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Abstract: Dental dimorphism can be used for discriminating sex in forensic contexts. Geometric
morphometric analysis (GMA) allows the evaluation of the shape and size, separately, of uneven 3D
objects. This study presents experiments using a novel combination of GMA and an artificial neural
network (ANN) for sex classification, applied to premolars of Caucasian Italian adults (50 females
and 50 males). General Procrustes superimposition (GPS) and the partial least square (PLS) method
were performed, respectively, to study the shape variance between sexes and to eliminate landmark
variations. The “set-aside” approach was used to assess the accuracy of the proposed neural networks.
As the main findings of the pilot study, the proposed method applied to the first upper premolar
correctly classified 90% of females and 73% of males of the test sample. The accuracy was 0.84 and
0.80 for the training and test samples, respectively. The sexual dimorphism resulting from GMA
was low, although statistically significant. GMA combined with the ANN demonstrated better sex
classification ability than previous odontometric or dental morphometric methods. Future research
could overcome some limitations by considering a larger sample of subjects and other kinds of teeth
and experimenting with the use of computer vision for automatic landmark positioning.

Keywords: geometric morphometric analysis; artificial neural network; multilayer perceptron; sex
estimation; 3D dental images; forensic odontology; dental sexual dimorphism

1. Introduction

The sexual dimorphism of human dentition can be useful in a variety of forensic
settings, such as mass disasters, the identification of bodies, and the classification of
skull fragments [1]. Several methods, such as genetic and skeletal morphology analysis,
can be effectively used for sex estimation, but in some cases, the available evidence is
insufficient for conclusive sex identification. For instance, sexual dimorphism can be
studied in the dentition of young children, whose skeletons have not yet shown differences
that become manifest during puberty [2]. Sexual dimorphism of the teeth is determined
by genetics [3], masticatory function [4], and hormones [5]. However, sexual variations in
dental size and shape tend to be population-specific. Some studies have reported a higher
sexual dimorphism for maxillary teeth [6,7], especially premolars [8]. Previous studies
have demonstrated the reliability of odontometric methods based on linear and angular
measurements carried out on dental casts or 3D casts, obtained via scanning. Especially
in forensic contexts, an intraoral scanner is seldom available during the post-mortem
examination of the body; thus, analysis and measurements are frequently performed
later on casts. In this sense, methods tested using dental casts, rather than real dentition,
produce results that are actually more implementable in the current practice of forensic
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odontologists, and the evidence gained is not biased with the use of methods originally
tested in vivo.

Methods based on three-dimensional analysis have demonstrated a higher capability
in detecting variation of shape compared to two-dimensional analyses based on linear
and angular measurements [9–19]. Nevertheless, these methods require one to consider
several measures simultaneously and to produce an overall interpretation of morphological
features based on separate shape registrations. Alternatively, some novel approaches
have turned to more complex measurement approaches, such as geometric morphometric
analysis (GMA) [20,21], which allows the evaluation of shape and size separately.

GMA applied to teeth does not select some parts of the tooth arbitrarily for the analysis
and does not require separate computations. The entire occlusal surface of the crown is
indeed considered, all the measurements and analysis are performed at the same time, and
the results regarding similarities or variations in the compared dental crowns can be easily
visualized [22]. GMA is based on both fixed landmarks and sliding semi-landmarks, and it
therefore represents an optimal method to study three-dimensional surfaces [23]. Sliding
semi-landmarks enables the analysis of uneven three-dimensional surfaces, where placing
fixed landmarks could be difficult and biased.

Polychronis et al. [21] first applied GMA for exploring the sexual dimorphism in
molars and only a variation in size, and not in the crown shape, emerged between sexes.
Sorenti et al. [24] examined 2D mesial planes of MicroCT scans of mandibular molars
through the logistic analysis of eight variables. The relative dentine area in molars was
found to be the best predictor of sex, with on overall accuracy of 74.36%. The previous
literature has mainly considered the size and crown features of molars for estimating
ancestry or sex of individuals, even though they normally show higher rates of tooth wear,
which can bias morphometric studies of tooth crowns [25].

