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Abstract: A major hurdle in the development of natural language processing (NLP) methods for
Electronic Health Records (EHRs) is the lack of large, annotated datasets. Privacy concerns prevent
the distribution of EHRs, and the annotation of data is known to be costly and cumbersome. Synthetic
data presents a promising solution to the privacy concern, if synthetic data has comparable utility to
real data and if it preserves the privacy of patients. However, the generation of synthetic text alone is
not useful for NLP because of the lack of annotations. In this work, we propose the use of neural
language models (LSTM and GPT-2) for generating artificial EHR text jointly with annotations for
named-entity recognition. Our experiments show that artificial documents can be used to train a
supervised named-entity recognition model for de-identification, which outperforms a state-of-the-
art rule-based baseline. Moreover, we show that combining real data with synthetic data improves
the recall of the method, without manual annotation effort. We conduct a user study to gain insights
on the privacy of artificial text. We highlight privacy risks associated with language models to
inform future research on privacy-preserving automated text generation and metrics for evaluating
privacy-preservation during text generation.

Keywords: natural language processing; medical records; privacy protection; synthetic text; genera-
tive language models; named-entity recognition; natural language generation

1. Introduction

Narrative text in electronic health records (EHRs) is a rich resource to advance medical
and machine learning research. To make this unstructured information suitable for clinical
applications, there is a large demand for natural language processing (NLP) solutions
that extract clinically relevant information from the raw text [1]. A major hurdle in the
development of NLP models for healthcare is the lack of large, annotated training data.
There are two reasons for this. First, privacy concerns prevent sharing of clinical data
with other researchers. Second, annotating data is a cumbersome and costly process
which is impractical for many organizations, especially at the scale demanded by modern
NLP models.

Synthetic data has been proposed as a promising alternative to real data. It addresses
the privacy concern simply by not describing real persons [2]. Furthermore, if task-relevant
properties of the real data are maintained in the synthetic data, it is also of comparable
utility [2]. We envision that researchers use synthetic data to work on shared tasks where
real data cannot be shared because of privacy concerns. In addition, even within the bounds
of a research institute, real data may have certain access restrictions. Using synthetic data
as a surrogate for the real data can help organizations to comply with privacy regulations.
Besides addressing the privacy concerns, synthetic data is an effective way to increase the
amount of available data without additional costs because of its additive nature [3,4]. Prior
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work showed exciting results when generating both structured [5] and unstructured med-
ical data [2]. In particular, recent advances in neural language modeling show promising
results in generating high-quality and realistic text [6].

However, the generation of synthetic text alone does not make it useful for training
of NLP models because of the lack of annotations. In this paper, we propose the use of
language models to jointly generate synthetic text and training annotations for named-
entity recognition (NER) methods. Our idea is to add in-text annotations to the language
model training data in form of special tokens to delimit start/end boundaries of named
entities (Figure 1). The source of those in-text annotations can be a (potentially noisy) pre-
trained model or manual annotation. By adding the special tokens to the training data, they
explicitly become part of the language modeling objective. In that way, language models
learn to produce text that is automatically annotated for downstream NER tasks—we refer
to them as “structure-aware language models.” Below, we will briefly outline our research
pipeline; see Figure 2 for an overview.

Generating structured text (our approach)

Maria is meeting J.D. on January 5th.

Prompt: 
[Maria is meeting] 

Model produces synthetic text:

<NameSTART> Maria <NameEND> is
meeting <InitialsSTART> J.D <InitialsEND> on
<DateSTART> January 5th <DateEND>.

Model produces synthetic text with annotations:

Prompt: 
[<NameSTART> Maria <NameEND>] 

Generating unstructured text (standard)

Figure 1. Illustrative example comparing standard text generation with the approach taken in this
paper. We introduce special tokens to delimit protected health information (PHI). These tokens can
be learned and generated like any other token by the language models. A prompt of three tokens
defines the initial context.

de-identification

Preprocessing
(real EHR)

automatic
annotation with 
in-text PHI tags

Training 
structure-
aware LMs

Generating
synthetic
corpora

Evaluating corpora

(1) Utility: downstream task

(2) Privacy
user study on subset
of best corpus

train model
(deidentify) on
each corpus

evaluate
on real
data 

compare
with model
baselines

LSTM-based

GPT-2-based

Figure 2. Overview of this study. (1) Raw, EHR text is automatically de-identified and annotated
with in-text PHI labels. (2) Pre-processed text is used to train two “structure-aware” language models:
an LSTM and GPT-2. (3) Using different decoding strategies, two synthetic corpora are generated
from each language model. (4) Synthetic text is evaluated regarding utility and privacy. (4.1) Utility
is measured by comparing the performance of machine learning models trained on synthetic data
with models trained on real data. (4.2) For the privacy evaluation, ROUGE n-gram overlap and
retrieval-based BM25 scoring is used to select the most similar real documents. Afterwards, the
synthetic-real document pairs are presented to participants in a user study.

We compare two state-of-the-art language modeling approaches for the generation of
synthetic EHR notes: a Long Short-Term Memory (LSTM) network [7] and a transformer-
based network (GPT-2) [8]. To train these language models, we use a large and hetero-
geneous corpus of one million Dutch EHR notes. This dataset is unique in that it entails
records of multiple institutions and care domains in the Netherlands.
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We evaluate our approach by considering both utility and privacy of synthetic text.
For utility, we choose the challenging NLP downstream task of de-identification. The
objective of de-identification is to detect instances of protected health information (PHI) in
text, such as names, dates, addresses and professions [9]. After detection, the PHI is masked
or removed for privacy protection. De-identification as a downstream task is particularly
interesting, because it requires sensitive data which would not be shared otherwise. We
consider utility of synthetic data under two use-cases: (1) as a replacement for real data
(e.g., in data sharing), and (2) as a data augmentation method to extend a (possibly small)
set of real documents. To add in-text annotations for the de-identification downstream
task, we obtain heuristic PHI annotations on the language model training data through
a pre-trained de-identification method called “deidentify” [10]. Note that this setup is
not limited to de-identification. In principle, any other information extraction method (or
manual annotation) could act as a source for initial training annotations.

