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Abstract: Initially introduced almost thirty years ago for the express purpose of providing electronic
warfare systems the capabilities to detect, characterize, and identify radar emitters, Specific Emitter
Identification (SEI) has recently received a lot of attention within the research community as a
physical layer technique for securing Internet of Things (IoT) deployments. This attention is largely
due to SEI’s demonstrated success in passively and uniquely identifying wireless emitters using
traditional machine learning and the success of Deep Learning (DL) within the natural language
processing and computer vision areas. SEI exploits distinct and unintentional features present within
an emitter’s transmitted signals. These distinctive and unintentional features are attributed to slight
manufacturing and assembly variations within and between the components, sub-systems, and
systems comprising an emitter’s Radio Frequency (RF) front end. Although sufficient to facilitate SEI,
these features do not hinder normal operations such as detection, channel estimation, timing, and
demodulation. However, despite the plethora of SEI publications, it has remained largely a focus of
academic endeavors, primarily focusing on proof-of-concept demonstration and little to no use in
operational networks for various reasons. The focus of this survey is a review of SEI publications
from the perspective of its use as a practical, effective, and usable IoT security mechanism; thus,
we use IoT requirements and constraints (e.g., wireless standard, nature of their deployment) as
a lens through which each reviewed paper is analyzed. Previous surveys have not taken such an
approach and have only used IoT as motivation, a setting, or a context. In this survey, we consider
operating conditions, SEI threats, SEI at scale, publicly available data sets, and SEI considerations
that are dictated by the fact that it is to be employed by IoT devices or IoT infrastructure.

Keywords: specific emitter identification; radio frequency fingerprinting; physical layer authentication;
physical layer security; Internet of Things

1. Introduction

The Internet of Things (IoT) consists of two key components: (i) semi-autonomous
devices that leverage inexpensive computing, networking, sensing, and actuating capa-
bilities to sense and carry out actions within the physical world and (ii) connection to
the Internet [1]. It is important to note that our use of “IoT” encompasses the Internet of
Battlefield Things (IoBT), Internet of Military Things (IoMT), Industrial IoT (IIoT), Internet
of Vehicles (IoV), and other devices that satisfy the above definition. By 2025, the number
of deployed IoT devices is projected to reach seventy-five billion [2–4]. Continued IoT de-
ployments create an even larger surface over which bad actors can conduct attacks to carry
out nefarious activities and exploit individuals or sets of IoT devices and their associated
infrastructure. Disturbingly, most IoT devices employ weak or no encryption [5]. The use
of weak or no encryption is attributed to (i) limited on-board computational resources (e.g.,
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memory, power, etc.), (ii) prohibitive manufacturing costs, and (iii) scalability challenges
associated with implementation and key management [5–7]. Weak or lack of encryption is
being successfully exploited and abused [8–15]. In light of this information, there is a critical
need for an effective way to secure IoT devices and their corresponding infrastructure.
One solution is a physical layer-based approach known as Specific Emitter Identification
(SEI) [16–18].

Almost thirty years ago, SEI was introduced to provide electronic warfare systems
the functionality of detecting, characterizing, and identifying radar systems via immutable
features present within their transmitted signals [19–23]. These immutable features have
been attributed to the components, sub-systems, and systems comprising the radar’s Radio
Frequency (RF) front end. Figure 1 provides a representative illustration of the specific
signal features that an SEI process can exploit. Based upon this visualization and the
nature of the features’ origins, the collection, generation, grouping, or learning of these
specific features are commonly referred to as an RF fingerprint or RF-Distinct, Native,
Attributes (RF-DNA) fingerprint. RF-DNA captures the essence of an emitter’s identity
in much the same way a person’s DNA is essential to determining who an individual is
in terms of traits, features, and so on. SEI is advantageous due to its (i) passive nature,
which means that the targeted emitter generates signals, as part of its intended mission,
without external stimulation, (ii) exploitation of distinct, unique, and organic features
that are unintentionally imparted to the transmitted signal by the target emitter’s RF
front-end components, (iii) ability to measure the exploited features present within the
signal quantitatively, and (iv) exploitation of persistent features across time, location, and
environments. The success of radar SEI led to it being adopted as a potential means to
augment higher-level (e.g., encryption, MAC address filtering, etc.) security mechanisms
employed within private and public wireless communication networks [17,24–88].

Figure 1. Representative illustration showing an average RF fingerprint for eight commercial emitters
of the same manufacturer and model at a signal-to-noise ratio of 30 dB. This unique presentation has
been designated RF-DNA because it highlights the “Distinct, Native, Attributes” or DNA found and
exploited within an emitter’s transmitted signals [33].
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Despite the amount of research conducted within the SEI area, it remains largely a
focus of academic efforts with little to no use as a security mechanism within operational
wireless communication deployments. This is because such deployments must contend
with (i) various operating environments and conditions whose dynamic nature obscures
SEI exploited signal features, (ii) emitters that may enter and leave the network and
change location or service Base Station (BS)/Access Point (AP), (iii) networks that consist
of hundreds to thousands of authorized emitters let alone unknown emitters that are not
part of the authorized set, and (iv) user devices that are constrained in compute, memory,
or other resources essential to SEI steps or the process as a whole. Additionally, little focus
has been placed on the essence of SEI regarding the origin or cause of a particular feature or
set of features and how interactions within the emitter’s RF front end impact them. Lastly,
SEI research predominately treats the to-be-identified emitter as a passive source incapable
of or unwilling to actively alter its signals or signal features to reduce SEI’s effectiveness
or defeat it altogether. These observations and the critical need for IoT security are the
impetus for this comprehensive survey of the existing literature focused on chronicling
recent advances that address one or more of the above observations and their pertinence to
IoT security. We classify these existing works based upon the following criteria: (i) isolation
of the source or sources of a feature or set of features within an emitter’s RF front end,
(ii) operating conditions, (iii) processes designed to impede or thwart SEI, (iv) SEI at scale,
(v) size and availability of signal databases, and (vi) IoT imposed resource limitations or
considerations. It is important to note that the focus of this survey is purely a technical one
in terms of moving SEI from a proof-of-concept demonstration to a practical IoT security
mechanism; thus, SEI’s theoretical, managerial, or societal implications are not addressed
as they are outside the scope of this survey. Instead, addressing these implications is left to
future work(s).

The remainder of this paper is organized as follows. A comparison between prior
surveys and this one is provided in Section 2, followed by Section 3 describing the process
and criteria for selecting the reviewed literature. Section 4 describes what SEI is, the signal
regions from which it can be learned or extracted, an equation expressing SEI feature
variation within a signal, and SEI processes that leverage features associated with specific
RF front-end components. Section 5 summarizes works that address the performance of SEI
under alternate operating channel (a.k.a., non-Gaussian noise) and temperature conditions.
Section 6 surveys papers that specifically look into adversaries focused on defeating or
inhibiting SEI. Section 7 looks into performing SEI in large IoT deployments and across
signal collections. Section 8 surveys publicly available signal data sets that can be used
for SEI. Section 9 covers papers that develop SEI processes under the consideration of IoT
imposed constraints (e.g., limited memory) and receiver-agnostic SEI to allow every receiver
within an IoT deployment to be used by an SEI process. Section 10 covers challenges facing
IoT-focused SEI that are not covered in the previous sections because there are too few
papers to warrant individual sections. Section 11 concludes the survey.

2. Related Works

A comparison between the topics addressed in this paper and those of prior, related
survey papers is provided in Table 1. The authors of [54] survey physical fingerprinting
techniques for identifying mobile phones, including SEI works and other mobile phone
components including but not limited to the camera, microphone, and display. Their survey
also considers Medium Access Control (MAC) layer approaches and Physical (PHY) layer
approaches, including RF fingerprinting. One essential contribution of the survey in [54] is
adopting four fingerprint requirements borrowed from the biometrics domain [89]. These
requirements are:

1. Universality: every emitter possesses the characteristics or features used to identify it.
2. Uniqueness: no two emitters have the same RF fingerprint or SEI exploited features.
3. Permanence: the RF fingerprint features are invariant to time or environmental conditions.
4. Collectability: the exploited features can be quantitatively measured.



Information 2023, 14, 479 4 of 49

Table 1. Comparison of the content of this survey versus previous surveys within the RF fingerprint-
ing area.

Survey

This Paper [54] [90] [91] [92] [93] [94] [95] [96]

Year 2023 2017 2019 2020 2020 2021 2022 2022 2022

IoT Motivated X X X X X X X

Handcrafted SEI X X X X X X X X

DL-based SEI X X X X X X X

Operating conditions X X

Threats to SEI X X

SEI at scale X

IoT limitations X X

These requirements are included because they remain pertinent and, in some cases,
unaddressed; thus, they inform our observations and analyses presented herein. While
the authors of [91] survey Physical Layer Authentication (PLA), which encompasses SEI
as well as channel-based authentication schemes that take advantage of the Jakes uniform
scattering model to identify two communicating devices based on the unique channel
response that exists between them [97]. Thus, the survey in [91] provides limited coverage
of SEI. In particular, the authors note Deep Learning (DL) is an emerging PLA technique,
the threat of SEI impersonation based on the work in [98], and IoT as the “next wave of
technological evolution”, which differs from our IoT-centric SEI survey. The authors of [92]
focus on surveying SEI works based on the signal portions from which RF fingerprints
are extracted, with the majority covering transient-based SEI. The authors of the survey
in [93] also focus on PLA; thus, SEI only accounts for a small portion of the works surveyed.
The SEI works covered in [93] are analyzed based on the signal region from which SEI
features are extracted, the features used for SEI, and the classification processes. The
survey presented in [96] covers the various machine-learning approaches used to detect
and identify IoT devices. However, since the scope of the study is on machine-learning
techniques, SEI and other IoT device detection and identification works are included. The
survey presented by the authors of [90] focuses on Physical Layer Security (PLS) in fifth-
generation (5G) wireless IoT networks. It primarily focuses on defining security threats
and their purpose, categorizing them, and surveying 5G-specific countermeasures. The
authors of [90] mention SEI as a PLS approach for authenticating legitimate IoT devices but
do not survey SEI itself, which we do.

Our survey differs from those presented by the authors of [93–96] that use IoT as
motivation or context for their surveys but do not use IoT as a lens through which to
analyze the surveyed SEI papers, as we do herein. This survey aims to answer: “What
technical gaps must be addressed for SEI to be a viable PLS solution for IoT deployments?”
We answer this question by identifying these technical gaps by surveying papers whose
methods and results address at least one of the following topics and sub-topics.

• Performing SEI under changing operating conditions such as alternate channels,
Section 5.1, and environmental temperatures, Section 5.2.

• Investigating threats focused on reducing SEI’s effectiveness or defeating SEI alto-
gether, Section 6.

• Performing SEI as the number of emitters increases, Section 7.1, and using multiple
collections conducted by the same receiver, Section 7.2.

• Identifying publicly available signal sets to standardize SEI process benchmarking,
Section 8.
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• Integrating SEI on resource-constrained IoT devices, Section 9.1, and using multiple
receivers to collect signals from the same emitter or set of emitters, Section 9.2.

• Including additional literature that is relevant to IoT deployable SEI but does not fall
into the research mentioned above, Section 10.

In addition to the overarching question stated above, each section ends with section-
specific questions, observations, or comments that provide a brief conclusion to each
section’s referenced literature. The structure of each section and their technical topics and
sub-topics are illustrated in Figure 2.

Section 4: The Essence of Specific Emitter 

Identification 

SEI’s Technical 

Gaps for IoT 

Deployments

Section 5: Specific Emitter Identification 

Operating Conditions

Section 5.1: Operating Channel Conditions

Section 5.2: Operating Temperature Conditions

Section 6: Threats to Specific Emitter 

Identification

Section 7: Specific Emitter Identification at 

Scale

Section 7.1: Increasing Number of Emitters

Section 7.2: Cross-Collection Specific Emitter 

Identification

Section 8: Specific Emitter Identification 

Data Sets

Section 9: Considerations for Specific 

Emitter Identification in IoT Deployments

Section 9.1: Specific Emitter Identification on 

Resource Constrained Devices

Section 9.2: Receiver-Agnostic Specific Emitter 

Identification

Section 10: Supplemental Challenges

Section 10.1: Quantization of Deep Learning Models

Section 10.2: Unlocking the Secrets of Specific 

Emitter Identification

Section 10.3: Availability and Format of Large Signal 

Data Sets

Section 10.4: Standardization of Language

Section 10.5: IoT-Imposed Temperature 

Considerations

Figure 2. Illustrated structure of our survey listing the topics and sub-topics identifying SEI’s technical
gaps that must be addressed to make it a viable IoT deployable PLS solution.
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3. Process for Identification of the Reviewed Literature

The publications reviewed in this survey were selected (i) by using search engines
such as Google®, Google® Scholar®, or IEEE® Xplore®, (ii) from publications referenced in
our prior works [37–41,48,50–52,78,80,99–107], and (iii) based on our continuous reading
of current SEI publications and reviewing their cited references. When using a search
engine, keywords were chosen based on the specific SEI topic or sub-topic being reviewed.
Thus, keywords change from topic to topic and sub-topic to sub-topic, reflected in each
section of this survey. For example, for Section 6, keywords included “attack”, “threat”,
and “Eve”. However, all searches included the keywords “Specific Emitter Identification”,
“SEI”, “Radio Frequency Fingerprint”, and “RFF”.

4. The Essence of Specific Emitter Identification

SEI processes can be assigned to two general categories, which are designated here
as (i) constellation-based and (ii) signal-based. Constellation-based SEI processes extract
discriminatory emitter features (e.g., phase and amplitude shifts from the ideal point)
from an individual constellation point, collection of constellation points, or distributions
associated with the employed digital modulation scheme’s two-dimensional, complex plane
scatter diagram [98,108–110]. A digital modulation scheme’s constellation is a byproduct
of the demodulation process, and its corresponding points are generated by sampling each
signal symbol at a specific time. The key to constellation-based SEI is to complete part or
all of the demodulation process.

In signal-based SEI, discriminatory emitter features are extracted from the signal’s
discrete-time samples or their representation (e.g., spectrum). Signal-based SEI can be
further subdivided into transient and steady-state-based approaches. Figure 3 illustrates
the transient and steady-state portions of an IEEE 802.11a Wireless-Fidelity (Wi-Fi) signal.
In transient-based methods, SEI is performed by extracting discriminating features from the
temporary transitions that exist at the beginning and end of a transmission [31,111–113].
These turn-on and turn-off transients are very short in duration; thus, requiring high
sampling rates in the gigabytes range [114] and making them difficult to detect and exploit
for SEI as the channel conditions degrade (i.e., lower signal-to-noise ratios) [92,115].

(a) Full signal with highlighted regions where SEI can be extracted or learned.

Figure 3. Cont.
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Figure 3. Representative illustration showing the (a) full signal, (b) turn-on transient, and (c) turn-off
transient portions of a transmitted signal from which signal-based SEI features can be extracted
or learned.

Due to the limitations associated with transient-based approaches, other SEI works
have focused on extracting the discriminatory features from the steady-state portion of the
signal. The signal’s steady-state portion is longer in duration and of higher energy than
that of the transient; thus, making its detection much more effortless. Signal-based SEI
processes can exploit a known, fixed sequence of signal symbols (e.g., the IEEE 802.11a
Wi-Fi preamble) [41], the information-carrying symbols (i.e., the signal’s payload) [57], or a
combination of the two.

Regardless of the signal portion from which SEI features are extracted, the exploited
features are often expressed as variations from the ideal signal’s values. Specifically,
variations in an ideal signal’s amplitude, phase, and frequency, which are mathematically
given as,

r(t) = A(t)[1 + ∆A(t)] exp{j[2π( f0 + ∆ f )t + φ0 + φ(t) + ∆φ(t)]}+ n(t), 0 ≤ t ≤ T, (1)

where A(t) is intentional amplitude modulation, ∆A(t) is unintentional amplitude modu-
lation, φ0 is the initial phase, f0 is the carrier frequency, ∆ f is the Carrier Frequency Offset
(CFO), φ(t) is intentional phase modulation, ∆φ(t) is unintentional phase modulation, n(t)
is channel noise, and T is the total duration of the signal [116,117]. It is the unintentional
features that SEI exploits.

Researchers have investigated specific RF front-end components’ contributions and
impacts on SEI performance based on Equation (1). These investigations considered the
role of the RF front end’s Power Amplifier (PA), Analog-to-Digital Converter (ADC), Local
Oscillator (LO) [48,88,118,119], and baseband Low-Pass Filter (LPF) [120,121].