Few studies have considered bicuspids. Among these is a study conducted by Yong
et al. [18], who used landmarks and sliding semi-landmarks on maxillary and mandibular
premolars for the analysis of sexual dimorphism and ancestry variations among differ-
ent population groups. They used GMA and two-way Procrustes ANOVA (Analysis of
Variance) to test group differences for ancestry and sex, finding upper bicuspids to be
more accurate than mandibular ones in correctly classifying individuals into their ancestral
groups. GMA or other methods which enable separate measurements of size and shape
have been found to be promising, but they require relevant computational efforts for an-
alyzing metric measures or geometric approximations of tooth shape. In fact, geometric
morphometric data result from factor analysis, which produces vectors that are not easy
to interpret as standard linear measures. Moreover, graphical visualization results are
quite useful in interpreting the similarities of the compared tooth crowns, but produce no
quantitative values that are usable for the classification of subjects. These limitations could
be overcome with the use of artificial neural networks (ANNs), which provide learning
algorithms based on input data.

The use of ANNs combined with GMA has been compared with classical methods
of classification (linear or quadratic discriminate analysis) by Soda and et al. [26]. They
demonstrated that ANNs yielded the most stable accuracy among the analyzed groups.
The most commonly used ANN is the multilayer perceptron, which can easily interpret
complex variables based on GMA to build an efficient classification algorithm. Therefore,
ANNs could have significant potential in sex classification if measurement data obtained
from GMA can be applied.

Therefore, in this study we aimed to test a new approach based on the combination of
GMA and ANN applied to human premolars for detecting sexual dimorphism and then
for classifying subjects by sex.

2. Materials and Methods

A total of 100 dental casts from Caucasian Italian adults (50 females and 50 males) who
underwent dental impressions for clinical reasons were analyzed (mean age: 40 ± 7 years).
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According to the local Ethics Committee recommendations, patients gave their informed
consent for the anonymous use of their dental casts for the study. The inclusion criteria
were: patients without missing teeth, dental decay, pathologic anomalies of enamel and
enamel/dentin, significant wear or a remarkable medical history.

The exclusion criteria were: patients who did not meet one or more inclusion criteria
and gross irregularity of the cast.

The first left upper premolar was analyzed in this study. The maxillary first premolar
was selected because it demonstrated a lower rate of tooth wear than other teeth [25] and
high sexual dimorphism [8]. Additionally, only one tooth was examined in order to exclude
any possible source of variability, although Kranioti et al. [16] demonstrated that symmetry
exists between measurements of the left and right maxillary and mandibular teeth.

The casts were digitized with an iCarestream Dental Cs 3600 intraoral scanner (Care-
stream Dental, Stuttgart, Germany). The scans and landmark digitations were performed
by an orthodontist experienced in this kind of analysis. A complete automation of the
neural network learning for 3D classification could not be performed here, due to the
limited sample and the fact that this was a pilot study, mainly addressed at exploiting the
advantages of a GM analysis combined with ANN. In fact, the automatic positioning of
landmarks or semi-landmarks requires adequate learning based on larger amounts of data
and samples [27,28].

The occlusal morphology of premolars was studied by means of 3D geometric mor-
phometrics. Landmark digitization was performed using Viewbox 4.0 software (dHAL
software; Kifissia, Greece) and Yong’s scheme [18] was applied, since it was deemed suit-
able for morphometric analysis and the semi-landmark sliding method (Figure 1). In this
paper, the authors used Yong’s benchmark protocol for the placement of landmarks and
semi-landmarks [18]. Moreover, the model proposed here allows one to orient the 3D image
and to perform a double check of the positions of reference points during digitation. In
particular, fixed landmarks are first positioned according to the side view and then adjusted
in the occlusal view.
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Figure 1. The distribution of landmarks (red points) and semi-landmarks (blue, green, and black
points) on the tooth surface.

In particular, the following landmarks were placed partly manually by the operator
and partly automatically by the software:

1. Four fixed landmarks were manually placed on each tooth: the buccal and lingual
cusp tips and the mesial and distal fossae. All the landmarks were initially projected
from occlusal view and double checked by rotating the models (red points).

2. Nine semi-landmarks were placed manually to identify major ridges and to delimitate
the occlusal circumference. To accomplish this, these two curves were drawn over
the mesial and distal ridges, respectively, connecting the buccal and lingual cusp tips.
The software automatically placed equally spaced semi-landmarks along each curve
(blue and green points).
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3. Fifty surface semi-landmarks were manually added on the occlusal circumference.
This configuration was transposed to all the specimens using thin plate spline trans-
formation (black points).

