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Abstract: Biological clock technologies are designed to assess the acceleration of biological age (B-age)
in diverse cell types, offering a distinctive opportunity in toxicogenomic research to explore the impact
of environmental stressors, social challenges, and unhealthy lifestyles on health impairment. These
clocks also play a role in identifying factors that can hinder aging and promote a healthy lifestyle.
Over the past decade, researchers in epigenetics have developed testing methods that predict the
chronological and biological age of organisms. These methods rely on assessing DNA methylation
(DNAm) levels at specific CpG sites, RNA levels, and various biomolecules across multiple cell types,
tissues, and entire organisms. Commonly known as ‘biological clocks’ (B-clocks), these estimators
hold promise for gaining deeper insights into the pathways contributing to the development of
age-related disorders. They also provide a foundation for devising biomedical or social interventions
to prevent, reverse, or mitigate these disorders. This review article provides a concise overview of
various epigenetic clocks and explores their susceptibility to environmental stressors.

Keywords: biological clocks; epigenetic clocks; toxicology; toxicogenomics; DNA methylation

1. Introduction

Everyone ages, but biologically not at the same pace. Aging is quantified based on two
parameters—chronological age (C-age) is the amount of time that has elapsed from birth to
a given date, and biological age (B-age) is the measure of the apparent age of an organ or
tissue based on several factors discussed in this review. Individuals with the same C-age
can have different health status, and therefore C-age offers limited information regarding
the biological pathways underlying aging [1]. That led to the development of the concept of
“biological age” which can accurately reflect phenotypic characteristics such as “functional
frailty” and molecular level markers such as DNAm [2–5]. Over the past decade, aging has
become a critical public health concern because of several socio-economic implications [6].
The unprecedented increase in world’s aging population will continue to rise globally in the
next few decades and by 2050, the number of people aged 60 and older would reach 21% [7].
This varies from 9.3% in Africa (low) to 36.5% in Japan (high) and 21.4% in the USA in
2050 [8]. After adolescent growth and development, there is a progressive decline in tissue
and organ function along with an exponential rise in mortality rates, doubling roughly
every 7–8 years after puberty [9]. The prevalence of significant chronic conditions, such as
cardiovascular disease, cancer, diabetes, and Alzheimer’s disease, increases exponentially
as individuals age [6]. This is primarily caused by a progressive gradual accumulation
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of deleterious changes to normal metabolism at the molecular, cellular, and tissue levels,
exacerbated by environmental toxicants and unhealthy lifestyles [6].

A key objective in biological aging research is to identify biomarkers capable of pre-
dicting the biological age (B-age) of different tissues, as an alternative to relying solely on
chronological age (C-age) [10,11]. The American Federation for Aging Research (AFAR) has
devised a four-point set of criteria for biomarkers of aging as follows: (i) they must predict
the rate of aging and life span better than C-age; (ii) they should be able to detect a basic pro-
cess underlying the process of aging; (iii) they could be a non-invasive test like blood work
or an imaging technique which can be repeated without causing much distress to the subject;
and (iv) the technique can be used both for lab animals and humans and can be specific for
a particular tissue or organ or reflect the biological age of the whole organism [12,13].The
frequently used biomarkers to measure biological age are DNA methylation (DNAm), the
length of telomere, transcriptomics, proteomics, and metabolomics [14,15]. The “DNAm
clock” or “epigenetic clock” functions as an estimator of age built from epigenetic DNAm
marks that are strongly correlated (r ≥ 0.8) with chronological age or time, and strongly
associated with age-related phenotypes or outcomes [16]. B-age is estimated using biologi-
cal clocks (B-clocks), a subset of which are epigenetic clocks [17]. B-clocks are the metrics
of B-age based on DNAm patterns and reflects the health condition of an individual [18].
The difference between B-age and C-age is termed as B-age acceleration. Epidemiological
investigations have linked B-age acceleration to a broad spectrum of pathologies, health
conditions, lifestyles, mental states, and environmental factors. This implies that B-clocks
encompass the significant biological processes associated with aging [16].

Therefore, to understand the underlying mechanisms of this complex aging process,
this review focuses on epigenetic clocks and the potential causes of aging (environmental
factors) that influence these clocks. The overall significance of this type of work is to identify
preventable environmental factors that accelerate aging and to develop new therapies to
enhance the quality of life by slowing or even reversing biological aging. We divide this
review into two major sections—Section 2: Part 1. Biological clocks (B-clocks) as biomarkers
of aging (first-generation, second-generation, third-generation, sperm clocks, single-cell
clocks, RNA clocks, mitotic clocks, and pediatric clocks), and Section 3: Part 2. Identifying
environmental drivers of aging using epigenetic clocks. We conclude with future needs to
uncover and prevent environmental drivers of biological aging and disease.

2. Part 1. Biological Clocks as Biomarkers of Aging
2.1. Search Strategy and Selection Criteria

For Part 1, we have performed a systematic PubMed literature search using the key-
words “Horvath’s clock”, “Hannum’s clock”, “mitotic clocks”, “RNA clocks”, “sperm
epigenetic clocks”, and “pediatric clocks”. We completed the search using the PubMed
database (https://www.ncbi.nlm.nih.gov/pubmed (accessed on 30 November 2023)) and
Google scholar up to the end of November 2023. For Part 2, a Pubmed search was con-
ducted separately with the keywords “epigenetic clocks and environmental exposures”,
“epigenetic clocks and stress”, “epigenetic clocks and heavy metals”, “epigenetic clocks and
air pollution”. We will not discuss epidemiological studies which showed no association of
environmental contaminants with epigenetic aging. The selection of articles was made in
compliance with the Preferred Reporting Items for Systematic reviews and Meta-Analyze
(PRISMA) guidelines [19].

2.2. Epigenetic Clocks

Accumulating evidence suggests that there are plenty of connections between age and
DNAm which led to the development of molecular epigenetic clocks representing biological
age [20,21]. Two of the first molecular epigenetic clocks which are robust predictors of
chronological age are Horvath [22] and Hannum [23] calculators which use DNAm data.
Both demonstrate strong age correlations (r = 0.96 for Horvath and r = 0.91 for Hannum)
and minimal mean deviations from chronological age (3.6 and 4.9 years, respectively)
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within their respective validation cohorts [22,23]. Aging is associated with a decrease in
global DNAm along with an increase in local methylation at CpG islands and specific
promoters [24–27]. Accelerated epigenetic aging is usually measured in DNA from whole
blood and is defined as the difference between the B-age and C-age [28]. Accelerated B-age
is associated with increased mortality and impaired physical and cognitive function [29].
The B-clocks based on DNAm are divided into (i) first-generation (G1) clocks (Hannum and
Horvath), that are trained to predict C-age; (ii) second-generation (G2) clocks (PhenoAge,
GrimAge), that have improved predictive power over G1 clocks and can predict longevity
and the onset of age-related diseases; and (iii) third-generation clocks (G3) (DunedinPoAm),
that are designed to estimate the pace of aging [18].

Many new B-clocks are being continuously developed till date—therefore in this article
we present a snapshot of the widely used B-clocks as outlined in Figure 1 and Table 1.
The article also discusses how the various environmental factors could cause accelerated
epigenetic aging as measured by different epigenetic clocks.
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Figure 1. Major types of epigenetic clocks. (A) DNA-based biological clocks: (i) G1 clocks
(e.g., Horvath’s and Hannum’s clocks); (ii) G2 clocks (e.g., DNAm PhenoAge and DNAm GrimAge);
and (iii) G3 clocks (e.g., DunedinPACE). (B) RNA clocks. (C) Mitotic clocks. (D) Sperm epigenetic
clocks. (E) Pediatric epigenetic clocks. (F) Mammalian clocks. (G) Single-cell epigenetic clock (scAge).
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Table 1. An overview of different epigenetic clocks.

Type of Clock Name of
the Clock

Publication
Year and

Ref.

