Performance on Synthetic Datasets: It is essential to compare the results on synthetic
datasets of different languages sharing common backgrounds, as it provides a good in-
tuition about the difficulty in reading different scripts. In Tables 2 and 3, we present
the results of our individual languages and transfer learning experiments with synthetic
datasets respectively. As noted in Table 2, the baseline 1 model achieves the Character
Recognition Rates (CRRs) and Word Recognition Rates (WRRs) of (i) 77.13% and 38.21% in
English and (ii) above 82% and 48% on the synthetic dataset of all the Indian languages
(refer to columns 1 and 2 of Table 2). The low accuracy on the English synthetic test set is
due to the presence of more than 1200 different fonts (refer Section 4). Nevertheless, using
a large number of fonts in training helps in generalizing the model for real settings [46,47].
The baseline 2 achieves remarkably better performance than baseline 1 on all the datasets,
with the CRRs and WRRs above 90.48 and 65.02 for Indian languages. The reason for this
is spatial attention mechanism and powerful residual layers, as discussed in Section 5.
As shown in columns 3 and 5 of Table 2, the WRR of the models trained in Gujarati, Hindi,
and Bangla are higher than the other three Indian languages despite common backgrounds.
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The experiments show that the scripts in latter languages pose a tougher reading challenge
than the scripts in former languages.

Table 2. Results of individual baselines on synthetic datasets.

Baseline 1 Baseline 2
S.No. Language CRR WRR CRR WRR

1 English 77.13 38.21 86.04 57.28
2 Gujarati 94.43 81.85 97.80 91.40
3 Hindi 89.83 73.15 95.78 83.93
4 Bangla 91.54 70.76 95.52 82.79
5 Tamil 82.86 48.19 95.40 79.90
6 Telugu 87.31 58.01 92.54 71.97
7 Malayalam 92.12 70.56 95.84 82.10

Table 3. Results of Transfer Learning (TL) on synthetic datasets. Parenthesis contain results on target
languages w/o TL. TL among Indic scripts improves Baseline 2 results.

Baseline 1 Baseline 2
S.No. Language CRR WRR CRR WRR

1 English→ Gujarati 92.71 (94.43) 77.06 (81.85) 97.50 (97.80) 90.90 (91.40)
2 English→ Hindi 88.11 (89.83) 70.12 (73.15) 94.50 (95.78) 80.90 (83.93)

3 Gujarati→ Hindi 91.98 (89.83) 73.12 (73.15) 96.12 (95.78) 84.32 (83.93)
4 Hindi→ Bangla 91.13 (91.54) 70.22 (70.76) 95.66 (95.52) 82.81 (82.79)
5 Bangla→ Tamil 81.18 (82.86) 44.74 (48.19) 95.95 (95.40) 81.73 (79.90)
6 Tamil→ Telugu 87.20 (87.31) 56.24 (58.01) 93.25 (92.54) 74.04 (71.97)
7 Telugu→Malayalam 90.62 (92.12) 65.78 (70.56) 94.67 (95.84) 77.97 (82.10)

We present the results of our transfer learning experiments on the synthetic datasets
in Table 3. The best individual model results from Table 2 are included in parenthesis
for comparison. We begin with the English models as the base because the models have
trained on over 1200 fonts and 17 M word images as discussed in Section 4, and are generic.
However, in the first two rows of the table, we note that transferring the layers from the
model trained on the English dataset to Gujarati and Hindi is inefficient in improving
the results compared to the individual models. The possible reason for the inefficiency is
that Indic scripts have many different visual and slightly different n-gram characteristics
from English, as discussed in Section 4. We then note that as we try to apply transfer
learning among Indian languages with baseline 1 (rows 3–7, columns 1–2 in Table 3),
only some combinations work well. However, with baseline 2 (rows 3–7, columns 3–4 in
Table 3), transfer learning helps improve results on the synthetic dataset from a simple
language to a complex language (We also discovered experiments on transfer learning
from a tricky language to a simple one to be effective, but slightly less than the reported
results.). For Malayalam, we observe that the individual baseline 2 model is better than the
one transferred from Telugu, perhaps due to high average word length (refer Section 4).