The authors of [48] assess the impact of CFO on the SEI process using four Cisco
AIR-CB21G-A-K9 Commercial-Off-The-Shelf (COTS) emitters. The experiments show how
SEI performance is impacted when CFO is and is not present and when each emitter’s
CFO distribution is unique. The authors use Gabor Transform (GT)-derived RF-DNA
fingerprints and a Multiple Discriminant Analysis/Maximum Likelihood (MDA/ML)
classifier. The results show that identifying individual emitters is higher when CFO is
present versus when it is not. The authors also show that SEI performance is highest when
each emitter’s CFO distribution is unique (a.k.a. non-overlapping with the distributions
of all remaining known emitters). When each emitter’s CFO distribution is modified to
match Emitter #4’s distribution, SEI performance is similar to when the CFO of all emitters
is removed. When the CFO for each emitter is randomly drawn from the same distribution,
SEI performance is consistent with the CFO removed case. The results in [48] show that SEI
performance improves when CFO is present and uniquely distributed across each emitter.

The authors of [88] improve SEI performance by introducing the PAssive RAdiometric
Device Identification System (PARADIS) technique. PARADIS uses an emitter’s (i) fre-
quency error (a.k.a., CFO), (ii) SYNC correlation, (iii) In-phase and Quadrature (IQ) offset
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(a.k.a., DC offset), (iv) magnitude error, and (v) phase error. The SYNC correlation is calcu-
lated by correlating the received signal with an ideally generated one. The magnitude error
is calculated by calculating the absolute distance between the signal’s payload constellation
point and the ideal constellation point location. The phase error is calculated as the differ-
ence in phase between the received and ideal constellations. To assess performance, the
authors use a Support Vector Machine (SVM) or a k-Nearest Neighbors (kNN) classifier. The
authors use the following performance metrics to compare the two networks: (i) average
error rate, (ii) False Accept Rate (FAR), (iii) False Reject Rate (FRR), and (iv) worst-case
similarity. The average error rate is the misclassification rate calculated across all emitters
in the set. An emitter’s FAR is the average rate at which the classifier incorrectly assigns a
different emitter’s signal to that emitter (e.g., Emitter A’s FAR is the rate at which Emitter B
is called Emitter A). An emitter’s FRR is the average rate at which the classifier wrongly
classifies the emitter as another emitter (e.g., Emitter A’s FRR is the rate at which Emitter
A is called Emitter B). The worst-case similarity is the highest rate at which an emitter is
falsely assigned another emitter’s features (e.g., if Emitter B is called Emitter A more than
Emitter C is called Emitter A, the worst-case similarity reports the rate at which Emitter
B is called Emitter A). The experiment uses one hundred thirty-eight ORBIT nodes that
communicate using Atheros Network Interface Controllers (NIC) transmitting at 2.412 GHz
and communicating via IEEE 802.11b Wi-Fi. Using the SVM classifier, the highest FRR is
10%, and the worst-case similarity rate is 16%. These rates increase when using the kNN,
where the highest FRR increases to 62%, and the worst-case similarity increases to 40%.

The authors of [118] propose comparing an estimated CFO value to the actual received
CFO to either grant or deny network access to an emitter. For an emitter to be granted
access, it must fall within a given tolerance around the signal’s CFO. Two factors determine
this tolerance: (i) Doppler shift and (ii) receiver-incident Signal-to-Noise Ratio (SNR).
The authors role-play a threat model where Alice is the true, trusted emitter, Eve is the
adversary attempting to gain access to the network, and Bob is the authenticator that
grants network access. Alice and Eve are modeled using the same Universal Software
Radio Peripheral (USRP) Software-Defined Radio (SDR). The authors’ experiment uses the
preambles extracted from IEEE 802.11a Wi-Fi frames transmitted at a carrier frequency of
2.5 Ghz. At SNR values above 10 dB, Bob rejects Eve at a rate greater than 80%.

The authors of [120] introduce a method of validating the identities of trusted emitters
using IQ Imbalance (IQI). IQI is the difference between the ideal, modulated, and real
received constellation points. This is similar to the method introduced by the authors
of [118]. The authors of [120] track IQI per emitter and assign a Gaussian distribution
to account for perturbations caused by the wireless channel. The received signal’s IQI is
calculated and mapped to the known IQI. The received signal is assigned to the emitter
whose distribution resulted in the highest likelihood value using the mapped IQI value. In
the simulation, Bob can correctly authenticate Alice’s identity at a rate of over 98% at an
SNR of 18 dB and higher.

5. Specific Emitter Identification Operating Conditions

IoT devices operate in various environments; thus, effective SEI processes must con-
tend with environmental and environment-induced effects that impact the identified chan-
nel or emitter. This section reviews SEI publications on operating channel conditions and
emitter operating temperatures.

5.1. Operating Channel Conditions

Despite the amount of research within the SEI space, most of it has been conducted
using simulated channel conditions. Those preponderances assume an Additive White
Gaussian Noise (AWGN) channel model. Thus, this section reviews SEI works that employ
alternate channel models to move SEI from a proof-of-concept demonstration to a realistic
IoT security approach.
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In [57,62,122–126], SEI performance is assessed using a multipath channel, but the
specific characteristics of the multipath channel are unknown, unstated, or not disclosed.

The authors of [127] propose a semi-supervised SEI process built upon a Triple-GAN
network. First, a representation network extracts features—from the received RF signals—that
are used to train the Triple-GAN network, and feedback learning is used to assist the
representation network in learning more discriminative features. Similarly, the authors
of [128] present an unsupervised-learning SEI process that uses an Information maximized
Generative Adversarial Network (InfoGAN) to train a discriminative model for emitter
identification. The authors of [128] also apply RF Fingerprint Embedding (RFFE) by com-
puting the bispectrum histogram from the received signal and integrating the resulting
features into the InfoGAN’s training process. The efforts in [127,128] evaluate SEI per-
formance within a multipath environment modeled using a Nakagami-m distribution.
Although the value of the distribution shape parameter m is chosen to simulate Rayleigh
and Rician fading channels, the multipath fading channel is not described in detail. For
instance, the authors in [127,128] do not specify critical channel configuration details such
as the number of reflectors or paths and delay spread values. This information is essential
when assessing and analyzing SEI performance for different channel lengths representing
various multipath environments.

In [129], the authors present a DL-based device fingerprinting approach that leverages
Multiple-Input Multiple-Output (MIMO) system capabilities and Space-Time Block Codes
(STBCs) to mitigate the adverse effects AWGN and Rayleigh fading channels have on SEI
performance. Since SEI features are distorted by Rayleigh fading channels, the approach
in [129] exploits the MIMO system’s multiple received signal streams to reconstruct a
less-distorted version of transmitted signals, which are later used for model training and
classification. Without knowledge of the channel state information, the transmitted signal is
estimated at the receiver using two blind-source-separation and blind-channel-estimation
algorithms, neither relying on pilot symbol-based estimation. The first algorithm fully
calculates the channel matrix using Orthogonal STBC (OSTBC) properties and the received
signal covariance matrix. The second algorithm attempts to partially estimate the channel by
calculating a solution to a subset of the channel matrix up to some ambiguity. The receiver’s
reconstructed signals are expected to exhibit channel-immune characteristics when using
DL models trained for channel conditions that differ from those present in the received
signals before reconstruction. The presented approach’s SEI performance is evaluated by
adjusting the emitters’ phase noise, CFO, and IQ gain imbalance hardware impairments
within a fixed range. This allows the authors of [129] to simulate up to ten emitters with
three antennas and Wi-Fi communication. The approach performs emitter identification via
a Convolutional Neural Network (CNN) and signals that undergo varying Average Path
Gain (APG) and Doppler shift changes. The authors leverage MIMO technology to mitigate
channel effect variation on SEI performance. MIMO improves identification accuracy by
30% and 50% for AWGN and Rayleigh channels, respectively.

The authors of [130] propose an SEI process that exploits the different spectrum
of adjacent signal symbols, known as the Difference of the Logarithm of the Spectrum
(DoLoS), to extract RF Fingerprint (RFF) features that are robust to time-varying channels.
The approach in [130] is motivated by the fact that during coherence time, the channel
is considered stationary; therefore, two different symbols in one packet exhibit different
SEI features but have the same channel response. DoLoS is calculated for two symbols
of the same received signal to extract SEI features independent of time-varying channel
effects. The proposed approach is evaluated using IEEE 802.11n signals collected from
seven emitters that are located at twelve different locations to simulate different channel
conditions. DoLoS calculates the spectrum difference between the IEEE 802.11 Wi-Fi
preamble’s Short Training Symbol (STS) and Long Training Symbol (LTS) sequences. The
resulting DoLoS response trains and evaluates a CNN-based SEI process. The characteristic
of the assumed time-varying multipath channel, including channel length and delay spread,
are not described by the authors of [130]. The proposed SEI process is evaluated using seven
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IEEE 802.11 Wi-Fi devices, twelve data collection positions, and two different environments.
The presented SEI process achieves single- and cross-environment identification accuracies
of 99.02% and 97.05%, respectively.

The authors of [131] propose an SEI process for wireless Orthogonal Frequency-
Division Multiplexing (OFDM) device identification in time-varying channels. They at-
tempt to cancel the time-varying multipath channel effects by extracting SEI features from
the emitter’s non-linearity and IQ imbalance using a Hammerstein system parameter sepa-
ration technique. The algorithms in [131] are performed in three steps: (i) the Hammerstein
system parameter separation technique estimates the emitter’s non-linear model param-
eters as well as the multipath channel’s Finite Impulse Response (FIR), (ii) the estimated
FIR is used to obtain the best IQ imbalance parameter combination, and (iii) kNN is used
to classify the estimated non-linear model and IQ imbalance parameters obtained in the
first two steps. IQ imbalance and PA non-linearity values are set to simulate five emitters
with minor differences. The proposed approach is evaluated within a Rayleigh fading
channel with a maximum channel delay of nine samples. The authors of [131] do not
specify the length of the Rayleigh channel or the delay spread corresponding to each path.
The experimental results show that the extracted SEI features are stable, and the proposed
authentication method is feasible.

The authors of [132] present an SEI process that exploits the IoT devices’ PA non-
linearity to generate environment-robust RFFs to improve SEI performance when signals are
collected in the presence of time-varying multipath channels. The approach calculates the
PA non-linearity quotient by performing element-wise division of the frequency response of
two consecutive signals transmitted at two different power levels. This process mitigates the
effect of the multipath channel, and the resulting quotients are used to train a CNN-based
classification model. The authors use transfer learning to integrate RFFs from wireless
environments to enhance SEI performance in the presence of multipath fast fading and
Doppler. First, a base model is trained using channel effect-free RFFs from signals collected
in an anechoic chamber. Then, the model is retrained using samples collected from indoor or
outdoor environments to emulate moderate or severe multipath fading effects, respectively.
A detailed description of the multipath channel, including the model type, is not provided
by the authors of [132]. Compared to conventional DL and spectrogram-based models,
the proposed PA non-linearity quotient and transfer learning-based SEI process improves
indoor and outdoor environment performance by 33.3% and 34.5%, respectively.

The authors of [50,99] propose a channel estimator built using the Nelder–Mead (N–
M) simplex algorithm to restore the SEI features before emitter identification when IoT
signals are propagating in a multipath fading environment characterized by a Rayleigh
fading model. The N–M estimator estimates the Rayleigh channel impulse response,
which is later used by a Minimum Mean Squared Error (MMSE) equalizer to mitigate the
multipath effects on the received signals. In [99], RFFs are generated from the equalized
signals by computing the GT coefficients, subdividing the normalized magnitude of the
GT coefficients into patches, and computing the statistics of variance, skewness, and
kurtosis. The generated fingerprints are then used to train an MDA/ML classifier. The
work in [99] analyzes the resulting SEI process using Rayleigh fading channels consisting
of two, three, and five paths where the coefficient associated with each path changes for
each IEEE 802.11a Wi-Fi frame. Further, Ref. [99] analyzes the effect of the Gabor patch
size on the SEI classification performance. The authors of [52] present a DL-based SEI
process that uses N–M-based channel estimation and MMSE equalization and CNN pre-
training to improve SEI performance in IEEE 802.11a Wi-Fi indoor Rayleigh fading channels.
The work in [52] performs SEI using Rayleigh channels comprising up to seven paths.
Further, the authors of [52] investigate different IEEE 802.11a preamble representations,
including a one-dimensional IQ representation and a two-dimensional time–frequency
image generated from the GT coefficients. To reduce the CNN’s size, augment the training
data set, and improve the CNN’s capability to extract shift-invariant SEI features, the
authors of [52] adopt data partitioning that slices the preambles’ one-dimensional and
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two-dimensional representations into shorter sequences and sub-images, respectively.
Finally, the authors of [52] use a Convolutional AutoEncoder (CAE) to pre-train the CNN to
improve model convergence and SEI performance. When compared to traditional feature-
engineered SEI processes, the experimental results in [52] demonstrate that using N–M
channel estimation and equalization with a CAE-initialized CNN and data partitioning
improves SEI identification performance by 9% at an SNR of 9 dB.

The authors of [100] present two semi-supervised learning-based approaches to restore
(a.k.a., correct) SEI features when IoT signals are corrupted by Rayleigh fading channels.
The first approach aims at estimating a generative function that compensates for multipath
channel effects by training a Conditional GAN (CGAN) network using (i) signals that
have been corrupted by multipath channels, (ii) the signals originally transmitted without
multipath, as well as (iii) the label associated with each signal. Combining the label
with the signal’s representation enables the CGAN’s generative model to compensate
for the multipath effects while preserving emitter-specific SEI features. A separate CNN
model is trained to classify the CGAN corrected (a.k.a., equalized) signals. The received
multipath signal is combined with all possible labels at the generator’s input, and the
signal is assigned to the label that achieves the highest confidence score at the output of the
CNN classifier. The second approach uses a Joint CAE and CNN (JCAECNN) architecture
comprising multiple decoder heads and a single classification head to compensate for
multipath effects while preserving SEI discriminating features. The JCAECNN’s multiple
decoder and classification heads are jointly trained to decompose the multipath corrupted
received signal into its original delayed and weighted versions. Each of the delayed and
weighted versions is classified separately using a CNN model, and a final decision is made
by combining all decisions using a highest-vote scheme. Inspired by the fact that the
Rayleigh channel’s path coefficients decay exponentially, the authors of [100] introduced
exponentially decaying loss weights that improve the overall SEI performance. The CGAN
and JCAECNN-based SEI processes improve SEI performance by 10% when extracting
emitter-specific features from signals collected under a Rayleigh fading channel comprising
five paths or reflections, which is superior to prior SEI processes.

The authors of [133] present Channel Robust Representation Networks (ChaRRNets)
for SEI when signals are received under multipath conditions. In particular, the authors
build a CNN whose convolutional layers are equivariant and invariant to the channel’s
frequency response to mitigate or eliminate adverse multipath channel effects on the SEI
process. The authors create these equivariant and invariant CNN layers using the Albein
Lie group representation of the complex-valued signals (a.k.a., the IQ samples). They
aim to develop a CNN that can handle cases in which it is trained using signals collected
under Rayleigh fading and tested using signals collected under Rician fading conditions.
The authors assess ChaRRNets using signals that have simulated SEI features applied to
them using an Infinite Impulse Response (IIR) filter and signals transmitted by real-world
emitters. It is unclear the specific features that are imparted by the IIR filter; however, the
SEI features do seem to be unique for each emitter and are unchanged across each emitter’s
simulated signals. Although such an approach is suitable for validating ChaRRNets, it
does not indicate real-world emitters whose SEI features change from one signal to another,
as shown by the work presented in [48]. The real-world signals used to test ChaRRNets
are collected on another day than those used for training to ensure the channel conditions
differ. The manufacturer and model of the real-world emitters are not provided, which
makes it unclear if this is SEI at the serial number, model, or manufacturer level. The first is
the most challenging case of SEI, and the last is the easiest. The authors also perform “CFO
augmentation” but do not explain what it is, how it is implemented, or a citation describing
it. Unfortunately, CFO has been shown to bias DL-based SEI processes, making them
susceptible to attack [48,101,117]. ChaRRNets outperforms a conventional complex-valued
CNN with an average classification performance of 65.5% versus 25.6% when training
ChaRRNets using both days of real-world, “in the wild” collected signals. The authors do
not present classification performance for each emitter.
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Technical Gaps—Channel Conditions

Non-AWGN channel model usage must continue; however, further research is needed.
In particular, any deployed SEI model must be adaptable to changing channel conditions
but in such a way that any change to the model does not reduce or eliminate the effective-
ness of the learned features used to discern one emitter from another. Future SEI research
must include modeling and simulation using clearly defined variables and channel models,
testing in controlled environments, and, eventually, operational IoT networks to assess
the efficacy of any SEI process honestly. Fortunately, some platforms can be used for such
purposes. One example platform that could be used is the Platform for Open Wireless
Data-driven Experimental Research (POWDER) [134].