#
of

CpG

No. of
Subjects

(N)

Age
Range Tissue Training

Phenotype Platform

DNAm
-based molecular
epigenetic clocks

G1 clocks

Horvath’s
clock 2013; [22] 353 7844 0–100

51 healthy
tissues & cell

types
C-age Illumina 27 K and

450 K

Hannum’s
clock 2013; [23] 71 482 19–101 Whole blood C-age 450 K

G2 clocks

DNAm
PhenoAge 2018; [30] 513 9926 21–100 Multiple

Lifespan
(mortality
risk score)

27 K and 450 K
and EPIC

DNAm
GrimAge 2019; [31] 1030 6935 46–78 Whole blood

Lifespan
(mortality
risk score)

450 K
and EPIC

G3 Clocks Dunedin
PACE 2020; [32] 46 810 26–38 Whole Blood Pace of

Aging
450 K

and EPIC

DNAm-
based

mitotic clocks

EpiTOC 2016; [33] 385 656 19–101 Whole blood Mitotic age,
cancer risk 450 K

MiAge 2018; [33] 286 4020 N/A 8 TTGA
Cancer cells

Mitotic age,
cancer risk,

survival
450 K

EpiTOC2 2020; [34] 385 656 19–101 Whole blood Mitotic age,
cancer risk 450 K

Sperm epigenetic
clocks

Sperm
epigenetic

aging
(SEA)CpG

clock

2022; [35] 803,063
379

semen
samples

≥18 Semen
Sperm

epigenetic
aging

EPIC Infinium
Methylation

Beadchip

RNA clocks

RNAAgeCalc 2020; [36] 353 9448
samples N/A Multi-tissue Transcriptional

age

RNA-Seq data
from the

Genotype-Tissue
Expression

(GTEx) Program

MultiTIMER 2023; [37] N/A
23,000 an-
notated
samples

N/A Multi-tissue C-age RNA-seq samples
(ArchS4) v11

Single-cell epigenetic clock
framework

(scAge)
scAge 2021; [38]

500,000
CpGs/

cell

549
tissue

samples

1–21 months
old

mice
Multi-tissue

Single-cell
B-age

predictions

Computational
platform

Pediatric epigenetic clocks

Knight’s
clock 2016; [39] 148 207 24–42 weeks Cord

blood
Gestational

Age 27 K and 450 K

Bohlin’s
clock 2016; [40] 132 685 Neonates Cord blood Gestational

Age 450 K

Lee’s
placental

clock
2019; [41] 441,870 1102 5–42 weeks Placenta Gestational

Age 450 K and EPIC

Pediatric-
Buccal-

Epigenetic
(PedBE)

clock

2020; [42] 94 1032 0 to 20 years
old

Buccal
epithelial

cels

Pediatric
age 450 K and EPIC

Mayne’s
clock 2017; [43] 62 409 8–42 weeks Placenta Gestational

age 27 K and 450 K

NeoAge
clocks

(4 epigenetic
clocks)

2021; [44] 303–522 542
Pre-term
infants

(<30 weeks)

Buccal cell
samples

Post-
menstrual

and
postnatal age
of neonates

450 K and EPIC

2.3. First-Generation Molecular Epigenetic Clocks
2.3.1. DNA Methylation-Based Molecular Epigenetic Clocks

The role of DNAm in the process of aging has been well established [45,46]. DNAm
levels at a subset of loci strongly correlate with age and are applicable to a wide array of
tissues, body fluids, and person’s age (from prenatal samples to centenarians) [22]. DNAm
involves the addition of a methyl group to the 5′ position on cytosines in CpGs [47]. The
methylation status of millions among the 28 million CpG dinucleotides in the human
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genome was observed to change as individuals age [48–51]. DNAm-based epigenetic
clocks are generally built with a supervised machine learning method and can predict the
age of the person or biological sample by combining the methylation values of tens to
hundreds of selected CpGs [16]. The estimated age, known as B-age or DNAm age, is not
only a reflection of C-age but also of the B-age of the DNA source. Biomarkers derived
from DNAm provide mechanistic insights into health status, associating the pathogenesis
of a disease with biological aging [52].

Age acceleration is characterized by variances between age estimates derived from
DNAm and chronological age C-age. Positive age acceleration indicates that the DNAm-
based age is older than the chronological age, while negative age acceleration signifies
a DNAm-based age that is younger than the chronological age. Age acceleration serves
as the central focus for all clocks, and we discuss the most commonly utilized as well as
emerging clocks in the following sections.

2.3.2. Horvath’s Clock

In 2011, a UCLA research team published the first single-tissue DNAm-based age
estimator using DNA extracted from saliva [53]. The following year, an Italian group
discovered using blood a new epigenetic marker of age based on a single CpG [54]. In
2013, Horvath and collaborators pioneered the initial multi-tissue predictor of age through
the examination of approximately 8000 samples derived from 51 healthy human tissues,
including various cell types such as liver, kidney, immune, and brain cells, alongside
around 6000 cancer samples. Their findings demonstrated that DNA methylation (DNAm)
can serve as a dependable age indicator in normal/non-cancerous tissues [22]. Horvath’s
DNAm age is calculated based on methylation measurements at 353 loci, present on
Illumina’s 450 K and 27 K DNAm microarrays [22]. The clock showed remarkable accuracy,
predicting age with a correlation of 0.96 and a median error of 3.6 years across various
tissues and cells [22]. Horvath’s clock stands out for its correlation with C-age across
various tissue types, applicability to pediatric samples, strong correlation with gestational
age (differentiation day), and the consistency of its age estimates across multiple tissues [55].

A recently introduced DNA methylation array, the HorvathMammalMethylChip40,
was designed to analyze CpGs that exhibit high conservation across mammals. This array
surveys 37,000 CpGs, offering a platform for investigating epigenetic aging in mammals [56].
Utilizing this array, researchers have created multi-tissue universal clocks that can be
applied to various mammalian species [56,57]. Using this array, epigenetic clocks for
naked mole rats [58], elephants [59], marsupials [60], cats [61], pigs [62], livestock species
(e.g., goat, cattle, sheep, and deer) [63], and horses [64] were developed. The B-clocks for
mice and other mammals were developed using samples from blood and other tissues
such as adipose, heart, kidney, liver, lung, spleen, muscle, etc. [65]. These readily available
B-clocks can be used for wildlife conservation purposes and in breeding programs.

2.3.3. Hannum’s Clock

In a nearly simultaneous investigation in 2013, Hannum and collaborators constructed
a quantitative aging model based on measurements taken from over 450,000 CpG markers
in the whole blood of 656 individuals aged 19 to 101 [23]. The Hannum clock selectively
utilizes 71 CpG sites sourced from the Illumina 450 k array, strategically positioned near
genes linked to aging. This targeted selection contributes to its high accuracy in predicting
age. The clock has undergone validation in human blood, and ongoing initiatives are
focused on adapting the clock for implementation in model organisms like mice [66].
Hannum’s age estimator is designed for adult blood samples, resulting in skewed estimates
when applied to children and non-blood tissues [23,67,68]. Furthermore, it is affected by
age-related changes in blood composition [5,69].
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2.4. Second-Generation Epigenetic Clocks
2.4.1. DNAm PhenoAge

Hannum and colleagues’ blood-based algorithm, along with Horvath and colleagues’
multi-tissue algorithm, generates biological age estimates (DNAm age) that demonstrate
a strong correlation with chronological age (C-age), well exceeding r = 0.90 across sam-
ples spanning the entire age range. Nevertheless, these biological age estimators display
statistically significant associations with numerous age-related health conditions [30]. Con-
sequently, Levine et al. developed a DNA methylation-based biomarker referred to as
DNAm PhenoAge. This biomarker was designed to predict a surrogate measure of “phe-
notypic age”, distinguishing between morbidity and mortality risks among individuals
of the same chronological age [30]. It was devised by calculating a weighted average of
10 clinical characteristics: body mass index (BMI), chronological age (C-age), albumin,
creatinine, glucose, and C-reactive protein levels, lymphocyte percentage, cell volume,
alkaline phosphatase, and blood cell counts. Subsequently, these values were modeled
against DNA methylation (DNAm) levels in blood using a penalized regression model.
This approach led to the automatic selection of 513 CpGs, the weighted average of which
serves as an effective estimate of phenotypic age. This method represents a significant
advancement over first-generation DNA methylation biomarkers (Hannum and Horvath)
in predicting morbidity [30].

