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Abstract: Contactless fingerprint identification systems have been introduced to address the de-
ficiencies of contact-based fingerprint systems. A number of studies have been reported regard-
ing contactless fingerprint processing, including classical image processing, the machine-learning
pipeline, and a number of deep-learning-based algorithms. The deep-learning-based methods were
reported to have higher accuracies than their counterparts. This study was thus motivated to present
a systematic review of these successes and the reported limitations. Three methods were researched
for this review: (i) the finger photo capture method and corresponding image sensors, (ii) the classical
preprocessing method to prepare a finger image for a recognition task, and (iii) the deep-learning
approach for contactless fingerprint recognition. Eight scientific articles were identified that matched
all inclusion and exclusion criteria. Based on inferences from this review, we have discussed how
deep learning methods could benefit the field of biometrics and the potential gaps that deep-learning
approaches need to address for real-world biometric applications.

Keywords: biometrics; contactless fingerprint; deep learning; fingerprint analysis; fingerprint
recognition

1. Introduction

Contactless fingerprint identification technology has the potential to be one of the
most reliable techniques for biometric identification [1,2]. The first contactless fingerprint
recognition system was introduced in 2004 [3] as an alternative to traditional contact-based
fingerprinting [4]. Since then, interest has grown, as shown by a continually growing
number of publications by different research groups. This publication corroborates that
the demand for contactless fingerprint recognition systems is increasing rapidly [5]. The
National Institute of Standards and Technology (NIST) has also reported that contactless
fingerprint recognition system is an important component of next-generation fingerprint
technologies [6]. Generally, a contactless fingerprint system involves a high-resolution
camera [7,8]. The captured images provide the details of fingerprints (ridge, valleys)
and wrinkles, etc. [9]. One of the challenges of the traditional contact-based fingerprint
recognition system is fingerprint capturing [10]. During the acquisition of a contact-based
fingerprint, issues such as a latent fingerprint left by a previous user on the sensor surface
lead to low fingerprint quality [10–12]. Also, deformation and distortion of fingerprints
occur because of the pressure on the sensor surface [12]. Distortions can be caused by
non-uniformity of the finger pressure on the device, finger ridge changes due to heavy
labor or injuries, different illumination on finger skin, or motion artifacts during image
capturing [13]. When fingerprints contact the scanner, the ridge flow may become discon-
tinuous. A lot of background noise might also be introduced during capture [14]. Often,
only a partial fingerprint is obtained because the rest might be either lost or smudged
during capture [8], as shown in Figure 1. This process is subject to partial information,
poor quality, distortions, and variations, including background and illumination [15]. The
variations in sensors and the acquisition environment may introduce a wide range of intra-
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and inter-class variability in the captured fingerprint in terms of resolution, orientation,
sensor noise, and skin conditions. A finger photo acquired by a contactless sensor does not
suffer from deformation or latent, hidden fingerprints [7,10]. However, new challenges are
also present here. For example, captured images can be of poor quality, with different size,
low resolution, background segmentation, or uncontrolled illumination, and face difficulty
in extracting features like minutiae, finger enhancement, etc. [16]. According to the NIST,
a standard fingerprint image, generally the frontal region of the finger, requires 500 dpi
imaging sensors for a good-quality application [17]. These can be captured by smartphones
or a handheld electronic device [7,18–20].
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Figure 1. Different challenges for contact-based fingerprint images: (a) blurry images, (b) distorted
image capture, (c) deformed images [21–23].

The contactless finger image obtains ridge–valley contrast that is different from a
print made from the contact of a finger on a live-scan capture device [24]. To address
this, different technologies for acquiring finger photos, such as 2D and 3D fingerprints,
have been introduced [13,16,25,26]. Image processing can solve some issues, while the
rest of them remain in contactless 2D and 3D fingerprint areas [27]. In recent years, deep-
learning technology has demonstrated success in image recognition, classification, and
feature representation [28–37]. These deep-learning models have also been employed
in contactless fingerprint-based biometric technologies [38]. It is necessary to conduct a
comprehensive survey on the latest research findings on 2D and 3D contactless fingerprint
recognition systems based on deep-learning technology to understand those models and
point out the future development direction. It is useful to note that there is a particular
system of capturing contactless finger photo images that might impact the performance of
the deep-learning models. Also, it will be useful to know how the limitations of classical
machine-learning open the door for deep learning in the contactless fingerprint area.
This study explored deep neural network (DNN) methods for contactless fingerprint
recognition. For this, we needed to analyze the machine learning (ML)-based algorithms to
compare with DNN methods. Photo capture and image processing are the first steps for
contactless fingerprint recognition. We have explored the steps of feature extraction and
recognition based on ML and DNN methods. Various test outputs with their performance
were analyzed to validate the feasibility of the suggested DNN methods. This paper
has investigated fingerprint capturing methods, fingerprint preprocessing, and feature
extraction in both classical image processing and machine learning, as well as replacement
of classical methods by deep learning. A total of 32 papers (without duplication) were
found related to these topics. Following the application of inclusion and exclusion criteria,
eight papers were selected for a full-text review.
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The paper is organized as follows: first, the systematic review procedure is represented
in Section 2 along with the description of three research questions (RQ). Section 3 presents
a detailed investigation of the image-capturing method using image sensors. Section 4
explores relevant classical methods. Section 5 analyzes the deep neural network methods
in contactless fingerprint recognition systems. Section 6 provides a discussion and Section 7
ends with conclusions for future work.