To evaluate privacy of synthetic records, we design a user study where participants are
presented with the synthetic documents that entail the highest risks of privacy disclosure.
As we have no 1-to-1 correspondence between real and synthetic documents, we devise a
method to collect high-risk candidates for evaluation. We posit that synthetic documents
with a high similarity to real documents have a higher risk of disclosing privacy sensitive
information. We use ROUGE n-gram overlap [11] and retrieval-based BM25 scoring [12] to
collect the set of candidate documents. Participants were asked to make judgments on the
existence and replication of sensitive data in those examples with the goal to (1) evaluate
the privacy of our synthetic data, and (2) to inform and motivate future research and
privacy policies on the privacy risk assessment of free text that looks beyond PHI.

This paper makes the following contributions:

• We show that neural language models can be used successfully to generate artificial
text with in-line annotations. Despite varying syntactic and stylistic properties, as well
as topical incoherence, they are of sufficient utility to be used for training downstream
machine learning models.

• Our user study provides insights into potential privacy threats associated with gener-
ative language models for synthetic EHR notes. These directly inform research on the
development of automatic privacy evaluations for natural language.

We release the code of this study at: https://github.com/nedap/mdpi2021-textgen,
accessed on 17 May 2021.

2. Background and Related Work

In this section, we provide a summary of related work on the generation of synthetic
EHRs (Section 2.1), as well as the evaluation of privacy (Section 2.2). Furthermore, we give
general background on language modeling and decoding methods (Section 2.3).

2.1. Generating Synthetic EHR Notes

The generation of synthetic EHR text for use in medical NLP is still at an early stage [3].
Most studies focus on the creation of English EHR text, using hospital discharge summaries
from the MIMIC-III database [7,8,13,14]. In addition, a corpus of English Mental Health
Records was explored [15]. Unlike the mixed healthcare data used in this study, these EHR
notes have a more consistent, template-like structure and contain medical jargon, lending
itself to clinical/biomedical downstream tasks found in related work [8,13–15]. Most of
these studies focused on classification downstream tasks. To the best of our knowledge, we
are the first study that attempts to generate synthetic data for sequence labeling (NER).

Decoding from language models is the predominant approach in related work to gen-
erate synthetic text. Approaches include unigram-language models and LSTMs [7], as well
as transformer-based methods such as GPT-2 [13–15]. In particular, Amin-Nejad et al. [8]
concluded that GPT-2 was suitable for text generation in a low-resource scenario. In this
research, we compare a standard LSTM-based model with a transformer-based model
(GPT-2). At the time this research was conducted, the only pre-trained Dutch transformer

https://github.com/nedap/mdpi2021-textgen
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models available were BERT-based [16,17]. Since no pre-trained Dutch GPT-2 model existed,
we chose to fine-tune an openly available English GPT-2 [6] on our data for this purpose.

Prior studies also consider different ways to generate EHR notes with a pre-defined
topic. These approaches include conditional generation on clinical context [8,13] and
guiding by keyphrases extracted from an original note [14,15,18]. As a result, the synthetic
notes inherently have one-to-one relations with the original data. In this study, we do not
use the conditional text generation approaches for two reasons. First, the NER use-case
does not require strong guarantees on the topic of synthetic training examples. This is
different from downstream tasks like classification. Second, we do not want that synthetic
notes have a one-to-one link to real data. We assume that this benefits privacy protection.
Instead of the conditional generation mentioned above, we use short prompts to generate
whole EHR notes without a pre-defined topic.

2.2. Evaluating Privacy of Synthetic EHR Notes

While privacy preservation is one of the main motivations for the generation of
synthetic EHR, related research did not always report privacy of generated corpora or
propose methods for the evaluation. For example, Amin-Nejad et al. [8] and Liu [13] used
similarity metrics as intrinsic measure to compare real and synthetic notes, but did not
draw further conclusions on privacy. Melamud and Shivade [7] propose an empirical
measure to quantify the risk of information leakage based on differential privacy. However,
the calculation of this measure requires training a prohibitively large amount of models
and does not directly provide information on the privacy of the generated data itself.
Embedding differential privacy in the model training process, would theoretically ensure
privacy [19]. However, the known trade-off between privacy and utility [7,19] dissuaded
us from training differentially private models, as the primary focus was on achieving high
utility. To draw conclusions about the privacy of our synthetic records, we develop a simple
method to query “high-risk” candidates from the synthetic documents based on shallow
text similarity metrics. We conduct a user study to investigate potential privacy issues
concerning these records.

2.3. Background on Natural Language Generation

In the area of natural language generation (NLG) there are several approaches to
generate artificial text. In this study, two neural methods with different architectures are
considered, both of which are based on training a language model on text with the desired
features (i.e., the one that we want to model). LSTM models are recurrent neural networks
that process input sequentially and are able to learn long-term dependencies [20]. They
are now widely used in natural language generation. More recently, Vaswani et al. [21]
introduced the transformer architecture, which does not represent text sequentially, but can
attend to the whole input in parallel and therefore store syntactic and semantic information
on a higher level [6,21]. “GPT-2” or the “Generative Pre-Trained Transformer (2)” is an
open-source, transformer-based language model by OpenAI [6], which was trained on
40 GB of text crawled from the internet. While already capable as a general-purpose model
for English text [6], fine-tuning (i.e., transfer learning) can be used to learn a domain-specific
language (e.g., non-English, medical jargon, writing style) while still taking advantage of
the existing learned language patterns [22,23].

To use a language model for text generation, several decoding algorithms exist to pick
a sequence of tokens that is likely to exist, given the language model. Depending on the
chosen algorithm, the potential differences in outcome can be summarized as: (1) diversity,
i.e., how much variation there is in different outputs, given the same input prompt, and
(2) quality of the generated text, which may include how quickly it degrades with text
length, and how meaningful, specific and repetitive it is [4,24–26]. As opposed to tasks
like machine-translation (the output sequence must be consistent with the input sequence),
open-ended language generation tasks demand higher diversity and creativity of output.
Most commonly used are maximization-based decoding strategies (e.g., beam search).
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However, these greedy methods tend to produce repetitive outputs. Sampling-based
methods like temperature sampling and nucleus sampling generate more varied text [24].