4. The curve and surface semi-landmarks were slid to minimize the bending energy
between each premolar configuration and the reference specimen. Then, the semi-
landmarks were automatically re-projected six times on their curves or surfaces [29].

To study premolar shapes, a general Procrustes superimposition (GPS) was performed.
This procedure extracts shape information by eliminating the variations of landmark con-
figurations that occur due to scaling (size differences), position, and orientation. Size differ-
ences are defined by centroid size. This is the root sum squared distance of all the landmarks
and semi landmarks from their centroid [29]. Centroid size is a complex measurement that
was proven to be significant in sexual dimorphism analysis by Polychronis et al. [21].

The significant differences in centroid size between male and female subjects were
statistically tested with a t-test.

The intra- and interrater agreement was measured based on the digitation of 30
randomly selected casts, carried out 30 days after the first measurements and provided
respectively by the same operator and a second orthodontist.

The Procrustes superimposition was then performed and the distance between land-
mark configurations in the shape space was used to measure the shape variance in the
whole sample, as described by Klingemberg et al. [30].

In particular, partial least square (PLS) analysis was performed for all full landmark
configurations. This method explores patterns of covariation between two blocks of vari-
ables and can be used to analyze the relationships between shape and other variables.
PLS applied to Procrustes superimposition detects shape information by eliminating the
landmarks’ variations due to size, orientation, and position. The results of these analyses
are directions (call axes) that maximize covariation between variables. The significance of
the covariation is tested using the permutation test (10,000 rounds).

The “set-aside” approach was used to assess the accuracy of the proposed neural
networks [20,31] by diving the sample into two subgroups: the training sample (75 casts)
used to build the ANN and the test sample (25 casts), on which the obtained ANN was
applied in order to measure its performance in predicting sex. For sex classification, two
variables were used as input variables (predictors) in the ANN: the first axis of the PLS
analysis and the centroid size.

All neurons had sigmoidal activation and the optimization was perform using stochas-
tic gradient descent. The appropriate number of hidden neurons was determined using the
10-K cross validation method to maximize the prediction accuracy. The threshold for group
allocation was determined using ROC analysis.

The performance of the obtained ANN in predicting sex was measured in the test
sample by assessing sensitivity, specificity, positive predictive value (PPV) and negative
predictive value (NPV) for each sex, and an overall accuracy value.

All analyses were carried out using the R packages geomorph (https://cran.r-project.
org/package=geomorph (Accessed on 20 July 2021)), neuralnet (https://github.com/bips-
hb/neuralnet (Accessed on 20 July 2021)), and ROCR (http://rocr.bioinf.mpi-sb.mpg.de
(Accessed on 20 July 2021)).

3. Results

The intra- and interrater agreement was evaluated based on the Procrustes distance
obtained from the first and the second digitations carried out on 30 randomly selected casts,
and the results were, respectively, 0.95% (intra-rater) and 0.98% (inter-raters). Only 1% of
the total shape variance was found to be due to measurement errors. This percentage is
similar to that found by Yong et al. and is within acceptable limits [20].

Figure 2 shows the differences in premolar shape between the male and female casts
after GPS and PLS, performed on the Procrustes values obtained for the whole sample
(100 casts). Female mean shape is taken as the baseline (red points). The first axis of the

https://cran.r-project.org/package=geomorph
https://cran.r-project.org/package=geomorph
https://github.com/bips-hb/neuralnet
https://github.com/bips-hb/neuralnet
http://rocr.bioinf.mpi-sb.mpg.de


Healthcare 2022, 10, 9 5 of 10

PLS displaces red points in the direction that maximizes the difference between females
and males (blue points). Male subjects showed larger crowns and well-defined ridges, but
such variations are not usable to correctly classify subjects by sex.

Healthcare 2022, 9, x  5 of 5 
 

 

3. Results 

The intra- and interrater agreement was evaluated based on the Procrustes distance 

obtained from the first and the second digitations carried out on 30 randomly selected 

casts, and the results were, respectively, 0.95% (intra-rater) and 0.98% (inter-raters). Only 

1% of the total shape variance was found to be due to measurement errors. This percent-

age is similar to that found by Yong et al. and is within acceptable limits [20]. 