2. Review Methodology

The key focus of this review is an up-to-date summary of recent novel approaches.
The systematic search procedure was set primarily following the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) [23]. This methodology used the
following processes: (a) identifying research question (RQ), (b) source of study (c) search
strategy: setting inclusion/exclusion criteria, (d) results.

2.1. Research Questions

(1) RQ1. How do different sensor systems capture finger images to ensure the acceptable
quality of fingerprints? Research findings will help to investigate whether the capturing
systems have any impact on the model architecture or the recognition performance.

(2) RQ2. How does the classical machine-learning method preprocess the contactless
finger images and prepare for recognition algorithms? Research findings explore the
classical methods used for feature extraction, image segmentation, minutiae point
extraction, image deblur, background noise removal, particular portion segmentation,
and suitable feature extraction from finger images.

(3) RQ3. How do deep neural networks replace the classical recognition models? The
answer will explore the architecture of related deep neural networks and their perfor-
mance improvement over traditional methods.

2.2. Source of Studies

The search for relevant literature was performed across six repositories: Google Scholar,
Science Direct, Wiley Online Library, ACM Digital library, MDPI, and IEEE. Search dates
ranged from inception to 30 April 2022.

2.3. Search Strategy

The following ‘free- text search terms’ were used: ‘finger photo recognition’, ‘finger-
print identification’, ‘touchless fingerprint recognition’. The search results were strictly
restricted to the English language. References from selected primary full-text articles were
further analyzed for relevant publications. The selection was further narrowed by applying
the eligibility criteria described in Table 1. Articles fulfilling the inclusion criteria were
considered in this review, and those fulfilling the exclusion criteria were filtered out.

Table 1. Inclusion and Exclusion Criteria for this systematic review.

Inclusion Criteria Exclusion Criteria

Article published in peer-reviewed venues Papers not written in English

Article published since 2010 Traditional contact-based fingerprint method

Articles must address a certain combination of
words i.e., deep learning + contactless

fingerprint recognition

Automate + fingerprint identification, 3D +
contactless identification, smartphone/mobile

+ capture, contactless + finger photo

A total of 49 publications were identified through the database search and three from
the bibliography of those publications; however, 33 failed to satisfy the eligibility criteria
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and were excluded. Thus, 16 publications ultimately fulfilled the eligibility criteria for this
review. Figure 2 illustrates the methodology and results of the review process.
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2.4. Review Outcome

There are two types of contactless fingerprint capturing techniques: 2D and 3D. Smart-
phones and digital cameras can take 2D and 3D photos [17,39]; 3D contactless fingerprints
can also be acquired with photometric stereo-based cameras [39], 3D fingerprint recon-
struction, structured light-scanning-based 3D fingerprint reconstruction, etc. [40–47]. The
general biometric workflow of a contactless fingerprint recognition system is described in
Figure 3.
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3. Contactless Fingerprint Capturing Methods
3.1. 2D Contactless Fingerprint Capturing Methods

During a contactless fingerprint capture, one or multiple fingers are presented to an
optical device like a camera or lens. These devices can be (a) prototype hardware designs
developed by researchers or (b) general-purpose devices customized to meet the unique
needs for contactless fingerprint recognition [48].