3. Materials and Methods

This section describes our experimental setup including the dataset, procedure for
training the language models and evaluation of utility and privacy.

3.1. Corpus for Language Modeling

To construct a large and heterogeneous dataset for language model training, we sam-
ple documents from the EHRs of 39 healthcare organizations in the Netherlands. Three
domains of healthcare are represented within this sample: elderly care, mental care and
disabled care. All text was written by trained care professionals such as nurses and general
practitioners, and the language of reporting is Dutch. A wide variety of document types is
present in this sample. This includes intake forms, progress notes, communications between
care givers, and medical measurements. While some documents follow domain-specific
conventions, the length, writing style and structure differs substantially across reports. The
sample consists of 1.06 million reports with approximately 52 million tokens and a vocab-
ulary size of 335 thousand. For language model training, we randomly split the dataset
into training, validation, and testing sets with a 80/10/10 ratio. We received approval for
the collection and use of the dataset from the privacy board of Nedap Healthcare.

3.2. Pre-Processing and Automatically Annotating the Language Modeling Data

Before using the collected real data for developing the language model, we pseudo-
nymize it as follows. First, we detect PHI using a pre-trained de-identification tool for
Dutch healthcare records called “deidentify” [10]. The “deidentify” model is a BiLSTM-
CRF trained on Dutch healthcare records in the domains of elderly care, mental care and
disabled care. The data is highly similar to the data used in this study and we expect
comparable effectiveness to the results reported in the original paper (entity-level F1 of
0.893 [10]). After de-identfication, we replace the PHI with random, but realistic surro-
gates [27]. The surrogate PHI will serve as “ground-truth” annotations in the downstream
NLP task (Section 3.4). Table 1 shows the distribution of PHI in the language modeling cor-
pus. To make annotations explicitly part of the language modeling objective, we add in-text
annotations from the PHI offsets (as shown in Figure 1). Each annotation is delimited by a
special <xSTART> and <xEND> token where x stands for the entity type. We acknowledge
that the automatically annotated PHI will be noisy. However, we assume that quality is
sufficient for an initial exploration of the viability of our synthetic data generation ap-
proach. Unless otherwise stated, we use the spaCy (https://github.com/explosion/spaCy,
accessed on 19 May 2021) tokenizer and replace newlines with a <PAR> token.

We would like to highlight the motivation for annotating the real documents (i.e.,
before language modeling) and not the synthetic documents (i.e., after language generation).
In theory, because we have a pre-trained NER model available, both options are possible.
However, there are two reasons why we propose to make the annotations part of the
language modeling. First, the language models may learn to generate novel entities that a
pre-trained model would not detect (we provide tentative evidence for this in Section 4.2.2).
Second, because we could generate synthetic datasets many orders of magnitude larger
than the source data, it is more efficient to annotate the language modeling data. The
second argument especially holds if no pre-trained annotation model is available and
records have to be manually annotated.

https://github.com/explosion/spaCy
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Table 1. Distribution of PHI tags in the 52 million token corpus used to develop the language models
(i.e., real data). PHI was tagged by an automatic de-identification routine.

PHI Tag Count % of Total

Name 782,499 59.74
Date 202,929 15.49

Initials 181,811 13.88
Address 46,387 3.54

Care Institute 38,669 2.95
Organization 37,284 2.85

Internal Location 6977 0.53
Phone/Fax 3843 0.29

Age 3350 0.26
Email 2539 0.19

Hospital 2425 0.19
Profession 537 0.04

URL/IP 326 0.02
ID 232 0.02

Other 105 0.01
SSN 6 0.00

Total 1,309,919 100

3.3. Generative Language Models

We compare two language modeling approaches for the generation of synthetic
corpora: LSTM-based [20] and transformer-based (GPT-2) [6]. Below, we outline the model
architectures as well as the decoding methods to generate four synthetic corpora. For a
summary, see Tables 2 and 3.

3.3.1. LSTM-Based Model

Because of their success in generating English EHR, we re-implement the method
including hyperparameters by Melamud and Shivade [7]. The model is a 2-layer LSTM
with 650 hidden-units, an embedding layer of size 650 and a softmax output layer. Input
and output weights are tied. The model is trained for 50 epochs using vanilla gradient
descent, a batch size of 20 and a sequence length of 35. We also use learning rate back-off
from [7]. The initial learning rate is set to 20 and reduced by a factor of 4 after every epoch
where the validation loss did not decrease. The minimum learning rate is set to 0.1. For
efficiency reasons, we replace tokens that occur fewer than 10 times in the training data
with <unk> [7].

3.3.2. Transformer-Based Model (GPT-2)

From the family of transformer models, we use GPT-2 [6]. Prior work showed promis-
ing results using GPT-2 for the generation of English EHR [8]. To the best of our knowledge,
there is no Dutch GPT-2 model for the clinical domain which we could re-use. However,
prior work showed that pre-trained English models can be adapted to the Dutch language
with smaller computational demand than training from scratch [28]. The intuition is, that
the Dutch and English language share similar language rules and even (sub-)words. Below,
we provide a summary of this fine-tuning process.

Adapting the vocabulary: We train a byte-pair-encoding (BPE) tokenizer on our
Dutch EHR corpus. All sub-word embeddings are randomly initialized. To benefit from
the pre-trained English GPT-2 model (small variant) [6], we copy embeddings that are
shared between the English and Dutch tokenizer. To account for the in-text annotations,
we add a tokenization rule to not split PHI tags into sub-words.

