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Abstract: Portraying functional urban areas provides useful insights for understanding complex
urban systems and formulating rational urban plans. Mobile phone user trajectory data are often
used to infer the individual activity patterns of people and for functional area identification, but
they are difficult to obtain because of personal privacy issues and have the drawback of a sparse
spatial and temporal distribution. Deep learning models have been widely utilized in functional area
recognition but are limited by the difficulty of acquiring training samples with large data volumes.
This paper aims to achieve a fast and automatic identification of large-scale urban functional areas
without prior knowledge. This paper uses Nanjing city as a test area, and a self-organizing map
(SOM) neural network model based on an improved dynamic time warping (Ndim-DTW) distance
is used to automatically identify the function of each building using mobile phone aggregated data
containing work and residence attributes. The results show that the recognition accuracy reaches
88.7%, which is 12.4% higher than that of the K-medoids method based on the DTW distance using a
single attribute and 7.8% higher than that of the K-medoids method based on the Ndim-DTW distance
with multiple attributes, confirming the effectiveness of the multi-attribute mobile phone aggregated
data and the SOM model based on the Ndim-DTW distance. Furthermore, at the traffic analysis zone
(TAZ) level, this paper detects that Nanjing has seven functional area hotspots with a high degree
of mixing. The results can provide a data basis for urban studies on, for example, the urban spatial
structure, the separation of occupations and residences, and environmental suitability evaluation.

Keywords: urban functional areas; mobile aggregated data; dynamic time warping; SOM

1. Introduction

Urban functional areas were first proposed in the Athens Charter, which called for
planners to deal with four types of urban areas: residential, work, recreational, and trans-
portation areas [1]. As the city continues to grow, the emergence of other functional areas
makes the spatial structure of the city more complicated [2,3]. The type of these functional
areas can be defined by the activities or spatial interactions that may occur in the area [4,5].
The study of urban functional areas is conducive to the rational and sustainable planning
of future cities and the efficient and adequate use of urban space [6,7]. At the same time,
the discovery of urban functional zones facilitates various aspects of human life, health and
transportation [8–10]. Therefore, it is crucial to effectively collect information on different
functional areas of cities. Methods based on conventional remote sensing (RS) techniques
and high spatial resolution (HSR) remote sensing imagery have been widely used to extract
and analyze urban land use and land cover because of their ability to capture the natural
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appearance of the land surface [11–14]. However, urban functional areas are usually more
concerned with the socioeconomic attributes within the area, and such attributes are dif-
ficult to distinguish from remotely sensed images, which are good at responding to the
physical properties of the surface of features (e.g., reflectance and texture) [15].

With the development of mobile location services and cloud processing technolo-
gies, social sensing big data that record human daily life, such as point of interest (POI)
data [16,17], social media data [18,19], taxi trajectory data [20], street view data [21] and cell-
phone location data [11,22], which contain rich socioeconomic attributes, are widely used
in the delineation of urban functional areas. For example, Yao et al. (2017) used POI data
with rich semantic and location information to extract the high-dimensional feature vectors
of POIs within a TAZ to identify urban land use types [16]. The information contained in
POI data can be used to describe the quantity and distribution of each land use type in the
area, but it is not possible to use the information contained in these data to directly classify
the functional areas of a city. For example, restaurants located in residential areas mainly
serve the daily needs of nearby residents, while large restaurants located in commercial
areas play the role of attracting visitors from all over the world. POIs with similar functions
may be classified into different functional areas due to their different locations. There is
a strong correlation between the function of an area and the behavioral activities of the
people visiting it [23,24]. If we combine rich semantic POI data with new geographic data
reflecting residents’ behavior and activities, such as residents’ individual activity trajectory
data and location-based social network user check-in information, we can more accurately
identify urban functional areas [5,18,25]. Compared with data from social media, taxi
trajectory and public transportation card, cell phone data have the advantages of a large
number of users, a wide spatial coverage and strong passive access, which can reflect the
activities and behavior of the urban population in a more objective and comprehensive way.

Mobile phone location data include two types of user trajectories based on locations
and aggregated data based on base stations. Trajectory data are widely used to infer
individual activity patterns [26,27], estimate the population distribution at fine spatial
and temporal scales [22,28] and classify urban functional areas in combination with social
media data [19] due to their complete population trajectory information. Since trajectory
data involve personal privacy issues, it is difficult to obtain such data, and these data are
recorded only when events such as calling, texting or moving location occur, which has the
defect of a sparse spatial and temporal distribution [29]. In contrast, cell phone aggregation
data are automatically and quickly recorded when residents move to the coverage area of
mobile communication base stations and make requests for location-based services. Due
to the high spatial distribution density of base stations within cities, the spatiotemporal
behavior of residents’ activities can be well captured [30]. Aggregated data do not involve
personal privacy or security; thus, they often provide collateral information about mobile
users, such as their gender, age and work attributes, which can improve the refinement of
the description of crowd activity patterns and help to better understand the urban spatial
structure. For example, Zhan et al. (2013) described the spatial characteristics of residential
conditions and employment of Beijing residents based on social attributes such as the age,
education, and income of urban residents [31]. Xiao et al. (2017) further explored the
correlation between the distribution of parks and the spatial clustering of different social
groups (e.g., different ages, different income levels) [32].

