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Abstract: Concerns about cybersecurity and attack methods have risen in the information age. Many 
techniques are used to detect or deter attacks, such as intrusion detection systems (IDSs), that help 
achieve security goals, such as detecting malicious attacks before they enter the system and classi-
fying them as malicious activities. However, the IDS approaches have shortcomings in misclassify-
ing novel attacks or adapting to emerging environments, affecting their accuracy and increasing 
false alarms. To solve this problem, researchers have recommended using machine learning ap-
proaches as engines for IDSs to increase their efficacy. Machine-learning techniques are supposed 
to automatically detect the main distinctions between normal and malicious data, even novel at-
tacks, with high accuracy. However, carefully designed adversarial input perturbations during the 
training or testing phases can significantly affect their predictions and classifications. Adversarial 
machine learning (AML) poses many cybersecurity threats in numerous sectors that use machine-
learning-based classification systems, such as deceiving IDS to misclassify network packets. Thus, 
this paper presents a survey of adversarial machine-learning strategies and defenses. It starts by 
highlighting various types of adversarial attacks that can affect the IDS and then presents the de-
fense strategies to decrease or eliminate the influence of these attacks. Finally, the gaps in the exist-
ing literature and future research directions are presented. 

Keywords: adversarial machine learning; intrusion detection systems; adversarial attacks;  
machine learning; deep learning; network security 
 

1. Introduction 
Machine learning (ML) approaches are changing our perceptions of the world and 

affecting every aspect of our lives in the age of technology, such as autopilot, facial recog-
nition, and spam detection. A distinctive feature of ML is that instead of designing the 
solution with coding, the programmer creates a method to discover the key to a problem 
using samples of other issues that have been solved. ML techniques can produce satisfac-
tory results in many situations since machine-generated features are typically more relia-
ble and representative than hand-crafted features [1]. Furthermore, ML procedures’ train-
ing and evaluation phases are generally constructed assuming they are executed in a se-
cure environment [1]. Therefore, the use of ML has expanded drastically, especially in 
cybersecurity, depending on providing a secure environment for users and institutions. 
Furthermore, due to the efficiency of ML in automatically extracting useful information 
from massive databases, the use of ML in cybersecurity meets the development of cyberat-
tacks [2]. 

Various network attacks affect the users’ or institutions’ network systems, such as 
denial of service (DoS), distributed denial of service (DDoS), and SQL injection. Thus, cy-
bersecurity specialists propose and utilize various types of defensive methods against net-
work attacks, such as firewalls, intrusion detection systems (IDS), and intrusion 
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prevention systems (IPSs). Such defense methods are used to detect or deter unauthorized 
network attacks that may affect network users in a harmful way. 

Furthermore, to serve cybersecurity specialists and beneficiaries, researchers pro-
posed building their defenses based on ML techniques to improve the defense methods 
since a variety of network security techniques are increasingly using ML approaches for 
enhancements [1], for example, an IDS. Figure 1 shows some network security applica-
tions that can be improved with ML to protect the network against cyberattacks. 

 
Figure 1. Network security applications against cyber attacks. 

IDS is one of the cybersecurity domains where machine learning is suitable. It is a 
type of computer security software that seeks to identify a wide range of security breaches, 
from attempted intrusions by outsiders to system penetrations by insiders [2]. In addition, 
the IDS evaluates the information from many sources and produces alerts when specific 
criteria are met [3]. 

In order to improve the IDS and make it more reliable against network attacks, the 
cybersecurity specialists suggested building it with ML, which achieves an effective result 
in classification and assists in resolving malware detection issues. ML-based IDSs can 
identify system anomalies with high precision, according to [4]. Consequently, ML-based 
IDSs yield several benefits, including increased accuracy and the detection of new attacks 
[5]. Furthermore, according to [6], an ML-based IDS produces superior results, recom-
mending a filtering approach based on a support vector machine (SVM) classifier and the 
NSL-KDD intrusion detection dataset to detect suspicious network intrusion. 

ML systems are increasingly trusted in cyber-physical systems [7], including facto-
ries, power plants, and the oil and gas industries. In such complex physical surroundings, 
a threat that manages to get through a weak system could be harmful [8]. Despite the 
dependence on and faith in ML systems, attackers who want to avoid ML-based system 



Future Internet 2023, 15, 62 3 of 34 
 

 

discovery processes may use the inherent nature of ML, learning to recognize patterns, as 
a possible attack component [9]. As a result, attackers craft malicious inputs called “ad-
versarial samples.” Adversarial samples are constructed by intentionally adding minor 
perturbations to initial inputs, which results in the misclassification of the ML/DL models 
[10]. Adversarial machine learning (AML) based on the National Institute of Standards 
and Technology (NIST) is divided into four attacks, which are: evasion, extraction, poi-
soning, and inference [11]. 

Hence, the misclassification of ML initially appeared approximately two decades ago 
and has piqued researchers’ interest. The researchers in [12] deceived spam classifiers into 
injecting some changes into an email. Moreover, it is even older than 38 years, according 
to the authors in [13], when they showed that false fingerprints might be made with plas-
tic-like materials to deceive biometric identity recognition systems. 

Along with ML technology’s significant advancement in network security, it exposes 
a new attack surface for attackers. Accordingly, the IDS is susceptible to adversarial at-
tacks since it is built on ML, which could be compromised by crafting adversarial input 
against ML/DL models such as the artificial neural network (ANN), the deep neural net-
work (DNN), and the support vector machine (SVM), affecting its accuracy and robust-
ness. Furthermore, research has also demonstrated that adversarial samples could affect 
ML-based IDSs [10,14]. As a result, ML can also be fooled, necessitating some protection 
mechanisms. Additionally, the system becomes susceptible due to communication on the 
open network, which also gives enemies a massive attack surface [15]. 

In contrast, the adversarial sample inputs to ML deceive the model, causing the 
model to provide an incorrect result. Thus, IDSs based on ML may be harmed, affecting 
classification. Consequently, the ML classifier in cybersecurity is used to defend against 
and detect malicious attacks, but the big issue here is who will protect the defenders and 
how ML can withstand these attacks and provide correct categorization. 

Therefore, this challenge drives researchers to improve the resilience of ML algo-
rithms. This paper presents an overview of ML methods and clarifies adversarial attacks 
on IDSs. Additionally, it provides a thorough literature review on the security and robust-
ness of ML/DL models when applied to the development of IDSs. Above all, it is essential 
to emphasize that this study aims to provide a thorough overview of the impact of adver-
sarial samples raised by using ML and DL in IDSs and to present potential solutions to 
these problems. To sum up, the particular contributions of this paper are as follows: 
• We analyze related surveys in the field of AML. 
• We present a general overview of the use of ML on an IDS in order to enhance its 

performance. 
• We clarify all types of adversarial attacks against ML and DL models and the differ-

ences between them, in addition to the challenges that face the launch of adversarial 
attacks. 

• We display the adversarial attacks launched against ML/DL-based IDS models in 
particular. 

• We present the different types of defense strategies to address adversarial attacks. 
• We investigate the gaps in the related literature and suggest some future research 

directions. 
The remainder of this paper is structured as follows: Section 2 discusses related ex-

isting surveys. Then, an overview of ML is presented in Section 3. Next, adversarial ML is 
introduced in detail in Section 4. 

Next, the studies that implemented the adversaries against IDSs are presented in Sec-
tion 5. Then, the benchmark dataset is shown in Section 6. Next, the defense strategies 
against adversarial attacks in the two domains of computer vision and network security 
are presented in Section 7. After that, the challenges and future directions are given in 
Section 8. Finally, this paper is concluded in Section 9. 
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2. Related Surveys 
Many surveys present AML in various domains, such as computer vision, which re-

cently received much attention, and network security. Major previous studies focused on 
adversarial attacks against ML and DL in various domains or the computer vision domain, 
such as in [16–18]. Additionally, other surveys take this topic from a game perspective, 
making it more straightforward for the reader, such as [19], which presented a general 
view of the arms race between adversarial attacks and defense methods and how they 
constantly try to defeat each other. In addition, [20] presented more details about adver-
sarial attacks and defense methods from a cybersecurity perspective. 

Furthermore, ML security has received much attention, with many researchers men-
tioning the dangers of adversarial attacks on ML and the defense methods described in 
[21]. This survey clarified the various types of adversarial attacks and the defense methods 
to protect ML. However, this study highlighted the ML adversaries and primary defenses; 
it was not specialized in specific ML methods in cybersecurity, such as malware detection. 

On the other hand, the authors of [22] had to dig deeper into the network security 
domain. This study has more than the original view. It presents detailed information for 
network security applications in ML and adversarial attacks against them, in addition to 
defense methods against these attacks. However, it is not connected to something special 
such as phishing or spam detection. The research in [9] presented adversarial attacks in 
cybersecurity, such as intrusion detection, which provided a more detailed perspective, 
discussed attacks, and offered some defense strategies. In general, the researchers found 
this study helpful in providing the basis for the issue of adversaries and defenses against 
ML-based network applications. Despite this study’s insightful ideas, its main focus is on 
keeping adversarial attacks functioning so they can continue avoiding ML classifiers. 