Smartphone-based image acquisition is one of the widely available techniques to
capture 2D contactless finger photos [4]. The NIST [17] published a document to assess
contactless fingerprint capturing methods; the document provides proper instructions
for contactless fingerprint capturing devices. It describes the smartphone’s uniform light
lighting, backdrop segmentation, and motion reduction during capture. Multi-finger
capturing techniques can also be used with smartphones [49]. The advantage of multi-
finger capture is the efficiency since feature extraction of all five fingers can occur from
one single image [50]. To evaluate the performance of Nokia N95 and HTC Desire mobile
phone for this, 1320 fingerprints were captured. A flashlight-enabled phone was used for
appropriate illumination and to cover the entire finger area. However, the image quality
was reported to be poor, as a flashlight performs well only in a dark setting [22]. To improve
image quality and to reduce camera noise, dark environments might play a very important
role. Auto-focus and maintenance of a standard distance from hand to phone may also
be useful strategies. Figure 4 shows the identical distance and illumination from hand
to phone.
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Figure 4. Homogeneous distance illumination with auto focus capturing by smartphone.

Figure 5 illustrates the impressions of a fingerprint taken with a contact-based finger-
print device (Figure 5a) and the corresponding finger image acquired using a non-contact
device (Galaxy S8). (Figure 5b). The contact-based fingerprint can directly be used for
finding feature such as: ridge, valley, delta cores, minutiae etc., whereas the corresponding
contactless fingerprint image would need additional processing.

J. Cybersecur. Priv. 2022, 2, x FOR PEER REVIEW 6 of 18 
 

 

 
(a) (b) 

Figure 5. (a) Contact-based fingerprint, (b) contactless fingerprint (Samsung Galaxy S8) [15]. 

A digital camera is another tool to capture contactless 2D finger photos. The main 
feature of this system is white-color- and LED-color-based image sensors [10]. A three-
camera-based system with blue LED is much more comfortable than a white LED for the 
user to acquire fingerprints. The charge-coupled camera device emits a green LED, and 
there is a stepper motor with a mirror that can capture five fingers at a time, making it 
convenient [11]. 

3.2. 3D Contactless Fingerprint Capturing Methods 
Researchers have used lab-developed prototypes of the 3D fingerprint capture ap-

proach, which requires (i) photometric stereo techniques, (ii) structured light scanning, 
and (iii) stereo vision [51]. The photometric stereo-based 3D fingerprint method captures 
multiple 2D images under heterogeneous illumination using a high-speed camera. Time-
of-flight (ToF) is the main principle of this technique, where surface reflectance is meas-
ured from fingerprint to light source [52]. This system is low-cost because it uses only one 
high-speed camera and multiple LEDs. Figure 6 shows the capturing method with camera 
and finger position. 

 
Figure 6. Acquisition of 3D fingerprint using photometric stereo techniques [39]. 

The structured light-scanning method consists of several high-speed cameras and a 
digital light-processing projector [53,54]. During the capture process, multiple 2D finger-
print images are captured under pattern illuminations, and 3D depth information is 

Figure 5. (a) Contact-based fingerprint, (b) contactless fingerprint (Samsung Galaxy S8) [15].



J. Cybersecur. Priv. 2022, 2 719

A digital camera is another tool to capture contactless 2D finger photos. The main
feature of this system is white-color- and LED-color-based image sensors [10]. A three-
camera-based system with blue LED is much more comfortable than a white LED for the
user to acquire fingerprints. The charge-coupled camera device emits a green LED, and
there is a stepper motor with a mirror that can capture five fingers at a time, making it
convenient [11].

3.2. 3D Contactless Fingerprint Capturing Methods

Researchers have used lab-developed prototypes of the 3D fingerprint capture ap-
proach, which requires (i) photometric stereo techniques, (ii) structured light scanning,
and (iii) stereo vision [51]. The photometric stereo-based 3D fingerprint method captures
multiple 2D images under heterogeneous illumination using a high-speed camera. Time-of-
flight (ToF) is the main principle of this technique, where surface reflectance is measured
from fingerprint to light source [52]. This system is low-cost because it uses only one
high-speed camera and multiple LEDs. Figure 6 shows the capturing method with camera
and finger position.

J. Cybersecur. Priv. 2022, 2, x FOR PEER REVIEW 6 of 18 
 

 

 
(a) (b) 

Figure 5. (a) Contact-based fingerprint, (b) contactless fingerprint (Samsung Galaxy S8) [15]. 

A digital camera is another tool to capture contactless 2D finger photos. The main 
feature of this system is white-color- and LED-color-based image sensors [10]. A three-
camera-based system with blue LED is much more comfortable than a white LED for the 
user to acquire fingerprints. The charge-coupled camera device emits a green LED, and 
there is a stepper motor with a mirror that can capture five fingers at a time, making it 
convenient [11]. 