How to use the socioeconomic activity behaviors of the population to infer the func-
tions of urban areas is the key to functional area classification. Probabilistic topic models
(PTMs) are often used to infer urban functions [18,33] but suffer from the drawbacks that
the algorithms are more time consuming and are very sensitive to prior knowledge and the
fine-tuning of parameters. The DTW distance-based k-medoids model is the main method
for the functional zoning of cities using social media data and POIs because it is directly
driven by raw data and has a low computational cost [34]. The DTW method can only
calculate the distance between the time series data of one-dimensional attributes and can be
improved to solve the problem of multidimensional attribute data [35]. On the other hand,
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the results of clustering algorithms based on k-means or k-medoids are often influenced
by the k-value and initial cluster centers. The model can only acquire the surface meaning
of the data during the clustering process and cannot learn the implicit high-dimensional
features [36]. Therefore, the LSTM network approach is used to mine crowd activity pat-
terns for urban functional area identification [37]. However, LSTM network models require
a large amount of labeled data as training samples, which limits the large and fast func-
tional area identification in urban areas. Deep learning-based clustering methods, such as
self-organizing map (SOM), do not require training samples and obtain a low-dimensional
representation of each data point for network learning and clustering through network
self-optimization [38]. SOM has been widely used in pattern clustering, speech recognition
and other research [39,40]. Wandeto et al. (2018) used the SOM method to detect potential
changes in environmental conditions or the urban landscape structure in a large time series
of image data and showed that the method can quickly and effectively identify changes in
the Las Vegas urban landscape during the 1984–2008 period [39]. However, no research has
been reported on the use of the SOM method to distinguish population activity patterns
and to then delineate urban functional areas. Therefore, this paper aims to investigate
whether the SOM method based on the multidimensional DTW distance can effectively
identify urban functional areas without training samples. Specifically, this paper takes
Nanjing city as the experimental area, takes each building as the research object and uses
aggregated cell phone data with both work and residence attributes and the SOM method
based on the Ndim-DTW distance to infer the functional type of each building. The data
are further aggregated to the TAZ level to detect potential urban functional area hotspots.
The accuracy of cell phone data with or without attribute information and the classification
results of different clustering methods are compared, and the accuracy of the detected
functional area hotspots is qualitatively assessed. Finally, the relationship of functional area
hotspots with urban planning and population density is separately discussed.

2. Study Area and Datasets
2.1. Study Area

Nanjing is located in the eastern part of China, in the middle of the lower reaches
of the Yangtze River, with a total area of 6587 square kilometers and a built-up area of
971.62 square kilometers (http://tj.jiangsu.gov.cn/2020/nj18/nj1805.htm, accessed on
18 November 2021). As an important central hub city in eastern China, Nanjing has a high
level of economic and cultural development, a complex urban pattern and highly mixed
land use types. In this paper, nine administrative districts in Nanjing are selected as the
study area, including the six main urban areas of the Gulou, Xuanwu, Jianye, Qinhuai,
Qixia, and Yuhuatai districts, as well as the Jiangning, Lishui, and Pukou districts (Figure 1).
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2.2. Data

We used the following five urban datasets to identify urban functional areas:

• Mobile Subscriber Data. The mobile subscriber data covering nine districts in Nanjing
(Figure 1c) were purchased from the Jiangsu Mobile Company and acquired from
18–24 February 2019. with an hourly temporal resolution and a 150 m × 150 m grid
spatial resolution. Whenever a cell phone makes a communication connection with a
base station (such as receiving calls, sending and receiving SMSs, location updates),
the base station automatically records and generates signaling data containing the
base station location information. The purchased mobile subscriber data come with
users’ work attributes and residence attributes. The user attributes are judged based
on the range of time periods and the length of time that the user stays in the base
station coverage area. The specific discrimination method is as follows: when a user
appears in the base station coverage area for more than 7 days in a month and the time
of appearance is from 10:00 to 17:00, the user is assigned the work attribute; when a
user who appears in the base station coverage area for more than 7 days and the time
of appearance is from 0:00 to 6:00 or 21:00 to 23:00, the user is assigned the residence
attribute. The number of cell phone users, residential attribute users and work attribute
users in each base station area in each hour is statistically obtained, and the population
data of these three attributes are interpolated into a 150 m × 150 m grid. Each grid
includes the grid ID, time (where 2019 represents the year, 0218 represents 18 February,
and 0100 represents 1:00 a.m.), latitude and longitude, and the number of people with
different attributes (Table 1).

Table 1. The format of mobile user data.

ID Region Time Longitude (◦) Latitude (◦)
No. of People

All Residential Work

1 Q.H. 201902180100 118.75767 32.062205 1372 768 104

• Building data. The vector data of buildings in the main urban area of Nanjing
were mainly obtained by downloading from the BIGEMAP platform (http://www.
bigemap.com/, accessed on 18 November 2021). The missing building data around
suburbs were obtained by overlaying with GF-2-urban images and were then visu-
ally interpreted. The GF-2-urban images were obtained after intercepting the GF-2
image with the impervious surface distribution in Nanjing (from the website http:
//data.ess.tsinghua.edu.cn/, accessed on 18 November 2021) as the built-up area [41].
Impervious surface data refer to surfaces such as roofs, asphalt pavements or concrete
pavements, and in this study, we use the 2018 impervious surfaces extracted from
Landsat images using the “exclude and include” framework [42] to represent the extent
of the built-up area of Nanjing. GF-2 data were downloaded from the Land Observing
Satellite Data Service platform (http://36.112.130.153:7777/DSSPlatform/index.html,
accessed on 18 November 2021) on 23 May 2019. GF-2 data contain panchromatic
(PAN) images with a resolution of 0.89 m and multispectral (MSS) images with a
resolution of 3.2 m. The MSS data were subjected to RPC orthorectification [43], ra-
diometric calibration and FLAASH atmospheric correction [44], and the data were
fused with the RPC-orthorectified PAN data using the nearest neighbor diffusion
method [45]. Finally, there were 122,544 building polygons in the built-up area of
Nanjing (Figure 2), which were used as the basic analysis units for the subsequent
clustering of urban functional areas;

http://www.bigemap.com/
http://www.bigemap.com/
http://data.ess.tsinghua.edu.cn/
http://data.ess.tsinghua.edu.cn/
http://36.112.130.153:7777/DSSPlatform/index.html
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Figure 2. Building outline data in Nanjing city: (a,b) are residential buildings in two districts; (c,d) are
two shopping malls.