To our knowledge, no prior survey reviewed adversarial attacks against ML/DL-
based IDSs. Therefore, this survey highlights adversarial attacks made particularly 
against IDS and earlier research that created adversaries for ML-based IDSs. It also de-
scribes the benchmark datasets used in most of these studies. Additionally, it analyzes 
state-of-the-art defense strategies to improve the robustness and accuracy of ML-based 
IDSs and suggests using defenses applied to computer vision on ML-based IDSs. Finally, 
it clearly describes these adversarial attacks so that it is simple for the researchers to 
choose one to defend the IDS. Table 1 demonstrates the main differences between the pre-
vious surveys. 

Table 1. Comparison between related surveys. 

Ref. Year Highlights Domain General Contribution 

Applica-
tions of 
ML in 

Network 
Security 

Adversar-
ial At-
tack’s 

Methods 

Solutions 
For Ad-
versarial 
Attacks 

Open 
Re-

search 
Issues 

[21] 2018 

It examined ML system 
threat models and out-
lined alternative attack 
and defense strategies. 

ML/DL 
methods 
in vari-
ous do-
mains. 

- Attacks capabilities 
- Defense methods 

✖ ✓ ✓ ✖ 

[18] 2018 

It thoroughly overviewed 
adversarial assaults on 

deep learning in computer 
vision. 

ML/DL 
methods 
in com-

puter vi-
sion. 

- It examined the possi-
bility of adversarial attacks 
against deep learning and 
offered countermeasures. 
- It presented articles 
that crafted adversarial at-
tacks in the physical world. 

✖ ✓ ✓ ✓ 
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[17] 2018 

It explored some of the 
state-of-the-art adversarial 

attacks and suggested 
countermeasures. 

ML/DL 
methods 
in vari-
ous do-
mains. 

- It presented a taxon-
omy of adversarial-learning-
related issues. 
- It reviewed alternative 
attack and threat models. 

✖ ✓ ✓ ✓ 

[23] 2018 

It provided a thorough in-
troduction to various top-
ics related to adversarial 

deep learning. 

ML/DL 
methods 
in vari-
ous do-
mains. 

- It provided theoretical 
underpinnings for AML. 
- Typical offensive and 
defensive tactics. 

✖ ✓ ✓ ✓ 

[16] 2019 

It gave a thorough sum-
mary of the research on 

the security characteristics 
of ML algorithms in hos-

tile environments. 

ML/DL 
methods 
in vari-
ous do-
mains. 

- It analyzed the ML se-
curity model. 
- It presented adversar-
ial attack techniques. 
- It also suggested po-
tential future research that 
will be important for creat-
ing safer ML models. 

✖ ✓ ✓ ✓ 

[19] 2019 
It provided a thorough 

overview of all game the-
ory in AML. 

Adver-
sarial 
game-

theoretic 
model 
in vari-
ous do-
mains. 

- It thoroughly analyzed
various game-theoretic 
models utilized in adversar-
ial learning. 
- It also discussed creat-
ing learning algorithms that 
are impervious to active ad-
versaries. 

✖ ✓ ✖ ✓ 

[20] 2019 

It presented the current 
and recent methods used 
to strengthen an ML sys-

tem against adversarial at-
tacks utilizing the compu-

tational framework of 
game theory. 

ML/DL 
methods 
in cyber-
security 

tasks. 

- It concentrated on 
game-theory-based methods 
for enhancing the resistance 
of ML systems against ad-
versarial attacks. 
- It discussed open re-
search issues related to the 
capabilities of attacks, such 
as transferability. 

✖ ✓ ✖ ✓ 

[22] 2019 

It introduced the taxon-
omy of ML in network se-
curity applications. In ad-
dition, it presented several 
adversarial attacks on ML 
in network security and 

provided two categoriza-
tion algorithms for these 

assaults. 

ML/DL 
methods 

in net-
work se-

curity 
applica-

tions. 

- It offered a novel tech-
nique for categorizing ad-
versarial attacks in network 
security. 
- It described the adver-
sarial risk in terms of com-
puter and network security. 
- In addition, it pro-
vided defense strategies 
based on attack methods. 

✓ ✓ ✓ ✓ 

[5] 2019 

It discussed building IDS 
with the ML and DL mod-
els, potentially improving 

IDS performance. 

ML/DL 
methods 
in IDS. 

- It defined the taxon-
omy and concept of IDSs. 
- Measurements and 
benchmark datasets were 
provided, along with the 

✓ ✖ ✖ ✓ 
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ML methods often em-
ployed in IDSs. 

[23] 2021 

It briefly outlined the ob-
stacles involved in using 

ML/DL approaches in var-
ious healthcare applica-

tion domains from a secu-
rity and privacy perspec-

tive. 

ML/DL 
methods 

in 
healthca

re. 

- It provided potential 
approaches for ML security 
and privacy protection in 
healthcare applications. 
- It offered insight into 
the future directions for fu-
ture research and the exist-
ing research obstacles. 

✖ ✓ ✓ ✓ 

[9] 2022 

It presented the AML with 
an adversary’s perspective 

in the cybersecurity do-
main  

and NIDS. 

ML/DL 
methods 

in 
cybersec

urity 
tasks.  

- It provided the basis 
for the issue of adversaries 
and defenses against ML-
based network applications. 

✓ ✓ ✓ ✓ 

3. Intrusion Detection System Based on ML 
In general, machine learning techniques can be divided into two categories [5]. 

3.1. Supervised Machine Learning 
Supervised learning depends on meaningful information in labeled data. The most 

common goal in supervised learning (and, therefore, in IDS) is classification. Neverthe-
less, manually labeling data is costly and time-intensive. As a result, the fundamental bar-
rier to supervised learning is the lack of adequate labeled data. 

3.2. Unsupervised Learning 
Unsupervised learning recovers useful feature information from unlabeled data, 

making training material much more straightforward. On the other hand, unsupervised 
learning approaches often perform worse in terms of detection than supervised learning 
methods. Figure 2 shows the most prevalent ML techniques used in IDSs. 
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Figure 2. ML methods in IDSs [5]. 

IDS is a type of computer security software that seeks to identify a wide range of 
security breaches, from attempted break-ins by outsiders to system penetrations by insid-
ers [2]. Furthermore, the essential functions of IDSs are to monitor hosts and networks, 
evaluate computer system activity, produce warnings, and react to abnormal behavior [5]. 
Moreover, one of the significant constraints of typical intrusion detection systems (IDS) is 
filtering and decreasing false alarms [24]. In addition, many IDSs improve their perfor-
mance by utilizing neural networks (NN) for deep learning. Furthermore, deep neural 
network (DNN)-based IDS systems have been created to improve tremendous data learn-
ing, processing, and a range of assaults for future prediction [25]. 

Various machine learning techniques have been used to build intrusion detection 
models; the following paragraphs summarize the most commonly used techniques. 

3.3. Artificial Neural Network (ANN) 
An ANN is designed to function in the same way as human brains. An ANN com-

prises numerous hidden layers, an input layer, and an output layer. Units in neighboring 
strata are interconnected. Furthermore, it has an excellent fitting ability, particularly for 
nonlinear functions. 

3.4. Deep Neural Network (DNN) 
The parameters of a DNN are initially learned using unlabeled data in an unsuper-

vised feature learning stage, and then the network is tweaked using labeled data in a su-
pervised learning stage. The unsupervised feature learning step is mainly responsible for 
DNN’s remarkable performance. 
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Furthermore, DNN plays a crucial role in cybersecurity; therefore, DNN could un-
derstand the abstract, high-level properties of APT assaults even if they use the most com-
plex evasion strategies [26]. 

3.5. Support Vector Machine (SVM) 
In SVMs, the goal is to locate a hyperplane of maximum margin separation in the n-

dimensional feature space. Because a small number of support vectors control the separa-
tion hyperplane, SVMs can produce satisfactory results even with small-scale training 
data. SVMs, on the other hand, are susceptible to noise around the hyperplane. SVMs 
excel at solving linear problems. Kernel functions are commonly used with nonlinear data. 
The original nonlinear data can be split using a kernel function that transfers the original 
space into a new space. SVMs and other machine-learning algorithms are rife with kernel 
trickery. 

3.6. Generative Adversarial Network (GAN) 
A GAN model has two subnetworks, one for the generator and one for the discrimi-

nator. The generator’s goal is to create synthetic data that looks like actual data, whereas 
the discriminator’s goal is to tell the difference between synthetic and natural data. As a 
result, the generator and discriminator complement each other [5,27]. 

Furthermore, GANs are a trendy study area at present. They are being utilized to 
augment data in attack detection, which helps alleviate the problem of IDS dataset scar-
city. GANs, on the other hand, are adversarial learning algorithms that can improve 
model detection accuracy by including adversarial samples in the training set. 

A comprehensive survey of supervised and unsupervised learning techniques used 
in IDS can also be found in [5]. 

4. Adversarial Machine Learning 
In AML, an opponent tries to trick the system into selecting the incorrect course of 

action. In other words, it causes the ML model to misclassify the data, producing inaccu-
rate results. The adversarial sample is a critical element of an adversarial attack. An input 
to an ML model that has been altered constitutes an adversarial sample. An adversarial 
sample is a single data point that, for a given dataset containing attributes x and a label y, 
leads a classifier to predict a different label on x’ from y even if x’ is almost identical to x. 
One of the various optimization techniques referred to as “adversarial attack techniques” 
is used to produce adversarial samples. To create adversarial samples, an optimization 
problem must be solved to identify the minimal perturbation that maximizes loss for the 
neural network. 