2.4.2. DNAm-Based Biomarker of Mortality (DNAm GrimAge)

In 2019, DNAm GrimAge, an EC based on estimations of plasma protein levels
that can predict lifespan and health span was developed by Lu et al. [31]. A unique
two-stage method was utilized to create DNAm GrimAge. In the initial stage, surrogate
DNA methylation biomarkers associated with physiological risk or stress factors were
identified. These biomarkers encompass specific plasma proteins: adrenomedullin, C-
reactive protein, plasminogen activation inhibitor 1 (PAI-1), and growth differentiation
factor 15 (GDF15) [70,71]. Smoking is a pivotal risk factor for both mortality and morbidity.
Consequently, the authors employed a DNA methylation-based estimator of smoking pack-
years. In the second stage, these biomarkers were amalgamated into a unified composite
biomarker of lifespan known as DNAm GrimAge, expressed in units of years.

A comprehensive meta-analysis, incorporating over 7000 Illumina array measure-
ments, substantiated that DNAm GrimAge surpasses other DNA methylation-based pre-
dictors as a more accurate predictor of lifespan. DNAm GrimAge is a linear combination of
C-age, sex, and DNA methylation-based surrogate biomarkers for seven plasma proteins
and smoking pack-years. It outperforms all other DNA methylation-based biomarkers
across a range of health-related metrics [31]. The G2 clocks, including DNAm PhenoAge
and DNAm GrimAge, surpass current molecular biomarkers of aging due to their robust
correlation not only with C-age but also with various age-related conditions [15].

2.5. Third-Generation Epigenetic Clocks

A third-generation epigenetic clock, DunedinPACE (Pace of Aging Calculated from
the Epigenome), was developed by training on an extensive set of direct biomarkers
related to health and diseases. These include BMI, waist-hip ratio, glycated hemoglobin
(HbA1c), leptin, blood pressure, lung function, cognitive function, grip strength, and motor
coordination, among others. Belsky et al. introduced it in 2021 as an innovative blood
biomarker for assessing the pace of aging in the fields of gerontology and geroscience [72].
The researchers utilized data from a birth cohort (n = 1037 babies) in Dunedin, New
Zealand, born during 1972–1973, tracking them through midlife. Aging was observed to
lead to a gradual and progressive deterioration that affected various organ systems. To
capture these changes, the authors examined longitudinal shifts in 19 biomarkers, assessing
cardiovascular, metabolic, renal, hepatic, immune, dental, and pulmonary systems at
ages 26, 32, 38, and 45 years. Analyzing this dataset resulted in the creation of a metric
called the “Pace of Aging”, quantifying each participant’s individual rate of biological
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aging. DunedinPACE demonstrated high test–retest reliability, exhibited associations
with morbidity and mortality, and identified accelerated aging in young adults who had
experienced childhood adversity [72].

DunedinPACE differs from other DNA methylation clocks in both its development
methodology and interpretation [72]. DunedinPACE contributed additional predictive
value beyond clocks like Horvath, Hannum, PhenoAge, or GrimAge in analyzing the
occurrence of new cases of morbidity, disability, and mortality. While other clocks estimate
aging progression up to a specific point in time, DunedinPACE offers DNAm estimates of
the Pace of Aging, representing the ongoing rate of decline in system integrity.

2.6. Mitotic Clocks

The number of cell divisions of a given tissue type in an individual is of great interest
since it allows the study of biological aging using a new molecular target (mitotic age)
and can predict prospective cancer risk in individuals [73]. DNAm-based mitotic-like
clocks can keep count of the cumulative number of DNAm errors arising during cell
division [33,74]. There have been three epigenetic mitotic clocks reported in the literature to
date: (a) Epigenetic Time to Cancer (EpiTOC), (b) Epigenetic Time to Cancer-2 (EpiTOC2),
and (c) Mitotic Age (MiAge) [33,34,73]. In 2016, Yang et al. developed a DNA methylation-
based age-correlated model named “EpiTOC” (Epigenetic Timer of Cancer). This model
operates as a mitotic clock in both normal and cancerous tissues [33]. It utilizes CpGs
located in gene promoters associated with the PRC2 polycomb repressive complex, also
known as Polycomb group targets (PCGTs), in human embryonic stem cells (hESCs). These
CpGs remain constitutively unmethylated in a ground state of age zero across various
fetal tissue types. As chronological age (C-age) increases, DNAm levels also rise, enabling
researchers to evaluate variations in DNA methylation in both aged and oncogenic tissues.

2.7. Sperm Epigenetic Clocks

Studies have shown that sperm DNAm mediated the age-related effects of male C-
age on poor reproductive outcomes like fertilization rates, embryo development, and
live birth [75]. However, somatic tissue-based clocks cannot precisely predict epigenetic
aging in germ cells [22]. To address this constraint, Jenkins et al. in 2018 developed
the inaugural sperm-specific epigenetic clock within a diverse population, encompassing
sperm donors, infertile men, and the community. This was achieved by employing regional
methylation levels from the Illumina 450 K array [76]. In 2022, Pilsner et al. undertook a
more thorough examination, employing the Illumina EPIC array to formulate a novel CpG-
based sperm epigenetic age (SEA) within a cohort of 379 participants with the common
goal of conception [35]. These results indicate that the sperm epigenetic clock could serve
as a novel biomarker for the reproductive success of couples. Both the study conducted
by Jenkins et al. and that of Pilsner et al. demonstrate that sperm epigenetic age (SEA) is
influenced by environmental factors, as evidenced by accelerated SEA observed among
smokers in clinical cohorts, sperm donors, and the general public.

2.8. Single-Cell Epigenetic Clock Framework (scAge)

Most existing B-clocks rely on measurements derived from samples containing many
cells [77]. Bulk samples are valuable for identifying average methylation patterns in tissues,
but they neglect the epigenetic heterogeneity that might exist among individual cells [77,78].
To address this concern, the scAge, an epigenetic clock framework, was devised to allow
the profiling of biological age at the level of individual cells [38]. Due to the variable
coverage of CpGs between cells, the authors employed a ranked intersection algorithm
that is agnostic to which CpGs are covered in each cell. This method synthesizes the C-age
of tissues while revealing the inherent epigenetic heterogeneity among individual cells.
The authors successfully utilized the scAge model to monitor aging in hepatocytes and
embryonic fibroblasts, demonstrated reduced epigenetic aging in muscle stem cells, and
tracked age dynamics in embryonic stem cells. Consequently, the scAge framework can
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serve as a valuable tool for exploring epigenetic aging trajectories at single-cell resolution,
offering exciting applications in emerging single-cell technologies.

2.9. RNA Clocks

Changes in gene expression in addition to DNAm have also been related with age-
related diseases [79–85]. Numerous computer programs exist for predicting DNA methy-
lation (DNAm) age from human DNAm data assessed on the Illumina Infinium Human-
Methylation450K BeadChip, such as RNAAgeCalc. However, when it comes to gene
expression data, age-related signatures have been developed using either non-human
sources or very limited tissue samples [36].

2.9.1. RNAAgeCalc: A Multi-Tissue Transcriptional Age Calculator

RNAAgeCalc stands out as the initial versatile transcriptional age calculator that
works across tissues and provides tissue-specific predictions. Its development involved
utilizing RNA-Seq data from the Genotype-Tissue Expression (GTEx) Program [86]. Uti-
lizing publicly available GTEx data, a database that encompasses genes across various
tissues, the transcriptional age calculator RNAAgeCalc, was constructed with tissue-specific
capabilities [36]. The authors subsequently verified, using the calculator, that transcrip-
tional age acceleration was associated with reduced mortality risk and mutation burden
in TCGA cancer samples. This provided corresponding insights in comparison to DNAm
age [36]. Therefore, RNAAgeCalc may advance our efforts for novel treatments for age-
related diseases.