Fine-tuning the model: The layers of the pre-trained GPT-2 model represent text at
different abstraction levels. For transfer learning, the key is to take advantage of the previ-
ously learned information that is relevant for the current task, but adjust representations
such that they are suitable for the new language and domain-specific terminology. To do
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so, layers are split into groups and we use gradual unfreezing with differential learning
rates, such that the last layer group (with corpus-specific information) is changed more
than the first ones, where learned representations can be re-used. To train layer groups
on our data, we used the one-cycle-policy [29], where learning rates are scheduled with
cosine annealing. Our GPT-2 model was split into four layer groups which were trained
in 5 epochs. We provide additional details on model and fine-tuning steps in Table 2
and Appendix A.

Table 2. Summary of language models used to generate synthetic text. Note that the test perplexity
cannot be directly compared due to the difference in vocabulary.

LSTM GPT2

Tokenizer spaCy, replace low-frequency
tokens (<= 10) with <unk>

Trained English “ByteLevelBPE
Tokenizer” on Dutch corpus, while

keeping embeddings for common tokens.

Model
2-layer LSTM (650 input

embedding size, 650 hidden
units, softmax output) [7]

GPT-2 English small (12-layer,
768-hidden, 12-heads, 117M parameters

before fine-tuning) [6]

Vocabulary 49,978 tokens 50,257 tokens
Parameters 39,307,380 163,037,184 (after fine-tuning)
Perplexity 32.1 38.8

3.3.3. Decoding Methods for Generation of Synthetic Corpora

Using the LSTM, GPT-2 and different decoding methods, we generated four synthetic
corpora of approximately 1 million tokens each (Table 3). As initial context for each report,
we selected random prompts of length 3. These were sampled from held-out EHRs to
minimize the possibility of reconstructing real documents during generation. Generation of
a text was terminated either when a maximum token count was reached, or when the model
produced an end-of-document token. For all corpora, we impose a subjective minimum
document length of 50 tokens.

Following Holtzman et al. [24], we generate two corpora with nucleus sampling
(p = 0.95, LSTM-p and GPT-p). Additionally, we implement the decoding methods of
the papers that proposed the LSTM [7] and GPT-2 [8] for the generation of EHRs. For the
LSTM, we generate a corpus with temperature sampling (t = 1, LSTM-temp). For the
GPT-2 we use beam search (n = 5, GPT-beam) and exclude texts without PHI tags, as the
corpus already had a lower overall number of tags which are essential for the utility in
the downstream task. For both GPT-2 corpora, we set the generator to not repeat n-grams
longer than 2 words within one text to increase variability. In rare cases, the language
models produced annotations with trailing start/end tags. These malformed annotations
were removed in an automatic post-processing step. We quantify how many annotations
were removed in Section 4.1.1.

Table 3. Overview of language model decoding parameters to generate four synthetic corpora.

Corpus Model Generation Method Tokens/Doc.

LSTM-p LSTM p-sampling (p = 0.95) 50–400
LSTM-temp LSTM Temperature sampling (t = 1) 50–500

GPT-p GPT-2 p-sampling (p = 0.95) 50–400
GPT-beam GPT-2 Beam search (beams n = 5) 50–500

3.4. Extrinsic Evaluation on NLP Downstream Task

To understand if the synthetic data and annotations have sufficient utility to be used
for training of NLP models, we measure effectiveness in a de-identification downstream
task. The objective of de-identification is to detect instances of PHI in text, such as names,
dates, addresses and professions [9]. Ideally, a de-identification model trained on synthetic
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data performs as good or better than a model trained on real data. To evaluate this, we train
a BiLSTM-CRF de-identification model in three settings: (1) using real data, (2) extending
real with synthetic data, and (3) using only synthetic data (Figure 3). As implementation for
the BiLSTM-CRF, we use “deidentify” (https://github.com/nedap/deidentify, accessed
on 19 May 2021) with the same architecture and hyperparameters as reported in the
original paper [10]. As real data, we use the NUT corpus of that study with the same test
split such that results are comparable. NUT consists of 1260 records with gold-standard
PHI annotations.

The effectiveness of the de-identification models is measured by entity-level precision,
recall and F1. The BiLSTM-CRF trained on real data is considered as the upper baseline for
this problem. We also report scores of a rule-based system (DEDUCE [30]) which gives a
performance estimate in the absence of any real or synthetic training data.

Real 
Training Data

(+ real validation data)

Artificial 
Training Data

(+ artificial validation data)

Real+Artificial
Training Data

(+ real validation data)

"real" 
NLP Model

"mixed" 
NLP Model

"artificial"
NLP Model

Real
Test
Data

Prediction                         Prediction                         Prediction

compare

Figure 3. Overview of extrinsic evaluation procedure. We compare three settings: (1) a model trained
on real data (baseline), (2) a “mixed” case, where we extend real data with synthetic data, and (3)
only synthetic training data. All models were tested on real data (gold annotations). This evaluation
setup extends Ive et al. [15] by step (2).

3.5. Privacy Evaluation

To gain insights into the privacy of synthetic data, we conducted a user study for a
subset of synthetic documents from the corpus with highest utility in the downstream
task. Our goal was to check whether any information “leaked” from the real data into the
synthetic data, and whether this information could be used to re-identify an individual.

Finding potential worst cases for privacy. The assumption is that a privacy leak
may have occurred when certain information of a real document reappears in a synthetic
document. Similarly to the study by Choi et al. [31], we have no 1-to-1 correspondence
between real and synthetic records. Let s ∈ S be a synthetic document and r ∈ R be a real
document. Assuming that the likelihood of a privacy leak is higher when the proximity
between s and r is high, we get a set of document pairs (SR) where for each s the most
similar document r is retrieved as candidate source document (cf. Figure 4). We use
three measures to obtain the most similar documents to a synthetic document: ROUGE-N
recall [11], with n = 3 and with n = 5, and retrieval-based BM25 scoring [12]. We use
standard BM25 parameters b = 0.75 and k = 1.2 [12].

https://github.com/nedap/deidentify


Future Internet 2021, 13, 136 9 of 24

si

Synthetic
document i

R

Training set 
(real documents)

Rouge 5

Rouge 3

BM25

r-R3

r-R5

r-
BM25

max. R-5 
recall 

max. BM25 
score

max. R-3 
recall 

SR

Privacy
evaluation set:
synthetic-real

doc. pairs

For all r ∈ R
calculate

similarity (si,r)
 

si

si

si

Figure 4. Illustration of method used to compile a set of similar synthetic-real document pairs for the
privacy evaluation. For each synthetic document, we retrieve the most similar source documents
from the real data, based on ROUGE n-gram overlap and BM25. The set SR contains the pooled result
of this matching process, such that each synthetic document appears in three separate pairings: once
with the top ROUGE-3 match, once with the top ROUGE-5 match and once with the top BM25 match.