The adversary’s optimization objective is to calculate a perturbation with a tiny norm 
that would change the classifier’s output. 

where the disturbance is δ [22]. 
Furthermore, the whole process of AML and the adversaries’ samples are illustrated 

in Figure 3. 

 
Figure 3. The whole process of AML [22]. 

This paper covers AML in two components: the adversarial game-theoretic and ad-
versarial threat models. The adversarial threat model is detailed in three components: 



Future Internet 2023, 15, 62 9 of 34 
 

 

adversaries’ capabilities, adversaries’ challenges, and potential threats, as demonstrated 
in Figure 4. 

 
Figure 4. AML components. 

4.1. Adversarial Game-Theoretic 
Adversarial learning is a type of ML in which two entities, the learner and the adver-

sary, try to develop a prediction mechanism for data relevant to a specific problem but 
with various goals. The goal of learning the prediction mechanism is for the learner to 
predict or classify the data accurately. On the other hand, the adversary’s goal is to force 
the learner to make inaccurate predictions about inputs in the future [19,28]. 

Game theory is an attractive technique for adversarial learning because it allows the 
mathematical representation of the behavior of the learner and the adversary in terms of 
defensive and attack methods, as well as figuring out how to reduce the learner’s loss 
from adversarial examples [28]. 

In general, the exciting objective of this game theory is to figure out how to achieve 
equilibrium between the two players (classifier and adversarial). To put it another way, 
how can we keep the adversary from influencing the classification? As a result, the fight 
between opponents and ML is never-ending, similar to an ‘armed race’ [20]. 

In contrast, the learner in this work, for example, is an IDS-based ML classifier that 
classifies traffic as “benign” or “malicious.” On the other hand, the attacker creates adver-
sarial samples to influence the IDS’s accuracy, allowing it to misinterpret benign traffic as 
malicious and vice versa. Moreover, AML, based on a game theory perspective, is divided 
into two categories: simultaneous and sequential games. 



Future Internet 2023, 15, 62 10 of 34 
 

 

In the simultaneous game, each player selects his or her approach without knowing 
what the other player seems to be doing. In the other game, one player takes on the role 
of leader and decides on a plan before the other players, who then play optimally against 
the leader’s approach. In summary, the attacker will know what affects the model most 
based on recognizing the model first, i.e., manipulating the features. This type can be di-
vided into Stackelberg games, where the adversary acts as a leader. In this game, the clas-
sifier is the follower; for example, the IDS classifier will follow the leader, which is the 
adversary. The classifier (follower) attempts to discover the adversary features to enhance 
the ability to discover the adversarial methods. 

In addition to Stackelberg games, the other category is a learner as a leader. In this 
game, the adversary is the follower; for example, in the ML-based IDS, the adversary will 
follow the IDS classifier to discover its strategies to craft a suitable adversarial sample that 
could affect the ML-based IDS model. 

In the Sequential game theory, the attacker attempts to learn about the model before 
crafting his attacks, which is an analogy to a white-box attack since it is based on the at-
tacker’s knowledge of the model [28]. 

4.2. Adversarial Threat Model 
4.2.1. Adversary Capabilities 

If an attacker has direct or physical access to the defense system, any cybersecurity 
protection can ultimately be defeated [29]. Thus, five particular things are under the at-
tacker’s control to implement adversarial attacks against the ML/DL model [30]: 
Training Data: 

It denotes the availability of the dataset used to train the ML models. It can be read-
only, write-only, or completely inaccessible. 
Feature Set: 

It seeks to understand the features of the ML models used to carry out its detection. 
It might take the shape of complete, limited, or no knowledge. 

Moreover, it is worth noting that the size of an ML model’s feature set can be abused 
as an attack surface. The fact that an enemy can alter any feature analyzed by a model is 
a significant challenge [9]. 

The authors of [31] pointed out that large feature sets have more features, giving an 
adversary more opportunities to manipulate them. As a result, larger feature sets may be 
perturbed more quickly than smaller feature sets, which have fewer modifiable features 
and require more perturbation. 
Detection Model: 

The trained ML model included in the IDS and utilized to carry out the detection was 
described in detail. There may be zero, some, or all of this knowledge. 

However, the detection model (ML-NIDS) demands high administrative rights. In 
other words, it can be allowed for a small number of carefully chosen devices [32]. There-
fore, assuming that an infected host will grant the attacker access to the NIDS that holds 
its detection model is unreasonable [10,29]. Therefore, it is difficult for an attacker to access 
the detection models. 
Oracle: 

This component indicates the potential for receiving feedback from an attacker’s in-
put to the ML output. This input may be small, limitless, or nonexistent. 
Depth Manipulation: 

It represents adversary manipulation that may change the traffic volume or one or 
more features in the examined feature space. 

As a result, these capabilities clarify that implementing the black-box attack is within 
reach. It is expected that it will not have the same impact as the white-box attack. Indeed, 
it is considered a weak attack [33]. 

4.2.2. Adversaries Challenges 
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The authors of [34] mentioned three challenges faced by creating adversarial in-
stances: 
a. Generalizable Method 

Some adversarial attacks are only suited for specific ML or DL models, which means 
they do not fit other models. 
b. Regulating the Size of the Perturbation 

The adversary’s size should not be too small or too large since this would impact 
their actual purpose. 
c. Maintaining Adversarial Stability in Real-World Systems 

Certain adversarial instances cannot be transformed, such as blurring. 

4.2.3. Potential Threats 
a. Security Threats 

The following security threats in ML can be classified as adversarial attacks based on 
their intent to attack the ML/DL model [21,35]: 
b. Influence Attack 

There are two sorts of influence attacks: (1) causative, which seeks to gain control 
over training data, and (2) exploratory, which exploits the ML model’s misclassification 
without interfering with the model’s training. 
c. Adversaries’ Goals in Network Security 

In this situation, the CIA triad and privacy were used because they are more appro-
priate for hostile categorization of the enemy’s aims in the network security sector [22]. 
i. Confidentiality 

This attack aims to acquire confidential information shared by two parties, A and B, 
by intercepting communication between them. This occurs in the context of AML, in 
which network security tasks are performed using ML algorithms. 
ⅱ. Integrity 

This attack aims to affect the ML model and lead it to misclassification by implement-
ing malicious activities without interfering with regular system functions, but the attacker 
chooses the model’s output, increasing the false-negative rate. This includes a poisoning 
attack that affects the training data. 
ⅲ. Availability 

During operations, the adversary compromises the system’s functioning to deny ser-
vice to users. One method is to increase the misclassification or dramatically alter the 
model’s output to decrease its performance and cause it to crash, increasing the false-pos-
itive rate. 
ⅳ. Privacy 

The adversary attempts to acquire sensitive user data and essential knowledge about 
the model architecture from the ML model. For example, equation-solving attacks [36] 
may be used against cloud services that offer ML through APIs and models such as mul-
tilayer perceptrons, binary logistic regression, and multiclass logistic regression. The at-
tacker should be able to learn about the model and its architecture as a result of these 
attempts. Moreover, privacy attacks can be categorized as “model inversion attacks” and 
“membership inference attacks.” Furthermore, inversion attacks are divided into two cat-
egories. The first attack uses the person’s unique label generated by a facial recognition 
system to rebuild a face image. The second assault can obtain the victim’s identity by ex-
tracting a clean image from a blurred image by attacking the system [37,38]. 

The membership inference attack has access to the model as a black-box attack (this 
attack will be presented in the following section). It is determined only if a data point is 
part of the training data for a learning model. Furthermore, in [39], the authors were able 
to create membership inference attacks against the Google prediction API and Amazon 
ML to identify whether a data point belonged to the training set. 
d. Attack Specificity 
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An attack’s specificity may be described in two ways. First: targeted assault, this at-
tack is aimed at a single input sample or a group of samples, and an adversary attempts 
to impersonate an authenticated person in a facial recognition/biometric system [40]. Sec-
ond: not-targeted attacks, the ML model in this attack fails randomly. Additionally, non-
targeted assaults are more straightforward to execute than targeted attacks because they 
offer more options and room to reroute the output [35]. Moreover, Figure 5 clarifies a 
categorization of the potential threats against ML. 