5.2. Operating Temperature Conditions

IoT devices operate in various environments, many impacting device operating tem-
perature. An example is IIoT devices that can be deployed in manufacturing settings
associated with extreme temperatures due to the manufacturing processes themselves
(e.g., steel production and processing) or the conditions under which a manufacturing
process is running (e.g., non-temperature-controlled building). Therefore, SEI processes
must continue to provide effective and accurate emitter identification regardless of the
temperature(s) under which the emitter(s) operate. The SEI publications surveyed under
this section focused on the environmental temperature impacts on SEI and not emitter-
connected operating temperature(s). The former is not new to the SEI community [135] but
has not received much attention [114,136,137]. The latter is addressed in Section 10.5 of
this survey.

The Temperature-aware Radio Frequency Fingerprinting (TeRFF) approach is pre-
sented by the authors of [114]. TeRFF uses receiver-measured CFO to discriminate one
emitter from another and is motivated by the fact that this LO-dependent feature is directly
influenced by the temperature of the RF front end [138]. The authors of [114] address
this temperature dependency by training a naïve Bayes classifier for each of the eight
discrete temperatures within the range of 26 ◦C to 33 ◦C (i.e., there is 1 ◦C difference
between consecutive temperature values). The authors adopt this approach, assuming that
temperature-independent SEI features are difficult to learn. An emitter’s CFO value is
estimated whenever that emitter operates outside the designated temperature range. To
eliminate the need to compare every signal or RFF with each of the eight naïve Bayes classi-
fiers (i.e., one for each temperature), the authors of [114] require each emitter to transmit its
current operating temperature via Internet Control Message Protocol (ICMP). This provides
an opportunity for exploitation by nefarious actors because it provides information (a.k.a.,
operating temperature) about the IoT device. Additionally, the ICMP requirement adds
complexity to the SEI process at the loss of its passive nature, assumes the capability is
organic to the emitter or device, and consumes more onboard resources while increasing
processing times. The last two are essential factors to consider if the TeRFF approach is
deployed in IoT or IIoT deployments because they may require the integration of addi-
tional functionality or modification of the device that can limit the associated IoT devices’
operational longevity. Lastly, TeRFF uses CFO as the emitter-specific feature, which is an
easily manipulated feature that can be exploited by nefarious actors [48].

In [137], the authors collect signals from emitters operating at temperatures of −5 ◦C,
10 ◦C, 25 ◦C, and 40 ◦C. SEI is performed using the CNN architectures of ResNet50 and
InceptionV3, which learn emitter-specific features from their signals’ transient region de-
tected using a unique technique the authors coined the “double sliding window method”.
The SEI performance is high when CNN training and testing are performed using transients
extracted from signals collected at a single temperature. However, SEI performance is
seriously degraded when the training set of transients differs from those comprising the
testing set (a.k.a. cross-temperature SEI). To address this performance degradation, the
authors construct “blended” training and testing data sets containing equal transients
collected at each of the four temperatures. Despite this, SEI performance remains low when
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using the “blended” data sets, with an average percent correct accuracy of 45% and 52%
when the InceptionV3 and ResNet50 classifiers are used to identify emitters operating at
−5 ◦C, respectively. This represents the lowest average classification accuracy using the
“blended” data set.

The authors of [102] investigate environmental temperature impacts on preamble-
based SEI for temperatures ranging from −40 ◦C to 80 ◦C. The authors collect preambles
transmitted by four HackRF One SDR emitters in an environmental chamber. The emitters
transmit an ideally generated IEEE 802.11a Wi-Fi frame at a carrier frequency of 2.45 GHz
over a wire to a receiving USRP B210 that samples the received signals at a frequency
of 40 MHz. The B210 is placed outside of the environmental chamber. Collections are
performed at the previously stated temperature range in steps of 10 ◦C for thirteen different
environmental temperatures. A total of 1,000 preambles are collected from each emitter
at the designated temperatures. The authors employ four SEI processes: (i) MDA/ML,
(ii) Principal Component Analysis (PCA)/k-Means, (iii) CNN, and (iv) Long Short-Term
Memory (LSTM). The MDA/ML and PCA/k-Means approaches use GT-derived RFFs, the
CNN uses the raw image of the GT normalized magnitude, and the LSTM uses the magni-
tude and phase of the preamble’s IQ samples. When training and testing each network at
ambient (a.k.a., 20 ◦C), the MDA/ML network has an average classification accuracy across
all devices of greater than 98%, the PCA/k-Means has an accuracy of 25%, and the CNN
and LSTM have an average accuracy of over 90%. When classifying temperatures below
and above ambient, the average classification performance decreased. The authors then
trained each network on a thirteen-chose-two combination of environmental temperatures
for seventy-eight combinations. The results show that the highest average classification
performance across all temperatures is achieved when the networks are trained on the ex-
tremes of the temperature ranges (e.g., the highest-performing LSTM network was trained
at −30 ◦C and 70 ◦C). The results also show that blind SEI performance is higher at sub-
ambient temperatures than at temperatures above ambient. The authors conclude that
(i) the SEI processes can generalize the emitter’s RFFs better when given the extremes of
the temperature range and (ii) the emitter’s RF front end performs more consistently at
sub-ambient temperatures.

Technical Gaps—Operating Temperature

In addition to the challenge described in Section 10.5, the papers surveyed in this
section show that an emitter’s operating temperature remains an open problem in need of
further investigation and solution development to ensure viable SEI-based security within
IoT deployments.

6. Threats to Specific Emitter Identification

As with any security approach, one must remain aware of the fact that adversaries
will endeavor to find ways to circumvent it. This is no different for SEI-based security
approaches; thus, this section summarizes published SEI works that investigate weaknesses
or specific techniques that adversaries can exploit to defeat or diminish the effectiveness of
an SEI process.

The work in [98] is one of the earliest—if not the first—work to investigate SEI threats.
The authors examine threats that employ feature and signal replay to defeat modulation
and transient-based SEI techniques. It is worth clarifying that the modulation feature
replay targets constellation-based SEI, which leverages modulator imperfections such as
IQ origin offset, wireless frame magnitude and synchronization (SYNC) correlation errors,
or wireless frame phase errors. Interestingly, the effectiveness of the threat’s attack is
nearly 100% when modifying and replaying modulation-based features. The authors also
note that when a “high-end Arbitrary Waveform Generator” (AWG)—capable of sampling
at 20 GHz—replays the signals of the targeted emitter, the transient-based SEI process
struggles to distinguish the adversary from the emitter that the adversary targets. However,
these results are generated when the AWG and SEI process receiver is connected via wire;
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thus, the authors note that the success of this attack will be diminished due to channel and
antenna impacts. The authors do not present results validating this statement. They also
conduct all their experiments at a high SNR that is not specified, but the distance between
antennas is. It is also unclear whether the SEI process and the adversary use the same
receiver, but they seem to be the same. Using the same receiver may give the adversary an
unrealistic advantage because receivers impart signal coloration (see Section 9.2). However,
further research is needed to determine whether this favors the adversary. Lastly, all
emitters—adversary, SEI process, and targeted/legitimate—are the same model USRP
SDRs. This also favors the adversary because its RF front-end imperfections are most
similar to those of the targeted emitter. Such a case is unrealistic in IoT deployments
because IoT devices are not likely to be implemented using SDR due to cost constraints.
Thus, future research must consider cases where the adversary uses an SDR but the targeted
emitter is a COTS device.

The works in [48,101,117] investigate circumventing an SEI process through an ad-
versary’s ability to exploit a specific signal—and sometimes SEI—feature. The works
in [48,117] look into an adversary’s exploitation of CFO. CFO is the difference between the
frequency of the transmitter’s LO and the receiver’s LO. In communication systems, CFO
is estimated and corrected by the receiver before demodulation. CFO is an SEI-exploitable
discriminating feature for emitters whose corresponding CFO distributions are unique
amongst a set of known emitters [48]. An illustration of this is presented in Figure 4a. The
CFO distributions of Emitter #1 and Emitter #8 overlap one another slightly, suggesting a
higher level of emitter separation by the SEI process. In contrast, those of Emitter #3 and
Emitter #4 overlap one another completely. This second case suggests that the SEI process
will struggle to separate these two emitters when CFO is present in their signals. The
results presented in [48,117] show that an adversary can easily monitor the CFO behavior
of another emitter and then manipulate its LO to obtain a similar CFO behavior—within its
transmitted signals—that diminishes or even thwarts the SEI process’ ability to distinguish
the adversary emitter from the emitter targeted by the adversary.
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Figure 4. Probability Mass Functions (PMF) for the receiver-incident Carrier Frequency Offset (CFO)
and energy measured from eight Commercial-Off-The-Shelf (COTS) TP-Link Archer T3U USB Wi-Fi
emitters, denoted using E#.

The authors in [139,140] investigate an adversary’s ability to spoof the SEI features
of another emitter with the intent of posing as that emitter to (i) emulate a primary user
within a cognitive radio network, (ii) circumvent a signal authentication system, and
(iii) gain unauthorized access into a protected network. The authors investigate replay and
Generative Adversarial Network (GAN)-based signal spoofing. Assessment includes SEI
performance when the adversary transmits without actively spoofing the SEI features of
another emitter but transmitting random signals. The SEI features targeted for spoofing
are power and phase shift; however, the authors do not specify whether these features
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manifest in the signal or constellation domain. Against DL-driven SEI, the results presented
show that the adversary achieves a spoofing attack success rate of 7.89% when transmitting
random signals (a.k.a., naïve spoofing), 36.2% for the replay-based spoofing attack, and
76.2% for the GAN-based spoofing attack [139]. In [140], the authors extend their work
of [139] to include MIMO configurations of two and four antennas employed by the
adversary or the receiver conducting SEI. The GAN-based spoofing attack can achieve an
attack success rate of 88.6% and 100% when the adversary employs two and four antennas,
respectively. The authors note that the adversary’s attack success rate increases with more
transmitter antennas but decreases when the SEI process’ receiver employs more antennas.
Thus, the success of the spoofing attack seems to improve as the adversary employs more
sophisticated methods (e.g., GAN and MIMO.). Despite the value of the work presented
in [139,140], some key observations must be considered for the threat it poses to SEI-based
IoT security approaches. First, all of the research appears to be conducted using simulation
because the authors never provide any hardware specifics (e.g., manufacturer and model
of the emitters.) Thus, the efficacy of the presented approach in spoofing the SEI features
of an actual emitter (i.e., hardware implementation) will need to be explored. Second, the
authors use power as one of the exploited SEI features, which faces the same issues as
those faced by SEI systems relying upon CFO or energy [48,101,117]. Third, the adversary’s
receiver must be placed near the SEI process receiver. Proximity was necessary to ensure
the two receivers experienced the same or similar channel conditions. This appears to be
an unrealistic requirement within operational IoT deployments. In [140], the authors assess
the GAN-based spoofing attack’s success rate when its location differs from that of the
SEI process’ receiver. As the adversary’s receiver moves farther from the location of the
SEI process’ receiver, the less effective the GAN-based spoofing attack becomes, dropping
from 100% to 56.2%. Fourth, the SEI spoofing results presented in [139,140] require the
adversary to employ a transmitter and receiver that are not co-located; thus, requiring
additional coordination, management, and resources that may increase the adversary’s
chances of being detected. Lastly, the authors do not specify the number of emitters that can
be exploited by the adversary and omit spoofing performance against individual emitters.
This is important when considering that an adversary will exploit the “weakest link” in
any security system; thus, the adversary will look for the emitter whose SEI features most
resemble its own organic SEI features or are spoofed with the greatest effectiveness.

The intention of the work presented in [108] is to collaboratively manipulate—using
DL—the constellation-based SEI features (e.g., offset between emitter mean and ideal
constellation point) of an emitter (a.k.a., Alice) to make it easier for the receiver (i.e.,
the device performing SEI) to identify Alice from a collection of emitters that are of the
same manufacturer and model as Alice. The goal is to overcome SEI limitations within
large populations of emitters. The authors assume the existence of a “feedback channel”
between Alice and the receiver (a.k.a., Bob) during the SEI training phase. The authors
also assess their DL-driven SEI feature manipulation approach’s performance using an
adversary emitter—designated as Trudy—capable of spoofing Alice’s SEI features with
increasing sophistication. A conclusion that can be drawn from the work in [108] is
that the most sophisticated version of Trudy is capable of adding confusion into the
SEI decision that subsequently forces Alice to modify its SEI features at the expense of
degrading communications performance (i.e., poorer Bit-Error-Rate, BER) between Alice
and Bob. These results highlight a drawback to constellation-based SEI, which is the
fact that the constellation is two-dimensional. The two-dimensional nature limits the
amount of variability—intentional and unintentional—that can exist between emitters
while simultaneously maintaining communications performance. It is this constrained
variability that may be exploited by an adversary or group of adversaries, especially as the
modulation scheme changes (e.g., going from 8-Quadrature Amplitude Modulation (QAM)
to 32-QAM), because it reduces the distance between constellation points.

In [141], the authors present a Deep Neural Network (DNN) architecture—designated
as FIRNet—that is purpose-built to attack wireless DL networks by spoofing the signal
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features of another emitter. Wireless channel impacts, the adversary’s signal features, and
a threat model are considered when assessing FIRNet’s efficacy. Using a threat model is
key to assessing security countermeasures with specific objectives and vulnerabilities in
mind and is often missing in SEI publications. The authors also consider both targeted
and non-targeted adversarial attacks. In a targeted attack, the adversary attempts to make
emitter Ei’s signals be identified as originating from emitter Ej. In contrast, the adversary
attempts to make emitter Ei’s signals identified as originating from any emitter other than
Ei in a non-targeted attack. The authors’ approach considers two adversarial scenarios.
The first assumes the adversary has unrestricted access to the DNN performing SEI and
is designated as a “white box” scenario. The second scenario is a “black box” scenario
in which the adversary does not have unrestricted access to the SEI-performing network.
However, the black box scenario does assume the adversary has access to the SEI network’s
final layer activations. Additionally, FIRNet is trained with the SEI process’ trained DNN
integrated into its training processes. Lastly, FIRNet is evaluated using five “nominally
identical” USRP N210 SDRs. The fact that all emitters are of the same manufacturer and
model gives the adversary the best chance of spoofing the other emitters’ SEI features. This
is because emitters of the same manufacturer and model are constructed using the same
components, sub-systems, and systems; thus, there will be a greater similarity between the
adversary’s SEI features and those observed or learned from the signals of the remaining
emitters. The adversary’s use of an SDR is reasonable, considering the level of control it
needs over its emitter to implement an attack. However, using SDRs as user equipment
does not represent the typical, low-cost emitters in IoT devices. Therefore, FIRNet or similar
adversarial approaches need to be assessed using actual IoT device emitters or ones that
align with those used in IoT deployments to evaluate the threat’s effectiveness to SEI-based
security approaches fully.

The authors of [142] leverage an adversarial machine-learning process—designated as
Radiometric signature Exploitation Countering using Adversarial machine-learning-based
Protocol switching (RECAP)—focused on countering SEI. RECAP attempts to confuse an
SEI process by (i) having multiple emitters transmit the same message simultaneously so
their signals are synchronized in time and (ii) employing protocol switching at the link and
physical layers. Link layer protocol switching is implemented by switching each device
amongst its emitter’s supported protocols. Physical layer protocol switching is achieved
through distributed beamforming in which the transmitting emitters’ signals are combined
to form a new set of SEI features. Adversarial machine learning selects which link layer
protocol is used to transmit the next message and which devices participate in distributed
beamforming. RECAP is an elaborate SEI threat that requires a lot of coordination and adds
complexity to any device employing it. However, RECAP represents a strong adversary
that warrants further consideration and study within the SEI research community.

The authors of [143] introduce RF-Veil, an algorithm that randomizes an emitter’s
phase errors intending to make SEI robust against impersonation attacks while obfuscating
the emitter’s SEI features from non-cooperative receivers (e.g., eavesdroppers). Although
the authors present RF-Veil as an SEI-based security enhancement, it is not difficult to
imagine that nefarious actors may employ it to obfuscate their own SEI features to prevent,
hinder, or circumvent legitimate SEI-based security processes. The use of RF-Veil by ne-
farious actors is not considered by the authors of [143], so future research should explore
such an application. Based upon the work in [143], there are a few things to consider. First,
the authors’ work is focused on Channel State Information (CSI)-based fingerprinting. Al-
though CSI-based fingerprinting is outside the scope of this survey, the work in [143] does
raise the question as to how RF-Veil or a similar approach impacts the effectiveness of signal
and constellation-based SEI. Second, the authors focus solely on obfuscating an emitter’s
identity by randomizing its phase information; thus, focusing on a singular feature. Does a
phase-focused approach create a vulnerability that opens it up for exploitation or attack,
as highlighted by other SEI works that considered a singular feature [48,101,117]? What
about SEI processes that leverage multiple features? How is their effectiveness impacted?
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Lastly, the authors of [143] do not consider degrading SNR or other channel impairments
(e.g., multipath, interference, etc.). Such channel conditions must be considered when
determining whether RF-Veil is used for good or ill.