• POI data. The Gaode Map Service POI data covering the study area were acquired
in December 2018 and purchased from Gaode (https://lbs.amap.com, accessed on
17 January 2022), one of the largest web mapping service providers in China. POI can
represent all places with location, which have large or small spatial scope and high or
low recognition, but not all POI can provide effective information for building function
speculation, or even cause interference, so points with small spatial granularity and
low public recognition, such as public toilets, bus stops, newsstands, etc., need to
be eliminated from the original data first [46]. Then, the remaining POI points were
reclassified according to the building function type, referring to Gong et al. (2019)
for the basic urban land use classification criteria in China [47,48]. The acquired POI
data were regrouped into nine categories, namely: residential; business; shopping
malls; industrial; administrative; medical; parks and greenspace; educational; and
public facilities (Table 2). Considering the specificity of the data and study area, our
POIs categories are slightly different from the classification system; for example, the
commercial category was divided into shopping malls and business because our data
can finely capture the activities of people with both work and residential attributes, and
education was separately distinguished from public facilities because Nanjing is rich
in educational resources. Since the number of different POI categories varies greatly
and the spatial distribution of the same land use types is uneven, the original POI data
need to be reconstructed to eliminate the bias of the data. The reconstruction methods
mainly include the following: (1) In response to the problem of commercial POIs
being repeatedly marked, we removed commercial POIs with a distance of less than
10 m; (2) since the number of industrial and residential POIs had been underestimated,
industrial and residential POIs were added according to the method proposed by

https://lbs.amap.com
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Zhang et al. [49]; and (3) for the public category, POIs were added on the buildings by
visual interpretation due to the relatively lower classification accuracy via the above
method. The amount of reconstructed POI-constructed data increased significantly
(Table 2), and various land use types were more evenly distributed in space. The
POI data reconstruction method and the spatial distribution of the reconstructed POI
data are referenced [41]. The POI-constructed data are used to annotate building
functional types.

Table 2. POI categories and comparison of the number of original POIs and reconstructed POIs.

Primary
Categories POI Labels Original Regenerated

Residential Residential, Villa, Real estate subsidiary 60,341 82,770

Business Business building, The investment company, Bank, Securities company,
Financial company, Insurance company 25,802 25,802

Shopping malls Shopping area, Food, Entertainment, Hotel 91,308 81,702
Industrial Factory, Industrial 2594 13,961

Administrative Foreign institutions, Government agencies, Public security organs,
Scientific research institutions, Social groups, The tax agency 10,524 17,142

Educational University, Educational school affiliation, Kindergarten, Middle school,
Primary school, Vocational and technical school 9591 14,805

Medical Clinic, General hospital, Health care subsidiary, Pet hospital, Specialized
hospital, Plastic surgery hospital, Psychiatric hospital 8049 11,498

Sports and cultural Museum, Archives, Convention and exhibition center, Science and
technology museum, Gallery, Cultural center, Exhibition hall 5827 8434

Parks and greenspace Park, Mountain 2554 7685

• Traffic Analysis Zone. The traffic analysis zone is generated by overlaying the OSM
road network buffers with the impervious surface data of Nanjing city. In this study,
the OSM road network data of Nanjing city for December 2018 were downloaded
from OpenStreetMap (https://www.openstreetmap.org, accessed on 18 November
2021). OSM was divided into seven classes and set different buffer radii, which were
obtained by counting the actual road radius. For example, primary was set to 44 m,
secondary was set to 34.8 m, tertiary was set to 30.4 m, residential was set to 21.5 m,
motorways were set to 42 m, trunks were set to 60.5 m and railways were set to 7.7 m,
as detailed in [41]. After overlaying, the final 8209 traffic analysis zones (TAZ) were
obtained;

• FROM-GLC10. FROM-GLC10 is the world’s first 10 m resolution global land cover
map [50], and it can be downloaded for free from this website (http://data.ess.
tsinghua.edu.cn/, accessed on 18 November 2021). In this study, FROM-GLC10
data were intercepted with the boundaries of the study area to obtain land cover types
in Nanjing, including water bodies, grasslands, drylands, and woodlands.

3. Method

The research method consists of the following four steps (Figure 3): In the first step,
the mobile subscriber data are preprocessed, including the estimation of the kernel density
to obtain the attribute population density and the generation of attribute population two-
dimensional time series curves; in the second step, the SOM network model is constructed,
and the patterns are clustered; in the third step, the clustering results are overlaid with
the reconstructed POI data to classify the individual building functions and to identify
TAZ-level urban functional hotspots; fourth, the accuracy of the results is validated.

https://www.openstreetmap.org
http://data.ess.tsinghua.edu.cn/
http://data.ess.tsinghua.edu.cn/
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3.1. Mobile User Density Dataset with Attributes

First, to ensure that crowd information is captured on each building, discrete grid data
is converted to continuous user density raster data using Kernel Density Estimation (KDE),
which is a nonparametric method for estimating probabilistic density functions to calculate
the density of elements in their surrounding neighborhoods [51]. The equation for KDE
can be expressed as:

f (x) =
1

nhd

n

∑
i=1

K
(

1
h
(x− xi)

)
(1)

where K() is the kernel function; h is the bandwidth or search radius; n is the number of
known points within the bandwidth; and d is the dimensionality of the data.

We set the search radius to 2 km and these data are hereafter referred to as the mobile
user density (MUD) dataset, which includes the mobile user density (MUDm), residential
user density (MUDr) and working user density (MUDw).

Then, the vector data of each building are overlaid with the MUD dataset for anal-
ysis to obtain the dynamic change curve of the population density for each building.
Figure 4 shows the MUD change curves over time within two typical residential buildings
(Figure 2a,b) and two shopping mall buildings (Figure 2c,d), and it can be seen that the
buildings with the same function have similar MUD change curves. In addition, there is
a clear periodicity in the weekday MUD variation curves for both residential and shop-
ping mall buildings, but it is different from the weekend variation curves. To reduce the
computational burden, the MUD data are averaged by weekdays and weekends [52].
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3.2. Ndim-DTW Distance Algorithm

The dynamic time warping (DTW) algorithm can measure the similarity of time
series [53]. The DTW distance is the length of the best alignment (i.e., warping path)
between two given time series, and the larger the DTW distance is, the more significant
the difference between the two time series is. The traditional DTW distance is used to
study one-dimensional sequence data. To describe the two attribute datasets of this study,
residence and work, the DTW algorithm is improved, and the Ndim-DTW algorithm is
constructed to process the multidimensional data.