Instead of randomly sampling synthetic documents for manual inspection, we used
several filtering steps to maximize the probability of showing pairs with high similarity
and readability during evaluation: We first sorted the documents by highest ROUGE scores.
Afterwards, we removed duplicates, documents longer than 1000 characters (to control the
reading effort of participants), and documents that received high similarity scores mostly
based on structural elements (e.g., <PAR> tokens). We took the top 122 documents with
highest ROUGE score for the user study. Full details of the filtering procedure are provided
in Appendix D.

Participants were asked to answer the following questions for each pair of real/synthetic
documents:

Q1: “Do you think the real doc provides enough information to identify a person?”
Q2: “Do you think the synthetic doc contains person identifying information?”
Q3: “Do you think that there is a link between the synthetic and real doc in the sense that

it may identify someone in the real doc?”
Q4: “Please motivate your answer for Q3.”

Questions 1–3 are on a 5-point Likert scale (Yes, Probably yes, Not sure, Probably not,
No), and Q4 is an open text answer. Participants received a short introduction about the
task and privacy. We supplied two trial documents for participants to get used to the task.
These documents were excluded from analysis. The full questionnaire and participation
instructions are given in Appendix D.

As the privacy sensitive data could not be shared with external parties, we recruited
12 participants from our institution (Nedap Healthcare). Due to the participant pool, there
is a potential bias for technical and care related experts. We consider the impact for a
privacy evaluation low, and indeed, because of their domain knowledge, participants have
provided some helpful domain-related qualitative feedback. All participants were native
Dutch speakers and each document pair was independently examined by two participants.
We computed inter-participant agreement for each question with Cohen’s Kappa. As
the Likert scales produce ordinal data and there is a natural and relevant rank-order, we
also calculated the Spearman’s Rank-Order Correlation, to better capture the difference
in participants disagreeing by, for example, answering “Yes” and “Probably” versus “Yes”
and “No.” This is especially relevant for the questions in this evaluation, which are hard
to answer and likely to result in participants showing different levels of confidence due
to personal differences. Both Kappa score and Spearman correlation were calculated per
question, micro-averaged over all document pairs.
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4. Results

In this section, we provide a quantitative and qualitative analysis of the generated
synthetic data (Section 4.1). Afterwards, we discuss the utility of these data in the de-
identification downstream task (Section 4.2). We conclude with the results of our user
study on the privacy of synthetic documents (Section 4.3).

4.1. Does the Synthetic Data Resemble the Properties of Real Data?

For an ideal data generation method, we would expect that the synthesized data
closely follows the characteristics of real data. We examine key summary statistics for each
synthetic corpus and give a real corpus as reference (Table 4).

We make two observations. First, the synthetic corpora differ substantially in variety
as quantified by the vocabulary size. At the extremes, the vocabulary of LSTM-temp
is 3.7 times larger than the vocabulary of GPT-beam although they are comparable in
size (approximately 1 million tokens). We expect that the variety has implications for
the downstream utility of the datasets. Second, the GPT-2 p-sampling method generates
sentences that are on average shorter than those of other methods. It is unclear what
causes this specific behavior, but it indicates that the methods learn a different syntactic
and stylistic representation of text. In summary, the synthetic text deviates from real text in
key metrics. We investigate if it is still useful for downstream tasks in Section 4.2.

Table 4. Summary statistics of the synthetic corpora in reference to a real corpus (NUT).

NUT [10] LSTM-p LSTM-Temp GPT-p GPT-Beam

Tokens 445,586 976,637 977,583 1,087,887 1,045,359
Vocabulary 30,252 23,052 29,485 12,149 8026

PHI instances 17,464 32,639 31,776 105,121 24,470
Sentences 43,682 70,527 72,140 128,773 83,634

Avg. tokens
per sentence 10.2 13.8 13.6 8.4 12.5

4.1.1. Are the Synthetic PHI Annotations Well-Formed and Realistically Represented?

The syntactic quality of PHI annotations is good across all corpora. Between 97%
and 99% of the annotations were well-formed (Table 5). We observe that the LSTM-based
generators are slightly more consistent than the GPT-based generators. With respect to
the distribution of PHI types, we observe that LSTM-based corpora stay closer to the real
distribution (Figure 5). The GPT-2 model with beam-search decoder shows a pronounced
bias for “Date” while the GPT-2 model with p-sampling boosts some of the rare PHI tags.
Additionally, we note that the GPT-p corpus has substantially more PHI annotations (105 k)
than the other corpora (24 k–33 k, Table 4). We analyze the impact of this in context of the
downstream task (Section 4.2). A detailed report on the PHI frequencies per corpus can be
found in Appendix B.

Table 5. A comparison of PHI tag consistency across synthetic corpora.

LSTM-p LSTM-Temp GPT-p GPT-Beam

Well-formed PHI tags 99.97% 99.89% 97.75% 98.84%
Malformed PHI tags 0.03% 0.11% 2.25% 1.16%
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Difference in relative PHI frequency per synthetic corpus compared to the language modeling data.

GPT-beam GPT-p LSTM-p LSTM-temp

Figure 5. How well do the synthetic corpora reflect the real PHI distribution? This figure shows the
differences to the PHI distribution of the language model training data (cf. Table 1).