 
Figure 5. Categorization of security threats against ML. 

e. Adversarial Attacks 
Attacks based on the Level of Knowledge 

Adversarial samples can be created using a variety of approaches. These approaches 
vary in complexity, speed of creation, and performance. Manual perturbation of the input 
data points is a crude method of creating such samples. On the other hand, manual per-
turbations of massive datasets are time-consuming to create and may be less precise. Au-
tomatically assessing and finding characteristics that best differentiate between target val-
ues is one of the more complex ways. These characteristics are discretely disturbed to re-
flect values comparable to those representing target values different from their own [28]. 
Moreover, adversaries may fully understand the ML system or have a limited understand-
ing. 
ⅰ. White-Box Attack 

This is frequently the case when the ML model is open source, and everyone has 
access. Thus, in this attack, there is a thorough understanding of the network architecture 
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and the parameters that resulted from training. Furthermore, four of the most well-known 
white-box assaults for autonomously creating perturbed samples are [37]: 
• Fast Gradient Sign Method (FGSM) 

The fast gradient sign method (FGSM) was proposed by [41] as a fast method for 
producing adversarial samples. At each pixel, they perform a one-step gradient update in 
the direction of the gradient sign. However, this attack includes changing the value of 
each feature in the input concerning the neural networks. Its focus is on rapidly generating 
adversarial samples; therefore, it is not regarded as a powerful assault [42]. 
• Jacobian-Based Saliency Map Attack (JSMA) 

The authors in [43] devised a Jacobian-based saliency map attack (JSMA), which is 
an excellent saliency adversarial map under L0 distance. The most influential characteris-
tics are used when modest input variances cause substantial output changes. 
• CW Attack 

Carlini and Wagner [40] devised a tailored approach to avoid defensive distillation. 
Most hostile detection defenses are vulnerable to CW attacks. The details of this attack can 
be found in [37,44]. 
• DeepFool 

Moosavi-Dezfooli suggested DeepFool in [45] to discover the shortest distance be-
tween the original input and the judgment boundary of adversarial cases. 
• Basic Iterative Method (BIM) 

This method is responsible for carrying out gradient calculations repeatedly in small 
steps; it expands the FGSM. To prevent significant changes in traffic characteristics, the 
value of the perturbation is trimmed [46]. 

Furthermore, an experimental study presented these methods utilized in crafting ad-
versaries in detail; it can be found in [47]. Generally, when deciding on an adversarial 
attack, the authors in [48] stated there is a trade-off. JSMA, for example, uses more com-
puting resources than FGSM but alters fewer features. In addition, DeepFool-based tech-
niques can be considered potent adversaries [49]. 
ⅱ. Black-Box Attack 

In this attack, assume no prior knowledge of the paradigm and analyze the para-
digm’s vulnerability using information from the settings or previous inputs. 

Furthermore, two ways are utilized to learn more about the classification algorithm. 
Firstly, the attacker might alter the malicious samples several times until they are misclas-
sified to identify the model’s parameters to differentiate between malware and benign 
samples. The attacker can also create a substitute model of the detection system and then 
use the transferability aspect of ML to create adversarial samples that fool both the sub-
stitute classifier and the actual detector [30,50]. 

Furthermore, the authors in [51] implement a black box attack against an ML model 
by developing a different model to take the place of the target ML model. Thus, the sub-
stitute model crafts adversarial samples based on understanding the substitute model and 
the migration of adversarial samples. Moreover, black-box attacks include [52,53]:  
• Zeroth-Order Optimization (ZOO)  

ZOO does not compute the gradient directly. Instead, ZOO used the symmetric dif-
ference quotient approach to estimate the gradient, which resulted in a higher computing 
cost. To estimate the gradient, knowledge of the structure of the DNN network is not nec-
essary [37]. 
• OnePixel 

This attack deceives a DNN without understanding its network topology by modify-
ing the value of only one pixel of a clear picture. DNN is vulnerable to very-low-dimen-
sion attacks with minimal information [37]. 
ⅲ. Gray-Box Attack 

To grow from the black box to the white box, the adversary undergoes an iterative 
learning process that uses inference processes to gather additional understanding of the 
model. Thus, it may have partial knowledge of the model. 
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When knowledge is restricted, such as in gray-box and black-box scenarios, privacy 
attacks might be performed to learn more about the targeted ML classifier [54]. Figure 6 
demonstrates adversarial attacks that depend on the level of knowledge. 

 
Figure 6. Adversarial attacks depend on the level of knowledge. 

f. Evasion vs. Poisoning Attacks 
• Evasion Attack 

Avoid the system by injecting adversarial samples, which do not affect the training 
data [17]. Thus, the objective is to misclassify malware samples as benign while the model 
operates [30,55]. Furthermore, evasion attacks can be classified as (1) error-generic evasion 
attacks, in which the attacker is interested in deceiving classification regardless of what 
the classifier predicts as the output class. (2) error-specific evasion attacks; the attacker 
seeks to deceive classification but misclassifies the adversarial samples as a specific class 
[54]. 
• Poisoning Attack 

In cybersecurity, adversarial assaults are created using a thorough grasp of computer 
systems and their security rules. One of the six types of attacks against intrusion detection 
systems is poisoning [56]. Thus, in this attack, the enemy seeks to contaminate the training 
data by introducing precisely planned samples, ultimately jeopardizing the learning pro-
cess [17]. Furthermore, poisoning attacks can be classified as (1) error-generic poisoning 
attacks, in which the attacker attempts to cause a denial of service by causing as many 
classification errors as possible. (2) Error-specific poisoning attacks: in this situation, the 
attacker’s goal is to produce certain misclassifications. Figure 7 illustrates these two at-
tacks and their ways of affecting ML [54]. 
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Figure 7. Evasion and poisoning attacks. 

5. Machine Learning Adversaries Against IDS 
Accordingly, we concluded that ML could also be fooled, necessitating some protec-

tion mechanisms. Thus, the research on AML is divided into two categories. One category 
is the continuous development of new attacks to counter existing ML algorithms and sys-
tems. On the other side, the second category strives to dramatically increase ML tech-
niques’ ability to withstand adversarial attacks. Therefore, this section focuses on the first 
category. Thus, related works on adversarial attacks against IDS are presented in this sec-
tion. In addition, we discuss the various types of perturbations and how they affect IDS. 

5.1. White-Box Attacks against IDS 
5.1.1. A White-Box Attack against MLP 

In [14], the authors presented an application of an evasion attack in a white-box set-
ting by using a Jacobian-based saliency map attack (JSMA) against an MLP (multilayer 
perceptron) model, which is considered an IDS-ML by using two different datasets: CI-
CIDS [57] and TRAbID [58] to classify network traffic. Furthermore, the adversary creates 
hostile samples with minor differences from the actual testing samples to deceive the MLP 
model during testing and to prove that the attackers can exploit the vulnerabilities to es-
cape intrusion detection systems and misclassification. Moreover, the MLP model 
achieved an accuracy of almost 99.5% and 99.8% in detecting malware intrusions. Despite 
this success, the precision was down by about 22.52% and 29.87% for CICIDS and 
TRAbID, respectively, after applying an evasion attack. 

5.1.2. A White-Box Attack against DNN 
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The research in [59] crafted adversarial attacks against DNN-based intrusion detec-
tion systems to evaluate the robustness of the DNN against these attacks. Furthermore, 
the authors used SDL-KDD datasets containing standard and Five-categorized attack 
samples. Moreover, comparing the DNN performance in classification with SVM resulted 
in similar performances. As a result, the authors concluded that the attacks designed by 
FGSM and projected gradient descent (PGD) could notably affect the DNN model. 

5.1.3. A White-Box Attack against IDS in Industrial Controlling Systems (ICS) 
The authors of [60] presented experimental research about adversarial attacks against 

IDS in industrial control systems (ICS). First, they crafted adversarial samples by using a 
Jacobian-based saliency map. Second, they evaluated the IDS (Random Forest, J48) after 
exposure to these adversarial samples. Finally, they suggested some solutions for enhanc-
ing the robustness of IDSs against adversarial attacks in the practical module of adversar-
ial attacks against IDS methods. Furthermore, the authors’ dataset used in this research 
was initiated based on a power system. 

Additionally, this attack was crafted by insiders, for instance, administrators. As a 
result, the attacker was already aware of the classifier system. According to the authors, 
the random forest and J48 performance had decreased. In addition, the J48 achieved a 
lower level of robustness than the random forest model, which achieved a high level of 
robustness in facing these adversarial attacks. The authors applied these adversarial at-
tacks on two IDSs, which may not affect other MLs. The authors recommend that these 
attacks be used on other IDS-ML systems. 

5.1.4. Monte Carlo (MC) 
Researchers in [11] simulated a white-box assault named a Monte Carlo (MC) simu-

lation for the random generation of adversarial samples and compared their samples to 
several machine-learning models to clarify performance across a wide range of platforms 
and detect the vulnerability in NIDS, which assists the organizations in protecting their 
networks. Moreover, this research used three adversarial attack methods, which are: par-
ticle swarm optimization (PSO), genetic algorithm (GA), and generative adversarial net-
work (GAN). In addition, the researchers used the NSL-KDD and UNSW-NB15 datasets 
for evaluation. Then, they confirmed that these two techniques could deceive 11 ML mod-
els. Based on their findings, the MLP model has the best accuracy under adversarial at-
tacks with an 83.27% classification rate, followed by the BAG at 80.20% and the LDA at 
79.68% with the NSL-KDD dataset. In particular, attackers with knowledge of a target 
network NIDS may use the most efficient perturbation process to attack that network. 

5.2. Black-Box Attacks against IDS 
5.2.1. FGSM, PGD, and CW Attacks against GAN 

The research in [61] presented the contribution of generated adversarial network 
(GAN) attacks against black-box IDS. GAN’s main contribution is misclassifying between 
actual and adversarial samples. Furthermore, this research compared the impact of the 
GAN attack with the fast gradient sign method (FGSM), project gradient descent (PGD), 
and the CW attack (CW). According to the authors, a GAN attack achieved a high rate of 
compromise and misclassification on IDS. Moreover, they evaluated the research using 
the NSL-KDD [62] dataset. Moreover, the experiments resulted in a higher rate of GAN 
attacks: about 87.18% against NB compared to other attack algorithms.  