In this study, each building object in the dataset is a multidimensional time series. The
following definitions of key terms are given.
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Definition 1. A time series T = t1, t2, . . . , tn is an ordered set of real values. The total number of
real values is equal to the length of the time series.

Definition 2. A multidimensional time series (MDT) consists of M individual time series (M ≥ 2),
where each time series has n observations.

T1 = t1,1, t2,1, . . . , tn,1 (2)

T2 = t1,2, t2,2, . . . , tn,2 (3)

. . .

TM = t1,M, t2,M, . . . , tn,M (4)

To better understand the method, the calculation of the Ndim-DTW distance is illus-
trated with an example involving two types of building objects (bP and bQ). In this example,
the MUD time series of bP and bQ can be represented as MDTP : {P1 = p1,1, p2,1, . . . , pm,1;
P2 = p1,2, p2,2, . . . , pm,2} and MDTQ:{Q1 = q1,1, q2,1, . . . , qn,1; Q2 = q1,2, q2,2, . . . , qn,2}
(m = n because the length of the MUD record is the same for all building objects). In
determining the DTW distances of MDTP and MDTQ, the first step is to construct a dis-
tance matrix grid D of m× n elements. The values of each element (dij) in this matrix can
be calculated as follows:

dij =
√(

pi,1 − qj,1
)2

+
(

pi,2 − qj,2
)2 (5)

where pi,1 denotes the MUDw value at hour i in P, pi,2 denotes the MUDr value at hour i
in P, qi,1 denotes the MUDw value at hour i in Q, and qi,2 denotes the MUDr value at hour
i in Q; and dij represents the MUD difference between these two points. The algorithm
can be reduced to finding a path through a number of grid points in this matrix grid, i.e.,
the warping path (W), with the kth element of W defined as wk = (i, j)k, representing the
mapping of P to Q. Thus, W can be expressed as:

W = w1, w2, . . . , wk, . . . , wK max(m, n) ≤ K ≤ m + n− 1 (6)

The regularization path (W) needs to satisfy the following constraints:
The boundary conditions require that the paths start at the element in the lower left

corner of the matrix and end at the element in the upper right of the matrix, d11 and
dmn, respectively.

The continuity condition, also known as the step condition, specifies that wk should
be located in adjacent elements (including those in diagonal positions) of the matrix wk−1.

The monotonicity condition restricts wk to be monotonically spaced in time, i.e., for
wk−1 = (ik−1, jk−1), wk = (ik, jk) needs to satisfy ik ≥ ik−1 and jk ≥ jk−1.

There can be an exponential number of paths satisfying the constraints above, where
there exists an optimal path with minimum accumulation:

min
∑ dij

K
(7)

The above equation can be minimized by the following recursive equation:

dcum,ij = dij + min
{

dcum,i−1j−1, dcum,i−1j, dcum,ij−1
}

(8)

where dcum,ij is the sum of the current dij and the minimum of the cumulative distances of
the previous elements. The obtained dcum,ij represents the Ndim-DTW distance between P
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and Q. More information on computing multidimensional DTW distances can be found in
the literature [35].

3.3. SOM Network

Compared to traditional clustering methods (e.g., k-medoids), neural networks can
obtain a low-dimensional representation of each data point for network learning, and the
low-dimensional representation learned is more suitable for clustering. In this study, a
self-organizing map (SOM) network [54] is used to cluster building objects with similar
time series. While general neural networks are trained based on the backward transfer of
loss functions, the SOM method uses a competitive learning strategy that relies on neurons
competing with each other to gradually optimize the network. The topology of the input
space is maintained using the neighborhood function and is mapped to adjacent output
neurons [54]. The SOM network structure has an input layer and an output layer (also
called the competition layer). The number of neurons in the input layer is determined by
the dimensionality of the input vector, and one neuron corresponds to one feature. The
number of SOM neurons in the competitive layer determines the granularity and scale of
the final model, which determines the accuracy and generalizability of the model.

Usage of the SOM method based on the Ndim-DTW distance involves the follow-
ing steps:

Determine the number of competing layer neurons n;
At initialization, n samples from all building objects are selected as the initial nodes in

the competition layer;
Select a random input sample Xi;
Iterate through each node in the competitive layer: calculate the Ndim-DTW distance

between Xi and the node. Select the node with the smallest distance as the winner node or
best matching unit (BMU);

The nodes contained in the winning neighborhood (i.e., the neighborhood range of
the winning node) are determined based on the neighborhood radius σ. Their respective
update magnitudes are calculated by the neighborhood function, where the closer to the
superior node, the larger the update magnitude, and the further away from the superior
node, the smaller the update magnitude;

Update the weights of the nodes in the winning neighborhood,

Wv(s+1) = Wv(s) + θ(u, v, s)·α(s)·
(

D(t)−Wv(s)

)
(9)

where θ(u, v, s) is a constraint on updates, i.e., the update magnitude factor; Wv(s) is the
current weight of node v; α(s) is the learning rate; and D(t) is the average quantization
error, i.e., the average distance from the nodes in the neighborhood to the winning node;

Complete one round of iterations (iteration number + 1) and return to step (3) until
D(t) meets the set value or reaches a certain number of iterations;

The bubble nearest neighbor function is chosen for the neighborhood function. It
indicates that the update coefficients are the same as long as the neurons are in the superior
neighborhood. The learning rate and neighborhood range in the SOM network decay with
the number of iterations, and the decay function is 1

1+t/T , and σt+1 = σt
1+t/T , αt+1 = αt

1+t/T ,
where t represents the number of current iterations and T represents half of the total number
of iterations.