4.1.2. Is the Generated Text Semantically Coherent?

To get a better understanding of the quality of generated text, we manually inspected
random documents of the synthetic corpora (examples in Figure 6 and Appendix C). We
make the following observations: while most texts are syntactically correct, the majority
is incoherent. We hypothesize that the incoherence is caused by the large variety of
reporting styles in the training corpus. This may have inhibited the language models to
learn a specific type of text more accurately. Furthermore, we observe some replication of
templates and phrases of real documents. An example of this is shown in Figure 6. This
was most evident for texts generated by the GPT-2 with beam search. We give additional
examples in Appendix C where we used the same prompt to generate text with all four
approaches. In those examples, the LSTM texts are more varied, but also less coherent
compared to the GPT-2 texts. Most notably, as the text length increases, the LSTM tends to
deviate from the original context of the prompt while the GPT-2 stays closer to the topic.

<NameSTART> J. Smith <NameEND> did a check. Dental hygiene is good and the dentures are
clean. No abnormalities of the mucous membranes. 

Which instruction did you give: to the nursing staff on the ward

Specifics and poss. action (s): check oral hygiene. Brush the dentures with water and soap.
Please sleep without dentures and store dry. In case of no improvement, consult the nursing
staff. Take care when brushing the dentures: be careful with oral care!
 
To whom have you instructed: (incl. names of the nurses) caregivers 

Follow up action 
Prevention ass. <NameSTART> A. Baker <NameEND> 
Prevention ass <NameSTART> E. Williams <NameEND> oral care 

Action ass. ass. from the department of the dental care <Care_InstituteSTART> The Care
Home <Care_InstituteEND> for the dry mouth and the mouth of mister <NameSTART> D.
Johnson <NameEND> , <Phone_faxSTART> 89-1234567 <Phone_faxEND> 

Figure 6. Text sample from the GPT-beam corpus (translated from Dutch, PHI highlighted and
replaced with random identifiers). The structure of the generated text resembles a template that
nurses used in the real data to report on dental hygiene of a patient.
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4.2. Extrinsic Evaluation: Is the Utility of Synthetic Data Sufficient for Downstream Use?

We discuss the utility of synthetic data by considering two use cases: (1) as a replace-
ment for real data, when real data are unavailable or cannot be shared, and (2) as a special
form of data augmentation to generate cheap additional training examples.

4.2.1. Using Synthetic Data as a Replacement for Real Data

We find that de-identification models trained on any of the four synthetic corpora
are not as effective as the real-data baseline (Table 6). However, the results are promising.
In particular, the synthetic models outperform the rule-based method DEDUCE [30] by a
large margin because of a substantial increase in recall (56.4% vs. 77.3% for LSTM-temp).
The rule-based method relies on domain knowledge rather than real training examples
and is therefore an interesting reference when no real training data is available. Overall,
we observe that the LSTM-corpora provide better utility compared to the GPT-2 corpora,
both in precision and recall (Table 6). Note that this is despite our earlier finding that the
LSTM-corpora are less coherent (Section 4.1.2). For a task like de-identification, it seems
that syntactic correctness is more important than coherency.

We study the influence of different PHI distributions in synthetic data by measuring
precision and recall on a PHI-level (Table 7). We find that the de-identification model
trained on LSTM data performs well on tags that appear frequently in the real data (e.g.,
Name and Date). However, the coverage of infrequent tags is insufficient (e.g., phone/fax
and email). In contrast, the model trained on GPT-2 data is slightly less effective on the
majority of PHI tags, but has a greater coverage of tags. We attribute this behavior to
the GPT-2 p-sampling decoder, which seemingly boosted some of the rare PHI tags as
discussed in Section 4.1.1. Considering the low effectiveness for identity-revealing tags,
training de-identification models only on synthetic data is not yet practical. This is due to
the high recall requirement for this task.

Table 6. Summary of downstream task performance. We train on the generated synthetic data and
evaluate on real data with gold-standard annotations (NUT dataset [10]). Statistically significant im-
provements toward the NUT (BiLSTM-CRF) baseline are marked with N, and ◦ depicts no significant
difference. The test is a two-tailed approximate randomization (p < 0.01).

Split: Train/val/Test Dataset Precision Recall F1

-/-/real NUT (rule-based) [30] 0.807 0.564 0.664
real/real/real NUT (BiLSTM-CRF) [10] 0.925 0.867 0.895

Use case 1: synthetic data as a replacement for real data
synth/synth/real LSTM-p 0.835 0.784 0.809
synth/synth/real LSTM-temp 0.857 0.773 0.813
synth/synth/real GPT-p 0.776 0.700 0.736
synth/synth/real GPT-beam 0.823 0.688 0.749

Use case 2: synthetic data as data augmentation method
real+synth/real/real NUT+LSTM-temp 0.919◦ 0.883N 0.901◦

real+synth/real/real NUT+LSTM-p 0.916◦ 0.879N 0.897◦

Finally, recall from Section 3.3.3 that we set the size of the synthetic corpora to 1 million
tokens for all corpora. To understand how this setting influences the effectiveness of the
downstream model, we train de-identification models on subsets of the synthetic data
(LSTM-p corpus). We find that the learning curve flattens when using around 70% of
the training data. This indicates that generating more data will not necessarily increase
effectiveness. See Appendix E for details on this experiment.
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Table 7. Entity-level precision and recall per PHI category. Comparing the baseline (NUT) with two
models trained and validated on pure synthetic data (LSTM-p vs. GPT-p), as well as the mixed variant
(NUT+LSTM-p) where the training set is composed of NUT and LSTM-p, but the validation set is the
same as the one used in the baseline (real data). Highlighted values (bold) show improvements over
the NUT baseline.