3.2. 3D Contactless Fingerprint Capturing Methods 
Researchers have used lab-developed prototypes of the 3D fingerprint capture ap-

proach, which requires (i) photometric stereo techniques, (ii) structured light scanning, 
and (iii) stereo vision [51]. The photometric stereo-based 3D fingerprint method captures 
multiple 2D images under heterogeneous illumination using a high-speed camera. Time-
of-flight (ToF) is the main principle of this technique, where surface reflectance is meas-
ured from fingerprint to light source [52]. This system is low-cost because it uses only one 
high-speed camera and multiple LEDs. Figure 6 shows the capturing method with camera 
and finger position. 

 
Figure 6. Acquisition of 3D fingerprint using photometric stereo techniques [39]. 

The structured light-scanning method consists of several high-speed cameras and a 
digital light-processing projector [53,54]. During the capture process, multiple 2D finger-
print images are captured under pattern illuminations, and 3D depth information is 

Figure 6. Acquisition of 3D fingerprint using photometric stereo techniques [39].

The structured light-scanning method consists of several high-speed cameras and
a digital light-processing projector [53,54]. During the capture process, multiple 2D fin-
gerprint images are captured under pattern illuminations, and 3D depth information
is calculated through triangulation according to the point correspondences between im-
ages [55]. This method can recover ridge-valley details and achieve relatively accurate 3D
depth information. However, the hardware system is expensive and bulky [39].

The stereo-vision-based 3D contactless fingerprint method is usually comprised of
two or more cameras [51,56,57]. During the capture process, 2D fingerprint images are
captured from different views. The 3D fingerprints are reconstructed by calculating 3D
depth information between corresponding points according to the triangulation principle.
The advantage is that the systems are simple, low-cost, and relatively compact. However,
current methods are usually time-consuming because of the extensive computation of the
correspondences between pixel points [58]. Table 2 shows the 2D and 3D capturing devices
and their approximate cost, with light environment, etc.
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Table 2. Overview of contactless 2D and 3D capturing devices and their properties.

Capturing Device Authors Cost Light Environment Finger Type

Mobile Phone (2D) Lee et al. [19] Low cost No extra illumination Single Finger

Digital Camera (2D) Hiew et al. [59] Low cost Table lamp illumination Single Finger

Digital Camera (2D) Genovese et al. [60] Medium cost Green Light illumination Finger slap

Webcam (2D) Piuri et al. [61] Low cost Different illumination (white light,
no light) Single Finger

Webcam Kumar and Zhou [9] Low cost No illumination Finger slap

Smartphone (2D) Derawi et al. [18] Low cost No illumination Finger slap

Smartphone (2D) Canrey et al. [49] Low cost Screen guidance. If flash required
(Y/N) Finger slap

Smartphone (2D) Deb et al. [61] Medium cost 3 smartphones in different
illumination Thumb and index finger

Smartphone (3D) Xie et al. [51] Medium cost 2 cameras with depth information Finger slap

4. Classical Method to Extract Features from Contactless Fingerprints

The basic steps for contactless fingerprint recognition pipeline are shown in Figure 7
as a flowchart:
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Most of the contact-based fingerprint images captured from the devices are grayscale
and ready for feature extraction [62]. In contrast, most contactless finger-imaging solutions
provide color RGB images that require preprocessing before feature extraction [63]. The
primary challenges of preprocessing contactless finger images and recommended methods
to overcome these challenges are shown in Table 3.

Table 3. Overview of challenges during the preprocessing of contactless finger images and pro-
posed approaches.

Challenge Authors Year Approach

Finger Segmentation Wang et al. [62] 2017 Hand color estimation in YCbCr

Rotated pitched principal orientation
estimation Zaghetto et al. [9] 2015 Artificial neural network

Low contrast Wang et al. [62] 2016 CLAHE and extensions

Distance to the sensor, ridge line frequency Zaghetto et al [9] 2017 Frequency map, sensor-finger distance
approximation

Core/principal singular point detection Labati et al. [64] 2010 Poincare-based ridge orientation analysis

Deformation correction Lin et al. [11] 2018 Robust thin-plate splines, deformation correction
model
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When processed with the classical methods, both contactless 2D and 3D images have
issues with low focus of ridge/valley and blurred ROI (background) [57]. Misplaced or
rotated fingers and the lack of skin deformation also cause processing issues [65]. An
image processing pipeline must be developed based on the selected equipment and the
environmental conditions needed during the image acquisition process. Image processing
begins with the following common preprocessing steps:

Finger Segmentation and Detection: The initial step is to detect the finger based
on color and shape. Sharpness, shape, color contrast, and image depth information are
four different categories for improving contactless 2D and 3D finger detection and image
segmentation [13]. Sharpness-based strategies utilize the difference between the focused,
blurred background and the sharp finger area. This effect works best with images obtained
with a very small finger-to-sensor distance and a wide-open aperture. One experiment
showed that the variance-modified Laplacian of Gaussian (VMLOG) algorithm is best
suited for contactless 2D fingerprint-capturing devices [10,66,67]. All finger shapes, from
thumb to little finger, are highly similar for all finger position codes. A machine-learning-
based algorithm has been applied to a binarized image in the LUV color model [10]. To
make the skin color contrast and segment the skin and background color, the analysis
of the YCbCr color space represents a very vital approach [64,68]. A different method of
image segmentation and image depth information approach combined an RGB image via
a smartphone [69]. These were able to extract the finger slap (the four fingers except the
thumb) from busy backgrounds for further processing.

Minutiae-Based Feature Extraction: One of the main conditions for pre-processed
contactless fingerprints is that images must be converted from RGB to greyscale [70]. Thus,
ROI such as minutiae, ridge valley extraction, and finger orientation estimation must
also be handled with a machine-learning approach. After detecting the finger, the ROI
must be extracted, which involves the normalization of width, height, and resolution.
This 3D contactless fingerprint preprocessing stage implies an extracted finger image as
input. It should be noted that finger detection and ROI extraction are done in output. The
color-based segmentation of ROI extraction constrained setups depends on contactless
3D finger geometry [10]. Several operations used the ridge–line orientation and shape to
detect the core point [71]. Using a support vector machine (SVM) [72], it is easy to classify
minutiae-based fingerprints and to detect the minutiae points as the detection points to
refer to as a category [73]. SVM can determine the image quality with five feature vector
lengths such as gray mean, gray variance, contrast, coherence, and the main energy ratio.
These features take much training time to implement.

Fingerprint Image Enhancement: To improve image contrast and sharpness, image
enhancement techniques such as spatial domain techniques and frequency domain tech-
niques can be used to improve the quality [74,75]. Finger image enhancement should result
in a fingerprint image with uniform illumination. Three different methods to achieve this
appeared in the literature: a normalization using mean and variance filters [30], histogram
enhancements like contrast-limited adaptive histogram equalization (CLAHE) [76], and
local binary patterns (LBP) for enhancing the ridge–valley contrast of the 2D contactless
fingerprint system [77]. Reducing the blurred image from the original image is another chal-
lenge in contactless 3D fingerprint enhancement [14]. A combination of image-processing
algorithms and machine learning for extracting sweat pores of fingerprint patterns level-3
has been proposed by Genovese et al. [78].

5. Analyzing the Deep Neural Networks Methods Proposed for the Contactless
Fingerprint Recognition Systems

Simple convolutional and pooling layers were utilized to create deep-learning models
in many articles, but a multi-task fully convolutional network was used in three of them.
The architecture for the multi-task deep convolutional network is shown in Figure 8.
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Matching the contactless fingerprint with a traditional contact-based fingerprint using
deep learning is a new domain in biometrics research. In order to recognize contactless
fingerprints, this paper [67] described a convolutional neural network (CNN) framework.
The convolutional and pooling layers are the two main layers of the algorithm. The
convolutional layers were used to execute low-level features such as edges, corners, etc.
Pooling layers enabled correct operations such as reducing the dimension of feature maps.
Ten images were provided to the CNN model as an input batch for training. A training
accuracy of 100 percent was attained after four iterations. At 95 percent of testing accuracy,
140 out of 275 images were used for testing purpose.

A fully convolutional network was applied for minutiae detection and extraction
in [79]. The minute point and its corresponding direction were processed and analyzed
using contactless grayscale fingerprint images from two different public datasets [12,80].
Images were assessed online after being trained offline. A full-sized contactless fingerprint
from two different datasets (9000, 6000) was applied as an input and its corresponding
minute ground truth was indicated as an output in the offline portion. In conjunction
with a novel loss function, this method concurrently learns the minutiae detection and
orientation. One of the main claims of this study is that a multi-task technique outperforms
any single minutiae detection task. An hourglass-shaped encoder–decoder network [81]
structure was applied for a multi-task deep neural network called ContactlessMinuNet
architecture [79]. To process the input fingerprint images, a shared encoder subnetwork
was used. For up-sampling, the subnetwork was decoded to expand the image. Lastly, the
network split into two branches for minutiae detection and direction computation.