3.4. Initialization on the OC Algorithm

Similar to k-means methods, the correct initialization of competing layer neurons will
affect the performance of SOM neural networks. Traditional methods based on random
initialization are not effective in generating representative neurons for large datasets, and
the results are often locally optimal. The data volume in this study is large, with a total of
122,544 building analysis units; thus, a modified O(logk)-Competitive (OC) algorithm [55]
is used instead of random initialization to improve the clustering quality and accelerate the
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convergence speed. The OC algorithm requires a randomly selected point from the dataset
as the initial reference node. First, the Ndim-DTW distance between each sample Xi and
the existing nodes is calculated and expressed by D(x). Then, the probability P(x) = D(x)

∑ D(x)2

of each sample being selected as the next cluster centroid is calculated, after which the next
initial node is selected by the roulette wheel method. The above steps are repeated until n
neurons are selected.

3.5. Urban Function Identification and Hotspot Detection

The reconstructed POI dataset was used to identify the functions of the clustering
results in Section 3.4. The enrichment factor (EF) [56] was used to characterize the relative
richness of POI data at each building level:

Fi,l =
ni,l/ni

Nl/N
(10)

where Fi,l indicates the enrichment of building i in class l POIs; ni,l is the number of class l
POIs near the location of building i (e.g., 10 m radius); Nl indicates the total number of class
l POIs; ni is the number of all POIs near the location of building i; and N is the total number
of POIs in the entire study area. A value of 1 for Fi,l indicates that the enrichment level of
class l POIs is equal to the average level of the region, and Fi,l > 1 (or < 1) indicates that
the enrichment of class l POIs is greater (or lower) than the average value of the region. The
average of the EF of all buildings within each cluster is used as the EF value of that cluster.

To reveal the macrostructure of urban functional areas, the relative richness of clusters
can be further aggregated to the TAZ level. The Shannon index was used to describe
functional diversity at the TAZ level:

Hi = −∑
k

pk ln(pk) (11)

where Hi is the functional diversity of the ith street and pk is the proportion of buildings
with function k. The Getis-Ord Gi* statistic is used to portray the analysis of functional
hotspots in the city, and the areas with Gi* values greater than 2.58 are called functional
hotspots [57].

G∗i =
∑n

j=1 wi,jHj − H ∑n
j=1 wi,j

S

√ [
n ∑n

j=1 w2
i,j−

(
∑n

j=1 wi,j

)2
]

n−1

(12)

where Hj is the Shannon index of street j, wi,j is the spatial weight between streets i, and j,
n is the total number of streets. Additionally,

H =
∑n

j=1 Hj

n
(13)

S =

√
∑n

j=1 H2
j

n
−
(

H
)2 (14)

3.6. Accuracy Assessment

Since there are multiple mixes of building-level functional types, we cannot know
the specific mixes before the SOM clustering results and cannot obtain validation samples
in advance. Therefore, based on the method proposed by [58,59], a series of composites
with different spatial scales was randomly selected in the study area, and the identification
results were compared with ground truth survey data and Baidu Street View maps. To
select sufficient validation samples, we chose spatial scale ranges of 500 × 500 m and
1000 × 1000 m.
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4. Results
4.1. U-Matrix and Winner Matrix

We input 122,544 two-dimensional time series into the SOM network for clustering.
This study set the initial number of neural nodes to 16 and initialize it with the OC algorithm
to obtain 16 building objects as the initial neural nodes, i.e., 16 change patterns or function
types can be captured. On this basis, a DTW-SOM net with a 4 × 4 rectangular grid layout
was constructed. The initialized learning rate and neighborhood radius were set to 0.5 and
0.3, respectively, and the average quantization error was set to 0.05 for iterative training.
Among them, the learning rate and neighborhood radius were used to control the operation
of the network, and the average quantization error was used to end the iteration. The
model was trained to obtain the U-Matrix and winner matrix (Figure 4). Each grid in the
U-Matrix represents a winning neuron (BMU), and their indices were labeled with numbers.
The magnitude of the value in the U-Matrix indicates the similarity between the BMU and
its neighboring winning neurons in the input space (i.e., the Ndim-DTW distance) and was
encoded using colors, with larger values being darker. Figure 2a shows that BMUs 1 and 2
are adjacent and have less difference in the labeled values; thus, they are more likely to be
combined into one category. BMU 16 is more different from the surrounding BMUs and
is likely to be divided into separate categories. The winner matrix (Figure 5b) indicates
the number of buildings contained in each BMU category, with the highest number of
buildings in BMU4 being 20,071 and the lowest number of buildings in BMU16 being 181.
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Figure 5. (a) U-Matrix: The average of the Ndim-DTW distance between the BMU and the neighbor-
ing BMUs. A smaller distance means that it is more likely to be grouped with the neighboring BMUs;
(b) Winner Matrix: The number of buildings contained in each BMU category.

4.2. Change Curve in Each BMU

We set 16 neurons to compete and finally obtain a sequence of 16 BMUs (Figure 6).
Each BMU included two characteristic change curves of the working population (red color)
and residential population (blue color). Although each BMU represents a change pattern,
some BMUs, such as BMU1 and BMU2, have similar change curves. On weekdays, the
working population starts to decrease at approximately 07:00 and starts to increase at 17:00,
finally reaching stability at approximately 21:00. On weekends, the timing and magnitude
of this change are smaller. There is no significant difference in the number of residents on
weekdays and weekends compared to the change in the number of working people. In
addition, BMU5 and BMU9 have similar patterns of change (Figure 6).
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Figure 6. Time series change curves in each BMU. A total of 16 BMU time series were obtained,
where the red curve represents the residential population and the blue curve represents the working
population. The y-axis represents the population density. The x-axis represents the temporal variation
in both weekday and weekend patterns, where the left side of the dashed line represents the weekday
pattern and the right side of the curve represents the weekend pattern.