Performance on Real Datasets: Table 4 depicts the performance of our models on the
real datasets. At first, we observe that for each Indian language, the overall performance of
the individual baseline 2 model is better than the individual baseline 1 model (except for
Gujarati and Hindi, where the results are very close). Based on this and similar observations
in the previous section, we present the results of transfer learning experiments on real
datasets with only the baseline 2 model ( We also tried transfer learning with baseline 1;
baseline 2 was more effective.). Next, similar to the previous section, we observe that the
transfer learning from English to Gujarati and Hindi IIIT-ILST datasets (rows 3 and 8 in
Table 4) is not as effective as individual models in these Indian languages (rows 2 and 7 in
Table 4). Finally, we observe that the performance improves with the transfer learning from
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a simple language to a complex language, except for Hindi→Gujarati, for which Hindi is
the only most straightforward choice. We achieve performance better than the previous
works, i.e., Bušta et al. [21], Mathew et al. [4], and OCR-on-the-go [15]. Overall, we observe
the increase in WRRs by 6%, 5%, 2% and 23% on IIIT-ILST Hindi, Telugu, and Malayalam,
and MLT-17 Bangla datasets compared to the previous works. On the MLT-19 Hindi and
Bangla datasets, we achieve gains of 8% and 4% in WRR over the individual baseline
1 models. On the datasets we release for Gujarati and Tamil, we improve the baselines by
5% and 3% increase in WRRs. We present the qualitative results of our baseline 1 models as
well as best transfer learning models in Figure 1. The green and red colors represent the
correct predictions and errors, respectively. “_” represents the missing character. As can be
seen, most of the mistakes are single-character errors.

Table 4. Results on real datasets. FT indicates fine-tuned. For number of synthetic training samples
and fonts, refer Table 2. # represent the number of samples.

S.No. Language Dataset # Images Model CRR WRR

1 Baseline 1 84.93 72.08
2 Gujarati ours 125 Baseline 2 88.55 74.60
3 Baseline 2 Eng→Guj 78.48 60.18
4 Baseline 2 Hin→Guj 91.13 77.61

5 Mathew et al. [4] 75.60 42.90
6 Baseline 1 78.84 46.56
7 Baseline 2 78.72 46.60
8 Hindi IIIT-ILST 1150 Baseline 2 Eng→Hin 77.43 44.81
9 Baseline 2 Guj→Hin 79.12 47.79
10 OCR-on-the-go [15] - 51.09
11 Baseline 2 Guj→Hin FT 1 83.64 56.77

12 Baseline 1 86.56 64.97
13 Hindi MLT-19 3766 Baseline 2 86.53 65.79
14 Baseline 2 Guj→Hin 89.42 72.66

15 Bušta et al. [2] 68.60 34.20
16 Baseline 1 71.16 52.74
17 Bangla MLT-17 673 Baseline 2 71.56 55.48
18 Baseline 2 Hin→Ban 72.16 57.01
19 W/t Correction BiLSTM 83.30 58.07

20 Baseline 1 81.93 74.26
21 Bangla MLT-19 3691 Baseline 2 82.80 77.48
22 Baseline 2 Hin→Ban 82.91 78.02

23 Baseline 1 90.17 70.44
24 Tamil ours 634 Baseline 2 89.69 71.54
25 Baseline 2 Ban→Tam 89.97 72.95

26 Mathew et al. [4] 86.20 57.20
27 Telugu IIIT-ILST 1211 Baseline 1 81.91 58.13
28 Baseline 2 82.21 59.12
29 Baseline 2 Tam→Tel 82.39 62.13

30 Mathew et al. [4] 92.80 73.40
31 Malayalam IIIT-ILST 807 Baseline 1 84.12 70.36
32 Baseline 2 91.50 72.73
33 Baseline 2 Tel→Mal 92.70 75.21

1 Fine-tuned on MLT-19 dataset as discussed earlier. We fine-tune all the layers.

Performance with Correction BiLSTM: Since we observe the highest gain of 23% in
WRR (and 4% in CRR) for the MLT-17 Bangla dataset (Table 4), we further try to improve
these results. We plug in the correction BiLSTM (refer Section 5) to the best model (row 18
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of Table 4). The results are shown in row 19 of Table 4. As shown, the correction BiLSTM
improves the CRR further by a notable margin of 11% since the BiLSTM works on character
level. We also observe the 1% WRR gain, thereby achieving the overall 24% WRR gain (and
15% CRR gain) over Bušta et al. [21].