The research presented in [144] uses adversarial learning to manipulate the signals’ IQ
samples in real time using online learning. The adversary uses only binary feedback—from
the SEI process—to determine if its IQ manipulations are effective or not in spoofing the
signal-based identity of one of the Ne emitters. The weights and biases of the adversary’s
generative network are adapted based on the SEI process’ response. The authors in [144]
assess their approach using both simulations and a hardware testbed constructed using
eight Analog Devices Active Learning Module (ADALM) Pluto SDRs. Although the results
presented in [144] can “fool” the SEI process at a high rate (e.g., 90% or higher at signal-to-
noise ratios of 15 dB and above), the authors conclude that the adversary does not learn
the SEI features of the targeted emitter. Thus, the approach’s effectiveness may have more
to do with the classification. Classifiers perform a one-to-many comparison between the
input sample (a.k.a., signal or its representation) and each class model representing an
emitter within the known set. The input sample is assigned to the class whose model
results in the “best” fit (e.g., smallest distance, largest probability, etc.). However, this class
assignment is made even when the fit is poor. It is also important to note that all emitters
are SDRs of the same manufacturer and model, including the adversary’s SDR. Using SDRs
of the same manufacturer and model represents a best-case scenario when it comes to SEI
feature manipulation because there is less feature variability amongst emitters that only
differ in the serial number. Therefore, it seems to provide the adversary with the greatest
chance of fooling the SEI process because its own SEI features should be inherently similar
to those of the emitter being spoofed and require the least manipulation. The authors
do not (i) test the spoofing effectiveness of the adversary’s organic SEI features (i.e., the
adversary is not manipulating its own SEI features) or (ii) assess SEI performance when
the adversary’s emitter is not of the same manufacturer and model as the spoofed emitter.
The adversary’s use of an SDR is intuitive because an SDR grants the SEI manipulating
algorithm direct access to its IQ channels/connections before the analog transceiver (a.k.a.,
the RF front end). However, it is unlikely that IoT devices will employ SDRs due to Size,
Weight, and Power-Cost (SWaP-C) constraints. Therefore, future SEI work should consider
the adversarial approach presented in [144] while considering some or all of the challenges
highlighted here.

As with CFO, the work in [101] shows similar results and vulnerability regarding the
energy distribution associated with an emitter’s transmitted signals. In other words, when an
emitter’s signal energy distribution is unique, the SEI process can easily discriminate that emitter
from all other emitters within the known set. However, an adversary can easily manipulate
the energy used to transmit its signals to mimic the energy distribution of another emitter.
Figure 4b provides an illustration of this in which the adversary—designated as Eve (E#1)—has
a signal energy distribution that underlies that of another, known emitter (a.k.a., Alice,
E#2); thus, allowing Eve to be identified as Alice by the SEI process [101]. SEI processes
tend to learn the easiest feature or set of features that allow discrimination of one emitter
from another within a set of known emitters. The work in [48,101,117] all demonstrate SEI
processes that primarily exploit a single feature (i.e., CFO or energy) to facilitate emitter
discrimination but at the cost of making them susceptible to adversaries that are capable of
taking advantage of this singular vulnerability.

Similar to the work in [143], the authors of [145] present a CFO obfuscation technique
to prevent adversaries from performing SEI of Bluetooth Low Energy (BLE) emitters.
However, we discuss the work in [145] because adversaries can mask their CFO features or
behaviors. The work in [145] differs from the work presented in [143] in that the transmitter
intentionally obfuscates the CFO by adding a randomly selected value to it and applying it
to the entire BLE transmission. Additionally, the authors of [145] increase CFO variation
across signals by running the transmitter’s Phase-Locked Loop (PLL) in a “temporarily
unlocked” state that has the PLL’s Voltage Controlled Oscillator (VCO) operating in an
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open loop configuration. The VCO’s open loop configuration allows the frequency to
drift, adding an unpredictable amount of CFO to the signal above what was intentionally
added. The result of this CFO obfuscation approach necessitates persistent observation and
measurement for twenty-eight hours or more—of the obfuscating emitter’s signals—before
the corresponding CFO distribution’s statistics can be learned. The authors provide a
circuit design for a Wi-Fi and BLE emitter incorporating their proposed CFO obfuscation
approach. The work in [145] further validates that CFO is a poor SEI feature due to the
ease at which adversaries can passively learn CFO—even if it takes a day or more—as
well as manipulate their own. However, a key value of the work presented by the authors
of [145] is a circuit designed to defeat or hinder SEI. Future research needs to consider a
similar approach or approaches focused on other SEI-exploited features as expressed by
Equation (1).

The authors of [146] take a different approach to SEI attacks, built on the observation
that DNNs are easily tricked by perturbed input data. Such perturbations have been
shown to reduce DNN effectiveness or cause the DNN to fail altogether [147]. The authors
present attack and defense scenarios. For the attack scenario, the adversary can select from
one of four perturbations, Fast Gradient Sign Method (FGSM) [148], Projected Gradient
Descent (PGD) [149], and Carlini & Wagner (C&W) adversarial attacks [150], but results
are presented using only the FGSM perturbation approach. The authors suggest that the
perturbations can be added to the IQ samples of the adversary’s signals before the Digital-
to-Analog Converter (DAC); however, the authors do not add the perturbations before
the adversary’s DAC and instead add them to the received signals (i.e., after the signals
have been transmitted, traversed the channel, and been received). Thus, it is unclear how
easily the adversary can implement the perturbation, the effects the channel and the RF
front ends of the adversary and receiver would have on the perturbation, and whether
or not such perturbations would negatively impact the demodulation process. The latter
observation is important because it is safe to assume that an adversary’s activities would
not cease once it has been incorrectly granted access to the IoT system/infrastructure. Thus,
if the perturbations cause sufficient signal distortion or bit errors to prevent demodulation,
then the value of the attack is minimized or rendered useless. Nonetheless, the adversary’s
FGSM-based perturbation attack significantly reduces the SEI processes’ ability to separate
the adversary from the authorized emitters. It does so without the need to collect another
emitter’s signals or knowledge of the SEI exploited feature(s). However, the authors state
that the adversary’s perturbations leverage characteristics of the targeted DNN but do not
provide specific details, what happens if the adversary does not have this knowledge, or how
this knowledge is obtained. The authors counter the adversary’s attack through their defense
scenario, leveraging adversarial training to improve DNN-based SEI performance by 60% or
more. It is important to note that the SEI process does know the adversary through collected
unperturbed signals. The authors do not consider DNN performance—with and without
adversarial training—when knowledge of the adversary’s unperturbed signals is removed.

Technical Gaps—Threats to SEI

Traditionally, SEI research has assumed the exploited features are difficult to
mimic [53,81–83,110] and the emitter being identified is passive or benign. However, the
works reviewed in this section indicate that this is no longer the case and that ongoing
SEI research must consider and contend with strong adversaries. A strong adversary is
defined here as one that actively attempts to hide its own SEI features or manipulate them
to subvert or impede SEI-based security approaches. Thus, it is imperative to assess future
SEI processes with strong adversaries in mind while removing weaknesses that provide
adversaries with points of exploitation (e.g., CFO, signal energy, feedback in the way of ac-
knowledgments, etc.). In addition, SEI must be employed with other security mechanisms
to develop a “defense-in-depth” (a.k.a., layered) IoT security approach built on the tenets
of prevention, detection, and response, which are essential to any security strategy.
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7. Specific Emitter Identification at Scale

This section summarizes publications focused on assessing SEI’s efficacy in providing
robust and effective PHY-based security in the face of a large number of emitters and the
identification of those emitters across collections.

7.1. Increasing Number of Emitters

IoT deployments can and do consist of tens to hundreds of individual devices; thus,
any SEI-based security approach must maintain its effectiveness while contending with
large deployments. Most SEI investigations have focused on proof-of-concept demon-
stration; thus, SEI’s effectiveness within a large set of emitters (e.g., fifty or more) has
received little attention until recently. This change has been partly driven by DL’s demon-
strated success in natural language and image processing and facial recognition in the
presence of large training data sets, such as the MNIST data set of handwritten digits,
under ever-increasing amounts of data. This has been exacerbated by recent pushes to
leverage DL for spectrum management [151] and emitter identification [152] by the Defense
Advanced Research Projects Agency (DARPA); thus, the remainder of this section focuses
on summarizing SEI works that consider thirty or more emitters.

The authors of [57] utilize a tuned FIR filter and CNN to identify five, ten, fifteen,
and twenty USRP emitters. The FIR filter taps are optimized during training along with
the CNN’s weights. The number of filter taps is set to three, five, and ten. Accuracy is
measured in two ways: (i) Per Slice Accuracy (PSA) and (ii) Per Batch Accuracy (PBA).
PSA is the average accuracy when the network infers a single signal. A batch is a set of
consecutive slices, giving the network a longer sequence of IQ samples to learn from. This
helps the network by allowing for more temporal features to be visible. For all numbers of
emitters in the set, the SEI performance increases roughly 20% when the optimized FIR
is introduced. When the FIR filter is implemented, the ability of an adversary to mimic a
trusted emitter is decreased from 10% to approximately 1% in a set of twenty USRP emitters.
When the number of emitters is increased to one hundred, the PBA increases by 30% when
using an FIR filter consisting of ten taps. When training and testing on a set of five hundred
Automatic Dependent Surveillance-Broadcast (ADS-B) emitters, the highest performance
improvement is 82% using PBA with a set of three batches, one hundred samples per slice,
and a ten tap FIR filter. Similarly, the highest performance improvement is 55% when using
the same parameters as the ADS-B set.

The authors of [153] use the Differential Constellation Trace Figure (DCTF) and Differ-
ential Interval (DI) to identify fifty-four Zigbee emitters. The DCTF is used for its ability
to highlight differences unique to each emitter in the set. The authors propose using the
DCTF’s amplitude and phase. The two representations are then feature-reduced using
the Gini importance or Relief-F algorithm. The reduced feature sets train a random forest
classifier and a kNN. When classifying emitters at an SNR of 10 dB and the DI is set to
80, the random forest had a higher accuracy than the kNN classifier with both the Gini
importance and Relief-F algorithm reduced DCTF features. When classifying at a range
of DI values, the minimum value to maintain a classification accuracy above 95% at an
SNR of 5 dB is 40. When comparing the classification accuracy of the different methods
at 5 dB, the amplitude and phase representation accuracy with no feature reduction was
97%. This method had the same accuracy as when the phase-only representation was used
without feature reduction and when the amplitude and phase representation were used
with feature reduction. The performance decreases to 66% when only amplitude is used
without feature reduction. Though the authors do not draw this conclusion, the results
in [153] reiterate that the signals’ phase representations tend to be more robust against
noise than amplitude representations.

The authors of [103] investigate improving SEI performance by removing the inten-
tional structure from the received signals transmitted by eight, sixteen, and thirty-two
COTS emitters. Intentional Structure Removal (ISR) is performed in two ways: (i) subtract-
ing an ideally generated IEEE 802.11a Wi-Fi preamble from each of the received preambles
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in the time domain (a.k.a., the residual representation or error signal [68]) and (ii) dividing
the Fourier coefficients of an ideal preamble from each of the received preambles in the
frequency domain (a.k.a., the response representation). The authors train an LSTM using
a data set of signals at SNR values of 9 dB and 30 dB. These SNR values are achieved by
adding realizations of scaled, white Gaussian noise to the received preambles. The authors
assess SEI performance using signals that have or have not undergone time or frequency
domain-based ISR. The highest SEI performance—when identifying eight emitters—is
achieved using the received signals’ response representation. When the number of emitters
increases to sixteen, SEI performance decreases from 58% to 42% in the frequency domain
without ISR at an SNR of 9 dB. When the response representation is implemented, SEI
performance decreases from 62% to 48%. When identifying thirty-two emitters, SEI perfor-
mance is 40% without ISR and 46% when using the response representation at an SNR of
9 dB. Interestingly, SEI performance is higher with thirty-two emitters using the residual
representation than when identifying sixteen emitters using the received signals (i.e., ISR is
not performed). The authors show that removing the received signals’ intentional structure
allows the DL network to learn each emitter’s RFF features without confusion imposed
by the intentional signal structure; thus, improving SEI performance as the number of
emitters increases.

Technical Gaps—Increasing Number of Emitters

Based on the papers reviewed in this section and the work presented in [154], it is
clear that SEI-based security solutions face a scalability problem in that as the number
of emitters increases, the SEI performance suffers. This observation is reinforced by the
authors of [155], who state that DL-based model accuracy decreases as the number of
to-be-identified emitters increases. The question is whether or not this is a problem with
DL or one that plagues even traditional machine-learning approaches. The literature has
stated that DL performance improves as the amount of data increases [156], but for DL as it
is applied to natural language processing, facial recognition, and spectrum management,
and not SEI. Therefore, future research is needed to address this challenge, and the solution
may not rest with the DL or machine-learning algorithm(s) but with the signals, their
representation, or the uniqueness and permanence of the SEI-exploited features.

7.2. Cross-Collection SEI

Cross-collection SEI refers to the case in which emitter-specific features are learned
from a single set of collected signals by a machine-learning algorithm and then used to
identify the same emitters using signals collected at another time. Typically, cross-collection
SEI involves signals collected over multiple sessions spanning hours, days, weeks, or more.
It is important to note that cross-collection SEI assumes the same receiver is used for all
signal collections. Cross-receiver SEI is designated receiver-agnostic SEI and is addressed
in Section 9.2.

The work in [154] analyzes the effect of IQ channel balancing on cross-collection clas-
sification performance across ten thousand emitters. This work utilizes Per-Transmission
Accuracy (PTA) and PSA. When using PTA, the entire Wi-Fi QPSK signal’s IQ samples
are input into the network. When PSA is used, each signal is sectioned into portions, and
each portion is input into the network. The emitter with the most classifications across
all portions is chosen as the classification for that given signal. In the first experiment, a
CNN with ten stacked convolutional layers is trained to identify devices from thirteen
USRP N210s and seven X310s. When trained on a single day out of ten days, the average
day-zero PSA is 99%. When identifying the same emitters by their signals collected on
the remaining nine days, the average PSA falls to 5% with a maximum accuracy of 6%
without IQ channel equalization. When IQ channel equalization is performed, the average
day-zero PSA falls to 99.5% while the average PSA when classifying the remaining days
increases slightly to around 6% with a maximum of 12%. When the number of Wi-Fi devices
increases to three hundred and fifty, the ResNet-50-ID CNN can classify day-zero data with
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an average PTA of 74.5% and a PSA of 44.1%. When classifying signal collection on another
day, the PTA and PSA fall to 1.2% and 1.3%, respectively. When utilizing IQ-channel
equalization, the PTA and PSA, when classifying on a new day, increase to 17.5% and 25.8%,
respectively. The ten-layer CNN has a PTA of 23.2% and PSA of 22.5% when classifying
signal collected on days other than day zero, and IQ-channel equalization is employed.
The authors conclude that the drop in classification performance—when training using one
day’s worth of collected signals and testing using another day’s collected signals—is due
to the non-stationary nature of the wireless channels the Wi-Fi emitters communicate over.