NUT GPT-p LSTM-p NUT+LSTM-p
PHI Tag Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

Name 0.967 0.951 0.810 0.875 0.897 0.945 0.960 0.959
Date 0.929 0.910 0.910 0.813 0.889 0.913 0.932 0.920

Initials 0.896 0.629 0.456 0.146 0.595 0.421 0.822 0.674
Address 0.888 0.814 0.460 0.654 0.716 0.680 0.901 0.878

Care Institute 0.742 0.681 0.321 0.116 0.414 0.245 0.705 0.718
Organization 0.743 0.596 0.159 0.052 0.340 0.257 0.717 0.559

Internal Location 0.784 0.527 0.273 0.055 0.188 0.055 0.757 0.509
Phone/Fax 1.000 1.000 1.000 0.563 0.000 0.000 0.941 1.000

Age 0.757 0.683 0.320 0.195 0.786 0.268 0.758 0.610
Email 0.909 1.000 1.000 1.000 0.000 0.000 0.833 1.000

Hospital 0.778 0.700 0.333 0.100 0.300 0.300 0.857 0.600
Profession 0.833 0.238 0.000 0.000 0.000 0.000 0.923 0.286

URL/IP 1.000 0.750 1.000 0.500 0.000 0.000 1.000 0.750
ID 0.714 0.400 0.500 0.080 0.000 0.000 0.786 0.440

Other 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4.2.2. Using Synthetic Data as Data Augmentation Method

As data annotation for de-identification is an expensive process, we experiment with
a dataset that combines a small set of real documents (NUT) with a large set of synthetic
documents. In this case, we focus on the synthetic corpora that showed best extrinsic
utility (LSTM-temp and LSTM-p). We find that the combined datasets result in models
with statistically significant improvements in recall with only an insignificant decrease in
precision (Table 6). This increase in recall indicates that the language model produced novel
PHI that was absent from the real training documents (NUT). At an entity level, we also
observe that almost all PHI classes benefit from additional training examples (Table 7). Note
that this performance improvement was achieved without additional manual annotation
effort. The absence of an even larger improvement may be caused by a saturation of the
model with only real data. Indeed, Trienes et al. [10] reported F1-scores for varying training
set sizes (given real data), which show that at 100% of the training set, the learning curve
has flattened.

4.3. Privacy Findings: Was Sensitive Information Leaked into the Synthetic Records?

The goal of the privacy evaluation was to learn whether the synthetic corpus (in this
case the one with the highest utility, LSTM-p) contains documents that could leak privacy
sensitive information from the real data. We sampled the synthetic-real document pairs
with highest similarity and conducted a user study to find out what is considered person
identifying information and whether there are cases where privacy has been compromised
in the synthetic corpus.

4.3.1. Similarity between Real and Synthetic Documents

To give a first indication of potential privacy leaks, we report summary statistics for
the ROUGE-N recall between all pairs of real/synthetic documents (Table 8). On average,
the low n-gram recall suggests that the synthetic data is substantially different from the
real data. However, we also find “high-risk cases” with large n-gram overlap. In some rare
cases, documents were reproduced exactly (maximum ROUGE-N recall of 1). We focus on
the top 122 synthetic documents with highest risk in the user study.
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Table 8. Summary statistics for ROUGE-N recall over all real/synthetic document pairs and over the
filtered subset of “high-risk” documents presented to participants in the user study.

Over All Real/Synthetic Pairs Over 122 “High-Risk” Pairs

Avg. Median Min. Max. Avg. Median Min. Max.

ROUGE-3 recall 0.075 0.067 0.018 1.000 0.280 0.217 0.145 1.000
ROUGE-5 recall 0.031 0.026 0.000 1.000 0.207 0.143 0.025 1.000

4.3.2. User Study
Question 1 (Information to Re-Identify a Person in Real Document)

There was a fair agreement between participants (Cohen’s Kappa κ = 0.279). The
Spearman’s rank-order coefficient of ρ = 0.488 (with p = 1.19× 10−8) suggests that there
is a (monotonic) positive association between the ratings of both participants. In 53 of 122
cases (Figure 7), participants agreed that the real document did not provide enough infor-
mation to identify a person. In cases where participants answered with either “Probably”
or “Yes,” text often contained specific diagnoses (e.g., decubitus) in conjunction with PHI.
Other examples were documents with specific psychological examination results (e.g., on
personality, existence of suicidal thoughts, cognition, affect) or detailed descriptions of rare
events (e.g., a person leaving a care home, an individual running away, descriptions of
aggressive behavior). This highlights the concern that the removal of PHI in free text may
not be sufficient to make it anonymous. A reader who might have been present during
a described event could potentially re-identify a person without direct identifiers, if the
event was unique enough.
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Figure 7. Inter-participant agreement (count of answer given) for the user study on privacy.

Question 2 (Information to Re-Identify a Person in Synthetic Document)

Similarly to the inter-participator agreement for question 1, Cohen’s Kappa showed a
fair agreement (κ = 0.215). Spearman’s rank-order coefficient was ρ = 0.4757
(p = 3.07× 10−8). The confusion matrix of participant responses in Figure 7 reveals
that also for the synthetic documents shown, the contained information was often not
considered person identifying. Some comments given for question 3 indicate that part
of the reason may be the general incoherence of details that shows that the text is clearly
fake and not about one specific person, thereby obfuscating which information is real and
which PHI is related to it. For example, a text may reference several different names that
do not fit together in context. This creates a privacy-protecting effect where information
cannot be linked to one specific person. Furthermore, synthetic reports were often generic
descriptions of days and medications without any identifiers. In cases where participants
disagreed, but at least one answered with “Probably” or “Yes,” reports were generally
detailed and could contain person identifiers.
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Question 3 (Identifying a Link between Real and Synthetic Document)

There was a slight agreement between participants (κ = 0.063 and ρ = 0.4104 with
p = 3× 10−6). In 42% of cases (51 of 122, Figure 7) both participants agreed that there
was no link between the real and synthetic document. In cases where both participants
agreed on the direction, but not strength of judgment and answered “Yes” or “Probably,”
the additional explanations revealed three categories of how synthetic text may identify
someone from the real document:

1. Contextual information was copied. For example, the synthetic and real document
described similar treatment, schedule or complications, sometimes with largely iden-
tical text including medical test results. One participant pointed out that the severity
of this case would depend on the uniqueness of the medical test.

2. Identifiers were copied. For example, the same name(s) appeared in both documents.
Unless contextual information was replicated, participants often disagreed on the
severity of a potential privacy leak.