5.2.2. Deceiving GAN by Using FSGM 
A research paper [63] proposed crafting adversarial attacks to deceive network intru-

sion detection systems. They trained the GAN classifier and made it robust against adver-
sarial attacks. This research used GAN for two reasons. First, to generate adversarial 
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samples. Second, to train the neural network and improve its performance by increasing 
accuracy. 

Furthermore, the GAN discriminator was evaluated for distinguishing the samples 
generated from the generator and classifying them as “attack” or “non-attack.” Then, 
GAN was deceived by using the fast-sign gradient method (FSGM). As a result, the GAN 
classifier had been deceived by adversarial attacks and misclassified the “attack” samples 
as “non-attack.” As a limitation, the authors did not mention how to address these attacks 
and defend against them. 

5.2.3. A Black-Box Attack Using GAN 
The authors in [64] crafted black-box attacks using GAN to improve the performance 

of IDS in detecting adversarial attacks. This experimental research used the KDD99 da-
taset. Furthermore, they trained the IDS models to detect all kinds of attacks by using 
GAN since IDSs have difficulty facing new attacks. Moreover, they compared the IDS’s 
performance before the attacks, during the attacks, and after the GAN training. As a result, 
the GAN training increased the performance of the IDS. As a limitation, this GAN training 
worked only for IDSs and did not evolve for other networks. 

5.2.4. IDSGAN 
Researchers in [65] devised a black-box attack against an IDS to evade detection. The 

model’s objective is to provide malicious feature records of the attack traffic that can trick 
and evade defensive system detection and, ultimately, direct the evasion assault in real 
networks. The IDSGAN evaluation demonstrated its effectiveness in producing adversar-
ial harmful traffic records of various attacks, effectively lowering the detection rates of 
various IDS models to near zero. 

5.2.5. DIGFuPAS 
The DIGFuPAS module was presented in [66] that crafted adversarial samples using 

a Wasserstein GAN (WGAN) attack to deceive an IDS in SDN (software-defined net-
works) in a black-box manner. In addition, they compared nine ML/DL algorithms using 
two datasets: NSL-KDD and CICIDS-2018. If the detection capability of IDS in SDN dete-
riorates, they propose adding DIGFuPAS. More specifically, DIGFuPAS-generated as-
saults were used to repeatedly train the IDS to tackle new threats in SDN-enabled net-
works preemptively and to evaluate the resilience of the IDS against altered attack types. 
DIGFuPAS might easily fool the IDS without revealing the classification models’ infor-
mation, according to this experimental research. 

5.2.6. Anti-Intrusion Detection AutoEncoder (AIDAE) 
A research work [67] presented a novel scheme named anti-intrusion detection auto-

encoder (AIDAE) for adversarial features to deceive an IDS by using GAN. This experi-
mental research used three datasets: NSL-KDD, UNSW-NB15, and CICIDS-2017. Further-
more, this research evaluated the performance of the IDS facing adversarial attacks and 
enhanced its robustness. According to the authors, the AIDAE model crafted adversarial 
attacks that evaded IDSs. Furthermore, the authors did not mention a defense method 
against this attack. 

5.2.7. DDoS Attack by Using GAN 
To highlight the IDS vulnerabilities, the authors of [68] devised a DDoS attack using 

GAN to fool the IDS and determine the robustness of the IDS in detecting DDoS attacks. 
Additionally, they improved the training of the IDS for defense. Thus, the authors con-
ducted their experiment in three stages. First, they deceived the black-box IDS by gener-
ating adversarial data. Then, they trained the IDS with the adversarial data. Finally, they 
created adversarial data in order to deceive the IDS. 
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Moreover, this research was evaluated using the CICIDS2017 dataset [57]. According 
to the experiment results, transmitting attack data without being detected by an IDS was 
quite successful. As a limitation, it must be used in various attacks to fool any IDS. 

Table 2 demonstrates the previous studies in nine columns: reference, year, adver-
sarial generating method, objectives, (ML/DL) technique, dataset, evaluation metrics, lim-
itations, and results. Moreover, most of these studies focused on applying GAN to create 
some adversarial attacks against an IDS, then evaluating the classification accuracy of the 
IDS in detecting cyberattacks. Additionally, almost all these works used the known eval-
uation metrics in an IDS, which are accuracy (ACC), precision rate (PR), recall rate (RR), 
and F1-score. These studies provided a decent overview of the subject by describing var-
ious well-known adversarial attacks and their effectiveness against an IDS.  

Table 2. Summary of Adversarial attacks against IDS. 

Ref. year 
Adversarial 
Generating 

Method 
Objectives 

(ML/DL) Tech-
nique Dataset 

Evaluation 
Metrics Limitations Results 

[67] 2019 AIDAE 

It evaluated the 
performance of 
the IDS facing 
adversarial at-
tacks and en-
hanced its ro-

bustness. 

- Logistic regres-
sion (LR). 
- K-nearest neigh-
bor. 
- Decision tree. 
- Random forest. 

- NSL-
KDD [69] 
- UNSW-
NB15 
- CI-
CIDS2017 

- De-
tection rate 
(DR). 
- Eva-
sion in-
crease rate 
(EIR). 

The authors 
did not 

mention a 
defense 
method 

against this 
attack. 

The AIDAE model 
crafted adversarial 
attacks that evade 

IDSs. 

[64] 2019 GAN 

It made the per-
formance of the 

IDS more ro-
bust in detect-
ing adversarial 

attacks. 

- Logistic re-
gression (LR). 
- Support 
vector machine 
(SVM). 
- K-nearest 
neighbor (KNN). 
- Naïve Bayes 
(NB). 
- Random 
forest (RF).  
- Decision 
trees (Dt). 
- Gradient 
boosting (GB). 

- KDD99 

- Ac-
curacy. 
- Pre-
cision. 
- Re-
call. 
- F1 
score. 

This GAN 
training 
worked 
only for 

IDSs and 
did not 

evolve for 
other net-

works. 

The GAN training 
increased the perfor-

mance of IDSs. 

[63] 2020 FSGM 

Training the 
GAN classifier 
and making it 
robust against 
adversarial at-

tacks. 

- GAN 

BigData 2019 
Cup: Suspi-
cious Net-
work Event 
Recognition 
challenge[70]. 

- Pre-
cision. 
- Re-
call. 
- F1 
score. 

The authors 
did not 
mention 

how to ad-
dress and 

defend 
against 

these at-
tacks. 

The GAN classifier 
had been deceived 
by adversarial at-

tacks and misclassi-
fied the “attack” 

samples as “non-at-
tack.” 

[14] 2020 
Jacobian-

based sali-
ency map 

It proved that 
the attackers 
could exploit 

the 

- MLP 

- CI-
CIDS2017 [57] 
- TRAbID 
[58] 

- Pre-
cision. 
- Re-
call. 

There were 
no experi-
ments on 
defense 

The accuracy of the 
IDS classifier 

dropped to 22.52% 
and 29.87% for 



Future Internet 2023, 15, 62 19 of 34 
 

 

attack 
(JSMA). 

vulnerabilities 
to escape from 

intrusion detec-
tion systems. 

- F1 
score. 

methods 
imple-

mented by 
the re-

searchers. 

CICIDS [57] and 
TRAbID [58] da-

tasets. 

[68] 2020 GAN 
To highlight the 
IDS vulnerabili-

ties. 

- Decision 
tree (DT). 
- Random 
forest (RF). 
- Naive Bayes 
(NB). 
- Logistic re-
gression (LR). 

CICIDS2017 
[57] 

- Pre-
cision. 
- Re-
call. 
- F1 
score. 

It is re-
quired to 

be used in a 
variety of 
attacks in 
order to 
fool any 

IDS. 

Transmitting attack 
data without being 
detected by the IDS 

was quite successful. 

[59] 2020 - FGSM 
- BGD 

Evaluating the 
robustness of 
DNN against 
adversarial at-

tacks. 

- DNN - SDL-
KDD[69] 

- Ac-
curacy 
(ACC). 

It lacked 
extract 

compre-
hensive in-
formation. 

The attacks could 
notably affect the 

DNN model. 

[11] 2021 
- PSO. 
- GA. 
- GAN. 

Detecting the 
vulnerability in 
NIDS which as-
sists organiza-

tions in protect-
ing their net-

works. 

- NIDS. 
-NSL-KDD 
[69] 
-UNSW-NB15 

- Accuracy 
(ACC). 

In the NIDS 
scenarios, it 
was unclear 
why some 
were more 

resilient 
than others. 

The MLP model had 
the best accuracy 

under adversarial at-
tacks with an 83.27% 

classification rate. 

[61] 2021 -GAN. 

Proving that us-
ing GAN to at-

tack IDS can 
achieve a 

higher rate of 
compromission 
and misclassifi-

cation. 