Figure 2 shows the differences in premolar shape between the male and female casts 

after GPS and PLS, performed on the Procrustes values obtained for the whole sample 

(100 casts). Female mean shape is taken as the baseline (red points). The first axis of the 

PLS displaces red points in the direction that maximizes the difference between females 

and males (blue points). Male subjects showed larger crowns and well-defined ridges, but 

such variations are not usable to correctly classify subjects by sex. 

 

Figure 2. The image shows the differences between male and female premolar shapes after Procrus-

tes superimposition and PLS analysis. Red landmarks indicate the baseline (female shape), and blue 

landmarks indicate an increase in the singular vector of PLS (male shape). 

The most important differences were found at the buccal cusp, along the mesial and 

distal ridges, and in the mesial and distal fossae. The correlation between the first axis and 

sex was fund to be 0.73, and the p-value calculated with a permutation test indicated sig-

nificance at less than 0.05. The difference in centroid size according to sex was statistically 

significant, with a p-value less than 0.05. According to this, the centroid size and the first 

axis can be used as input parameters for the sex classification algorithm. 

For the realization of the ANN, the number of hidden layers was two and they were 

chosen using the 10-K cross-method. Two neurons were included in the first layer and 

one neuron was included in the second layer (Figure 3). “Dimscaling” represents the cen-

troid size and “plsscores” denotes the results of the PLS analysis of the Procrustes super-

imposition. The numbers on the lines indicate the weight associated with each vector. Cir-

cles represent nodes of the ANN, distributed on three layers. 

  

Figure 2. The image shows the differences between male and female premolar shapes after Procrustes
superimposition and PLS analysis. Red landmarks indicate the baseline (female shape), and blue
landmarks indicate an increase in the singular vector of PLS (male shape).

The most important differences were found at the buccal cusp, along the mesial and
distal ridges, and in the mesial and distal fossae. The correlation between the first axis
and sex was fund to be 0.73, and the p-value calculated with a permutation test indicated
significance at less than 0.05. The difference in centroid size according to sex was statistically
significant, with a p-value less than 0.05. According to this, the centroid size and the first
axis can be used as input parameters for the sex classification algorithm.

For the realization of the ANN, the number of hidden layers was two and they were
chosen using the 10-K cross-method. Two neurons were included in the first layer and
one neuron was included in the second layer (Figure 3). “Dimscaling” represents the
centroid size and “plsscores” denotes the results of the PLS analysis of the Procrustes
superimposition. The numbers on the lines indicate the weight associated with each vector.
Circles represent nodes of the ANN, distributed on three layers.
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The discrimination threshold between males and females was set at 0.65 via ROC
analysis (Figure 4), since this value optimizes true-positive and false-positive rates.
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Figure 4. ROC analysis of the discrimination accuracy of the ANN. A threshold of 0.65 was used to
optimize true-positive and false-positive rates.

The overall accuracy in classifying subjects by sex was found to be, respectively, 84%
for the training sample and 80% for the test sample. The ANN yielded different sensitivity
and specificity values for females and males (Table 1) in the test sample. The post-test
probabilities (PPV and NPV) revealed that females showed a higher probability of being
correctly positively classified as females, whereas males showed a higher probability of not
being misclassified as females.

Table 1. Sensitivity, specificity, positive predictive value, and negative predictive value stratified by
sex. The accuracy values were 80% and the ROC analysis yielded an overall value of 0.81.

Females Males

Sensitivity 70% 92%

Specificity 92% 70%

PPV 90% 73%

NPV 73% 90%

Total Auc of ROC analysis 0.81

4. Discussion

Odontometric methods was proven to be a reliable tool in estimating the sex of indi-
viduals in forensic contexts and several studies have reported variations in the size or shape
of teeth between male and female subjects in different populations. Metric analysis greatly
prevailed in methods addressed at detecting shape variations between sexes, whereas very
few combined analyses of size and shape have been carried out, and even less have used
ANNs to perform the computational efforts that such combinations require. This study
tested whether a method based on geometric morphometric analysis (GMA) combined
with an ANN for studying the sexual dimorphism of teeth could overcome some of the
limitations discussed in the previous literature, while yielding an accurate identification
of sex.