2.9.2. Multi-Tissue RNA Clock (MultiTIMER)

It was developed by combining previous data about gene-function associations from
the Molecular Biology of the Cell Ontology (MBotC) [87] with a machine learning approach
to detect the cellular processes and their associated genes which are predictive of age [37].
MultiTIMER determines the biological age (B-age) of cells based on their transcriptional
profiles, assessing critical cellular processes. Applied to over 70,000 transcriptional profiles,
MultiTIMER revealed that the aging process correlates with distinct aging phenotypes and
responds to cellular stressors and interventions. In comparison to RNAAgeCalc, which
predicts cell age from a set of 1600 genes expressed differentially across tissues during
aging, MultiTIMER is more robust [36].

2.10. Pediatric Epigenetic Clocks

B-age acceleration measures developed using adult and pediatric samples are not
suitable for estimating gestational age (G-age) and are inappropriate for use in neonates.
These B-clocks are not trained on G-age data and do not exhibit correlation with G-age.
In recent years, various clocks have been specifically designed for predicting G-age and
pediatric C-age in pediatric populations [88]. Widely used G-age clocks include the Knight
clock which was developed from cord blood data using both 27 K and 450 K arrays
and consists of 148 CpGs [39], and the Bohlin clock which consists of 96 CpGs and was
developed using cord blood data from 450 K data [40]. The Lee clock was designed using
placental data from the 450 K and EPIC arrays and is based on 558 CpGs [41]. The Mayne
clock was developed using placental data from both 27 K and 450 K arrays and consists of
62 CpGs [43]. The NeoAge clock was developed to forecast both postmenstrual age (PMA,
time from estimated conception onward) and post-natal age (PNA, time elapsed after
birth) for preterm infants. This was achieved using buccal cell samples and considering
303–522 CpGs [44]. As far as pediatric clocks are concerned, the Pediatric-Buccal-Epigenetic
(PedBE) clock [42], comprising 94 CpGs, primarily focuses on the pediatric population
(0–20 years old). The PedBE clock was trained in buccal cell samples using the platform of
450 K and EPIC arrays; it is a better predictor when saliva or buccal cells are used compared
to blood DNA. The Horvath clock is also an accurate age predictor in children along with
adults [22].
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2.11. Nutrition and Epigenetic Clocks

Exploring nutritional interventions emerges as a promising approach to promote
healthy aging, given the growing body of evidence indicating their potential to posi-
tively impact the health status of individuals [89,90]. Key modifiers of epigenetic patterns
include dietary factors that supply S-adenosyl-methionine for one-carbon metabolism
and polyphenols, such as flavanols, which can inhibit the activity of DNA methyltrans-
ferases (DNMTs) [91]. Intervention trials were conducted in 44 participants with folic
acid + vitamin B12 (GSE74548) and in 13 participants with monomeric and oligomeric
flavanols (MOF) (GSE54690) [91]. DNAm patterns were evaluated in publicly available
Illumina Infinium 450 K methylation datasets. Following supplementation with folic
acid + vitamin B12, global DNAm levels were observed to increase in unmethylated re-
gions like CpG islands and shores, while decreasing in highly methylated regions after
intervention with MOF. In women with the methylenetetrahydrofolate reductase (MTHFR)
677CC genotype, supplementation with folic acid + vitamin B12 led to a reduction in B-age,
as estimated by the Horvath “epigenetic clock” model. Additionally, a population-based
prospective cohort study involving 1346 newborns, utilizing Bohlin’s and Knight’s clocks,
demonstrated an association between higher maternal plasma homocysteine concentrations
and positive G-age acceleration, suggesting a faster epigenetic aging rate compared to
clinical gestational aging [92]. However, cord serum vitamin B12 concentrations were
associated with negative G-age acceleration, indicating slower epigenetic than clinical
gestational aging [92].

The Mediterranean diet is recognized for its well-balanced combination of nutrients,
antioxidants, and anti-inflammatory compounds, and it has been proposed as a poten-
tial preventive measure against telomere shortening [93,94]. A pilot intervention study,
involving 120 elderly healthy subjects (60 Italians, 60 Poles), was designed to explore the
effects of a Mediterranean-like diet over one year. The diet was specifically tailored to
meet the nutritional requirements of individuals over 65 years of age. The study aimed
to assess the impact on age-related diseases and functional decline by measuring changes
in their biological age (B-age) using Horvath’s clock [95]. Polish females and individuals
who exhibited higher epigenetic age at baseline appeared to derive greater benefits from
the Mediterranean-like diet. Additional research is needed to understand why certain
individuals respond more favorably to specific interventions. This is a crucial step in
the development of personalized nutritional interventions for precision medicine-based
anti-aging strategies.

A 24-month study involving 219 women from the “Diet, Physical Activity, and Mam-
mography” (DAMA) study in Florence, Italy, explored the potential favorable effects of
enhanced dietary habits and increased physical activity on the development of breast
cancer and aging biomarkers in healthy postmenopausal women aged 50–69 years. [96].
DNAm was assessed both at the study’s outset and upon completion. Women engaged in
the dietary intervention exhibited a noteworthy deceleration of the DNAm GrimAge clock.
Concurrently, increased physical activity resulted in a significant reduction of stochastic
epigenetic mutations in critical cancer-related pathways. The DAMA study employed
non-extreme interventions, easily achievable through lifestyle modifications. This suggests
that policy intervention programs promoting a healthy diet and physical activity could sub-
stantially reduce the societal burden of aging-related pathological conditions and diseases.
In conclusion, diverse anti-aging strategies, including stress reduction, experimental drugs,
and nutritional interventions, can be adopted to decelerate epigenetic aging.

3. Part 2. Environmental Toxicants Affecting Epigenetic Clocks

Several lifestyle, biological, social, and environmental factors might accelerate biologi-
cal aging, and their associations with epigenetic clocks have been investigated as outlined in
Figure 2 [97–99]. Studies indicate that the acceleration of epigenetic clocks was significantly
associated with socio-economic status, air pollution, BMI, HIV infection, alcohol use, and
male sex [100]. Here, we wanted to summarize existing research findings and provide
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a snapshot of the various environmental, social, and biological factors associated with
epigenetic aging.
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Figure 2. Environmental agents affecting epigenetic clocks. Factors causing biological age (B-
age) acceleration: chemical agents (e.g., airborne chemicals, phthalates, PFAS, and heavy metals);
lifestyle factors (e.g., diet, alcohol, smoking, and obesity); and psychological factors (e.g., war trauma,
childhood adversity, stress, socio-economic status, etc.). B-age acceleration could be improved with a
healthy diet, physical activity, and anti-aging drugs like rapamycin, etc.

3.1. Airborne Chemicals

Air pollution is a major environmental hazard for human health [101]. As per a 2016
report from the World Health Organization (WHO), 92% of the global population is exposed
to air pollution levels exceeding permissible limits [102]. Air pollution encompasses
various components, including particulate matter (PM), ozone (O3), sulfur dioxide (SO2),
nitrogen oxides (NOx), carbon monoxide (CO), benzene, black carbon, polycyclic aromatic
hydrocarbons, and toxic metals [103]. Several studies have indicated that exposure to air
pollution on a long-term basis is responsible for accelerated epigenetic aging [104,105].
Upon inhalation, airborne particulate matter (PM) is deposited across the respiratory tract,
contributing to inflammation and damaging the airway epithelium [106,107]. PM10 and
PM2.5, referring to particulate matter with aerodynamic diameters of <10 µm and <2.5 µm,
respectively, constitute key elements of particulate air pollution. The composition of these
particles varies significantly based on geographic regions [108]. Studies have demonstrated
that PM10 can impact the methylation of genes that regulate the circadian cycle [109,110].