4.3. Enrichment Factors

To further understand the functional type of each BMU model, the enrichment factor
(EF) of each building was calculated based on the reconstructed POI categories, and in turn,
the average EF of each BMU cluster was obtained (Table 3). The larger the POI enrichment
factor in the BMU cluster is, the higher the POI enrichment of the type contained in the
cluster. For example, in BMU1, only the POI enrichment factor of residential type was
greater than 1, while all other types were less than 1, indicating that the cluster is mainly
residential in function. In BMU5, the POI enrichment factors for both residential and
industrial types were greater than 1, indicating that the cluster is dominated by a mixture of
both residential and industrial functions. Since the object of this paper is the function of each
building, the enrichment factor of the parks and greenspace type (PG) was not considered.
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Table 3. Enrichment factors for different categories of POIs grouped by BMU clusters.

BMU IF AD MD ED SC BS SM RC PG

1 0.63 0.22 0.86 0.94 0.89 0.68 0.62 1.59 2.94
2 0.25 0.02 0.98 0.83 0.01 0.15 0.65 1.75 0
3 0.02 1.65 1.92 0.52 1.61 1.95 1.05 0.73 1.81
4 0.72 1.23 0.24 0.56 0.64 0.53 0.6 1.64 0.53
5 1 0.34 0.86 0.5 0.68 0.57 0.44 1.88 1.23
6 0.2 1.54 2.22 0.68 1.1 1.43 0.99 0.87 2.27
7 0.37 0.37 0.3 0.99 0.11 0.25 1.84 1.45 0.31
8 0.32 0.89 0.9 0.41 1.47 3.1 1.22 0.55 1.57
9 2.56 0.94 0.62 1.35 0.68 0.71 0.4 1.95 0.74

10 1.96 1.22 1 1.1 0.56 0.64 0.46 1.87 0.98
11 0.66 0.39 0.81 0.86 0.94 0.69 1.63 1.57 1.38
12 0 0.31 0.92 0.76 0 0.22 0.67 1.59 3.18
13 2.43 0.81 0.69 3.2 1.16 0.8 0.59 1.15 0.61
14 0.63 0.65 0.69 1.52 0.67 0.68 0.4 1.96 0.36
15 0.91 0.71 0.92 1.32 1.12 0.58 0.52 1.72 3.34
16 0.17 1.88 1.9 2.13 2.24 1.12 0.94 0.8 5.8
16 0.17 1.88 1.9 2.13 2.24 1.12 0.94 0.8 5.8

Note: IF = industrial facilities; AD = administrative; MD = medical; ED = educational; SC = sports and cultural;
BS = business; SM = shopping malls; RC = residential communities; PG = parks and greenspace.

4.4. Building-Level Urban Function Types

We selected the data in each BMU cluster that were two times higher than the average
value and had an enrichment factor value greater than 1 (Table 3 in bold). The correspond-
ing POI categories were used to characterize the BMU functions, and the final 16 BMU
patterns were further aggregated into nine functional clusters (Table 4), namely: residen-
tial; business/shopping malls/social; residential/industrial; business/social; shopping
malls/residential; business; industrial; educational/residential; and social/educational.
Among them, the residential cluster contains four BMU patterns, namely, BMU1, BMU2,
BMU4 and BMU12; the residential/industrial cluster contains three patterns, BMU5, BMU9
and BMU10; the shopping malls/residential cluster contains two patterns, BMU7 and
BMU10; the educational/residential cluster contains BMU14 and BMU15; and the busi-
ness/shopping malls/social, business/social, business, industrial and social/educational
clusters contain only one BMU pattern.

Table 4. Functional clusters and types to which the 16 BMUs belong.

Cluster BMU Function

1 1,2,4,12 Residential
2 3 Business/shopping malls/social
3 5,9,10 Residential/industrial
4 6 Business/social
5 7,11 Shopping malls/residential
6 8 Business
7 13 Industrial
8 14,15 Educational/residential
9 16 Social/educational

Figure 7a shows the nine functional area classification results overlaid with the FROM-
GLC10 land cover types. Although there are only three types of single-functional buildings,
namely, residential, industrial and business buildings, and the remaining six are all mixed
types, single-functional buildings account for 63.75% of the total number. Among them,
the number of residential buildings is 51,685, accounting for 43.4% of the total number,
followed by industrial buildings, accounting for 18.3% of the total number (Figure 7b).
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4.5. TAZ-Level Urban Functional Hotspots

In this study, the functional diversity of each TAZ was calculated using the Shannon
index, and a total of seven “hotspots” were identified based on the TAZ-level functional
diversity using hotspot analysis. Figure 8a,e are the two university citys in Nanjing, Xian-
lin University City (XL) and Jiangning University City (JN), respectively, where XL has
eight functional types and JN has seven functional types, both with the highest number
of educational and residential buildings. Figure 8b shows the Qiaobei business district
(QB), which has several large shopping malls and residential districts and contains nine
functional types, with a high proportion of commercial and residential buildings. Figure 8c
shows Xinjiekou (XJK), which is the CBD of Nanjing’s oldest commercial center, with
perfect supporting facilities, eight functional types, and a high proportion of business and
commercial buildings. Figure 8d is the Nanjing South Railway Station (NSR), surrounded
by several industrial parks and shopping malls, with eight functional types, among which
residential is the most frequent and residential/industrial is the second most frequent.
Figure 8f shows the Baima Road Block (BRB), known as Nanjing’s livable block; it is domi-
nated by residential buildings with mature community development and is surrounded by
well-developed educational and living facilities with six functional types. Figure 8g shows
the Hexi CBD (HX), a modern service industry concentration area integrating business
centers, industrial parks and residential areas with complete supporting facilities. Among
these seven hotspots, XL has the widest spatial extent (area of 37.74 km2), while XJK, BRB
and HX have smaller areas (3.48 km2, 4.48 km2 and 3.19 km2, respectively). However,
XJK (Figure 8c) has a more balanced number of buildings of all types, with the highest
Shannon diversity index (highest column in the figure). The Whitehorse Road hotspot
(Figure 8f) is dominated by residential buildings, with a lower percentage of other types,
and therefore, it has a lower diversity index value and the lowest column height. However,
XJK (Figure 8c) has a more balanced number of buildings of each type, and it has the highest
Shannon diversity index (highest column in the figure). The BRB (Figure 8f) is dominated
by residential buildings, with a lower percentage of other types, and therefore, it has a
lower diversity index value (lowest column height).
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CBD. Each column contains colors of different proportions, representing the proportion of the number
of buildings in different clusters. The red areas under the columns are the actual extent of the hotspots,
and the gray circles indicate the size of the hotspots.