- Support 
vector machine 
(SVM). 
- Decision 
tree (DT). 
- Random 
forest (RF). 
- Naive Bayes 
(NB). 
- Deep neural 
network (DNN). 

-NSL-KDD 
[69] 

- De-
tection Ac-
curacy. 
- At-
tack suc-
cess Rate. 
- Evad
e increase 
rate. 

It lacked 
defense 
mecha-
nisms. 

The experiments re-
sulted in a higher 

rate of GAN attacks: 
about 87.18%. 

[66] 2021 -DIGFuPAS 

Evaluating the 
resilience of the 
IDS against al-

tered attack 
types. 

- Support 
vector machine 
(SVM) 
- Naive Bayes 
(NB) 
- Multilayer 
perceptron (MLP) 
- 50 logistic 
regression (LR) 
- Decision 
tree (DT) 
- Random 
forest (RF) 
- K-nearest 
neighbor (KNN)  

- NSL-
KDD  
- CI-
CIDS2018 

- De-
tection rate 
(DR). 
- Eva-
sion in-
crease rate 
(EIR). 

The IDS ro-
bustness is-
sues were 

not ad-
dressed. 

DIGFuPAS might 
easily fool the IDS 
without revealing 
the classification 

models’ information, 
according to this ex-
perimental research. 
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- Convolu-
tional neural net-
works (CNN)  
- Recurrent 
neural networks 
(RNN)   

[60] 2021 (JSMA) 

Presenting the 
practical mod-

ule of adversar-
ial attacks 

against IDS 
methods. 

- Random 
forest (RF) 
- J48  

- Power 
system. 

- Pre-
cision rate 
(PR). 
- Re-
call rate 
(RR). 
- F1-
score. 

The authors 
applied 

these ad-
versarial at-

tacks on 
two IDSs, 

but it might 
not affect 
other ML. 

The random forest 
and J48 performance 

decreased. 

[65] 2022 GAN 

Providing mali-
cious feature 
records of the 
attack traffic 
that can trick 
and evade de-
fensive system 

detection. 

- Support 
vector machine 
(SVM)  
- Naive Bayes 
(NB)  
- Multilayer 
perceptron (MLP) 
- Logistic re-
gression (LR)  
- Decision 
tree (DT)  
- Random 
forest (RF)  
- K-nearest 
neighbor (KNN)  

- NSLKD
D  

- De-
tection rate 
(DR). 
- Eva-
sion in-
crease rate 
(EIR). 

_ 

The assessment of 
IDSGAN demon-

strated its efficiency 
in producing adver-
sarial harmful traffic 

records of various 
assaults, bringing 

down the detection 
rates of various IDS 

models to almost 
0%. 

6. Benchmark Datasets 
This section clarifies the datasets that were frequently used in previous studies. Since 

the distribution, quality, quantity, and complexity of dataset training samples impact the 
trust and quality of a model, it is essential to think about the dataset on which models are 
trained [71]. In virtually all previous studies, the NSL-KDD dataset [69], the UNSW-NB15 
dataset [72], and the CICIDS2017 dataset [57] were used to evaluate IDS models. Further-
more, NSL-KDD contains 148,517 samples, UNSW-NB15 has 2,540,044 samples, and CI- 
CIDS2017 has 2,827,829 samples. Table 3 demonstrates these datasets, including their fea-
tures and classes. 

Table 3 below demonstrates the IDS’s datasets that contain an imbalanced number of 
records in each class. In contrast, this imbalance may impact how the ML-based IDS model 
classifies all classes since the model’s accuracy may have reduced after training on the 
imbalanced dataset. This restriction might be overcome through adversarial training by 
using GANs to increase the number of cyberattacks [73]. 
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Table 3. Datasets used for IDS studies [74–76] 

Dataset Features Classes 
Number of 

Records 

NSL-KDD [69] 

- Basic features of 
network connections. 
- Content-related 
traffic. 
- Time-related traf-
fic. 
- Host-based traffic. 

- Normal. 
- Denial of service (DoS). 
- Probe. 
- User to root (U2R). 
- Remote to local (R2L). 

- 77,054 
- 53,385 
- 14,077  
- 3749 
- 252 

UNSW-NB15 
[72] 

- Basic features of 
network connections. 
- Content-related 
features. 
- Time-related fea-
tures. 
- General-purpose 
features. 
- Connection-based 
features. 

- Normal 
- Fuzzers 
- Analysis 
- Backdoors 
- DoS 
- Exploits 
- Generic 
- Reconnaissance 
- Shellcode 
- Worms 

- 2,218,761 
- 24,246 
- 2677 
- 2329 
- 16,353 
- 44,525 
- 215,481 
- 13,987 
- 1511 
- 174 

CICIDS2017 [57] 

- Basic features of 
network connections. 
- Features of net-
work packets. 
- Features of net-
work flow. 
- Statistic of network 
flows. 
- Content-related 
traffic features. 
- Features of net-
work sub-flows. 
- General-purpose 
traffic features. 

- Normal 
- DoS Hulk. 
- PortScan. 
- DDoS. 
- DoS GoldenEye. 
- FTP-Patator. 
- SSH-Patator. 
- DoS slow loris. 
- DoS slowhttptest. 
- Bot. 
- Web attack—brute 
force. 
- Web attack—XSS. 
- Infiltration. 
- Web attack—SQL injec-
tion. 
- Heartbleed. 

- 2359087 
- 231072 
- 158930 
- 41835 
- 10293 
- 7938 
- 5897 
- 5796 
- 5499 
- 1966 
- 1507 
- 652 
- 36 
- 21 
- 11 

7. Defense Strategies 
Several research papers [14,65,67] have mentioned many types of adversarial attacks 

against IDSs. On the one hand, the authors have presented such attacks and their impact 
on IDS-ML, which meets the first category of AML research. On the other hand, some 
researchers have mentioned some methods for hardening the ML-based IDS against these 
attacks, but there are no experiments on these defenses in the adversarial attacks against 
the IDS section. Therefore, this section tackles the second category, which is defense meth-
ods. 

In general, these studies provided a great perspective on IDS cybersecurity, which is 
a critical topic. To sum up, all the studies in the adversarial attacks against IDS section 
focused on generating some attacks and then clarifying the impact of adversarial attacks 
on IDS accuracy. Thus, this section clarifies the most state-of-the-art defense strategies 
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used to protect the ML/DL algorithms from adversaries. The defense strategies can be 
divided into many primary categories, and here we present some of them in detail [18]. 

7.1. Changing the Training Procedure and Input Data 
Continuously inputting various types of hostile data and undertaking adversarial 

training improve the robustness of a deep network [77]. 

7.1.1. Adversarial Training 
The fundamental goal of adversarial training is to increase the regularity and robust-

ness of a DNN [37]. Moreover, in training, adversarial samples are used, and fresh adver-
sarial samples are generated at every stage of the process [41,78,79]. More precisely, the 
adversarial training that is accomplished on some models can improve the accuracy of 
pre-trained models. 

The researchers in [80] suggested a solution for AML detection. This paper measured 
the performance of intrusion-detecting algorithms after being exposed to four different 
attack methods: the fast gradient sign, the primary iterative method, the Carlini and Wag-
ner attacks, and the projected gradient descent created by the researchers by putting five 
different ML classifiers under the test. Then, they implemented a method for detecting 
such attacks as a new way of dealing with adversarial attacks on artificial neural networks 
(ANN). As a result, this study recalled 0.99 for adversarial attacks using random forest 
and the nearest neighbor classifier. Nevertheless, significant reductions in the false posi-
tive rate are critical for the method’s future development. 

Moreover, we have listed a few defensive techniques that fall under the adversarial 
training scope as follows: 
1) ZK-GanDef 

The authors in [33] proposed a defense strategy called zero-knowledge adversarial 
training defense (ZK-GanDef) to defend against adversarial attacks in neural networks 
(NN). Additionally, this approach enhanced the accuracy by 49.17% against adversarial 
attacks compared to other attacks. 
2) AFR 

To assess the resilience of ML-based NIDS, the authors in [81] performed the first 
comprehensive investigation of gray-/black-box traffic-space adversarial assaults. Moreo-
ver, they implemented an attack on NIDS and suggested an adversarial feature reduction 
(AFR) method, which reduced the attack’s efficacy by reducing adversarial feature devel-
opment. This study also demonstrated the need to consider an attacker’s capacity to mu-
tate traffic. To sum up, the attackers can affect NIDS even if they do not have a precise 
understanding of the characteristics utilized by them. The findings of this experimental 
research clarified that the creation of adversarial features could be reduced via adversarial 
feature development (AFR). Moreover, the attack achieved a rate of more than 97% in half 
of the cases, and the proposed defense technique might successfully minimize such at-
tacks. In addition, AFR could not prevent attackers from exploiting the vulnerable feature 
during traffic mutation. According to the authors, this attack technique was intended to 
evade NIDS without paying attention to the payload. Therefore, it was ineffective for sys-
tems that use payload-based detection. Additionally, this attack is now unavailable 
online. 
3) APE-GAN 

A study [82] presented a new idea for defense against eliminating adversarial per-
turbations in deep neural networks (DNNs) named APE-GAN. Furthermore, there were 
two ways to defend against adversaries: first, training the data to strengthen the model, 
and second, replacing the learning strategies. Thus, this research focused on training using 
GAN, which includes a generator and discriminator. First, they generated adversarial 
samples and then used the discriminator to discriminate those samples. The main goal of 
this research was to use a trained network to remove the adversarial perturbation before 
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feeding the processed sample to classification networks. Moreover, the researchers in-
ferred that the APE-GAN has many applications because it works despite no understand-
ing of the model on which it is based. 