The authors of [104] investigate the effect of traditional wireless channel mitigation
techniques on cross-collection SEI. Ten thousand IEEE 802.11a Wi-Fi preambles are collected
from thirty-two TP-Link Archer T3U USB Wi-Fi dongles over eight days, with one week
between collections (i.e., signals are collected every Friday). The first experiment trains
a CNN on a combination of real, imaginary, magnitude, and phase components of the
preambles’ time and frequency domain representations. n-choose-k components are used
where n = 8 (i.e., four from each representation), and k is incremented from one to eight in
steps of one. A total of two hundred and fifty-five representations are trained and tested.
When ranked by the highest cross-collection accuracy, the feature combinations containing
the frequency components ranked higher than combinations primarily of time domain
components. The combination of all four frequency components is ranked nineteenth
with an accuracy of 18.56%, and the combination of all time components is ranked one
hundred and ninety-eighth with an accuracy of 16.41%. Based on these results, the authors
chose to use only the four frequency components for the remainder of the experiments
because they represent only 33% of the total data while reducing the cross-collection
SEI performance by approximately 0.7%. When using the frequency representation’s
real, imaginary, magnitude, and phase components, average SEI performance across all
collections fell by 0.75% to 18.56%. Meanwhile, the four time-domain components result
in an average accuracy of 16.41%. The authors also perform SEI using CNNs with depths
of one, two, four, eight, sixteen, and thirty-two stacked convolutional layers using all
four frequency components and only day-zero collected signals. The single convolutional
layer CNN achieves an average SEI performance of 15% across all collections, and the four
convolutional layers CNN achieves the highest average accuracy of 18.57%. Next, n-choose-
k preambles collected on day zero are selected for training where n = 10,000 preambles and
the values of k are set to 1000, 2000, 5000, and 10,000. From these selected preambles, one,
two, four, eight, and sixteen 30 dB AWGN realizations are generated to simulate multiple
instances of the wireless channel for network training. When training on one realization
of 1000 preambles, the average SEI performance when classifying each emitter’s day-zero
collected 10,000 preambles is 55%. When training on sixteen noise realizations added to
the same set of 1000 preambles, average SEI performance increased to 61.43%. When the
number of preambles increases to 2000, average SEI performance increases to 64.77% with
only a single noise realization. When training on a single realization and 10,000 preambles,
average SEI performance increases to 95%, showing that real-world collected signals allow
the network to generalize better than multiple simulated noise realizations. When training
on 10,000 preambles per emitter collected on day zero and classifying across all collections,
the accuracy is 19.78% with one noise realization and 22.59% when using sixteen noise
realizations. Training on sixteen noise realizations also increases the training time by a
factor of sixteen, showing that there are diminishing SEI performance gains for a large
increase in training time. Channel effect motivation is investigated through the use of STS
symbol averaging. When using STS symbol averaging, cross-collection SEI performance
is 20.8% when only the averaged symbol is re-inserted into the preamble, 20.48% when
the average STS symbol is replicated and re-inserted into the preamble, and 20.32% when
only the replicated STS symbol is used, all of which are below the average SEI performance
of 21.53% without STS averaging. Next, the authors use a residual representation of the
preambles. In this study, the residual is calculated by dividing the first through fifth
STS by the sixth through tenth STS then dividing the first LTS by the second LTS and
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finally concatenating the two resulting portions. The residual preamble drops average SEI
performance from 20.71% to 11.62%. Finally, the number of collection days represented
in the training set is increased from one to seven—in increments of one day’s worth of
signals–to provide the CNN with a greater presentation of the possible SEI feature variation
that can occur across an emitter’s transmissions over multiple collections. When training
on day-zero collected signals, the average SEI performance when classifying all collections
is 20.32%. When adding the second day’s signals to the training set, the average SEI
performance increases to 38%. This trend continues as each subsequent day’s collected
signals are added to the training set, resulting in an average SEI performance of 94.4%
when the first seven collections are used to classify all eight collections. Despite this,
day #8’s average SEI performance is never more than 30% when five or more days worth of
preambles are included in the training set. This is 22% higher than the same collection’s
classification accuracy of 9% when only day-zero’s collections are used to train the network.
The authors conclude that current DL-based SEI techniques cannot adequately learn a
general representation of an emitter’s RFF features to achieve high accuracy across multiple
signal collections.

The authors of [157] leverage Adversarial Domain Adaption (ADA) and device rank
to improve emitter classification performance between a set of (i) twenty USRP and (ii) ten
HackRF One SDRs. The ADA algorithm utilizes transfer learning between a source, day #1,
and a target, day #2, data set. Training is conducted on a (i) Feature Extractor F, (ii) Domain
Discriminator D, and (iii) Source Classifier C. F highlights the coloration within a specific
emitter’s signals and passes them to D and C. D classifies the signals regarding whether it is
the source or target, while C aims to identify the originating emitter correctly. The goal of F
is to maximize the accuracy of C and confuse D to highlight domain-invariant features. The
parameters of F, D, and C are updated using back-propagation until a target performance
level is met. F is then attached to a kNN classifier. F’s parameters are frozen, and the
kNN’s parameters are updated to minimize error when classifying the target data set (a.k.a.,
day #2). Device rank is a method of identifying an emitter using multiple portions of its
collected signal. When classifying, each portion is independently assigned a class by the
classifier. The emitter that has the most assignments is the overall classification decision.
This is the same approach as the PSA method in [154]. The authors also investigate the
effect of the window and stride length using the device rank approach and a CNN. The
highest day #1 accuracy is achieved with a window length of 288 and a stride of 1. As
the stride length across the IQ signal increases, the day #1 accuracy decreases significantly.
Day #2 performance for the USRP data set did not change with the stride length. SEI
performance increases from 20.4% to 26.23% when the stride length increases from 1 to 576
samples using the HackRF One data set. When the CNN is replaced with ADA, average SEI
performance increases from 8.41% to 43.17% when using the USRP data set and from 25.98%
to 65.24% when using the HackRF One data set. The authors attribute this performance
increase to the robust nature of the ADA algorithm, but the presented results are not the
result of blind testing. The CNN-only method is trained using day #1 signal collections,
while the ADA is trained using signals collected on day #1 and day #2; thus, resulting in an
unfair comparison because the ADA’s SEI results correspond to validation testing while
the CNN’s SEI results correspond to blind testing.

The authors of [158] use Zero-Shot Learning (ZSL) to cluster unknown, unlabelled
emitters. ZSL first learns SEI features of a known, trusted emitter set and maps the emitters
into clusters. When new data are presented to the classifier, they either fall into a known
cluster and are identified as the emitter assigned to that cluster or do not fall within a known
cluster and are held out as a new emitter. ZSL allows for new clusters to be generated online.
The authors use eight USRP B210 SDRs. The receiver, sampling frequency, and whether
CFO is removed are unclear. Training is performed with a CNN, Multi-Layer Perceptron
(MLP), and an AutoEncoder (AE). Five emitters are selected and designated as known,
while the remaining three are held out as unknown. Once trained, each NN’s activation
is passed to the clustering algorithm. Once trained using the known emitters’ signals, the
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clustering algorithm uses the unlabelled, unknown emitters’ signals. SEI performance
is determined based on the clustering algorithm’s ability to sort and accurately assign
each unknown emitter to its unique cluster. Neither the NNs nor the clustering algorithm
achieves a blind test accuracy above 50%. Average SEI performance is around 33%, which
is a guess when classifying the three unknown emitters. The authors conclude that SEI
networks cannot uniquely identify previously unseen emitters well.

Technical Gaps—Cross-Collection SEI

Based on the reviewed work, it can be concluded that a solution for cross-collection
SEI has not been found. It can be concluded that a large factor contributing to the poor
performance when classifying a new set of collected signals is the non-stationary nature
of the wireless channel. AWGN noise realizations do not sufficiently model this channel,
but the networks generalize better when training on more real-world, collected preambles.
Until cross-collection SEI performance improves, the current methods, whether based on
traditional or deep learning, are insufficient for securing IoT deployments over multiple
collections; thus, throwing the permanence of SEI exploited features into question.

8. SEI Data Sets

This section provides a summary of signal data sets that have been used to generate
SEI results in published papers and that the authors have made available to the SEI research
community to aid further advancements within the topic area and serve as benchmarking
data sets.

1. POWDER Signals Set: The POWDER signals set is used to evaluate SEI performance
in vendor-neutral hardware deployments of 5G and Open Radio Access Networks
(ORANs) [134,159]. The new 5G and ORANs paradigm includes emitters transmitting
different protocol signals such as 5G, Long-Term Evolution (LTE), and Wi-Fi at differ-
ent times. The work in [159] evaluates SEI as a PHY layer authentication technique
in such networks using over-the-air signals collected by the large-scale POWDER
platform. The signals set includes IQ samples collected from four base stations in
different geographical areas. Each base station is implemented using an Ettus USRP
X310 SDR and is used to transmit standard-compliant IEEE 802.11a Wi-Fi, LTE, and
Fifth Generation-New Radio (5G-NR) frames generated using MATLAB®’s Wireless
Local Area Network (WLAN), LTE, and 5G toolboxes. A USRP B210 SDR—located at
a fixed point—collects the signals transmitted by the four base stations at a sampling
frequency of 5 MHz for Wi-Fi and 7.69 MHz for LTE and 5G. For each base station, the
receiver is used to collect IQ samples for two independent days. A single-day collec-
tion comprises five sets of IQ samples per base station and protocol, each two seconds
long. The data are stored in binary files using Signal Metadata Format (SigMF). Each
SigMF file consists of a metadata file containing a description of the collected signals
and a data file holding the actual collected signals’ IQ samples.

2. DeepSig RadioML Signals Sets: These signals sets are used to evaluate the classifi-
cation performance of emitter signals in [62,160]. The work in [62] studies the effects
of symbol rate and channel impairments on RF signals classification performance by
(i) simulating the effects of CFO, symbol rate, and multipath as well as (ii) measuring
over-the-air classification performance using software emitters. The signals set used
in [62] captures twenty-four different digital and analog single-carrier modulation
schemes, including On-Off Keying (OOK), 4-ary Amplitude Shift Keying (ASK), 8-ary
ASK, Binary Phase Shift Keying (BPSK), Quadrature Phase-Shift Keying (QPSK), 8-ary
Phase Shift-Keying (PSK), 16-ary PSK, 32-ary PSK, 16-ary Amplitude and Phase-Shift
keying (APSK), 32-ary APSK, 64-ary APSK, 128-ary APSK, 16QAM, 32QAM, 64QAM,
128QAM, 256QAM, Amplitude Modulation-Single Side-Band-Without Carrier (AM-
SSB-WC), AM-SSB with Suppressed Carrier (AM-SSB-SC), AM-Double Side-Band
(DSB)-WC, AM-DSB-SC, Frequency Modulation (FM), Gaussian Minimum-Shift Key-
ing (GMSK), and Offset Quadrature Phase-Shift Keying (OQPSK). The resulting mod-
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ulated symbols are shaped using a root-raised cosine pulse shaping filter. Channel
parameters such as Rayleigh fading delay spread are randomly initialized before each
transmission to simulate a time-varying wireless channel. The signals are transmitted
and collected using USRP B210 SDRs in an indoor channel on the 900 MHz Industrial,
Scientific, and Medical (ISM) band for the over-the-air portion of the signals set. Each
captured signal in this data set is composed of 1024 samples. The signals of two
million samples are encoded using the hdf5 file format.
Another DeepSig signal set was generated by the authors of [160]. The authors of [160]
investigate the feasibility of applying machine learning to the signal processing do-
main. The authors use the GNU Radio platform to generate a synthetic collection
of signals with varying SNR and eleven types of analog and digital modulation,
including 8-ary PSK, AM-DSB, AM-SSB, BPSK, Continuous-Phase Frequency-Shift
Keying (CPFSK), Gaussian Frequency Shift Keying (GFSK), PAM4, 16QAM, 64QAM,
QPSK, and Wide-Band FM (WBFM). For the analog and digital portion of the sig-
nal set, the authors use a continuous data source from acoustic voice speech and
Gutenberg’s works of Shakespeare in ASCII, respectively. The data are organized in a
multidimensional float32 vector with a size of

Ns × Nc × D1 × D2, (2)

where Ns refers to the number of signals. Nc is set to one, D1 = 2 refers to the I
and Q channels, and D2 = 128 is the number of samples in each signal. The four-
dimensional data set is stored in cPickle format to facilitate access and integration of
machine-learning platforms such as Keras, Theano, and TensorFlow.

3. ORACLE Signal Set: This set of signals was collected by the authors of [161] to eval-
uate their Optimized Radio clAssification through Convolutional neuraL nEtworks
(ORACLE) approach. The authors of [161] evaluate the classification (identification)
performance of the proposed approach within static and dynamic channels that are
simulated using MATLAB® toolboxes. The ORACLE data set includes signals col-
lected from sixteen USRP X310 emitters transmitting IEEE 802.11a Wi-Fi-compliant
frames. A stationary USRP B210 SDR collects all of the IEEE 802.11a Wi-Fi frames
at a sampling frequency of 5 MHz and a center frequency of 2.45 GHz. More than
twenty million signals are collected for each emitter. Each signal is divided into
128 sub-sequences and stored as float64 in binary files.

4. WiSig Signal Set: This signal set is generated by the authors of [162]. It includes
ten million IEEE 802.11 Wi-Fi signals collected from one hundred and seventy-four
COTS Wi-Fi emitters using forty-one USRP receivers over four captures representing
four days. The authors of [162] attempt to address degrading SEI performance due
to channel variations caused by using different receivers or signals collected over
multiple days. The Wi-Fi signals sent by one hundred and seventy-four Wi-Fi nodes
to the AP are captured by forty-one USRP receivers, including B210s, X310s, and
N210s. To create the raw WiSig data set, four single-day captures were performed
and combined to generate a 1.4 terabyte data set. The collected raw signals are
prepossessed to extract the first 256 IQ samples from each Wi-Fi frame with and
without channel equalization. The authors provide the steps and scripts to preprocess
the collected signals and the data set. For convenience, the authors of [162] subdivided
the data set into four smaller subsets:

• ManyTx: contains fifty signals for each of the one hundred and fifty emitters
and the signals collected by eighteen receivers over four days.

• ManyRx: contains two hundred signals for each of the ten emitters and the
signals collected using thirty-two receivers over four days.

• ManySig: contains one thousand signals for each of the six emitters and the
signals collected using twelve receivers over four days.
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• SingleDay: contains eight hundred signals for each of the twenty-eight emitters
and the signals collected by ten receivers in a single day.

The WiSig signal set signals are detected using auto-correlation performed using the
Wi-Fi preamble’s STS portion and re-sampled to a rate of 20 MHz.

Technical Gaps—Signal Data Sets

One of the biggest challenges with machine-learning-based research is access to data.
The data sets summarized above are some of the largest and the few publicly available for
use in SEI research activities. One of the drawbacks to these data sets is that the signals
are transmitted by SDR-based emitters, which do not reflect typical emitters employed by
IoT devices. Therefore, there remains a need for public data sets of signals collected from
COTS emitters used by IoT devices or in IoT deployments.

9. Considerations for SEI in IoT Deployments

IoT devices are typically constrained in terms of power, memory, computation, or
combinations thereof to keep the cost of the IoT device down, increase the operating lifetime
by extending or maximizing battery life, or both. In this section, we summarize SEI works
that consider these constraints. A summary of the considerations for each of the reviewed
works in this section is provided in Table 2.

Table 2. Areas of focus for the literature reviewed in Section 9.1. Computational resources include
experiments considering metrics such as memory requirements and training time. Network training
considerations include proposed alternative NN architectures aimed at reducing computational
requirements. Data considerations include data processing, reduction, and availability.

Consideration
Citation

Computational Resources DL Training Data

[163] X X

[164] X

[165] X

[166] X X

[167] X X

[105] X X X

[106] X X X

[168] X X

[169] X X

9.1. SEI on Resource-Constrained Devices

The authors of [163] present one of the earliest SEI processes designed to reduce or
alleviate computation, energy, and communications overheads associated with performing
SEI-based security approaches on resource-constrained IoT devices. The authors accom-
plish this by offloading the SEI task to Cloud and Edge devices or resources. Initial CNN
training is performed in the cloud, and once trained, the CNN is mutually re-trained
and made sparse through the use of a progressive weight pruning algorithm [170]; thus,
the authors focus on reducing computation and energy requirements during the testing
or inference stage instead of during CNN training. The re-trained and pruned CNN is
then deployed to the Edge to run on a gateway or another IoT device responsible for
relaying information. The authors assess the pruned model’s computation and energy
reduction performance using a Samsung Galaxy S10, an NVIDIA Jetson TX2 Module, and
a Xilinx-ZCU104 Field Programmable Gate Array (FPGA). The authors use two data sets
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of five hundred IEEE 802.11 b/g/n Wi-Fi emitters with two hundred seventy-three signals
per emitter and fifty ADS-B emitters with two hundred seventy-three signals per emitter.
The authors perform SEI using a derivative of the ResNet architecture [171] and assess it
and its pruned versions in terms of average percent correct performance, pruning rate,
and the number of Floating Point Operations Per Second (FLOPS). Using a pruning rate of
5.4× results in a 0.96% drop in average percent correct classification performance—61.4%
for the full ResNet versus 60.44% using the pruned ResNet–while reducing the number
of FLOPS by 20% when identifying the five hundred Wi-Fi emitters. For the ADS-B data
set, a pruning rate of 5.4× results in a 0.25% drop in average percent correct classification
performance—88.53% for the full ResNet versus 88.25% using the pruned ResNet—while
reducing the number of FLOPS by 19.3%. Regarding the three hardware platforms, the pre-
sented approach increases classification speeds by as much as three times on the Samsung
Galaxy S10 and eleven and a half times on the FPGA. The authors only present average
classification performance results. Hence, it is difficult to determine how evenly distributed
the performance is across individual emitters. They do not assess their approach under
degrading SNR conditions but do pose techniques to address the latter under future efforts.
However, the biggest concern surrounding the approach in [163] is their use of CFO. CFO
is estimated and removed before channel equalization but reinserted once equalization is
concluded. CFO’s presence is a vulnerability that SEI adversaries can exploit. See Section 6
for details. Therefore, it would be interesting to see how the results presented in [163]
would change if CFO is not reinserted. Despite this, the work in [163] does provide a viable
means of reducing SEI’s burden on Edge IoT devices and shows that SEI can be successfully
employed on smartphones.