In a panel study conducted in China, 76 healthy adults aged 60–69 years were recruited
to investigate whether exposure to PM2.5 is a significant risk factor for cardiovascular aging
and the development of other comorbidities [111]. The study compared the effectiveness of
seven types of B-age and C-age to assess the impact of short-term PM2.5 exposure on blood
pressure, a clinical marker for cardiovascular aging. Utilizing both G2 indicators (PhenoAge
and SkinBlood Clock) and a G3 B-age indicator (DunedinPoAm), it was observed that
changes in blood pressure were significantly and positively influenced by PM2.5 mass
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exposure. Consequently, B-age could serve as a predictive measure for cardiovascular
susceptibility to air pollution exposure in this population.

Laan et al. conducted a study in China involving factory workers (n = 50) to ex-
plore the potential association between occupational air exposure to chemical carcinogens
(e.g., benzene, trichloroethylene (TCE), or formaldehyde) and epigenetic aging [112]. In all
three studies, DNAm was assessed using the HumanMethylation450 BeadChips (Illumina
HM450K arrays). The authors employed five different epigenetic clocks, namely, Horvath,
Skin-Blood Clock, Hannum, PhenoAge, and GrimAge. The findings revealed that exposure
to benzene accelerated the Hannum and Skin-Blood B-clocks, and it was associated with
shorter DNAm estimates of telomeric length, which provides a more accurate measure of
cell replication than actual telomere length. In the TCE study, an acceleration in B-age was
observed among workers exposed to <10 ppm of TCE compared to controls, particularly
for the Skin-Blood Clock. Overall, the study provided evidence that exposures to benzene
and TCE can impact biomarkers of epigenetic aging.

A study conducted with the Scotland-based Lothian Birth Cohort 1936 aimed to assess
the sensitive periods during an individual’s life course when air pollution would exert
a more pronounced impact on DNAm-based markers of biological aging [52,113]. The
study involved the recruitment of 525 individuals, including both men and women, with
a total of 1782 observations. Blood samples were collected between the ages of 70 and
80 years, and Horvath, Hannum, PhenoAge, GrimAge, and DNAmTL were utilized for
the analysis. The participants’ residential history was linked to annual levels of a mixture
of air pollutants, including fine particles (PM2.5), sulphur dioxide (SO2), nitrogen dioxide
(NO2), and ozone (O3). Exposure to air pollution during young-to-middle adulthood
was associated with biological age (B-age) measured using Horvath’s epigenetic clock.
Shorter estimated telomere lengths were observed among males with higher exposure to air
pollution in mid-adulthood, indicating an accumulating impact of air pollution across the
life course. In females, air pollution specifically around birth was associated with estimated
telomere attrition. This study highlights the role of DNAmTL as a biomarker of cellular
aging susceptible to the effects of air pollution exposure.

A separate study, encompassing six longitudinal population-based birth cohorts in
diverse populations (UK, France, Spain, Lithuania, Norway, and Greece), was conducted.
The findings revealed that exposure to tobacco smoke during pregnancy/childhood and
indoor particulate matter exposure during childhood are linked to accelerated epigenetic
aging in children [114]. The study recruited 1173 children, approximately 7 years old.
Age acceleration was assessed using the Skin-Blood clock, utilizing child blood DNA
measured using Infinium 450 K. A notable strength of the study lies in its examination
of two distinct time periods—pregnancy and childhood—recognized as critical stages of
vulnerability in a child’s development [115]. Aging has emerged as a global public health
concern, emphasizing the need for new studies in child populations. Such research can
aid government agencies in formulating policies to reduce environmental exposures and
promote “healthy aging” from early life.

A study was conducted to investigate the connection between prenatal exposure to
air pollution and epigenetic aging at birth. This research involved two pregnancy cohorts
that included women with a previous child diagnosed with autism spectrum disorder
(n = 332 mother–child pairs) [116]. In the analysis of cord blood tissue, DNAm age was
computed using the Knight and Bohlin epigenetic clock algorithms. The findings indicated
that exposure to O3, PM2.5, and PM10 during both the preconception period and pregnancy
led to a deceleration of biological age (B-age) at birth. The authors further identified that the
early- to mid-pregnancy phase was a critical period for the association between particulate
matter (PM) and epigenetic aging. This study suggests that prenatal environmental stress
may influence fetal programming, as reflected by alterations in epigenetic aging.



Genes 2024, 15, 16 12 of 26

3.2. Phthalates

Phthalates act as endocrine-disrupting chemicals, impair reproductive health, and
cause asthma, rheumatoid arthritis, cardiovascular disease, and more [117–120]. A study
conducted in China showed that airborne chemicals including phthalates significantly
increased the acceleration of the epigenetic biomarkers for phenotypic age [121]. The study
recruited 76 healthy, non-smoking older adults aged 60–69 years. DNAm levels were
measured in blood samples and used to calculate epigenetic aging biomarkers including
Hannum clock, Horvath clock, PhenoAge, GrimAge, and a DNAm estimator of telomere
length (DNAmTL). The study revealed that phthalates accelerated PhenoAge. These
findings might enable the designing of more targeted disease prevention strategies to
mitigate the toxic effects of environmental chemicals.

In 2022, Pilsner et al. conducted a study examining the correlation between urinary
phthalate metabolites and sperm epigenetic age (SEA) in male partners of couples intend-
ing to start a family [122]. In the study involving male partners (n = 333), 11 urinary
phthalate metabolites were measured. In the multivariate analyses focusing on individual
metabolites, nine of them exhibited positive trends with sperm epigenetic age (SEA) in
the range of 0.05–0.47 years. Phthalate metabolites have been associated with changes
in sperm methylation [123] which indicate that continuous exposure to phthalates might
interfere with the activities of DNAm machinery of spermatogonia stem cells during sper-
matogenesis and cause epigenetic modifications over time [124]. The methylation defects
that accumulate in spermatogonia are subsequently transmitted during sperm maturation,
and Pilsner’s sperm epigenetic clock can quantify these changes in sperm [35]. Men with
elevated phthalate exposures may bear sperm populations displaying epigenetic signatures
associated with aging. These signatures could potentially contribute to infertility or other
adverse reproductive outcomes.

3.3. Heavy Metals

Iron is an essential nutrient for humans and too little or too much can be harmful
to health [125]. Several studies have reported that excess iron accumulation accelerates
human aging [126–128]. In a comprehensive genome-wide association study (GWAS), the
association between four systemic iron status biomarkers (ferritin, serum iron, transferrin,
and transferrin saturation) and four biomarkers for biological age (GrimAge, PhenoAge,
intrinsic biological age acceleration, and Hannum) was investigated on a large scale [129].
Genetic correlations were assessed through linkage disequilibrium score (LDSC) regres-
sion, Mendelian randomization (MR), and MR based on Bayesian model averaging. The
LDSC results revealed genetic correlations between serum iron and PhenoAge, as well as
transferrin saturation and PhenoAge. Furthermore, the study identified that ferritin and
transferrin saturation significantly elevated all four measures of biological age. In summary,
this research emphasizes the genetic causal relationship between systemic iron status and
biological age acceleration.

A population-based study was undertaken in American Indian communities located
in Arizona, Oklahoma, and North and South Dakota (n = 2301) to clarify the connection
between metal exposures and biological age acceleration [130]. Compared to other US
populations, this cohort is exposed to higher levels of arsenic (As), cadmium (Cd), and
tungsten (W) [131]. They also have hyperglycemia, and the high burden of type 2 diabetes
increases urinary Zn excretion [132]. Blood methylation data from participants were uti-
lized to compute age acceleration using various biological clocks (PhenoAge, GrimAge,
DunedinPACE, Hannum, and Horvath). The levels of urinary metals (arsenic (As), cad-
mium (Cd), tungsten (W), zinc (Zn), selenium (Se), and molybdenum (Mo)) were adjusted
for creatinine and categorized into quartiles. The results revealed that the combination of
nonessential metals (W, As, and Cd) was positively associated with increased GrimAge
acceleration and DunedinPACE, while the essential metal mixture (Se, Zn, and Mo) was
linked to lower biological age acceleration. The most robust associations were observed
between Cd and DunedinPACE and GrimAge acceleration. Therefore, investigating the
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impact of metal mixtures on biological age acceleration is crucial for understanding the
biological processes underlying various age-related health conditions.