There is no mechanism to prevent the model from generating confident judgments. 
Thus, the first defense approach was to enrich the training set with samples altered using 
Gaussian noise to diminish the confidence of doubtful regions. Additionally, inserting 
random scaling of training photos can lower the severity of assaults, according to [83]. 

7.1.2. Preprocessing 
Carefully planned preprocessing processes were also developed to limit the influence 

of adversarial perturbations. In this regard, a study [84] presented feature squeezing by 
spatial smoothing or pixel color bit depth reduction. In addition, picture modifications, 
such as total variance reduction and image quilting, were revealed to assist in removing 
adversarial perturbations, according to [85]. Additionally, in [86], the authors recom-
mended that adversarial samples be denoised before being fed into a classifier using a 
GAN. 

Furthermore, we have also included a list of defensive tactics that fall under the pre-
processing umbrella as follows: 
1) ME-Net 

The research in [87] presented a defense technique named matrix estimation (ME-
Net) to deal with the adversarial samples in deep neural networks (DNNs). This was 
achieved by taking incomplete or damaged images and eliminating the noise from these 
images to eliminate the adversarial examples from the original pictures affecting the clas-
sification performance. Thus, there were two stages for the image before it was processed: 
first, arbitrary pixels were discarded from the picture, and then the picture was rebuilt 
using ME. According to the authors, the results showed that the ME-Net had made the 
deep neural networks more robust against adversarial attacks than other methods. 
2) DIPDefend 

A research work in [88] presented a defense technique named “deep image prior 
driven defense” (DIPDefend) to remove adversarial examples from the image before pass-
ing the image into the classifier. Furthermore, this method was distinct for its adaptability 
to different types of attacks. Thus, it examined the internal prior of the image and then 
divided it into two steps: robust feature learning and non-robust feature learning. Addi-
tionally, it reconstructed the image by beginning with robust features and then non-robust 
features to make them stronger against adversarial attacks. According to the authors, the 
DIPDefend strategy yielded better visual results by eliminating adversarial disturbance 
while preserving picture information. It is worth noting that the DIPDefend technique can 
be applied without pretraining, making it useful in various situations. 
3) Stochastic Transformation-based Defenses 

The authors in [89] proposed an improved method based on transformation to extract 
the features of the clean images. Moreover, they employed two transformation-based ap-
proaches that are already in use: pixel deflection (PD) [90] and the image random resize 
and pad (RRP) [91]. Furthermore, they investigated the impact of random image altera-
tions on clean pictures to understand better how accuracy deteriorates. They trained a 
unique classifier to identify distinguishing characteristics in the distributions of softmax 
outputs of converted clean pictures and predict the class label. Additionally, untargeted 
assaults on CNN have been studied, and it would be interesting to compare their distri-
bution classifier approach with targeted attacks. 

7.2. Adding an Extra Network 
This defense idea utilizes specific external models as network add-ons while identi-

fying samples that have not been shown yet [77]. 
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Researchers in [92] developed a methodology for defending against adversarial as-
saults utilizing universal perturbations. The basic concept behind this strategy is to com-
bine the original model with a second trained network to create a solution that does not 
require adjustment measures and cannot impact the sample. 

7.2.1. Detection 
Many detection methods have been proposed to detect adversarial attacks. Conse-

quently, in [93], the authors advocated employing a subnetwork as a detector. In contrast, 
the authors in [94] used a confidence score to identify antagonistic and out-of-class data. 
In addition, to find adversarial samples that differed from the clean picture distributions, 
the authors in [95] applied statistical hypothesis testing. In addition, here, we mention a 
few defensive techniques that rely on an additional model’s detection as follows: 
1) Def-IDS 

A study in [96] proposed Def-IDS, which includes two models, multiclass generative 
adversarial network (MGAN) and multisource adversarial retraining (MAT). It is a de-
fense strategy against known and unknown adversarial attacks against NIDS to enhance 
the robustness of NIDS accuracy through training. Moreover, they used CSE-CIC-IDS2018 
datasets to evaluate the effectiveness of the frameworks that had been proposed. Further-
more, this research used four methods to generate the adversarial attacks: the fast gradient 
sign method (FGSM), the basic iterative method (BIM), DeepFool, and the Jacobian-based 
saliency map attack (JSMA). The experiments showed that the Def-IDS could increase the 
robustness of NIDS by enhancing the accuracy of detecting adversarial attacks. 
2) ASD 

The research outcome in [97] presented the adversarial sample detector (ASD) mod-
ule, which is considered a defense algorithm based on the bidirectional generative adver-
sarial network (BiGAN) to classify the adversarial samples of NIDS-ML. It successfully 
reduced adversarial attacks and influenced NIDS performance. Moreover, the researchers 
used attack methods such as the fast gradient sign method (FGSM), projected gradient 
descent (PGD), and momentum iterative–fast gradient sign method (MI- FGSM). Further-
more, the generative adversarial network (GAN) framework and NSL-KDD dataset were 
used for evaluation. As a result, ASD discovered the adversarial samples before the sam-
ples were input into the NIDS. 

Additionally, the accuracy improved by 26.46% in the PGD adversarial environment 
and by 11.85% in the FGSM adversarial environment. However, the influence of ASD on 
MI-FGSM is not apparent, necessitating more research. Notwithstanding, by using ASD, 
normal data were stripped of adversarial samples, and the remaining normal samples 
were fed into the classification model. 
3) APE-GAN++ 

According to the authors in [98], the defense method that had been presented in [82] 
had some shortcomings, which were: (1) its training procedure was insecure and suffered 
from a vanishing gradient issue; (2) it could boost its efficiency even further. Thus, they 
proposed an improved method named APE-GAN++. In comparison to the APE-GAN, the 
APE-GAN++ has a generator, a discriminator, and a recently added third-party classifier 
in its design. As a result, APE-GAN++ achieved a better performance than other defenses, 
including APE-GAN. 
4) Dropout 

Most adversarial attack implementations rely on knowledge of the model’s architec-
ture. Consequently, dropout is a random process that perturbs the model’s architecture 
[99]. The researchers in [100] used dropout with neural networks. As a result, it makes 
neural networks resistant to various inputs [101]. Dropout can, thus, be used to detect 
adversarial samples. Adversarial samples tend to be transcribed as wrong or garbled sen-
tences when inference is performed with dropout turned on. This study focused on the 



Future Internet 2023, 15, 62 25 of 34 
 

 

ability to apply CW attacks in this field as well as the ability to detect them. Additionally, 
this defense can detect adversarial examples effectively [99]. 
5) Adversary Detection Network 

The research in [49] suggested training a binary detector network to distinguish be-
tween samples from the original dataset and adversarial instances. Furthermore, Deep-
Fool adversary-specific detectors perform admirably compared with all other adversarial 
attacks. As a result, transferability is not perfect for the detectors. It typically works be-
tween comparable opponents and from a stronger to a weaker adversary. 
6) GAN-Based Defense 

The study [44] presented a model of a defensive approach to improve the IDS robust-
ness against the CW attack. This defense is based on GAN; thus, it aims to classify the data 
that the IDS receives as an attack or normal. Furthermore, they used the CSE-CIC-IDS2018 
dataset to evaluate their model. As a result, the IDS’s performance and accuracy im-
proved. 

Figure 8 illustrates the defense strategies presented in this paper. Moreover, Table 4 
illustrates a summary of these strategies. 

 
Figure 8. Defense Strategies. 

Table 4. Summary Of Defense Methods. 

 Year Method Description Result 

[49] 2017 
Adversary 
Detection 
Network 

The authors suggested training a bi-
nary detector network to distinguish 
between samples from the original 
dataset and adversarial instances. 

DeepFool adversary-
specific detectors per-

formed admirably com-
pared to all other adver-

sarial attacks. 
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[82] 2017 APE-GAN 

This method was based on training 
the model to remove the adversarial 
perturbation before feeding the pro-
cessed sample to classification net-
works. Then, they generated adver-

sarial samples and used the discrimi-
nator to discriminate those samples. 

The researchers might 
infer that the APE-GAN 
has a wide range of ap-

plications because it 
works despite no un-

derstanding of the 
model on which it is 

based. 

[100] 2017 Dropout 

Dropout is a random process that per-
turbs the model’s architecture [99]. 
Furthermore, this study focused on 

the ability to apply CW attacks in this 
field as well as the ability to detect 

them. 

This defense detected 
adversarial examples ef-

fectively [99]. 

[87] 2019 ME-Net 

This method takes incomplete or 
damaged images and eliminates noise 

from these images. Furthermore, 
there are two stages for the image be-
fore being processed; first, arbitrary 

pixels are discarded from the picture, 
and then the picture is rebuilt using 

ME. 

The ME-Net made deep 
neural networks more 

robust against adversar-
ial attacks than other 

methods. 