In [164], the authors present an IoT resource allocation approach that leverages SEI-
based security. In particular, the authors focus on IoBT deployments, but as previously
stated, IoBT is a form of IoT; thus, we only use IoT in our article. The authors’ approach
aims to improve IoT network Quality of Service (QoS) through the use of SEI and by
optimizing network performance. The former is of particular interest here. The authors
propose SEI to control user access in lieu of traditional cryptographic approaches because
cryptography systems have higher computational requirements, limiting their use in IoT
deployments. Specifically, SEI improves IoT network QoS by identifying and removing
malicious users/devices that launch Distributed Denial-of-Service (DDoS) attacks to reduce
available network resources (a.k.a., power and channel allocations). Such resources are often
limited in IoT deployments, and their reduction negatively impacts network performance
optimization. The authors optimize network performance by calculating the IoT network’s
utility. The utility is calculated using many parameters, including but not limited to the
number of sensing devices, power consumption of RF circuits, transmit power of the
considered devices, data rate(s), and per-device channel allocation. However, the authors
do not consider how performing SEI impacts IoT network utility. It may be that performing
SEI is “lumped” into another parameter, such as RF circuit power consumption. If it is,
it is unclear whether SEI will be performed on individual IoT devices or the proposed
centralized server. Either way, a specific parameter or parameters associated with the
performance of SEI should be integrated into the IoT utility optimization calculation and
contrasted against the use of cryptography—instead of SEI—to highlight the benefit of
SEI-based security in IoT deployments. Lastly, the authors do not present any SEI-related
results, which—from a purely SEI viewpoint—seems to limit the contributions of the
approach. However, this can be easily remedied by integrating SEI into the IoT network
utility optimization calculation.

The authors of [165] make a note of the fact that recent advancements in SEI have
been made through the use of DL at the cost of large numbers of hyperparameters that
are updated via time-consuming backpropagation, along with the fact that DL structures
are not scalable, making them computationally expensive; thus, limiting the practicality
of DL-based SEI in IoT devices and infrastructure. The authors address these DL-related
issues by proposing an SEI process built on a Broad Learning System (BLS) called Adaptive
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Broad Learning (ABL). ABL trades the depth of a DNN for width by increasing the number
of nodes that comprise the node layer, replaces time-consuming backpropagation with
the pseudo-inverse calculated from the node layer to the output layer, and updates only
the new nodes instead of all of the nodes when the network needs to be modified. ABL
consists of a node layer—that is composed of feature and enhancement nodes—and an
output layer. The feature nodes work directly on the signal’s raw IQ samples, while the
enhancement nodes’ inputs are the output of the feature nodes. The authors assess ABL’s
SEI effectiveness using two publicly available data sets from [172,173]. The authors’ results
show that ABL’s average SEI performance is on par with the best DL approaches using
the first data set [172] and slightly above average when using the second data set [173].
Regarding the second data set performance, the authors attribute the poorer performance
to the higher sampling rate, which creates feature redundancy that provides an edge to
the DNN architectures. The real benefit of ABL is the reduction in training time, which
is a fraction of the time needed to train the DNNs. The authors’ approach is novel, but
a few considerations must be made. First, the authors note that ABL requires massive,
labeled data sets for training; thus, limiting its usefulness in which previously unseen
emitters are present in the operating environment. In today’s increasing and ubiquitous IoT
device deployments, the presence of previously unseen emitters seems inevitable. Second,
the authors state that redundant information within the signals causes ABL to overfit.
Lastly, one must remember that training does not have to be performed on the IoT device
but instead can be performed at a central location initially to perform updates; thus, the
SEI-performing device would only need the latest trained model. Despite this, ABL is
an interesting approach, and further research is warranted due to its novelty within the
SEI space.

Similar to the work in [165], the authors of [166] approach SEI using a broad learning
network to lower computational load on the end device to address resource constraints
associated with IoT integration. However, the work in [166] differs by using signal feature
embedding instead of the node expansion approach in [165]. The authors of [166] call
their broad learning-based SEI process Signal Feature Embedded Broad Learning Network
(SFEBLN). Signal feature embedding intends to approximate the SEI features through the
use of a non-linear transformation with the intent of improving SEI performance. Signal
features are generated by performing signal processing before and within the broad learning
network. Signal convolution, windowed pooling, and signal shifting are performed before
the broad learning network. In contrast, internal signal processing consists of calculating
the Discrete Fourier Transform (DFT), Discrete Cosine Transform (DCT), and the Short-Time
Fourier Transform (STFT). Additionally, the authors perform broad learning-based SEI
using a Central Processing Unit (CPU) to show the feasibility of performing SEI without
needing a Graphical Processing Unit (GPU). Assessment of SFEBLN is conducted using a
set of ADS-B signals and compared with SEI performed using three DL-based approaches,
the ABL approach from [165], and two traditional, handcrafted SEI processes. The DL-
based SEI processes are a real-valued CNN, complex-valued CNN, and the multi-scale
CNN from [174]. Traditional, handcrafted SEI uses random forest and Support Vector Machines
(SVM). The authors consider six scenarios in which the SEI processes each identify 10, 20,
30, 50, 100, or 200 individual ADS-B emitters. SFEBLN results in superior average percent
correct classification over both handcrafted, real-valued CNN and multi-scale CNN approaches
for all six identification scenarios. SFEBLN is also superior to the complex-valued CNN—in
terms of average percent correct classification performance—when identifying forty or fewer
ADS-B emitters. The true benefit to SFEBLN is its time advantage over the six alternate SEI
processes. SFEBLN can be trained in less than 10 s when 100 or fewer ADS-B emitters are
represented in the training set and in less than 13 s when 200 emitters are represented. For
SNRs of −10, −5, 0, 5, and 10 dB, the average percent correct classification performance
of SFEBLN is superior to all alternate SEI processes except for the case of two hundred
ADS-B emitters at an SNR of −10 dB. For this exceptional case, the complex-valued CNN
proves to be roughly 10% better but at the expense of huge computing overhead (roughly



Information 2023, 14, 479 28 of 49

2000 times). The authors identify a drawback to SFEBLN that it is susceptible to instability
in its results due to the random initialization of the single-layer weight and that temperature,
multi-threading, and other unspecified factors exacerbate this instability. To address this,
the authors assess SFEBLN stability using Monte Carlo simulation while considering
impacts on accuracy, training, and testing times. The authors show that SFEBLN stability
remains within acceptable limits, but they do not perform the stability assessment under
degrading/low SNR conditions; thus, it is difficult to determine if SFEBLN will remain
stable as SNR decreases. In addition, the authors of [166] do not address any of the concerns
raised by the authors of [165] and highlighted in the previous paragraph.

The authors of [167] design their SEI process using a systems view to suit real-world
operations better. The authors consider training data availability, robustness to unknown
operational conditions and uncertainty, channel conditions, and computation limitations.
The authors address limitations associated with training data availability by acknowledging
that data distributions will change between the training and testing phases, using simulated
data for training and fine-tuning real-world data, integrating detection of unknown emitters,
and using a limited number of training examples per emitter. The robustness to unknown
operational conditions and uncertainty limitations are addressed during training by using
a large data set and then tuning or adapting the deployed version, a data set comprising
multiple, distinct signal types (e.g., Wi-Fi and ZigBee), and a data set containing signals
that represent spoofers or other signals in the area of deployment. Channel condition
limitations are addressed by including corrupted signals in the training data. In particular,
the authors include signals overlapped in time and spectrum with other signals of the
same type and SNR with only the amount of overlap changing and other information
to improve performance by leveraging other receiver capabilities, such as the direction
of arrival. The authors address the final limitation—computation—by lowering the bit
precision of the network weights, the network’s depth, the number of filters per layer, and
network pruning. The work in [167] is not without its limitations. Primarily, the data they
used are not publicly available [152] and the DL network used is developed by a private
company, BAE Systems Inc., which could limit the SEI research community’s access to it.

The authors of [105] present a data reduction approach that leverages entropy to
select the most informative portions of a signal’s Time–Frequency (TF) representation.
The signal’s TF representation is a normalized, grayscale image generated from its GT’s
complex-valued coefficients. A GT image’s most informative portions are selected by
comparing a portion’s (a.k.a., patch) entropy value to the entropy value of the entire image.
If a patch’s entropy is equal to or greater than the image’s entropy value, then that patch
is retained for subsequent SEI. If it is lower than the image’s entropy value, the patch is
discarded. The presented entropy-informed SEI process outperforms SEI processes that
use the signal’s raw IQ samples and are comparable to those that use the full GT image at
SNRs of 15 dB or greater. Compared to the GT image-based SEI process, memory usage
and CNN training times are reduced by 93% and 81%, respectively.

The authors of [106] look to lower the SEI burden on IoT devices and the supporting
network by investigating DL-based upsampling impacts on SEI performance. In particular,
the authors investigate using a CGAN to upsample the signals collected by IoT devices that
measured them using a lower sampling rate. Allowing the IoT device to collect the signals
at a lower sampling rate aligns with current IoT design practices [175]. The authors use
the CGAN to upsample IEEE 802.11a Wi-Fi preambles collected at sampling frequencies
of 2.5 MHz, 5 MHz, or 10 MHz to a sampling frequency of 20 MHz and compare results
generated from the upsampled signals to those generated using signals sampled at 20 MHz
during collection. They compare SEI results generated using signals upsampled using two
other conventional interpolation methods: piece-wise Linear Approximation Interpolation
(LAI) and Cubic-Spline Interpolation (CuSI). Additionally, the CGAN upsampled signals’
SEI results are compared to those generated using a CNN and the organic sampled signals
(i.e., the signals are not upsampled before conducting SEI). The greatest improvement in
average percent correct classification performance is achieved when the signals collected at



Information 2023, 14, 479 29 of 49

a sampling rate of 5 MHz are upsampled to 20 MHz. The 5 MHz sampled signals result in
an average percent correct classification performance between 84% and 95% for SNR values
ranging from 9 dB to 30 dB, respectively. Meanwhile, the CGAN upsampled version of
the 5 MHz signals results in an average percent correct classification performance between
92% and 98% over the same SNR values range. However, the use of signals collected at
a sampling frequency of 20 MHz results in better performance over those upsampled by
the CGAN from 5 MHz to 20 MHz, especially at SNR values below 21 dB. Despite this,
the work in [106] provides a potential approach for lowering the resource demands (e.g.,
memory, power, computation) placed on individual IoT devices; however, SEI performance
improvements are needed, and the number of devices needs to be increased.

In [176], the authors present an active Distinct Native Attribute (DNA) fingerprinting
process capable of identifying legitimate and counterfeit Wireless Highway Addressable
Remote Transducer (HART) adapters using sub-Nyquist sampled signals. The work in [176]
differs from that in [106] in that the signals are never upsampled or interpolated. It also dif-
fers from the other papers cited in this survey in that the emitters under test are stimulated,
and DNA fingerprints are generated or learned from the resulting response(s). In other
words, the collected responses are not necessarily produced during normal, unstimulated
operations and are collected using a wired setup, although assessment is conducted under
simulated, degrading SNR conditions. It is also worth noting that the active DNA finger-
printing process in [176] serves a different purpose than passive SEI processes—including
those cited in this survey—in that the work in [176] focuses on identifying counterfeit
Wireless HART emitters within the pre-deployment portion of their life cycle to ensure
or maintain supply chain integrity. In contrast, passive SEI processes primarily focus on
securing communications networks during the deployed/operating period of the emitters’
life cycles. The authors of [176] perform DNA fingerprinting using a traditional Multiple
Discriminant Analysis (MDA) and CNN-based classifier. For MDA-based DNA finger-
printing, the sub-Nyquist signals’ time domain representations of magnitude, phase, and
frequency are calculated, each is subdivided into eighteen equal-length sub-regions, the
statistics of variance, skewness, and kurtosis are calculated for each sub-region, statistics of
each sub-region are sequentially concatenated together along with the statistics calculated
across the entirety of each time domain representation, and all statistics from each time
domain representation are concatenated together to form a DNA fingerprint. For CNN-
based DNA fingerprinting, the same time domain representations are calculated for each
sub-Nyquist signal. Still, no further processing is conducted, which leaves feature learning
and selection to the CNN. The authors of [176] consider both one- and two-dimensional
CNN-based DNA fingerprinting. The one-dimensional case uses only the time domain
DNA fingerprints. At the same time, the two-dimensional CNN-based DNA fingerprinting
uses both the time and frequency domain representations of the sub-Nyquist signals. The
authors do include results generated from Nyquist-sampled signals to facilitate compara-
tive assessment. Ultimately, the two-dimensional CNN-based DNA fingerprinting process
proves superior in identifying legitimate Wireless HART emitters at an average percent
correct classification rate of 91.6% or better at SNRs of −9 dB and higher. This process
correctly identifies counterfeit emitters at an average rate of 91.5% or higher at SNRs of
−9 dB and higher. These results are achieved at a sub-Nyquist sampling rate of 1/205th that
of the Nyquist rate. The Wireless HART signals are collected at a sampling rate of 1 GHz,
which yields a sub-Nyquist rate of roughly 4.88 MHz. When considering the sub-Nyquist
sampling rate and the results presented by the authors of [176], the presented sub-Nyquist
DNA fingerprinting process appears to provide a viable method for alleviating or reducing
the burden that the current Nyquist and higher sampling rate-based passive SEI processes
place on IoT devices and infrastructure.

The authors of [168] present a lightweight SEI process built on the Gated and sliding
Local self-attention transFormer (GLFormer). The authors’ approach is inspired by the
successful use of the Transformer [177]. This self-attention mechanism allows DL architec-
tures to capture interactions and persistent dependencies in sequential data such as time
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series data or signals. GLFormer differs from Transformer and many of its derivatives in
that it requires fewer parameters, and its computational complexity is linear versus the
quadratic computational complexity of Transformer. GLFormer divides the input signals
into shorter sequences or patches, embeds the patches into a token sequence via an embed-
ding layer, and extracts SEI features using the combination of a gated attention unit and
sliding local self-attention mechanism. The authors collect signals emitted by fifty mar-
itime vessels’ Automatic Identification Systems (AIS) and extract the signals’ transient and
steady-state portions. The authors compare their GLFormer-based SEI process to four and
three alternative SEI and Transformer-based approaches. The four SEI processes are Square
Integral Bispectrum (SIB) with SVM, Bi-LSTM, a modified version of ResNet [171,178], and
InceptionTime [179]. Meanwhile, the conventional Transformer from [177] is used along
with the Swin-Transformer [180] and Convolutions to Vision Transformers (CvT) [181] as
alternatives to GLFormer. Regarding average percent correct classification performance,
the authors’ GLFormer-based SEI process proves superior to all alternative approaches with
an accuracy of 96.3% when extracting SEI features from the transient portion of the AIS
signals. It is second only to Inception-based SEI when using the AIS signals’ steady-state
portion (90.1% versus 89.4%). However, the GLFormer-based SEI process’s real advantage
is its computational complexity reduction. The authors measure computational complexity
in millions of FLOPS, and GLFormer requires the fewest FLOPS. GLFormer requires thirty-
three Mega-FLOPS for transient-based SEI, which is twenty-five Mega-FLOPS lower than
the next fewest of the Swin-Transformer-based SEI process. GLFormer requires sixty-six
Mega-FLOPS when performing SEI using the AIS signals’ stead-state portion, which is 1735
Mega-FLOPS lower than the Inception-based SEI process (highest SEI performance) and
fifty Mega-FLOPS lower than the Swin-Transformer-based approach. GLFormer’s computa-
tional complexity reduction makes it attractive for IoT deployments, especially if re-training
or transfer learning can be performed via cloud, Edge, or Fog computing resources. Despite
its advantages, the authors do not assess GLFormer-based SEI under degrading noise or
channel conditions but state that future work will investigate GLFormer’s performance
under degrading SNR conditions. Such a study is necessary to ensure GLFormer is a viable
SEI process.