Features Visualization: In Figure 7 for the baseline 1 model (top three triplets), we
visualize the learned CNN layers of the individual Hindi model, the “English→Hindi”
model, and the “Gujarati→Hindi” model. The red boxes are the regions where the first
four CNN layers of the model transferred from English to Hindi are different from the
other two models. The feature visualization again strengthens our claim that transfer from
the English reading model to any Indian language dataset is inefficient. We notice a similar
trend for the Gujarati baseline 2 models, though the initial CNN layers look very similar to
word images (bottom three triplets in Figure 7). The similarity also demonstrates the better
learnability of baseline 2 compared to baseline 1, as observed in previous sections.

WORD IMAGE LAYER-1
FEATURES

LAYER-2
FEATURES

LAYER-3
FEATURES

LAYER-4
FEATURES

Hindi

English -> Hindi

Hindi -> Hindi

Hindi

English -> Hindi

Gujarati -> Hindi

CRNN MODEL

Hindi

English -> Hindi

Gujarati -> Hindi

WORD IMAGE LAYER-1
FEATURES

LAYER-2
FEATURES

LAYER-3
FEATURES

LAYER-4
FEATURES

Gujarati

English -> Gujarati

Hindi -> Gujarati

Gujarati

English -> Gujarati

Hindi -> Gujarati

STAR-Net MODEL

Gujarati

English -> Gujarati

Hindi -> Gujarati

Figure 7. CNN layers visualization in the (Top): Baseline 1 (CRNN) models trained on Hindi,
English→Hindi, and Gujarati→Hindi; and (Bottom): Baseline 2 (STAR-Net) models trained on
Gujarati, English→Gujarati, and Hindi→Gujarati. Red boxes indicate the regions where the features
for the model transferred from English are activated (as white), whereas the features from the other
two models are not.

Incorporating more fonts and augmentation techniques: We present results of the
baseline 2 experiments with 552 fonts in Table 5. For the IIIT-ILST Hindi dataset, the model
trained on 7 M samples generated with 552 fonts (row 1, Table 5) shows an improvement
of 9.28% and 24.85% in CRR and WRR, respectively, over the model trained on 97 fonts
(row 2, Table 5). Similarly, for the MLT-19 Hindi dataset, we observe 1.35% and 1.33% CRR
and WRR gains, respectively, despite high CRR (86.53%) of the model trained on 97 fonts
(row 4, Table 5). Hence, it supports our claim that the number of fonts used to create the
synthetic dataset plays a crucial role in improving the scene text recognition models.
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चकैचौक ठीक
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Suggestion
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Figure 8. Top-3 suggestions of our improved Hindi model with fonts and augmentation on Hindi
IIIT-ILST dataset. The green and red colors represent the correct predictions and errors, respectively.
“_” represents the missing character.

Table 5. Results of Baseline 2 on Hindi datasets with increase in fonts and augmentations. # represents
the number of samples.

S.No. Dataset # Synth Images # Fonts CRR WRR

1
IIIT-ILST

7 M 97 78.72 46.60
2 7 M 552 88.00 71.45
3 8 M (Aug) 552 90.92 80.33

4
MLT-19

7 M 97 86.53 65.79
5 7 M 552 87.88 67.12
6 8 M (Aug) 552 90.15 72.77

Further, using 2 M synthetic images, we generate 8 M training samples (2 M original
and 6 M augmented) by incorporating the augmentation pipeline described in Section 5.
Note that the order of the number of augmented samples (8 M) is similar to non-augmented
data (7 M samples) in rows 1, 2, 4, and 5 in Table 5 (We also apply the augmentation pipeline
over the 7 M synthetic data, generating over 20 M training samples, and do not observe
accuracy improvements. Refer Section 3 and Figure 3 for results with 20 M augmented
training samples in Hindi.). We can note that applying the augmentation techniques to the
synthetic data helps a lot compared to the baseline 2 models trained on non-augmented
7 M samples (refer to the rows 2,3 and rows 5,6 of Table 5). Though the number of training
samples is similar in both cases, the model with augmentation pipeline produced better
results than the baseline 2 model. The augmentation has shown striking CRR and WRR
gains of 2.92% and 8.88% over the model without any augmented data (refer to row 2 of
Table 5) for the IIIT-ILST dataset. Moreover, augmentation also shows an improvement of
5.65% in WRR for MLT-19 Hindi (compare rows 5 and 6 of Table 5). It is also important
to note that we achieve the CRRs of above 90% for the two Hindi datasets (IIIT-ILST
and MLT-19). We showcase the interactivity of our proposed Hindi model in terms of
suggestions in Figure 8. We present the top-3 suggestions offered by our models to the
test samples in the case of lexicon-based transcription. The first suggestion is usually the
correct prediction but in case if the first suggestion is incorrect, second or third suggestions
might be correct (refer the last image in Figure 8 where the spelling in the image is incorrect
and the second suggestion is the correct prediction instead of the first). We present the
qualitative results of our fonts and augmentation experiments on IIIT-ILST Hindi and
MLT-19 Hindi in Figure 9. Below each image, we show the prediction from baseline 2,
followed by the upgraded model trained with data synthesized using additional fonts
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and augmentations. It is interesting to note in the three samples on the top-right and
three samples on the bottom-left of Figure 9, that the upgraded model can handle conjunct
characters (with matras or vowels) more efficiently than the baseline model.