[88] 2020 

Stochastic 
transfor-

mation-based 
defenses 

In the first place, the researchers in-
vestigated the impact of random im-
age alterations on clean pictures to 

understand better how accuracy dete-
riorates. They trained a unique classi-
fier to identify distinguishing charac-

teristics in the distributions of soft-
max outputs of converted clean pic-

tures and predict the class label. 

Untargeted assaults on 
CNN have been stud-

ied, and it would be in-
teresting to compare 

their distribution classi-
fier approach with tar-

geted attacks. 

[81] 2021 AFR 

This method implemented an attack 
on NIDS and then suggested adver-

sarial feature reduction (AFR), which 
decreased the attack’s efficacy by re-
ducing adversarial feature develop-

ment. 

The implemented attack 
achieved more than a 
97% rate in half cases, 
and the proposed de-
fense technique (AFR) 

successfully minimized 
such attacks. 

[88] 2021 DIPDefend 

This method examined the internal 
prior of the image and then divided 
them into two steps: robust feature 

learning and non-robust feature 
learning. It reconstructed the image 
by beginning with a robust feature 

and then a non-robust feature to 
make them stronger against adversar-

ial attacks. 

It can be applied with-
out pretraining, making 
it useful in various situ-

ations. 

8. Challenges and Future Directions 
Generally, the process of creating an adversarial example entails adding the neces-

sary amount of perturbation to the model’s direction. Thus, the defense strategies section 
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has presented many studies that can protect the models against adversaries in the two 
significant areas of computer vision and IDS by detecting or eliminating the adversaries. 
Equally important the following questions: Are these solutions effective in addressing our 
problem? Which of these defenses is the best fit for our problem? Thus, in light of this, this 
section lists some of the gaps and challenges in this domain. 

8.1. Key Research Challenges and Gaps 
• In adversarial situations, the competition between attacks and defenses becomes an 

“arms race”: suggested defenses against one assault were later shown to be vulnerable 
to another, and vice versa [102,103]. 

• The adversarial examples have transferability properties, indicating that adversarial 
examples created for one model will most likely work for other models [104,105]. This 
can be utilized as the basis for various black-box attacks in which a substitute model 
generates adversarial instances that are then presented to the target model [9]. 

• The successful attacks in one circumstance could fail in another; for example, the at-
tacks that had success in the computer vision domain may fail or have fewer effects 
when implemented on IDS [40,106]. 

• Some defenses demonstrated their ability to repel a particular attack but later fell vic-
tim to a minor modification of the attack [100,107]. 

• Defenses are sometimes tailored to a specific assault strategy and are less suitable as 
a generic defense [34]. For example, the authors in [80] suggested a method to detect 
adversarial attacks even though it is not compared to other techniques. Because it is 
considered a relatively new topic, it is not easy to evaluate this research. However, in 
our opinion, it is considered helpful research since it covers a new topic with solutions 
based on experiments and presents the results. 

• Each domain has unique features; therefore, it is more challenging to spot disturb-
ances when modifications are performed on the network traffic data [30]. 

• A critical component of defensive tactics is their ability to withstand all attacks. Nev-
ertheless, most defense techniques are ineffective against black-box attacks [97] or 
need more experimentation, as in [44]. In addition, some of the strategies are ineffec-
tive, such as adversarial training, which has flaws and may be evaded [78]. 

• The research [9] praised the dropout as a perfect defense technique. However, even 
with this defense, the adversary can defeat it if they know the dropout rate and try to 
break it by training with dropouts but with a meager success rate [99]. 

• The AML term is widespread in image classification, but it is relatively new and shal-
low in the cybersecurity area, especially in IDSs. Thus, some defense methods ensured 
their effectiveness in protecting IDS specifically. On the other hand, the rest had suc-
cessfully applied defense strategies in the computer vision field, such as APE-GAN++. 

• In detection strategies, in the worst situation, it is possible to attack the detector that 
the ML and DL models employ to identify their adversaries [49]. 

• Some of the defense ideas are repeated, such as using GAN in various research forms, 
demonstrating its efficacy to the reader. Unfortunately, using GAN is not always the 
best choice; for example, in [48], the authors mentioned that it might lead the model 
to misclassification. 

• To address white-box attacks, the defender can impede the transferability of adver-
sarial examples. However, a comprehensive defense method could not be used for all 
ML/DL applications [35]. 

• Most studies demonstrated how to improve a model’s accuracy rather than its resili-
ence and robustness [44]. 

• The datasets must reflect current traits because network traffic behavior patterns 
change over time. Unfortunately, the majority of publicly accessible IDS datasets lack 
modern traffic characteristics. According to the authors in [44], there is a shortcoming 
in the IDS’s datasets; thus, the IDS lacks a dataset that can include all types of network 
attacks. However, using the GAN-IDS will offer a high volume of attacks in training 
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since it can generate more attack types. Then, we can use the discriminators to distin-
guish new attacks [27]. Furthermore, in [108], the authors also presented research on 
handling this shortage. 

8.2. Future Directions 
• There is no way to evaluate something without experimentation, but we may draw 

some conclusions from the experiment’s owners. These defense strategies, for exam-
ple, had been used against white-box attacks, but what about black-box attacks? Thus, 
there is a need for techniques to counter the black-box attack in the future. In contrast, 
in [105], the authors presented an approach to address transferable adversarial at-
tacks. We believe it to be a promising defense approach with excellent efficiency 
against black-box attacks, although it has been examined using a white-box attack. 

• In the future, there will be a demand for a solution that handles all types of adversaries 
that affect the robustness of an IDS. 

• Various models may necessitate several defenses [9]. Thus, they need to measure their 
effectiveness in protecting ML and DL based on IDS. 

• Some researchers have stated that their technique may be used in other ML/DL mod-
els or is available online for experimentation. Therefore, we suggest increasing the 
effectiveness of the dropout strategy to make it more reliable and suitable for addi-
tional domains such as IDS. 

• In this paper, we focus on IDSs; generally, we think that protecting ML/DL-based IDSs 
is easier to preserve since it is difficult to deceive IDSs because the features contain 
discrete and non-continuous values [109]. Therefore, we believe that enhancing the 
GAN defense strategies such as APE-GAN++ will make them more reliable for IDSs, 
which will be a valuable technique for handling adversaries in the future. Moreover, 
Table 5 demonstrates a comparison between these strategies. 

Table 5. Defense Strategies Using GAN. 

Ref. Year Defense 
Approach 

Attack 
Type 

Dataset ML/DL 
Model 

Can Ad-
dress 
New 

Types of 
Attacks? 

Defense Category Result 

[32] 2019 ZK-GanDef White-box 

- MNIS
T 
- Fash-
ion-MNIST 
- CIFA
R10 

NN Yes 
Changing the 

training procedure 
and input data 

ZK-GanDef enhanced the 
accuracy by 49.17% against 

adversarial attacks com-
pared to other attacks. 

[97] 2020 ASD White-box - NSL-
KDD 

DNN  Not ap-
parent 

Adding an extra 
network 

ASD improved the accuracy 
by 26.46% in the PGD ad-
versarial environment and 
11.85% in the FGSM adver-
sarial environment, but the 
influence of ASD on some 
attacks was not apparent. 

[96] 2021 Def-IDS White-box 
- CSE-
CIC-
IDS2018 

DNN Yes Adding an extra 
network 

The experiments showed 
that the Def-IDS could in-
crease the robustness of 

NIDS by enhancing the ac-
curacy of detecting adver-

sarial attacks. 
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[98] 2021 APE-
GAN++ White-box 

- MNIS
T 
- CIFA
R10 

CNN Yes Adding an extra 
network 

APE-GAN++ achieved an 
outstanding performance 

than other defenses, includ-
ing the APE-GAN. 

[44] 2022 GAN-based 
defense 

White-box 
- CSE-
CIC-
IDS2018 

- DT 
- RF 
- SVM 

Not ap-
parent 

Adding an extra 
network 

The IDS performance im-
proved, and its accuracy in-

creased. 

Despite the threats that face the ML and DL when using them as an engine for IDS, 
it is a powerful technique that has served cybersecurity in general and IDSs in particular. 
Therefore, this paper highlighted various attacks and defense techniques to improve the 
precision of ML-based IDSs and the IDSs’ robustness. 

9. Conclusions 
In cybersecurity, using ML algorithms takes much attention, especially in intrusion 

detection systems (IDS). Therefore, significant research has been conducted to improve 
the speed, accuracy, precision, and other essential metrics of ML-based IDS. Moreover, 
adversarial attacks can have a significant impact on ML algorithms. Hence, the ML-based 
IDS is vulnerable to adversarial attacks that spark security concerns. 

For example, the IDS classification accuracy is affected by identifying a “malicious” 
input as “benign” or vice versa. In this situation, the IDS will be unreliable in defense, 
posing a severe threat to our networks. Thus, this paper presented a general overview of 
the ML methods in IDSs to improve their performance. Furthermore, it clarifies the vari-
ous types of adversarial attacks that can affect the IDS based on ML to evaluate its robust-
ness. In addition, we mentioned the benchmark datasets for IDSs and some state-of-the-
art defense strategies that improved IDS accuracy. Finally, we discussed the open issues 
facing implementing defensive methods to improve ML-based IDSs. 
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