A study was undertaken to explore the impact of serum lead (Pb), mercury (Hg),
manganese (Mn), and copper (Cu) on DNA methylation (DNAm) age, employing three
DNAm-based biomarkers of aging (Horvath Age, PhenoAge, and GrimAge) [133]. The
longitudinal data were collected from adults (n = 290, mean age: 51 ± 17) residing in an
environmentally polluted post-industrial city (Detroit, Michigan) from 2008 to 2013. Lead
(Pb) showed a positive association with GrimAge acceleration, and mercury (Hg) exhibited
a positive association with PhenoAge acceleration. However, consistently negative associa-
tions were observed between manganese (Mn) and PhenoAge acceleration, as well as Hg
and Horvath age acceleration. Copper (Cu) displayed a strong U-shaped relationship with
both PhenoAge and GrimAge acceleration. An increase in total exposure to the observed
mixture of metals resulted in increased PhenoAge and GrimAge acceleration and decreased
Horvath age acceleration. These findings suggest that an elevation in serum Pb or Hg from
the 25th to 75th percentile is linked to approximately a 0.25-year increase in two epigenetic
markers of all-cause mortality in a population of adults in Detroit, Michigan. Therefore,
population-wide exposure to toxic metals (e.g., Pb and Hg) at low levels can contribute to
accelerated biological aging.

3.4. Per- and Polyfluoroalkyl Substances

Per- and polyfluoroalkyl substances (PFAS) are a group of widespread man-made
persistent organic pollutants with highly stable perfluorinated carbon chains. PFAS are ubiq-
uitous in households, workplaces, and the environment [134–136]. Exposure to per- and
polyfluoroalkyl substances (PFAS) during in utero development has been associated with
alterations in offspring DNA methylation (DNAm) at both individual CpG sites and regions
within genes that play roles in growth, cardiometabolic, and immune health [137,138].

A pilot study was conducted at Ronneby, Sweden, which had a highly PFAS-contaminated
drinking water supply (primarily PFOS and PFHxS), from the mid-1980s to December
2013 [139]. The study was conducted to elucidate whether PFAS exposure is associated
with an alteration of DNAm and B-age acceleration among women [139]. A total of 59 women
(aged 20–47 years) were recruited from the Ronneby Biomarker Cohort, while the control
group (n = 226, aged 5–59 years) was recruited from Karlshamn, a nearby municipality
with uncontaminated drinking water supply and similar socioeconomic status. The average
serum per- and polyfluoroalkyl substance (PFAS) levels for different PFAS compounds in
the Ronneby cohort were approximately 10–100 times higher than the control group. The
Infinium MethylationEPIC BeadChip was employed to analyze the genome-wide methylation
of whole-blood DNA. Although PFAS exposure was associated with methylation changes
at specific sites and regions, there was no observed association between PFAS exposure and
biological age acceleration according to the Skin-Blood clock.

Another exploratory study was designed to evaluate how PFASs might influence
DNAm and B-age acceleration among school-age children (n= 63, aged 7–11 years) from the
Ronneby Biomarker Cohort (Sweden) [140]. The control group had exposure at background
levels (n = 32; perfluorooctane sulfonic acid: median 2.8 and range 1–5 ng/mL) and the
exposed group was exposed to very high levels of PFASs (n = 31; perfluorooctane sulfonic
acid: median 295 and range 190–464 ng/mL). The two groups were similar with respect to
sex, age, and BMI. The genome-wide methylation of whole-blood DNA was analyzed using
the Infinium MethylationEPIC BeadChip kit. While associations between PFAS with CpG
sites and regions were reported, there were no differences in B-age acceleration between
the high and low PFAS exposure group.

A study was conducted with incumbent firefighters (n = 197) from three cities in the
USA to assess whether PFAS serum concentrations were associated with EA biomarkers [141].
The serum concentrations of nine PFASs, blood leukocyte DNAm, and B-age indicators via
the EPIC array were quantified. Multiple epigenetic clocks, such as Horvath, Hannum, Skin-
Blood, PhenoAge, and GrimAge, were used for the study. The authors also calculated IEAA
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and EEAA. Perfluorohexane sulfonate (PFHxS) was positively associated with three clocks
(EEAA, Hannum, and Skin-Blood), linear perfluorooctanoate (N-PFOA) with six clocks (all
except GrimAge), and the sum of perfluoromethylheptane sulfonate isomers (Sm-PFOS) with
two clocks (IEAA and Horvath). There were no statistically significant associations between
the other PFAS, except for inverse associations between perfluorodecanoate (PFDA) and
perfluoroundecanoate (PFUnDA) with GrimAge (p < 0.05).

3.5. Psychosocial and Lifestyle Factors Affecting Epigenetic Clocks

Psychological stress has long been associated with affecting human longevity on
a molecular level by causing oxidative stress and telomere attrition [142]. A growing
number of studies show that psychiatric symptoms, such as major depression [143], bipolar
disorder [144], posttraumatic stress disorder (PTSD) [145–149], and internalizing symptoms
in children [150], may accelerate cellular aging in the epigenome.

A study using the Hannum clock was conducted on a cohort of young trauma-exposed
military veterans (median age = 32 years), which showed that lifetime PTSD severity was
associated with accelerated DNAm age [145]. The same group replicated the previous
study design with a group of mid-aged veterans who were approximately 20 years older
than the previous study with a mean age of 52.58 years [151]. The sample comprised
of white, non-Hispanic veterans (295 (87.0%) men and 44 (13.0%) women). The study
demonstrated that PTSD hyperarousal symptoms were associated with accelerated DNAm
age which gave rise to an approximately 13% increased risk for mortality over the course
of approximately 6.5 years.

Another study involving 179 Iraq/Afghanistan war veterans was conducted to exam-
ine whether PTSD, depression, generalized anxiety, and alcohol-use disorders were related
with accelerated B-age over time using Horvath and Hannum’s clocks [152]. The results
indicated that alcohol-use disorders and PTSD were associated with an accelerated B-age
over time.

A study was conducted in 2018 by Wolf et al., which was one of the largest and
demographically diverse studies elucidating the associations between trauma exposure,
PTSD, and accelerated DNAm aging. It consisted of nine studies and over 2000 participants
from the Psychiatric Genomics Consortium for PTSD [153]. The study showed that both
trauma exposure as a child and PTSD severity during lifetime could give rise to accelerated
epigenetic aging. A significant observation from the study was that it was not lifetime
but only childhood trauma exposure that affected aging. Therefore, there could be two
possibilities—(a) there are important windows during childhood when the effects of trauma
exposure have most pronounced effects; and/or (b) childhood trauma could lead to a
longer period of psychiatric distress which causes a greater burden. The authors also
observed a negative association between the population of CD4 T cells and both DNAm
age residuals and a positive association between NK cells and Hannum age residuals.
These findings indicate that immune cells and inflammation might play a role in affecting
the pace of E-aging.

A study elucidated longitudinal changes in B-age before (t0) and after (t1) exposure
to work-related trauma among Australian University paramedicine students (n = 40)
during a 12 month-period [154]. The study further evaluated whether psychological risk
factors (psychological distress, PTSD symptoms, and professional life) and protective
factors (social support and organizational membership) can influence E-aging at both time
points. All participants were documented to experience some form of trauma (e.g., patient
death, witnessing suicide scenes, or attending aggressive patients) between baseline and
follow-up [154]. The Horvath clock, GrimAge, and the Skin-Blood clock were used for
the analyses. Baseline E-age and follow-up B-age were positively associated with risk
factors of psychological distress and PTSD symptom severity. Students who were part of
a psychological support group at the start of the paramedicine course had significantly
reduced GrimAge acceleration at baseline and post-trauma exposure. In conclusion, the
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results indicate that E-aging is dynamic, and protective factors may influence E-aging at
various time-points.