Minutiae point detection branch: In this network [79], the input feature represents
the detection of minutiae points, and the output represents the probability of each pixel’s
minutiae points. The network is very simple, with a 1 × 1 convolutional layer, a batch
normalization layer that standardizes the input layer, and a sigmoid layer. A non-linear
activation function sigmoid layer is used to generate minutiae location.

Minutiae direction regression branch: This network [79] is designed to predict the
minutiae direction. Pixel-by-pixel images were extracted with a phase angle �i € (0,2π). The
subnetwork works as input features, and the output layer predicts minutiae direction. A
convolutional layer (1 × 1), batch normalization, and non-linear activation function tanh
layer were used to predict the minutiae path.

Using 3 × 3 CNN layers, the final convolution has been used with (stride = 1) and
padding to keep the height and width constant. For testing, the proposed method was
compared with the benchmark dataset of the PolyU dataset [12]. The accuracy of minutiae
detection and its location increased to 94.10% compared to 89.61%. The proposed method
of this study is shown in Figure 9.
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task fully deep convolutional neural network [2].

A study reported in [82] suggested how to extract a minutiae point from an input image
without preprocessing. To train the model and obtain the output without any preprocessing,
a number of deep neural networks have been deployed. Initially, JudgeNet was trained to
locate the minutiae regions and picked a general overview of detecting minutiae points.
The original image resolution was 640 × 640 and 500 ppi with 200 labeled images. A max
pooling was used to reduce the image dimensions, and it showed image dimensions of
45 × 65. Using multiscale input and four CNN layers, the network performed very well
to get the accurate output. Later, another deep CNN layer named LocalNet specifically
indicated the directions of minutiae with a more concise image dimension of 45 × 45 and
decided the specific location. Lastly, a comprehensive estimation and decision were made
to add or eliminate the minutiae location. The overview of the network architecture is
shown in Figure 10.
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A method was proposed [83] to get the proper position of the contactless fingerprint
of multi-view 3D fingerprint features using CNN. A fully convolutional network (FCN)
was applied with this model for automatic fingerprint segmentation and three Siamese
networks for fingerprint multi-view. Various convolutional neural network models such
as VGG net [31], AlexNet [84], and GoogleNet [85] are introduced in this work. These
architectures are very well-trained pixel-to-pixel deep networks. For foreground and
background segmentation, semantic segmentation architecture was applied. This model
clusters the same image together with a different class. To predict each pixel from the
top-view of the fingerprint, they used the softmax loss function. The Siamese convolutional



J. Cybersecur. Priv. 2022, 2 724

network worked very well to match image pairs (matched and unmatched) in the same
network. Three Siamese networks indicated the positions: top view, side 1 view, side 2
view. The network is structured with six convolutional layers with one fully connected
layer. One to five layers are followed by max-pooling, where the input patch size was
256 × 192.

The kernel size was 3 × 3 with stride value 2. The output numbers from the feature
map were 64, 96, 128, 256, and 512, generated from the 48-feature map in the first convolu-
tional layer. The final result was presented in the receiving operating characteristic (ROC)
curve and the equal error rate (EER) curve to evaluate performance. Using computing
matching scores from CNN-based features and minutiae-based features, another Siamese
convolutional neural network was applied to extract the global feature from a finger photo.
They mentioned that fingerprint images have many global features that ease extraction of
the features using CNN. Using an input image size of 310 × 240, the first convolutional
layer was introduced with a kernel size of 3 × 3 with batch normalization. By evaluating
the ROC curve and EER curve, they showed the estimation of EER; minutiae matching rate
was 11.39% and 4.09%, respectively. Figure 11 shows how a fully convolutional network
segments the fingerprint background and directs the capturing methods of multi-view with
deep representation:

J. Cybersecur. Priv. 2022, 2, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 10. JudgeNet and LocalNet share a similar convolutional architecture [82]. 

A method was proposed [83] to get the proper position of the contactless fingerprint 
of multi-view 3D fingerprint features using CNN. A fully convolutional network (FCN) 
was applied with this model for automatic fingerprint segmentation and three Siamese 
networks for fingerprint multi-view. Various convolutional neural network models such 
as VGG net [31], AlexNet [84], and GoogleNet [85] are introduced in this work. These 
architectures are very well-trained pixel-to-pixel deep networks. For foreground and 
background segmentation, semantic segmentation architecture was applied. This model 
clusters the same image together with a different class. To predict each pixel from the top-
view of the fingerprint, they used the softmax loss function. The Siamese convolutional 
network worked very well to match image pairs (matched and unmatched) in the same 
network. Three Siamese networks indicated the positions: top view, side 1 view, side 2 
view. The network is structured with six convolutional layers with one fully connected 
layer. One to five layers are followed by max-pooling, where the input patch size was 256 
× 192. 