4.6. Accuracy Assessment

A validation sample of 186 single-function and 67 mixed-function buildings was
selected on a spatial scale of 500 × 500 m. Among them, 16 single-function and 9 mixed-
function buildings were predicted incorrectly; thus, the accuracy rates were 91.4% and
86.57%, respectively, and the overall accuracy rate was 88.99% (Table 5). At the spatial scale
of 1000 × 1000 m, 159 and 462 single- and mixed-function buildings were selected for the
validation sample, and the prediction accuracy rates were 91.82% and 85.28%, respectively,
with an overall prediction accuracy rate of 88.55% (Table 5). The accuracy rate for urban
functional areas is always above 85% at different spatial scales, which proves the robustness
of our model. Overall, the accuracy rates for single-function buildings at different scales
are all above 91%, which is significantly higher than those for mixed-function buildings.
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Table 5. Comparison of the predicted results with ground truth survey data at different scale ranges.
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5. Discussion
5.1. Comparison of Different Classification Methods

To explore the attribute information of the mobile user data and whether the SOM
method based on the Ndim-DTW distance proposed in this paper is effective, the results
of this paper are compared with those of the traditional DTW distance-based K-medoids
method [34]. When the mobile user data are used for the DTW similarity calculation
without considering the attribute information, only the user density data (MUDm) are used
as a measure of population size, and the classification results show an average accuracy of
76.3% (Table 6). Second, if the user density data with attributes (MUDr, MUDw) are used
for the calculation of the Ndim-DTW distance metric, the K-medoids clustering accuracy is
improved to 80.9%, and it is seen that the clustering accuracy is improved by 4.6% after
adding the population attribute features. If only one-dimensional MUDm data without
population attributes are used but the SOM clustering method proposed in this paper is
used, the clustering accuracy is improved to 81.4%. This result shows that the clustering
method contributes more to the clustering results than the dimension of population data
attributes. The reason is that after the K-medoids method finds the most similar class
for each input data, only the parameters of this class are updated. The SOM method, on
the other hand, updates the adjacent nodes, which are less affected by noise data than
K-medoids [54]. If both MUDr and MUDw two-dimensional attribute data and the SOM
clustering method are used, the results show the highest classification accuracy, 88.7%
(Table 6). It can be seen that the mobile subscriber data with attribute information and
the SOM method based on the Ndim-DTW used in this paper can effectively improve the
discriminative accuracy of individual building functional categories.

Table 6. Accuracy comparison of different data and method combinations.

Methods Data Average Accuracy (%)

DTW + K-medoids MUDm 76.3%
Ndim-DTW + K-medoids MUDr, MUDw 80.9%

DTW + SOM MUDm 81.4%
Ndim-DTW + SOM MUDr, MUDw 88.7%

5.2. Characteristics of Urban Hotspots

(Chen and Liu et al., 2017) identified five “hotspots” in the Yuexiu District, Guangzhou,
based on TAZ-level functional diversity and concluded that the identification of these
hotspots solves, to a certain extent, the problem of defining “centers” or “sub-centers” [34].
The same method was used to identify nine functional hotspots in Nanjing (Figure 8), but
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further evidence is needed to determine whether these areas are indeed the “center” or
“sub-center” of Nanjing.

Urban hotspots contain a rich variety of functional types within them, and these
different functional areas are often initially defined by urban planning. For this purpose,
we compared the Nanjing 2018–2035 urban planning map (http://ghj.nanjing.gov.cn/ghbz/
ztgh/201705/t20170509_874089.html, accessed on 18 November 2021) with the functional
types of the seven detected functional area hotspots and their distribution (Figure 9). As the
CBD of Nanjing, Xinjiekou was planned as a commercial area at the beginning of Nanjing’s
construction and then gradually developed into a commercial and financial center. It can
be seen from the planning map that commercial, business and residential buildings occupy
the main part, which is consistent with our results (Figure 9c). The Hexi CBD and Nanjing
South CBD are also urban financial centers that were built through planning efforts, where
business, industrial and residential buildings are the most numerous (Figure 9d,g), which is
basically consistent with the planning map (Figure 9d,g). However, there are often multiple
mixed types of buildings actually distributed in a single type of planning parcel (Figure 9f,g).
This may be related to two reasons: first, our classification results are based on individual
buildings, which are more refined, and traditional planning maps are coarser in terms of
streets or TAZs, resulting in scale differences [49,60]; second, functional areas are subject
to change by the long-term activities of the population, resulting in clusters of different
functional buildings on the original land plan type [15,58]. Each of these hotspot areas has
different functional characteristics influenced by urban planning: commercial hotspots (XJK
and QB), business hotspots (HX and NSR), educational hotspots (XL and JN), and residential
hotspots (BRB). The type of hotspot is determined by the building functions contained
within the hotspot or the type of land use of the parcel (Figure 9). In the 2020 version of the
Nanjing city plan (http://ghj.nanjing.gov.cn/ghbz/ztgh/201705/t20170509_874089.html,
accessed on 18 November 2021), the central city of Nanjing includes “one main”, namely,
Jiangnan main city, and “new” is the new main city of Jiangbei. Compared with the previous
version of the city master plan, the status of the Jiangbei area has been greatly enhanced,
and the development of embracing the river has become one of the most important spatial
development strategies for Nanjing (Nanjing City Master Plan (2018–2035) draft). In terms
of the spatial distribution of hotspots, the Jiangbei New Area has the BRB and QB hotspots to
meet the living and residential requirements of the population, which is basically consistent
with the requirements of urban development. In addition, the educational hotspots (JN and
XL) are located in the northern and southern areas of the city, which are both within the
planned “National Science Center Demonstration Zone” (Nanjing Urban Master Plan (2018–
2035) draft). The spatial distribution of the different types of hotspots that we identified is
consistent with the overall layout of Nanjing city planning, thus proving the effectiveness
of our method.