A study recruited a healthy young- to-middle-aged community population (n = 444,
aged 18–50) and observed that cumulative stress was positively related with accelerated
GrimAge and other stress-related physiologic measures such as adrenal sensitivity and
insulin resistance [155]. The association between stress and age acceleration was most
evident in those participants with specific psychological traits, such as poor emotion
regulation and self-control, and was further modulated by lifestyle factors such as smoking
and BMI.

3.6. Obesity and Its Effect on Epigenetic Clocks

Obesity has reached global epidemic proportions (WHO European Regional Obesity
Report 2022). Obesity predisposes an individual to several age-related disorders such
as cardiovascular disease (CVD), hypertension, type 2 diabetes mellitus (T2DM), and
cancer [156]. In general, obesity increases the risk of premature death by 1.45- to 2.76-fold
and reduces lifespan by up to 20 years [157].

A study was conducted on severely obese individuals to investigate the effect of
bariatric surgery and subsequent weight loss on DNAm and biological age estimated using
Horvath’s clock [158]. A cohort of 40 severely obese individuals (65% being women) with a
mean age = 45.1 ± 8.1 years were examined at the time of surgery and at three follow-up
visits, i.e., 3, 6, and 12 months after surgery [158]. The mean B-age before surgery was
3.17 years higher compared to the C- age, while the mean B-age post surgery was 2.26 years
higher compared to the C-age. B-age acceleration was smaller after surgery (mean = − 0.92,
p value = 0.039), suggesting a significant improvement of biological age.

3.7. Psychosocial Factors Affecting Newborn Epigenetic Aging

E-aging in early life occurs at a different temporal pace as compared to older age, and
involves different DNAm patterns [159]. A study in the Democratic Republic of the Congo
sought to identify the association between four measures of maternal stress, namely, general
trauma, sexual trauma, war trauma, and chronic stress, with changes in DNAm in mothers
and newborns [160]. The study recruited 155 mother–newborn dyads (mean maternal age:
26.2 years) from the general population as well as victims of sexual violence. Horvath’s
clock, IEAA, EEAA, DNAmTL, PhenoAge, and GrimAge were used to test the relationships
between biological aging and maternal stress in mothers and newborns. The sexual trauma
of mothers gave rise to accelerated B-age across several B-clocks. General trauma and war
trauma were also associated with newborn B-age acceleration using the EEAA.

Another study was aimed to elucidate the association between early life trauma, pu-
bertal timing, and four epigenetic measures of B-age acceleration—Horvath, Hannum,
PhenoAge, and GrimAge—were used for the study [161]. The participants were pre-
menopausal mothers (n = 183, mean age 42 years) of children between 2 and 16 years of
age. Participants were divided into two groups—caregiver group (n = 92, mothers of a
child with a diagnosis of autism spectrum disorder) and control group (n = 91, mothers of
developmentally normal children). Secondary analyses investigated the effects of types of
childhood maltreatment (e.g., abuse, neglect) and chronic stress status (e.g., caregiver of
an autistic child versus non-caregiver). It was found that compared to controls, caregivers
had higher levels of early life abuse, neglect, and trauma. Using GrimAge, authors found
that early life abuse and menarche were both associated with faster B-age acceleration in
adulthood. However, chronic stress status did not influence the results.

In a clinical study conducted in Berlin, Germany, the Pediatric-Buccal-Epigenetic
(PedBE) tool was employed to predict DNA methylation (DNAm)-based aging deviation
in children aged 3–5 years, both with and without internalizing disorders. The study also
aimed to assess the moderating effect of maltreatment exposure. The total sample size
included 158 children: 49 with current internalizing disorders and 109 without. Within the
total sample, 81 children were classified as maltreatment cases [159]. The authors showed



Genes 2024, 15, 16 16 of 26

using the novel PedBE clock that internalizing disorder in early childhood is associated with
significantly accelerated E- ageing as opposed to children without internalizing disorder.
The authors further demonstrated that the association between internalizing disorder and
B-age is moderated by maltreatment severity and may be partly driven by glucocorticoids.

A study evaluated the relationship between prenatal maternal mental health and
the PedBE clock [162]. Data were collected from two independent longitudinal cohorts
from the Netherlands (n = 165) and Singapore (n = 340) on prenatal maternal anxiety [162].
Longitudinal evaluations of genome-wide DNAm derived from buccal cells were conducted
at ages 6 and 10 in the Netherlands cohort and at 3, 9, and 48 months in the Singapore
cohort. The findings revealed that prenatal maternal anxiety was linked to accelerated
B-age in children using the Pediatric-Buccal-Epigenetic (PedBE) tool in both cohorts. This
association was found to be more pronounced in males compared to females. Importantly,
these results were independent of obstetric, socioeconomic, and genetic risk factors.

A study in Tianjin, China, sought to investigate whether exposure to prenatal gesta-
tional diabetes mellitus (GDM) could lead to accelerated B-age in the offspring at 3–10 years
of age [163]. The study enlisted 578 mother–child pairs with gestational diabetes mellitus
(GDM) and 578 non-GDM pairs. Horvath’s and Hannum’s clocks were employed to cal-
culate DNA methylation (DNAm) age. Offspring born to women with GDM exhibited
accelerated biological age (B-age) compared to control participants, regardless of other
maternal factors. Moreover, the B-age of offspring was correlated with heightened car-
diometabolic risk factors, indicating that GDM and its associated factors may have lasting
effects on the biological age of offspring, with potential health implications.

The Extremely Low Gestational Age Newborn (ELGAN) study was a multi-center
cohort study which enrolled ~1500 newborns born preterm (<28 weeks gestation) from
2002 to 2004 in five USA states (Connecticut, Illinois, Massachusetts, Michigan, and North
Carolina) to examine epigenetic gestational age (eG-age) in the placenta [164]. The investi-
gation explored the associations between placental epigenetic gestational age (eG-age) and
various factors, including sociodemographic elements (maternal educational attainment,
health insurance status, socioeconomic position, and maternal race), smoking, and clinical
outcomes like Apgar scores and neonatal intensive care unit (NICU) length of stay. The
Robust Placental Clock was employed to estimate eG-age for placental samples (n = 408)
from extremely preterm infants. Maternal smoking, a known risk factor for preterm birth,
was linked to positive placental eG-age acceleration, particularly among Black American
mothers. In infants born to Black mothers, greater eG-age acceleration was observed com-
pared to those born to white mothers. Additionally, placental eG-age acceleration was
associated with shorter NICU lengths of stay, but this correlation was specifically noted
among infants born to Black American women. This suggests that placental eG-age accel-
eration is influenced by sociodemographic factors and smoking, and exhibits variations
among racialized groups.

Pregnancy can elicit stress-related disorders such as PTSD which could be associated
with an increased risk of eG-age acceleration in newborns [165] and age acceleration in
their mothers. A study was conducted to investigate the relationship between maternal
stress exposure and PTSD symptoms with the mother’s own B-age and eG-age acceleration
in the newborns (n = 89 maternal-neonatal dyads) [165]. Mothers were evaluated during
the third trimester of pregnancy, and three epigenetic clocks—Horvath, PhenoAge, and
GrimAge—were employed to examine the link between cumulative stress exposure in
the previous year, prenatal post-traumatic stress disorder (PTSD) symptoms, and accel-
erated aging in women. DNAm data were derived from saliva samples collected from
both mothers and neonates within 24 h of infant birth. The gestational epigenetic clock
(EC) developed by Haftorn and colleagues based on the EPIC array was utilized in the
analysis [166] to predict the gestational B-age of infants. Women who encountered a higher
number of stressful life events, exhibited PTSD symptoms, and faced challenges in emotion
regulation during pregnancy displayed accelerated GrimAge and PhenoAge soon after
childbirth, indicating an elevated risk of premature mortality. Furthermore, infants born
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to mothers with higher PTSD symptoms during pregnancy exhibited lower epigenetic
gestational age acceleration, suggesting slower development and an increased risk of later
developmental issues.