शाहकारी
शाकाहारी

सेटल
सेंट्रल

ठण
ठाणे

सीट
सट

रकडोबा 
रोकडोबा

इंद्रप्रस्ठ 
इंद्रप्रस्थ

वेदंत 
वेदांत

चालवीताना 
चालवताना

Figure 9. Examples of real images from IIIT-ILST (top) and MLT-19 (bottom) Hindi datasets. Be-
low the images—(i) Baseline 2 predictions, (ii) correct predictions by Baseline 2 model with increased
fonts and augmentation. Text in red represents errors.

Performance with lexicon-based transcription: Lexicon-based transcriptions achieve
better results on the datasets [22,48,54]. We created two lexicons for the datasets to achieve
better performance. Each test sample has a small lexicon containing 50 words. It includes
the ground-truth word and other distractor words from the test set. The large lexicon con-
tains 1000 words, and it includes most of the label set and the most frequently used words
in the language to sum it all up to 1000. We used the BK-tree data structure [55], a metric
tree specifically adapted to discrete metric spaces to store the lexicon for fast searching.
We test our models by finding words in the tree data structure with ≤3 edit distance to
the query label. The usage of small and large lexicons during post-processing performs
better than the lexicon-free based testing. We test our best models using the lexicon-based
approaches and present the results in Table 6. For Hindi, we present the results of our best
model, baseline 2, with augmentation using the lexicon-based transcription. We observe an
increase of around 8.5% and 18.5% in CRR and WRR (refer to row 2 of Table 6), respectively,
with a large lexicon compared to the lexicon-free approach on the IIIT-ILST Hindi dataset.
Similarly, as shown in row 3 of Table 6, we observe a 25.92% increase in WRR on the
MLT-19 Hindi dataset for the small (50) lexicon-based transcription. We observe similar
improvements in the performance for other languages as well. The results on the Gujarati
dataset reach a maximum of 100% for both WRR and CRR for the small lexicon-based
transcription because of the high CRR of the lexicon-free model (90.82) and ineffective
50 distractors randomly chosen from 100 unique labels in the test set.

Table 6. Results of lexicon-based transcription on real datasets. In the parenthesis, ‘50’ and ‘1 K’
indicate the lexicon sizes.

Lexicon-Free Small (50) Large (1k)
S.No. Language Dataset CRR WRR CRR WRR CRR WRR

1 Gujarati ours 91.13 77.61 100.0 100.0 92.20 78.40
2 Hindi IIIT-ILST 90.92 80.33 99.27 98.86 99.35 98.86
3 Hindi MLT-19 90.15 72.77 99.16 98.69 97.37 90.58
4 Bangla MLT-17 83.30 58.07 93.38 89.95 87.86 65.62
5 Bangla MLT-19 82.91 78.02 97.21 95.69 96.23 89.73
6 Tamil ours 89.97 72.95 98.03 97.00 94.40 81.70
7 Telugu IIIT-ILST 86.20 62.13 96.49 94.63 89.11 63.33
8 Malayalam IIIT-ILST 92.70 75.21 98.41 97.52 93.67 76.08
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Error Analysis: We analyze the quantitative results using two tools of evaluation, i.e,
WA-ECR plots (Word-Averaged Erroneous Character Rate) and histogram plots [56]. We
present the WA-ECR plots on Hindi real datasets in Figure 10. WA-ECR values are usually
lower for longer length words because of their low numbers. However, lower values of
WA-ECR also indicate the decrease in the errors per length. We observe a clear distinction
between the plots in the figure for both the datasets. This decrease can be attributed to the
inclusion of data diversity. Therefore, we observe a significant dip (green plot in Figure 10)
in the WA-ECR values over both the Hindi real datasets, which is a clear indication of our
models’ superior performance.