If urban planning forges the basic outline of the city’s functional areas, then the final
formation of functional areas is closely related to the actual needs and usage of residents [5].
Urban populations tend to cluster toward urban centers, making urban centers tend to
have high population densities [11,61]. To investigate whether the functional hotspots
that we identified have a high population density, we counted the average number of
people working and living per hour in each hotspot area separately in a week, while three
non-hotspot areas were selected as controls, namely, the Bajia Lake Business District (BJL),
Zhangcun Industrial Park (ZC) and Changjiangzhijia District (CJ) (Figure 10a). The BJL is a
typical commercial/residential area with mainly shopping malls and residential buildings;
the ZC is a business/industrial area with a large number of business offices and factory
buildings; and the CJ is a residential area with mainly residential buildings. In the hotspot
areas, both attribute population densities are high (Figure 10b,c). In contrast, in non-hotspot
areas, both population densities are lower or cannot be at high values at the same time. For
example, in the BJL, both attribute population densities are lower than hotspot areas. In
the ZC, the working population density is higher than some hotspot areas (Figure 10b),
but its residential population density is the lowest (Figure 10c). The same is true for the

http://ghj.nanjing.gov.cn/ghbz/ztgh/201705/t20170509_874089.html
http://ghj.nanjing.gov.cn/ghbz/ztgh/201705/t20170509_874089.html
http://ghj.nanjing.gov.cn/ghbz/ztgh/201705/t20170509_874089.html
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CJ, which has a high residential population density and a low working population density
(Figure 10b,c). It can be seen that hotspot areas not only have a variety of urban function
types but also are high-density population distribution areas. In addition, the analysis of
the two types of population densities reveals that there is a problem in capturing the pattern
of population activity across functions by only looking at the change in population density
for a single attribute: the high and low values of the two attributes “cancel out” each
other, thus “smoothing out” the difference in patterns across functions [62]. For example,
the CJ, with a high residential population density and a low working population density,
and the ZC, with a high working population density and a low residential population
density, represent two different functional types, but they may have similar total population
densities. The population attribute information helps to improve the accuracy of the fine-
grained classification of functional areas (Table 6). In this study, we used only two attributes,
work and residence, and we can try to consider more population attributes in the future,
such as the difference in the activity space and pattern between different age groups
and genders.
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and non-hotspots.

Although these hotspots always exhibit a high crowd density, we cannot infer whether
the hotspots are formed because of the high crowd density or because the functional areas
have a wide range of categories that attract crowds to gather. From the results of this
study, it is clear that crowd density influences the formation of hotspots. For example, the
two university towns (Figure 8a,e) are among the hotspots identified in this study, which
are different from the traditional urban centers, probably due to the special time of cell
phone data collection. The mobile subscriber data collection period used in this study
was from 18–24 February 2019, which is the time when Nanjing colleges and universities
started school one after another. We collected information on the start time of colleges and
universities in spring 2019 and found that 12 colleges and universities in Nanjing started
school one after another during this time (Table 7). Crowds are heavily concentrated in
schools and station places during this time, thus making these areas hotspots in a short
period of time. This finding also provides an important insight: the spatial structure of
urban functional areas will change dynamically due to crowd activities. (Tu and Cao
et al., 2017) discerned urban functional areas based on crowd activity information inferred
from cell phone location and social media data and found that many urban areas provide
different functions depending on the type and extent of human activities, i.e., urban
functions are dynamically changing [19]. Our study also captures the structural changes in
urban functions that occur at particular time periods.
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Table 7. Opening times of some universities in Nanjing in 2019.

Name Opening Time

Nanjing Audit University; Nanjing Medical University; Nanjing University of Posts and
Telecommunications; Nanjing University of Chinese Medicine 17 February 2019

Southeast University Chengxian College; Nanjing University of Finance & Economics 22 February 2019
Nanjing Normal University 23 February 2019
Hohai University; Nanjing University; Nanjing University of Aeronautics and Astronautics;
Nanjing University of Science and Technology; China Pharmaceutical University 24 February 2019

6. Conclusions

In this study, an SOM neural network method based on the Ndim-DTW distance was
proposed to extract the functional categories of individual buildings in cities using the
information of the work and residence attributes of mobile users. It was found that the
SOM method and two-dimensional attribute data improved the accuracy of functional area
identification by 8.1% and 7.3%, respectively, compared to using the traditional K-medoids
clustering method and population density single-attribute mobile user data. In addition,
analyzing population patterns by attribute can avoid the problem that the high and low
values of different attributes “cancel out” each other and “smooth out” the differences in
the patterns of different functions. This study found that there are nine types of functional
categories of buildings in Nanjing and, with the exceptions of the residential, industrial
and commercial categories, all of them are mixed categories. However, single-function
buildings account for the majority (63.75%). In this paper, we used mobile-aggregated
data for the week of 18–24 February 2019, to discover a total of seven hotspot areas in
Nanjing, the formation of which is not only related to the diverse functional categories that
the areas possess but also closely related to the distribution of high-density populations,
which is characterized by spatial and temporal dynamics. As a result, our results can
provide a scientific basis for long-term urban planning and certain functional requirements
in special periods.
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