A study was conducted in the UK to elucidate whether mothers’ adverse childhood
experiences (ACE) (e.g., abuse, neglect, and household dysfunction) is associated with ac-
celerated E-aging during pregnancy and in their newborns [167]. A total of 785 participants
were included for maternal prenatal blood analysis, and 753 newborns were considered for
umbilical cord blood analysis. DNAm was assessed in the mothers’ blood during pregnancy
and in cord blood at birth. Biological age (B-age) acceleration was determined using clocks
such as Horvath, Hannum, Skin-blood, GrimAge, PhenoAge, and DunedinPACE for the
mothers, as well as the Knight and Bohlin cord blood clocks for the newborns. The study
revealed a positive association between the mothers’ total Adverse Childhood Experiences
(ACE) score and accelerated PhenoAge and GrimAge. In newborn males, the mothers’
ACE score was linked to accelerated epigenetic aging using the Bohlin clock. Moreover,
male offspring born to mothers exposed to neglect showed accelerated B-age based on the
Knight clock, and those exposed to parental substance abuse exhibited acceleration using
the Bohlin clock. These findings suggest a connection between mothers’ ACE exposure and
DNAm age acceleration in male offspring, highlighting the potential of DNAm age as a
marker of intergenerational biological impact reflecting maternal childhood adversity.

The Drakenstein Child Health Study, a South African birth cohort, investigated the
correlation between maternal psychosocial risk factors—specifically trauma/stressor expo-
sure, PTSD, depression, and alcohol/tobacco use—and gestational biological age (B-age)
at birth (n = 271 mother–child pairs) [168]. The eG-age at birth was determined using
Bohlin’s epigenetic clock. The research revealed a negative association between maternal
PTSD and child eG-age at birth, even after accounting for various confounding factors. The
eG-age deviation at birth may hold clinical implications and contribute to an enhanced
neurobiological comprehension of transgenerational trauma and PTSD.

4. Discussion

Molecular aging research has rapidly advanced in recent years due to the advent of
biomarkers such as B-clocks. To elucidate aging as a risk factor for diseases and to design
interventions, a quantitative measure such as a clock for biological age was required [169].
Epigenetic clocks have proven to be accurate at predicting chronological age and biological
age. B-age, also commonly referred to as DNAm age, can differ from chronological age by
many factors discussed in this review.

Some general limitations to take into consideration for the clocks are that G1 DNAm
clocks were specifically designed to predict C-age. Therefore, they might not be good
indicators for true ‘biological’ aging. G2 and G3 DNAm clocks were designed using
various biomarkers/aging phenotypes. They might not predict ‘C-age’ accurately, but they
were able to predict B-age with more precision. Some clocks were designed using data from
small populations with limited diversity. These clocks might not be ideal predictors for
populations comprising of diverse genetic and sociodemographic backgrounds. There are a
limited number of clocks that were designed to work with children, and the interpretation
of B-age in children is still not well understood. The technical variability and cell type
composition of DNA samples used for analysis can influence the performance of some
clocks. These variables should be accounted for in statistical analysis to maximize reliability.
Furthermore, to increase reliability, it is recommended to use clocks with the tissue type/age
group they were specifically designed for. Some clocks were designed with 450 K array data
and do not perform as well with EPIC array data or other methods for measuring DNAm.

E-aging estimators have been increasingly used for non-medical applications by third
parties, such as insurance companies, forensic scientists, and immigration officers to predict
individual life expectancy [170]. However, this gave rise to several potential ethical, legal,
and social conflicts. Multiple vulnerable groups of the population can be disproportionately
affected by such usage [170]. For instance, decisions made by life insurance companies to
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mandate genetic testing may disproportionately impact families with a history of genetic
disorders, diseases, BMI, cholesterol levels, and blood pressure. B-clocks have also been
employed in determining the ages of refugees to differentiate minors from adults seeking
asylum, particularly in cases where there are uncertainties about the validity of their iden-
tification documents. However, B-age estimators may not precisely distinguish between
a 17-year-old minor and an 18-year-old adult. Previous medical conditions, which could
either accelerate or decelerate E-aging, might influence the test results. Moreover, the col-
lection of individual genetic and epigenetic information for immigration control purposes
should adhere to widely recognized human rights principles, including the protection of
privacy and human dignity [171]. Data from the B-clocks establish the links at the molecular
level between social inequalities and health disparities. Therefore, scientists, bioethicists,
social scientists, and human rights organizations should address the concerns regarding
the use of epigenetics data and how it could be incorporated into international human
rights law to help improve the health and life opportunities of socially disadvantaged
individuals [170].

The discoveries of different types of B-clocks have therefore opened the avenue to
study biological aging quantitatively. In this review, we have discussed the various B-clocks
available, with their individual strengths and weaknesses, and how they are affected by
different environmental exposures. Finally, the type of clock to be selected depends on the
scientific query to be answered.

5. Future Perspectives

Several studies have pointed out the association between chronic stress and biological
aging [153,172]. A promising area for future anti-aging interventions is to investigate
whether accelerated biological aging caused by stress is reversible.

A crucial area for future exploration involves understanding how temporary increases
in biological age and/or successful recovery from such changes may contribute to acceler-
ated aging throughout life. From a technical perspective, it was observed across various
human datasets that, when applied to the same dataset, first-generation (G1) DNAm
clocks were incapable of detecting significant effects identified by second-generation (G2)
clocks [173]. This could be due to the integration of multiple age-related biomarkers into
the models of G2 clocks which makes them more sensitive to transient fluctuations in B-age
compared with first-generation clocks, which are trained only on C-age.

Another interesting avenue to explore would be the development of B-clocks based
on histone modifications. Post-translational modifications of histones can affect the aging
process by modulating gene expression [174]. Histone methylation and acetylation at lysine
residues are the most widely studied modifications known to affect the aging process [174].
Several studies indicate that global changes in H3K9me3, H4K20me3, H3K27me3, and
H3K9ac levels occur during the process of aging [175]. However, histone modifications
are less permanent than DNA modifications and have not been used in most biological
clock models. RNA levels are an output of histone modifications and are easier to measure,
which led to the development of RNA clocks [36]. For most B-clocks, the primary goal is
to develop a reliable and ease-to-use and -screen biomarker. It is much easier to preserve
samples (from human subjects or experimental animals or the field) for DNA isolation as
opposed to sample preservation for later histone analysis. Moreover, methods for analyzing
histone marks like mass spectrometry are also expensive [176].

In the past few years, a range of geroprotective drugs aimed at mitigating aging have
undergone testing in animal models. These include compounds related to epigenetics
(e.g., NAD+ precursors, sirtuin-activating compounds, and histone deacetylase inhibitors),
small molecules with potent anti-diabetic effects (e.g., metformin), mTOR inhibitors (ra-
pamycin), and antioxidant chemicals (N-acetyl-l-cysteine) [174]. Metformin exerts its effects
through extensive epigenetic regulation. Numerous studies suggest that it enhances both
the life and health span of mice, demonstrating efficacy even when administered in middle
age (12 months) or old age (20–24 months) [177,178]. Rapamycin, on the other hand, pro-
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longs the lifespan in mice through multiple mechanisms. These include reducing DNAm
marks in the hippocampus to slow brain aging, alleviating aging-related epigenetic signa-
tures in mouse livers, and mitigating various aging-related diseases such as cardiovascular
dysfunction, neurodegeneration, hearing loss, skeletal muscle aging, ovarian aging, and
more [179–182]. Some of these anti-aging drugs are now extensively tested in clinical
trials [174].

In summary, aging research has influenced almost all aspects of biological and clinical
sciences. Future efforts to understand B-aging and age reversal in the field of toxicoge-
nomics will have an enormous effect on human lifespan and health span.
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