The histogram plots are plotted against the edit distance of the predicted label and
ground truth of the test image. Meanwhile, WA-ECR plots are a normalized way of present-
ing the total number of errors per label length. Both of these are useful in inspecting the
overall performance of STR systems. The bars at x = 0 position indicated the labels that are
predicted correctly, whereas the bars at other positions, x > 0 indicate the incorrectly pre-
dicted labels with an edit distance of value x. As we observe in Figure 11, the performance
of the best model for each language over performs the Baseline 2 model at x = 0 position
in the plots. We observe a significant difference in the histogram bars for Hindi datasets
(first row of Figure 11) because of the inclusion of font diversity and augmented samples.

Figure 10. WA-ECR of our Hindi models tested on IIIT-ILST (left) and MLT-19 (right) datasets.

We now substantiate how our proposed models, with transfer learning and data
diversity improve the detection for top character confusions. We present the example of
such confusions in Figure 12. We observe that our best model trained so far is reducing
such confusions to a large extent. This also highlights our models’ improved performance
over real test sets as compared to the baseline models.

Figure 11. Cont.
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Figure 11. Histogram of correct words (x = 0) and words with x errors (x > 0) for Baseline 2 model
as baseline model and the best model trained so far evaluated on real datasets for six languages
(Hindi, Bangla, Gujarati (our dataset) , Tamil (our dataset), Telugu and Malayalam in row-wise order).
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S.No. Language Character 

Confusions

#Frequency

Baseline 

Model

#Frequency 

Best 

Model

1 Gujarati

પ  ⟶ વ
બ ⟶ ભ
◌ી ⟶  ◌ો

4
3
2

3
0
1

2 Hindi

◌े ⟶ ◌े ै
◌ा ⟶ ◌ॉ
र ⟶ स 

19
15
11

10
5
6

3 Bangla

য ⟶ য়
◌় ⟶ ◌া
ড ⟶ ড়

214
92
42

168
76
34

4 Tamil

  ர ⟶ ◌ா
ல ⟶ வ
க ⟶ த

35
7
6

27
5
4

5 Telugu

◌ి ⟶ ◌ిీ
న ⟶ స
ప ⟶ వ

28
19
13

21
12
10

6 Malayalam

പ ⟶ വ
◌ു ⟶ ◌ൂ
ര ⟶ ർ

12
6
5

4
2
4

Figure 12. Examples of character confusions over real datasets with models trained on Baseline 2 and
the best resultant model trained so far.

8. Conclusions

We created over 2 million synthetic images in six different languages with varying
scripts and vocabulary characteristics to improve Scene Text Recognition (STR) for low-
resource Indian languages. We analyzed the language transfers for two different baselines
via several controlled experiments. The transfer of image and text features seems intuitively
relevant for text recognition models in deep learning. However, in this study, we observe
that transferring English STR models to Indian languages turned out to be inefficient
and, in most cases, resulted in lower-quality models than those trained on individual
languages. Our experiments show that transfer learning across the six languages that
share a resemblance in terms of glyphs structure and n-gram distributions results in a
performance boost compared to the individual baselines. Our STR models performed
better than the previous works in all Indian languages, and we have established new
standards for recognizing scene-text in low-resource Indian languages. When plugged into
the STAR-Net model, the proposed end-to-end trainable Correction BiLSTM improves the
Bangla results further while finetuning. For the IIIT-ILST Hindi dataset, we have achieved
WRRs similar to English STR by incorporating font diversity and augmentation into our
recognition network. We also accomplish the CRRs of above 90% for the two Hindi datasets
(IIIT-ILST and MLT-19). Our work in Hindi lays the foundation for boosting the accuracy
of non-Latin scene-text recognition systems. Rendering non-Unicode fonts with synthetic
generators in other languages remains challenging due to the diligent efforts required to
create (non-Unicode to Unicode) text conversion tables and effectively handle the (‘matras’
or vowels in) conjunct characters. For future work in this area, we plan to explore and
integrate more fonts in other non-Latin languages, since incorporation of more fonts is one
way to enhance data diversity to boost the accuracy of scene-text recognition models. We
can curate such variety of fonts by designing font generators using training Generative
Adversarial Networks (GANs), which can be modified according to low-resource non-Latin
languages like Indian languages.
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