In [169], the authors present a Mahalanobis distance and Chi-squared distribution
RF fingerprinting approach focused on providing SEI-based authentication within 5G IoT
next-generation networks. The authors show that their approach requires lower training
times and fewer resources than five other SEI processes while achieving a higher average
accuracy. The five alternate SEI processes include traditional and DL-based techniques that
include MDA/ML, SVM, kNN, LSTM, and a multi-sample CNN. Additionally, the authors
test their approach on an open-source, 5G management and orchestration stack using cloud
computing. The authors use a simulated signal set—generated using MATLAB®’s Wireless
Waveform Generator toolbox—comprising up to 450 emitters with 100 signals per emitter.
The simulated SEI features consist of CFO, amplitude mismatch on the IQ components,
phase offset on the IQ components, clock skew, and DC offset. SEI performance is assessed
using as few as three to as many as seven of these features; however, results for only
CFO, amplitude mismatch, and phase offset are provided. The authors’ Mahalanobis
distance and Chi-squared distribution RF fingerprinting approach achieve the highest
average percent correct classification performance of 99.35% with the poorest performance
of 95% generated by the MDA/ML-based SEI process. The authors also assess their SEI
process under degrading SNR from 30 dB down to 15 dB and as the number of emitters
increases from 50 to 450. Overall, the average percent correct classification performance
remains consistent as the number of emitters increases but is negatively impacted by
lower SNR values. The average percent correct classification performance is between
92% and 94% at an SNR of 15 dB, which is roughly 4% lower than the 20 dB results
regardless of the number of emitters. It would have been beneficial to see individual
emitter percent correct classification performance because it would have shown cases of
confusion between multiple emitters. The authors assert that their approach is intended
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to authenticate legitimate emitters and detect illegitimate emitters but do not provide
any results supporting the latter claim. This is important because the authors use CFO
as an emitter-identifying feature, and CFO is vulnerable to exploitation by adversaries
(see Section 6). Thus, further research should investigate the viability of authenticating
legitimate and detecting illegitimate emitters when the CFO is not used as an emitter-
identifying feature. The authors state that future work will consider alternate channel
conditions and signals collected from actual IoT emitters.

Technical Gaps—SEI on Resource-Constrained Devices

The papers reviewed in this section employ various techniques and approaches to
reduce SEI’s computational and resource requirements to make it a viable IoT security
approach. Most focus on reducing the training time and complexity; however, at least
the initial SEI training can be performed offline, where training times and computational
resource constraints are less of a factor. Such an approach can be advantageous, and trained
models can be updated by repeating the offline training as new signals or data become
available or using transfer learning. A few of these papers did explore the use of Edge, Fog,
and Cloud computing, which is essential as 5G and next-generation networks are deployed,
and such computing resources are integrated to facilitate network operation and manage-
ment. Future SEI research must consider the challenges of transferring and integrating the
trained SEI model(s) within IoT devices. For instance, will the SEI model reside on the
individual Edge IoT devices or at a central location such as an AP, BS, or a purpose-built
device tasked with monitoring a specific portion of the IoT infrastructure? Such considera-
tions will impact how an SEI model is communicated to the employing device, especially
in cases where the Edge device lies dormant for long periods and communicates when
only necessary to preserve or extend battery life. Communication of an SEI model will add
network overhead, which adds complexity. Lastly, the SEI model-employing device(s) will
need to store the trained model, which will increase the usage of limited onboard memory,
and the weights, biases, or other model values will more than likely be quantized. This will
impact the SEI model’s accuracy; thus, future SEI work will need to consider the extent of
this impact and how to compensate for it.

9.2. Receiver-Agnostic SEI

Despite the amount of SEI research conducted over the past twenty-five-plus years,
the attention paid to “receiver-agnostic” SEI has been limited to a handful of publica-
tions [178,182–186]. This is attributed to the fact that SEI research has primarily focused on
investigating or developing novel signal representations, feature generation approaches,
feature selection techniques, machine-learning algorithms, communications standards,
or a combination thereof; thus, only a single receiver is employed, and its unintentional
features have little to no impact on the SEI process because they are consistent across all of
its received signals. However, when considering large IoT deployments in which devices
change BSs or APs due to mobility or entering, leaving, and re-entering the network, a
single receiver is no longer feasible to ensure effective SEI-based security. Such scenarios
create the need for an SEI process—built on a single model or trained NN—to be distributed
throughout the IoT infrastructure to reduce complexity and simplify development, deploy-
ment, and updates in much the same way Tesla® updates the Artificial Intelligence (AI)
of its cars [187,188]. This creates a situation in which the receiver collecting signals for the
deployed SEI process differs from that used to train it. Since each receiver’s RF front end
comprises its own components, sub-systems, and systems, each will impart its own set
of unintentional features that differ from those of the receiver used to collect the training
signal set. This mismatch between receivers’ features leads to poor SEI performance even
when the only change is the use of another receiver [182]; thus, effective SEI-based IoT
security can benefit from a process or processes that train it to learn a set of signal features
that are independent of the receiver used in the signal collection. The result is commonly
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referred to as “receiver-agnostic” SEI. This section summarizes works that investigate
receiver-agnostic SEI.

The earliest receiver-agnostic SEI investigation is presented in [182]. The authors
of [182] adopt a calibration-based approach to achieve receiver-agnostic SEI. Calibration is
facilitated by training a Residual Neural Network (ResNN) using a set of “golden” receiver-
collected signals. The trained ResNN is used to manipulate or change receiver-specific
features in another receiver’s collected signals to match those present in the golden re-
ceiver’s collected signals. The authors consider ten receivers that span a range of capabilities
from a high-end signal and spectrum analyzer down to mid-range SDRs, which provides a
broad assessment of the presented approach to receiver-agnostic SEI. Each receiver is used
to collect signals transmitted by twenty-five ZigBee emitters. The authors compare their ap-
proach to using an augmented signal set to train the SEI process. This augmented signal set
is constructed using signals collected by multiple receivers. The authors’ calibration-based
approach achieves superior receiver-agnostic SEI performance compared to this simple case.
The authors also assess their calibration-based approach when the signals are collected by
[1, 2, 3, . . . 9] receiver(s) and under degrading SNR conditions. The result is improved SEI
performance when using multiple receivers. The authors only use the high-end spectrum
analyzer as the golden receiver, so it is unclear if similar receiver-agnostic SEI performance
can be achieved when the golden receiver is a lower-end—in terms of SWaP-C—receiver.
Such an investigation can determine the minimum cost for implementation by IoT device
manufacturers or IoT infrastructure/network administrators. Lastly, the authors do not con-
sider the presence of an RFF-mimicking adversary (see Section 6). The RNN’s “re-coloring”
nature may increase the similarity between an adversary’s mimicked signal features and
those present in the original/targeted (a.k.a., the one being mimicked) emitter’s signals;
thus, increasing attack success.

The authors of [183] investigate mitigation of receiver-specific unintentional signal
features using a cooperative approach. The authors consider an SEI process tasked with
identifying Ne = 5 emitters using signals collected by NR = 3 receivers under the as-
sumption that only a single, unknown emitter is operating at the time all receivers are
collecting its signals. The authors decompose the received signals using Empirical Mode
Decomposition (EMD), Variational Mode Decomposition (VMD), or Intrinsic Time-scale
Decomposition (ITD), which is followed by calculation of the skewness and kurtosis of
the decomposed signals. SEI is performed using SVM, a Back Propagation (BP) Neural
Network (NN), and an LSTM NN. The authors train an SVM for each known receiver (i.e.,
NR SVMs) and identify the emitters using a “maximum wins” voting process. In contrast,
the single BP-NN and LSTM are trained using the signals collected by all NR receivers.
Thus, the latter two classifiers are trained to learn features that enable receiver-agnostic
SEI. The LSTM using skewness and kurtosis calculated from the ITD decomposed signals
achieves the highest average accuracy. The authors do not provide individual emitter
performance. In addition, the authors simulate the emitters’ and receivers’ effects on ideal
signals. The emitter effects are IQ imbalance, a spurious tone and carrier leakage, and the
PA’s non-linear distortion. For the receiver, the authors simulate phase noise, quantization
noise, and sampling jitter. Although this approach is good for proof-of-concept demonstra-
tion, it is of limited practicality in real-world IoT deployments because emitter features
have been shown to change from one transmission to another during normal operation [48].
Additionally, the authors did not investigate cases in which the signals collected by one or
more receivers are unavailable to the SEI process due to conditions that would stimulate
re-transmission, a common occurrence in wireless communications. IoT deployments can
form Wireless Ad hoc NETworks (WANETs) and Mobile Ad hoc NETworks (MANETs);
thus, the number of emitters may be equal to or less than the number of receivers. How
these topologies impact receiver-agnostic SEI remains an open research question.

In [184], the authors present a Separated Batch Normalization-Deep Adversarial
Neural Network (SepBN-DANN) for receiver-agnostic SEI. The authors consider the case
when the receiver used to collect the training signals is different than the one used to collect
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the testing signals; thus, the approach in [184] only considers a two-receiver case. The
receivers are not specified but are stated to be of the same manufacturer and model. The
two-receiver case is the impetus behind the authors’ use of SepBN because the distributions
of the receiver-specific features are not identical across their signal sets. Each receiver’s
collected signals are used as the training set while the other receiver’s signals serve as the
testing set. In addition to the use of two receivers, the authors collect the signals of twenty
unspecified emitters over three days. Although they collect signals over multiple days,
it does not appear that the authors perform cross-collection (a.k.a., multi-day) SEI (see
Section 7.2). The fact that the authors do not provide emitter specifics makes it impossible
to determine if the emitters are of the same manufacturer, model, or some combination
of manufacturers and models. Such information would indicate the SEI difficulty level
because serial number discrimination (a.k.a., all emitters are of the same manufacturer
and model) remains the most challenging SEI case. Despite this, the authors show that
their SepBN-DANN approach can achieve average SEI accuracies of 90% or higher for
each of the three days, regardless of which receiver’s signals are used for training. The
average SEI accuracy computed across days and receiver used to collect the training signals
is 95.03% for SepBN-DANN versus 90.18% when using only the DANN and 68.22% when
using a CNN. The authors do not provide individual emitter accuracy, the specifics of
the signal collection setup (e.g., wired connection, wireless, in an anechoic chamber, etc.),
or the SNR of the signals and resulting SEI performance. The use of two receivers can
initially appear to be a limiting factor, but not if the training receiver is considered the
“golden” receiver and the testing receiver the deployed IoT device performing SEI; thus,
providing an opportunity for receiver-agnostic SEI in WANET and MANET configured
IoT deployments.

The work in [178] achieves receiver-agnostic SEI by compiling a large data set whose
contents include the authorized emitters’ signals collected by all receivers. A total of ten
LoRa nodes are used as authorized emitters and twenty SDRs as receivers. The set of
receivers consists of two USRP N210s, two USRP B210s, two USRP B200s, two USRP B210
Minis, two ADALM Pluto SDRs, and nine RTL-SDR receivers; thus, the receivers span
a wide range of SWaP-C requirements. The authors’ approach to receiver-agnostic SEI
uses an adversarial training architecture comprising a feature extractor and two classifiers.
One classifier is tasked with authorized emitter identification, and the other with receiver
classification. Each signal undergoes CFO correction and normalization to unit energy.
Following CFO correction and energy normalization, data augmentation is conducted in
accordance with [189]. Data augmentation is applied to the training signals and achieved
by passing each of them through a simulated multipath channel with Doppler effects to
improve the feature extractor’s and both classifiers’ robustness to various conditions present
within an operating environment. Every training and testing signal is represented using its
spectrogram [189]. The authors assess their receiver-agnostic SEI process under various
configurations and conditions to include the number of receivers represented in the training
signal set, SNR, homogeneous and heterogeneous receiver configurations within and across
the training and testing signal sets, and a six-emitter operational wireless network set
up within an office environment without Line-of-Sight (LoS) between the emitters and
any of the three receivers. The greatest receiver-agnostic SEI success is achieved using
a collaborative approach in which the emitter identity predictions of multiple receivers
are combined to form a “fused” prediction. The authors note that SEI accuracy increases
as fused predictions increase. Despite the encouraging results presented in [178], the
authors only present average accuracy results; thus, there is no way to know how well their
approach identifies individual emitters. Overall, constructing a large signal set that spans
all receivers is not an issue so long as the receivers do not change (e.g., replaced) and are
known before training the SEI process. However, this may not be practical in operational
IoT infrastructures because every new receiver deployment would necessitate the collection
of large signal data sets and computationally expensive re-training. Another observation
is that the best receiver-agnostic SEI performance occurs when the training and testing
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receivers are of the same manufacturer and model (e.g., only N210s are used) or when the
training receivers are of higher SWaP-C than those used for testing. An example of the
latter is when training is conducted using signals collected by the N210s and B210s, but
the testing signals are collected using the RTL-SDR receivers. Lastly, it is unclear how the
approach—presented by the authors of [178]—would fair or be implemented in a WANET
or MANET-configured IoT deployment because such configurations face even stricter
onboard limitations (e.g., memory, power, computation) and the receivers can and more
than likely would change location(s) within a given portion of the network; thus, changing
the authorized emitter signals that a given receiver can collect at any point in time. As
previously noted, the latter would require collecting large signal data sets and re-training
the affected feature extractors and classifiers.

The authors of [185] investigate two approaches for achieving receiver-agnostic SEI.
The authors designate these two approaches as Statistical Distance-based Receiver Agnostic
(SD-RXA) and GAN-RXA. Both are trained to train a feature extractor that extracts receiver-
agnostic features from the signals of a set of emitters regardless of the receiver used to
collect them. SD-RXA is built on the assumption that the receiver- and emitter-specific
features are uncorrelated due to asymmetry between their features and random receiver-
emitter pairing. However, the authors conclude the SD-RXA is difficult to work with
due to the statistical distance between receiver and emitter feature distributions being
nontrivial and tricky, the challenge of selecting an appropriate distance between two
distributions, and most importantly, the feature extractor’s effectiveness in achieving
receiver-agnostic SEI cannot be evaluated during training. The GAN-inspired GAN-RXA
approach overcomes these difficulties and achieves an average percent correct classification
performance of 68% when the GAN-RXA feature extractor is trained using forty emitters
and twenty-five receivers and tested using ten emitters and one receiver. This is relatively
poor when considering the preponderance of SEI works that achieve average percent correct
classification performances of 90% and higher. There may be reasons for this performance
disparity. First, the emitters and receivers used for training are mutually exclusive to
those used for testing (i.e., no emitter or receiver is used for training and testing). This is
important because the feature extractor-learned features will be heavily influenced by the
features present in the signals of the training emitters. Although the testing emitters can
be of the same manufacturer and model (a.k.a., they only differ in serial number), there
are still differences between each emitter’s signal features. The authors do not investigate
the impact of these differences [185]. Second, they use a portion of the publicly available
data set provided by the authors of [162], which includes signals collected over multiple
days. This is important because SEI performance has been shown to suffer when training
and testing are conducted using signals collected at different times (e.g., across multiple
days) even when a single receiver is used (see Section 7.2). This makes it difficult to
determine if the poor performance is due to the GAN-RXA approach’s inability to learn
receiver-agnostic SEI features, issues surrounding cross-collection (a.k.a., multi-day) SEI, or
a combination of the two. Lastly, the authors do not remove CFO from the signals and are
unclear whether signal energy is normalized to unity. Either or both may be biasing SEI
performance—positively or negatively—and make the presented approach susceptible to
adversary exploitation (see Section 6).

The authors of [186] aim to achieve receiver-agnostic SEI by treating the features of
the different receivers as a data augmentation technique to train a simple Siamese model
using unsupervised learning [190]. To capture emitter-specific SEI features, the simple
Siamese model is optimized using Local Maximum Mean Discrepancy (LMMD) regular-
ization [191]. The authors’ receiver-agnostic SEI process achieves a 95% average accuracy
at an unspecified SNR. It is important to note that the authors primarily use simulated
emitter and receiver SEI features but evaluate their approach using two USRP X310s as
the receivers and four USRP N210 emitters. This is a minimal case and not indicative of
a realistic IoT deployment comprising tens to hundreds of devices not constructed using
high-end (a.k.a., costing more than $3000 to $15,500 per unit) SDRs. It is also unclear which
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results correspond to the simulated emitters and receivers versus the SDR-based evaluation.
Many of the presented results show three or more receivers, which indicates the simulated
emitters and receivers are used. Using simulated SEI features is a valid approach, but
pairing them with actual hardware-based results is essential to determining the value of
any SEI-focused contribution.

Technical Gaps—Receiver-Agnostic SEI

A truly receiver-agnostic SEI process must accept signals collected from receivers not
present during the SEI training process. In addition, these approaches assume the solution
rests in developing more sophisticated DL algorithms. Although the interest in DL is well-
founded and warranted, it may not be the best approach; thus, future work needs to look
into alternative approaches that are not as demanding in terms of computation, memory,
time, and resources to make receiver-agnostic SEI better suited for IoT deployments.

10. Supplemental Challenges

This section highlights key challenges facing SEI that were not addressed in the
previous sections. Some of these challenges must be addressed to move SEI from a proof-
of-concept demonstration to a viable, operational security approach capable of protecting
IoT deployments.

10.1. Quantization of Deep Learning Models

The demand for less computationally complex, low latency, and high privacy DL
algorithms—that can be implemented on Edge computing devices such as IoT–is increasing.
A primary challenge facing DL model deployment is that they are large and require large-
scale computation resources that are not available in IoT devices [192]. Specifically, the
DNN memory cost prevents them from being directly placed into deployed IoT devices.
One way to facilitate DL model deployment on IoT devices with limited storage resources
is to use low-bit quantization to approximate or convert full precision (e.g., 32-bit float) NN
weights and biases to low-bit representations such as 8-bit integers. The following research
efforts are examples of applying quantization to DL models to facilitate their integration
into embedded systems and IoT devices.