The kernel size was 3 × 3 with stride value 2. The output numbers from the feature 
map were 64, 96, 128, 256, and 512, generated from the 48-feature map in the first convo-
lutional layer. The final result was presented in the receiving operating characteristic 
(ROC) curve and the equal error rate (EER) curve to evaluate performance. Using compu-
ting matching scores from CNN-based features and minutiae-based features, another Si-
amese convolutional neural network was applied to extract the global feature from a fin-
ger photo. They mentioned that fingerprint images have many global features that ease 
extraction of the features using CNN. Using an input image size of 310 × 240, the first 
convolutional layer was introduced with a kernel size of 3 × 3 with batch normalization. 
By evaluating the ROC curve and EER curve, they showed the estimation of EER; minutiae 
matching rate was 11.39% and 4.09%, respectively. Figure 11 shows how a fully convolu-
tional network segments the fingerprint background and directs the capturing methods 
of multi-view with deep representation: 

 
Figure 11. Automatic learning of 3D fingerprint features via deep representation [86]. Figure 11. Automatic learning of 3D fingerprint features via deep representation [86].

A CNN-based framework has been applied [78] to make an accurate comparison
between contactless fingerprints and contact-based fingerprints. Minutiae points, ridge
maps, and specific regions are the targeted metrics to establish the comparison [83]. A
multi-Siamese network was used to train and learn the minutiae features. As the image
dataset was collected from different sensors, a CNN-based cross-comparison framework
was used to compare contactless and contact-based fingerprints. Figure 12 shows the
deep-feature representation generation process:

A data augmentation process was used in 5780 contactless and contact-based images
from 320 fingers [78]; 3840 images were used in the training set while the rest were used for
testing purposes. The image size remained 192 × 192 in every image. A public dataset was
used to determine the performance and to compare and validate the dataset. The dataset
contains 1500 fingers data with 3000 contactless fingerprint samples. For the performance
metrics and evaluation, the ROC method (receiver operating characteristics) and EER
(equal error rate) were used. To obtain the fingerprint recognition, CMC (cumulative
match characteristics) and rank-one accuracy methods were applied. The comparative
experimental evaluations are shown in Table 4. Also, in Table 5 shows the total summary
of the described articles of deep learning in Section 5.
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Table 4. Experimental evaluation of two datasets.

Experiments Equal Error Rate (ERR) Rank-One Accuracy

Deformation correction model [87] on
dataset A 16.17% 41.82%

Minutiae matcher in NIST [88] on dataset A 43.83% 10.99%

Proposed method on dataset A 7.93% 64.59%

Deformation correction model [87] on
dataset B 21.60% 38.90%

Minutiae matcher in NIST [88] on dataset B 38.01% 24.92%

Proposed method on dataset B 7.11% 58.87%

Table 5. The following table describes the summary of the analysis.

Study Database Training Data Purpose of Deep
Learning

Input to Deep
Neural Network

Output from Deep
Neural Network

Performance
Metrics

[67] Private
275 images with

55 different
people

Fingerprint
Recognition

RGB to Gray
scale images Feature matching

Classification
(Metric

Accuracy)

[78] Public 5760 images
from 320 fingers

Minutiae
Extraction Gray scale images Extracted minutiae

images AUC, EER

[79] Private + Public 9000/6000/
1320 images

Multiview
fingerprint
recognition

Gray scale images
Feature (Ridge,

valley)
representation

EER

[80] Public 100 images Minutiae
Extraction Gray scale images Extracted Minutiae

images

Classification
(Metric

Accuracy)

[82] Private + Public 500 images

CNN based
framework for

Contactless
fingerprint

HSV images
Similarity distance

between two
images

ROC curve

[83] Public 9920 images
To correct
fingerprint
viewpoint

Gray scale images Correct images ROC and CMC
curve
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6. Discussion

This review is intended to provide a systematic survey of the deep-learning approaches
employed for contactless fingerprint processing. The review surveyed eight full-text sci-
entific research articles showing how deep learning can replace machine learning in con-
tactless fingerprint contexts. This review was focused on three major research questions:
the contactless finger photo capturing method, the classical approach of fingerprint recog-
nition, and the use of deep learning. The first research question shows the direction of
the different capturing methods and various camera sensors. This analysis might help
researchers to understand divergent capturing methods and their limitations. Also, they
might be motivated to employ smartphone-based finger photo capturing. In the second
research question, we explained how classical machine-learning techniques have been
introduced into contactless fingerprint recognition methods. This review covered feature
extraction, image segmentation, and blur reduction; however, systems like data acquisition,
data cleaning, data labeling, etc. were beyond the scope of this review.