According to some prior studies, this study was based on upper premolars, which
are less affected by attrition compared to other teeth and have been found to be endowed
with sexual dimorphism [8,25]. Moreover, dental casts were preferred for measurements,
instead of measures or scans taken in vivo. In forensic daily practice, an intra-oral scanner
is very rarely available in morgue facilities and measures and analysis of dentition are often
performed later on casts and not during oral autopsies. Geometric morphometric analysis,
performed with the use of ANN on dental casts, was first demonstrated to be a highly
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reproducible method, since the intrarater and interrater agreement indexes were found to
be 0.95% and 0.98%, respectively.

The first analysis, carried out on the whole sample, revealed a certain sexual dimor-
phism between the upper first premolars of males and females, showing the males to have
larger crowns and more well-defined ridges compared to females. In agreement with
other studies [20,21] these differences, although statistically significant, were found to be
insufficient for discriminating the sex of a subject. Thus, the centroid size was added as a
parameter in the ANN.

In contrast with most previous studies, the performance of the proposed approach
was measured on a test sample, and not evaluated on the overall sample used to build the
method.

The first relevant observations were related to the fact that the most accurate values
obtained in discriminating sex were found in female subjects, rather than in males. These
findings are consistent with several previous reports [7,8,10,13,19]. Mujib et al. [13] took into
consideration diagonal crown measurements of upper canines and molars and found the
method to be accurate in 69% of males and 73% of females. Işcan et al. [10] analyzed linear
and angular measurements of all maxillary and mandibular teeth and found an accuracy
of 80% in females and of 72% in males. Similar results were reported by Acharya [6] for
dentition in a Nepalese population. On the contrary, Kranioti et al. [16] and Tabasum
et al. [17] analyzed upper molars to discriminate between sexes and found higher accuracy
for males (84–87%) compared to females (53–70%). Slightly higher accuracy in Indian
males than in female subjects was also reported by Yadav et al. [14] and Prabhu and
Acharya [12] in an Indian population. These reports, globally considered, seem to indicate
that sex-related dental traits tend to be more pronounced in females or in males in different
populations.

Very few previous studies have considered the accuracy of methods based on one
single tooth and have reported poor capability in discriminating the sex of the subject.
Singh et al. found accuracy values in classifying the sex of individuals that ranged from 40%
to 60% for premolars and slightly higher values (58–66%) for other kind of teeth studied
separately [19].

GMA has demonstrated to be very effective for the separate analysis of dental shape
and size both for assessing sexual dimorphism and for classifying subjects by sex [18].
Since GMA can reproduce variable objects and yield highly representative data [26], it was
applied for handling complex three-dimensional dental images obtained from the scanned
upper premolars of the sample. However, the shape representations obtained through the
Procrustes superimposition of the premolars of males and female subjects were found to be
unsuitable per se for classifying subjects by sex.

A partial-least-square (PLS) analysis was then performed to study the variance of the
Procrustes superimposition, and an ANN was applied to cope with the required computa-
tions and analysis. In fact, the previous literature has demonstrated that GMA combined
with an ANN can be used to obtain better prediction for species classifications [26], espe-
cially if dimensionality reduction is performed [31]. Therefore, we used GMA to obtain
shape data from the sample, a PLS analysis to reduce the dimensionality of the data, and a
multilayer perceptron type of ANN in order to obtain a better classification of the sample.

The discriminating capabilities of the studied ANN for the analysis of a single tooth
allowed very high rates of overall accuracy for both the training sample and the test sample,
with values of 0.84 and 0.80, respectively. The proposed method yielded very high rates of
sensitivity for males (92%) and specificity (92%) for females. The ROC analysis yielded a
generally very good area under the curve (AUC), with 0.81 as the value used to optimize
the specificity and sensitivity.

The post-test probability values (PPV and NPV) indicate the probability of a subject
to be correctly attributed to the proper sex group, and females were found to have a high
probability of being correctly positively classified as females, whereas males showed the
same probability of being not misclassified as females.
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The accuracy values were found to be 90% for females and 73% for males.
These preliminary results appear quite promising in comparison with previous studies

on the use of premolars or different teeth (canines and molars) for classifying individuals
by sex in different populations [9–21].