• The authors of [193] present a flexible open-source mixed low-precision library referred
to as CMix-NN for low-bit quantization of weights and activations into 8-, 4-, and
2-bit integers. The proposed quantization method targets micro-controller units
with a few megabytes of memory and without hardware support for floating-point
operations. The quantization library can convert convolutional kernels of CNNs to
any bit precision in the 8-, 4-, and 2-bits sets. The authors of [193] used the CMix-NN
library to compress, deploy, and evaluate the performance of multiple Mobile-net
family models on an STM32H7 microcontroller. The CMix-NN library achieves up to
an 8% improvement in accuracy compared to the other state-of-the-art quantization
and compression solutions for microcontroller units.

• The authors of [194] present effective quantization approaches for Recurrent Neural
Network (RNN) implementations that includes LSTM, Gated Recurrent Units (GRU),
and Convolutional Long-Short Term Memory (ConvLSTM). The proposed quanti-
zation methods are intended for FPGAs and embedded devices such as low-power
mobile devices. The authors of [194] evaluated the performance of their quantization
approach using the IMDb and moving MNIST data sets.

Recent SEI research focuses on applying DL to effectively extract inherent and discrimi-
nating features from the signals’ raw IQ samples or their multi-dimensional representations.
Although DL has demonstrated success in identifying emitters using learned SEI features,
training large DL models is a computationally complex process requiring more resources
than those available to IoT devices.

The authors of [107] assess SEI performance in the presence of adversarial replay
attacks that is demonstrated using an IEEE 802.11a Wi-Fi network comprising:
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• Access Point (AP): Provides traditional AP functionality as well as SEI. The AP is
powered by a Raspberry Pi 4 model B.

• Authorized Users: each authorized user is a TP-Link AC1300 USB Wi-Fi adapter and
a computer running Ubuntu Linux 16.0.

• Adversary: The adversary is implemented using an Ettus USRP B210 SDR powered
by an NVIDIA Jetson Nano Developer Kit. The adversary actively learns the SEI
features of an authorized emitter and then modifies its own signals’ SEI features to
match those of the selected authorized emitter before transmission to hinder or defeat
the AP co-located SEI process.

The adversary uses a GAN to learn and mimic the SEI features of an authorized
emitter. Initially, the GAN is trained using backpropagation on an NVIDIA Tesla K40m
GPU. The adversary’s Edge computing device—given by the Jetson Nano Developer Kit—
has limited storage and computational capability; thus, the authors reduced the GAN’s
trained generator weight and bias values to 12-bit floats via low-bit quantization. This
low-bit quantization allowed the authors of [107] to integrate the original model into a
limited memory Edge computing device. Despite the contributions of the work in [107], it
did not assess quantization’s impact on the effectiveness or success of the adversary’s SEI
mimicry countermeasure/attack.

10.2. Unlocking the Secrets of SEI

The inspiration behind SEI is often attributed to human biometrics such as facial recog-
nition, retinal scanning, and fingerprints. The last is the impetus behind SEI’s moniker of
RF fingerprinting because in SEI the unintentional signal features serve as the “fingerprint”
through which a specific emitter is identified. This is based upon the assumption that
every emitter’s signal features are sufficiently universal, unique, permanent, and collectible.
However, this survey summarizes many SEI works that call into question the uniqueness
(see Section 6) and permanence (see Section 7.2) of an emitter’s unintentional signal features
(a.k.a., its fingerprint). Various SEI publications have expressed RF fingerprints similarly to
Equation (1). Although Equation (1) models unique and unintentional behaviors manifest
in an emitter’s transmitted signal, it does not capture the specific mechanism or mechanisms
that form them. In other words, Equation (1) assumes a collective approach in which the
cumulative effects of an RF front end’s components, sub-systems, and systems are “lumped”
together into a few parameters, ∆A(t), ∆ f , and ∆φ(t). This “lumped” approach not only
seems to be an oversimplification of the RF front end but could also be the reason SEI’s
premise of uniqueness and permanence is being challenged. This is because Equation (1)
and similar models may not provide sufficient feature variability for the RF front end’s
complex architecture. This is very important when considering the security of large IoT
device populations in which SEI uniqueness and permanence are essential to uniquely
and consistently identifying any number of emitters, which the authors of [155] support
by noting that DL-based SEI accuracy drops as the number of emitters being identified
increases. In comparison, we know that every human—that has ever lived or will live—has
unique and permanent fingerprints (barring damage that destroys or obscures them). Such
an assertion is possible because researchers have determined the mechanism that forms
them [195]. However, the mechanism or mechanisms responsible for RF fingerprint forma-
tion remain unknown and unexplored, but knowing them is essential in determining SEI’s
viability as an IoT security approach. Thus, further research is needed to unlock the origins
of a particular SEI feature or set of features. For instance, what circuits or components
within an RF front-end subsystem or system lead to the variability measured within the
collected signals? Is that variability sufficient to provide the same level of identification
certainty that exists with human fingerprints? The answers to these questions and many
others are key to establishing SEI as a viable security solution within an IoT population of
millions of devices.
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10.3. Availability and Format of Large Signal Data Sets

Section 8 summarized four publicly available signal sets that can and have been used
for SEI. As previously noted, these signal sets are constructed using signals transmitted
by SDRs, which do not reflect the typical emitters one would expect in low-cost ($30 or
less) IoT devices and deployments. Therefore, there is a need for the creation, curation,
and dissemination of SEI signal sets that are constructed using COTS emitters. These data
sets need to span the wide range of IoT-designated communications standards, which
include but are not limited to IEEE 802.11 Wi-Fi, LTE, Bluetooth, BLE, ZigBee, LoRa, and
SigFox [196], should be collected at the highest sampling frequencies possible, contain
the entirety of each transmitted signal, contain channel-only portions to facilitate SNR
calculation and other channel-dependent pre-processing and represent tens to hundreds
and if possible over 1000 individual emitters from a variety of manufacturers and models
while ensuring that serial number SEI can be performed. Of course, this is assuming that
the requisite metadata is included to include receiver specifications, operating bandwidth,
center frequency or frequencies, collection settings to include connection type: over-the-air,
anechoic, or wired connection, antennas used with their specifications, and collection
location (e.g., indoor, outdoor). Lastly, data format and encoding should be done using a
known standard and with the highest precision feasible to maximize the preservation of as
many SEI features as possible.

10.4. Standardization of Language

The authors of [54] are the first to attempt to tackle this SEI challenge; however, since
the publication of [54], this remains an open challenge/issue. Although the language
used within the SEI community is not a technical challenge preventing SEI’s transition
from a proof-of-concept demonstration to an effective and robust PHY layer-based security
solution used within operational IoT deployments, the lack of language commonality can
and does hinder clear communication of an SEI work’s focus or purpose, how that work
relates to the broader community, and outside the community. So, we reiterate the standard
language in [54] and encourage researchers to adopt these definitions in their publications.

• Classification : (a.k.a., Identification) The process through which emitters are assigned
to different classes or categories. Classification is the result of a one-to-many comparison
between the emitter’s signal or its representation and each of the known classes or
categories using a measure of similarity (e.g., distance, probability, etc.).

• Authentication: (a.k.a., Verification or Validation) The process through which an
emitter’s identity—typically a digital one such as a MAC address—is authenticated
or verified by performing a one-to-one comparison between the emitter’s signal or its
representation and the stored model or representation associated with the identity
claimed by the to-be-authenticated emitter.

10.5. IoT-Imposed Temperature Considerations

It is important to note that all emitters undergo some form of temperature change—
typically an increase—as they turn on and begin transmitting until some steady-state
operating temperature is reached. This “warming up” period is short, but SEI features may
change. The typical mitigation strategy to alleviate this temperature-dependent feature
variation is to allow the to-be-identified emitter to transmit for some set period (e.g., five
to ten minutes) before performing signal collection or SEI. However, many IoT devices
enter a “sleep” or “shutdown” state to preserve or extend battery life and turn on only to
transmit their data before returning to “sleep”. This is an essential IoT-imposed operational
constraint that SEI has yet to but must contend with because this period of activity may be
too short to allow the IoT device’s RF front end sufficient time to reach its steady operating
temperature conditions. Future IoT-focused SEI investigations must explore signal feature
variation impacts related to this IoT-imposed operating condition.
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11. Conclusions

This survey reviewed publications to identify technical gaps within SEI that are
currently hindering or preventing its use as an IoT deployable PLS solution. Technical gap
identification is essential as the number of IoT deployments continues to grow, with the total
population expected to reach seventy-five billion by 2025. This growth is alarming because
it creates an increasing attack surface over which bad actors do and will continue to exploit
individual or sets of IoT devices and IoT-connected critical infrastructure. This alarming
fact is exacerbated by the knowledge that a majority—70% or more—of IoT devices use
weak or no encryption at all due to limited on-board resources such as memory and power,
manufacturing costs that are too high to justify the use of encryption, and challenges
associated with deploying, implementing, and managing encryption at scale. Due to these
security concerns and challenges, SEI has been suggested to secure IoT devices and their
corresponding infrastructure. SEI is advantageous because it is a passive technique that has
been shown capable of identifying emitters—down to the serial number—using distinct,
inherent, and unintentional features imparted upon their emitted signals by the circuits,
sub-systems, and systems that comprise their RF front ends. Another justification for an
SEI-based IoT security solution is that SEI does not require modification, interrogation,
or insertion of additional functionality or capability into the IoT device being identified.
This makes SEI ideally suited because it is backward compatible with existing, deployed,
and legacy devices without increasing the computational and resource requirements of the
end IoT device(s). SEI has been around for almost thirty years, with significant interest
focused on it within the past five to eight years, especially with powerful and successful DL
algorithms emerging within facial recognition and image and natural language processing
communities. Despite the increased attention and the push to deploy SEI as an IoT security
solution, it has mainly remained the focus of academic efforts. To change this, we examined
SEI works from the perspective of employing SEI as a practical, effective, and usable IoT
security approach. In particular, we reviewed existing SEI works through the lens of SEI’s
integration and use in resource-constrained IoT devices; thus, we considered works that
addressed the impact of the wireless environments channel and temperature, the presence
of emitters that actively attempt to obscure or modify their emitter-specific features in an
attempt to hinder or defeat an SEI process, the performance of SEI as the number of emitters
increased or across multiple collections, the existence of publicly available data sets, the
resource limitations of the end IoT devices, and the extraction of receiver-agnostic SEI
features. Additionally, this survey considered additional challenges that have not received
as much attention within the SEI literature but still hinder SEI’s deployment as an IoT
security solution. This survey differs from previous SEI surveys because an IoT-centric
perspective was assumed when analyzing the SEI literature.
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Abbreviations
The following abbreviations are used in this manuscript:

5G Fifth Generation
5G-NR Fifth Generation-New Radio
ABL Adaptive Broad Learning
ADA Adversarial Domain Adaption
ADLM Analog Devices Active Learning Module
ADS-B Automatic Dependent Surveillance-Broadcast
AE AutoEncoder
AI Artificial Intelligence
AIS Automatic Identification System
AM Amplitude Modulation
AP Access Point
APG Average Path Gain
ASCII American Standard Code for Information Interchange
ASK Amplitude Shift-Keying
AWG Arbitrary Waveform Generator
AWGN Additive White Gaussian Noise
BER Bit-Error-Rate
BLE Bluetooth Low Energy
BLS Broad Learning System
BP Back Propagation
BPSK Binary Phase Shift-Keying
BS Base Station
CAE Convolutional AutoEncoder
CFO Carrier Frequency Offset
ChaRRNets Channel Robust Representation Networks
CGAN Conditional Generative Adversarial Network
CNN Convolutional Neural Network
ConvLSTM Convolutional Long Short-Term Memory
COTS Commercial-Off-The-Shelf
CPFSK Continuous-Phase Frequency-Shift Keying
CPU Central Processing Unit
CSI Channel State Information
CuSI Cubic-Spline Interpolation
CvT Convolutions to Vision Transformers
C&W Carlini & Wagner
DAC Digital-to-Analog Converter
DCFT Differential Constellation Trace Figure
DCT Discrete Cosine Transform
DDoS Distributed Denial-of-Service
DFT Discrete Fourier Transform
DI Differential Interval
DNA Distinct, Native, Attribute
DNN Deep Neural Network
DoLoS Difference of the Logarithm of the Spectrum
DSB Double Side-Band
EMD Empirical Mode Decomposition
FAR False Accept Rate
FGSM Fast Gradient Sign Method
FLOPS Floating Point Operations Per Second
FM Frequency Modulation
FPGA Field Programmable Gate Array
FRR False Reject Rate
GAN Generative Adversarial Network
GAN-RXA Generative Adversarial Network-based Receiver Agnostic
GFSK Gaussian Frequency-Shift Keying
GLFormer Gated and sliding Local self-attention transFormer
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GMSK Gaussian Minimum Shift-Keying
GPU Graphical Processing Unit
GRU Gated Recurrent Unit
GT Gabor Transform
HART Highway Addressable Remote Transducer
ICMP Internet Control Message Protocol
IIR Infinite Impulse Response
InfoGANs Information maximized Generative Adversarial Networks
IoT Internet of Things
IoV Internet of Vehicles
IoBT Internet of Battlefield Things
IoMT Internet of Military Things
IIoT Industrial Internet of Things
IQ In-phase and Quadrature
IQI IQ Imbalance
ISM Industrial, Scientific, and Medical
ISR Intentional Structure Removal
ITD Intrinsic Time-scale Decomposition
JCAECNN Joint CAE and CNN
kNN k-Nearest Neighbors
LAI Linear Approximation Interpolation
LMMD Local Maximum Mean Discrepancy
LO Local Oscillator
LoS Line-of-Sight
LSTM Long Short-Term Memory
LTE Long-Term Evolution
LTS Long Training Symbol
MAC Media Access Control
MANET Mobile Ad hoc NETwork
MDA Multiple Discriminant Analysis
MDA/ML Multiple Discriminant Analysis/Maximum Likelihood
MIMO Multiple Input Multiple Output
MLP Multi-Layer Perceptron
MMSE Minimum Mean Squared Error
N–M Nelder–Mead
NN Neural Network
OFDM Orthogonal Frequency-Division Multiplexing
OOK On-Off Keying
OQPSK Offset Quadrature Phase-Shift Keying
ORACLE Optimized Radio clAssification through Convolutional neuraL nEtworks
ORANs Open Radio Access Networks
OSTBC Orthogonal Space-Time Block Code
PA Power Amplifier
PAM Pulse Amplitude Modulation
PARADIS Passive RAdiometric Device Identification System
PBA Per Batch Accuracy
PCA Principal Component Analysis
PGD Projected Gradient Descent
PHY Physical
PLA Physical Layer Authentication
PLL Phase-Locked Loop
PLS Physical Layer Security
PMF Probability Mass Function
POWDER Platform for Open Wireless Data-driven Experimental Research
PSA Per Slice Accuracy
PSK Phase Shift-Keying
PTA Per-Transmission Accuracy
QAM Quadrature Amplitude Modulation
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QoS Quality of Service
QPSK Quadrature Phase Shift-Keying
RECAP Radiometric signature Exploitation Countering using

Adversarial machine learning-based Protocol
ResNN Residual Neural Network
RF Radio Frequency
RFF Radio Frequency Fingerprint
RFFE Radio Frequency Fingerprint Embedding
RF-DNA Radio Frequency-Distinct, Native, Attributes
RNN Recurrent Neural Network
SC Suppressed Carrier
SDR Software-Defined Radio
SD-RXA Statistical Distance-based Receiver Agnostic
SEI Specific Emitter Identification
SepBN-DANN Separated Batch Normalization-Deep Adversarial Neural Network
SFEBLN Signal Feature Embedded Broad Learning Network
SIB Square Integral Bispectrum
SigMF Signal Metadata Format
SNR Signal-to-Noise Ratio
STS Short Training Symbol
STBC Space-Time Block Code
STFT Short-Time Fourier Transform
SSB Single Side-Band
SVM Support Vector Machines
SWaP-C Size, Weight, and Power-Cost
SYNC Synchronization
TeRFF Temperature-aware Radio Frequency Fingerprinting
TF Time-Frequency
USRP Universal Software Radio Peripheral
VCP Voltage Controlled Oscillator
VMD Variational Mode Decomposition
WANET Wireless Ad hoc NETwork
WBFM Wide-Band Frequency Modulation
WC Without Carrier
Wi-Fi Wireless-Fidelity
WLAN Wireless Local Area Network
ZSL Zero-Shot Learning
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