The main contribution of this paper is the review of the use of deep learning, specifi-
cally, its impact and usability in the field of contactless fingerprints. We have discussed how
a contactless recognition system can benefit from using deep learning. In addition, we have
also pointed out potential vulnerabilities in classical methods and shown the applicability
of deep learning to real-world applications. Research Question 3 shows that the following
factors can impact the research of contactless fingerprint recognition systems:

Feature learning: Deep-learning methods have an advantage over previous state-
of-the-art methods because they can learn features from data. Contactless fingerprint
recognition systems require both local and global features [89] and are compatible with
hierarchical and structural feature learning enabled by deep learning [90]. In addition to
processing and labeling with the handcrafting data, some tools like labelme and image-
label will be difficult in most cases. Therefore, deep learning can assist in preprocessing or
extraction of the features of fingerprint images. The learned features can be generalized
to previously unseen datasets and other related tasks (for example, features learned for
contactless fingerprint recognition can also be used for fingerprint attribute estimation,
e.g., ridge, minutiae pattern). In addition, pre-training improves feature-learning by large
amounts of unlabeled data when using smaller training datasets.

Concentration on Identification: Authentication and recognition have been the pri-
mary focus of deep-learning research in the contactless fingerprint context. Authentication
is a comparably easy problem and estimates well for a large number of subjects. However,
the more challenging part is the identification problem. The biometric system needs to
distinguish between potentially millions of identities for large-scale identification. This
system requires complex deep-learning architectures to capture definite interclass differ-
ences and handle large intra-class variability. Consequently, much training data would be
required to capture these variations.

Large-scale datasets: Though deep-learning approaches have already exceeded human
performance on some in-the-wild, large-scale datasets, these datasets do not meet the
requirements of real-world, high-security applications. In addition, there is a lack of large-
scale datasets for contactless fingerprint modalities in biometrics to benefit from deep
learning. Even if large datasets are available, each individual needs to have sufficient
representative samples to consider for various influencing factors.

Dataset quality: Existing fingerprint recognition datasets are mostly gathered from the
public dataset. It is important to use large-scale datasets that capture real-world variations
for biometrics to benefit from deep learning, especially in the contactless fingerprint area.

Computing resources: Along with the increased use of mobile devices, secure authen-
tication commercial devices have become necessary modern technologies. However, if
complex deep-learning architectures are required for authentication, such devices might
not have the necessary computing resources for storing the dataset. A cloud-based system
could be a solution for restoring the data collected from those devices.
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Training deep-learning models with proper computing resources: The success of deep
learning has been largely demonstrated by industries with access to large amounts of data
and computational resources. For most other researchers, computing resources are limited,
and it is imperative to speed up the training of deep-learning approaches. We need to strive
for data-efficient learning algorithms.

7. Conclusions

This review focused on three major research questions: the contactless finger photo
capturing method, the classical approach to fingerprint recognition, and the use of deep
learning. Specifically, we have detailed deep-learning methods, as these methods have
shown development in contactless fingerprint recognition, though little has been explored.
The accuracy of contactless fingerprints is increasing day by day and they have facilitated a
new range of fingerprinting applications. They have increased the security system threats
with respect to terrorism and cyber-crime development. Commercial facilities, border
crossing areas, airports, and government access points are also employing contactless
fingerprint biometrics. Further, credit card account fraud, hijacking of websites, and most
importantly, the critical corruption of governmental agencies such as the Department of
Defense and the Department of Homeland Security require the development of systems
for which contactless fingerprint biometrics can be a solution. These deep-learning meth-
ods have demonstrated good generalization capability for different datasets. We have
summarized their architecture and implementation at various sub-stages, including pre-
processing, features extraction, classification, or matching. This study also covered the
possible drawbacks of deep-learning models.

In summary, deep-learning-based contactless 3D fingerprint identification systems
have shown enhanced usability, and soon they will be a widely used biometric performance
modality. Therefore, our future research will be focused on creating new or existing
deep-learning techniques to address certain upcoming contactless fingerprint challenges,
such as speeding up feature extraction, reducing the amount of time required to process
images, and improving identification accuracy. Additionally, other biometric characteristics
such as patterns in palmprints will be taken into consideration as applications of deep-
learning techniques.
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