In fact, similar very good performances were reported by previous studies only when
all or several teeth were included in the analysis. Acharya et al. [6] reported accuracy
values of 90% for males and 92.5% for females, but only when mesiodistal and buccolingual
measures of all maxillary and mandibular teeth were included. The accuracy decreased
progressively and considerably when either mandibular or maxillary teeth, groups of teeth,
or single teeth were considered [6,10,12,17,19]. The methods which require measurements
of all teeth suffer from evident limitations, as they are not applicable in case of missing
teeth and are much more time consuming compared to methods based on few or one single
tooth. Moreover, it should be noted that these studies offered limited or no validations of
the used technique on a test sample. Thus, the real accuracy and the performance of such
methods could be found to be lower, if applied in a sample that is different from that used
to set the functions.

To our knowledge, only Yong [20] has studied premolars through the use of GMA
and a Procrustes ANOVA analysis in order to develop a model for classifying Australians
according to ancestry groups (European and Indigenous) and sex. The method yielded
relevant accuracy rates for ancestry, but poor overall accuracy for the sex classification of
individuals. The shape analysis of premolars showed accuracy values less than 70% of
the time, whereas the centroid size was found not to be accurate in predicting the sex of
individuals. The remarkably better results obtained in the present study could originate
mainly from the application of ANNs that can use different kinds of predictors combined
in a “nonlinear” prediction algorithm. Moreover, Yong’s study was mainly addressed at
estimating ancestry and the considered sample of females and males for each ancestry
group was quite limited.

Therefore, the tested combination of GMA and ANNs for the assessment of the sex
of an individual based only on one tooth (upper premolar) emerged as an accurate and
reliable method compared to previous techniques which require more computational efforts
and the analysis of all or numerous teeth.

Nevertheless, future research should involve the analysis of other teeth, such as molars
or canines, in order to explore possible improvements of sex classification by combining
different kinds of teeth. Moreover, a small group of teeth considered in the analysis has
been deemed desirable for managing those cases in which the target tooth is missing,
without pursuing methods based on measures of all teeth, which carry the risk of being
even less applicable in cases where teeth are missing.

The main limitations of this study were due to the small sample size considered in
this pilot study and the consequent limits posed by GMA. Even though the sample size
was sufficient to train two predictor neural networks, the training of a bigger and better
neural network requires a larger sample. In this paper, PLS analysis was used to obtain
a reduction of the data, because this yields fewer, but more significant predictors than
principal component analysis (PCA). However, in future studies involving bigger samples,
differences between PLS reduction and PCA reduction should be evaluated, considering
that an unsupervised learning approach is often preferred [32] (pp. 115–116). Moreover
the feasibility of the method relies on specific software capabilities for both the analysis of
3D-digital images and the realization of the neural network. Finally, an ANN needs to be
trained under some imposed conditions (activation function, number of hidden layers, and
others), and this often relies on a trial-and-error approach. Hence, future studies should
consider the use of computer vision for automatic landmark placement.

Despite these limitations, the combination of GMA and the ANN demonstrated a
higher prediction capability than previous methods based on linear or angular measures or
the shape analysis of dental crowns for classifying subjects by sex.
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5. Conclusions

In this pilot study, we assessed the application of GMA combined with ANNs for
analyzing the upper first premolar sexual dimorphism and the method’s performance in
classifying subjects by sex. The proposed approach was found to be endowed with very
high repeatability. Despite the small size of the analyzed sample, GMA combined with
ANNs demonstrated very good sex classification ability compared to previous odonto-
metric or dental morphometric methods based on linear and angular analysis or simple
linear discrimination analysis of multiple teeth. In this study, measurements of the first
upper premolar were used to correctly classify 90% of females and 73% of males of the test
sample after a neural network was specifically trained with predictors derived from the
GMA set on the training sample. In general, the present findings contribute to increasing
the scientific evidence that supports the implementation in the forensic field of methods
based on GMA and ANNs, which were found to be less demanding from a computational
point of view and less affected by limitations, compared to linear and angular or shape
analysis.

Future research should consider larger samples suitable for analyzing more predictors
and other kinds of teeth, in order to confirm the reliability of the results obtained here for
a small, but actually sufficient, sample to study two dental variables in one single tooth.
Further studies should investigate different types of deep learning approaches based on
larger samples of subjects, other kinds of teeth, and more predictors, aiming towards the
standardization of the positioning of landmarks and the automation of morphometric
analyses, thereby minimizing the influence of operator subjectivity.
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