3. The synthetic document acted as continuation of the real document with linked
information. Counterarguments to the existence of a privacy breach included in-
consistencies in synthetic text that made it appear clearly fake (see Question 2) and
generic content that made it hard to say whether a description was about the same
person or not.

There were two examples in which participants agreed on a privacy breach. These
contained specific descriptions of a diagnosis or situation that seemed unique enough to
lead back to a person (e.g., someone dying soon, if in a non-dying population) and were
copied from the original to a large extent. Interestingly, while the incoherence of certain
synthetic text often added as protective factor for privacy, the effect may be reversed when
a part of text is clearly fake and another part is clearly real, making it possible for a potential
attacker to easily pick out copied information.

The findings of the privacy evaluation can be summarized as follows:

• In free text, the removal of PHI may not be sufficient to protect privacy when specific
and rare events are described in detail.

• The mediocre quality of synthetic text often acted as protective factor by obfuscating
what is real and what is fake.

• The largest cause of concern for privacy in this synthetic corpus is the existence of
larger chunks of text that were copied from the real data, especially when rare events
were described.

5. Implications and Outlook

In this section, we discuss the broader implications of our results and suggest avenues
for future work to improve both utility and privacy of synthetic data.

5.1. Synthetic Data Generation and Text Quality

Controlling the distribution of annotations: We showed that it is possible to generate
well-structured in-text annotations. However, we also observed that the distribution
of tags depends on the chosen decoding method. This, in turn, had substantial impact
on performance in downstream tasks. A desirable feature for generation methods is
therefore the ability to control this distribution. Preliminary work in this direction, namely
conditional transformer models [32,33], could be adapted for this purpose.

Increasing text diversity: Our experiments also revealed that text diversity has a
significant impact on downstream task performance. In particular, we found that sampling
methods provided both higher diversity and utility compared to beam search, which is in
line with other results on open-ended text generation [24]. We think that future studies
should strive to further increase the diversity of text. One promising direction is the so-
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called “unlikelihood training” proposed by Welleck et al. [26], which increases diversity by
changing the language modeling objective.

Improving text quality: The primary focus of this study was to generate documents
with high utility for NLP models. Consequently, medical correctness and coherency was
not formally evaluated. However, we found the coherence of synthetic documents to
be mediocre. Related studies on generation of English EHR (mostly based on discharge
letters in MIMIC-III) did not report such issues [7,8,13,14]. A key difference between
MIMIC-III discharge letters and our Dutch healthcare corpus is the lack of clear structure
and conformity in the Dutch corpus. To make methods for synthetic EHR generation
applicable across healthcare, it would be beneficial to explore different pre-processing or
model training strategies. One viable option could be to train separate models on subsets
of notes that share structural properties.

Quantify how heuristic annotations influence downstream NER methods: We used
a pre-trained method to automatically add in-text annotations to the language modeling
data. While the pre-trained method showed high effectiveness (F1 = 0.895, cf. Table 6)
on highly similar data, we acknowledge that the annotations are imperfect. Therefore, it
would be interesting to quantify how the accuracy of the in-text annotations influences the
effectiveness of downstream NER models. As we are constrained by annotation resources,
we leave the exploration of this idea to future research.

Transfer of method to other languages and domains: Instead of generating synthetic
healthcare data for the Dutch language, the methodology of this research can also be used
for different languages and text types: We trained the LSTM from scratch and since the
architecture is not language specific, it may be applied to any sequence of tokens. Tokeniza-
tion is language dependent, so pre-processing should be adjusted accordingly. We also
fine-tuned the English pre-trained GPT-2 model and its tokenizer to learn Dutch, domain
specific language and special annotations. This was possible, because there are similarities
between Dutch and English. Sufficient similarity also exists with other languages, some of
which GPT-2 has been adapted to previously (e.g., Italian [23,28]) and some open-source
GPT-2 models pre-trained in different languages are openly available (e.g., a German
pre-trained GPT-2 model: https://github.com/stefan-it/german-gpt2, accessed on 19 May
2021). GPT-2 is a “general purpose” model [6], because it can be adapted to different do-
mains and language generation tasks, so cross-domain training is generally possible. While
transfer of both LSTM and GPT-2 to other languages and domains is possible, applications
that require generation of longer texts may require adjustments to the methodology (e.g.,
story generation [18]).

Support of other NLP downstream tasks: We investigated synthetic data generation
in the context of de-identification. As de-identification is phrased as a standard NER task,
we expect that our method generalizes well to other NER tasks. Future work is needed
to investigate if language models can be adapted to produce other types of document
metadata to support additional NLP downstream tasks such as classification.

5.2. Privacy of Synthetic Text

Privacy/utility trade-off: Our experiments showed that synthetic text does not need
to be realistic for utility in downstream NER tasks. This could be exploited to improve
the privacy protection. For example, a clearly incoherent combination of names within a
document would obfuscate how pieces of information were originally linked. Therefore,
future work could investigate how realistic synthetic text needs to be for a given down-
stream task. Prior work studied the trade-off between perplexity and privacy [7], where
perplexity is a proxy for utility. This approach could be extended to take utility of synthetic
text into account.

Expanding de-identification: Current approaches to text anonymization mostly define
PHI as the 18-categories set out by the HIPAA regulation [34]. For example, documents
in MIMIC-III are shared under the promise that all PHI have been removed and therefore
protect privacy sufficiently. However, disregarding whether text was real or synthetic,

https://github.com/stefan-it/german-gpt2
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our user study identified certain aspects of notes which are not covered by automatic
PHI extraction methods. Therefore, the common approach to protect privacy in natural
language text might have to be re-evaluated and expanded to take, for example, specific
descriptions of unusual events into account.

Embedding privacy: Given the examples of privacy leaks identified in the user study,
it seemed that most would have been prevented if the model could not reproduce larger text
chunks from a training EHR note. A way to ensure this from a mathematical perspective is
to train the generative models with a differential privacy (DP) objective. The premise of
DP is that no output could be directly attributed to a single training instance [2,7,19,35]. In
this study, we consciously chose not to include DP to maximize the utility of the synthetic
corpora for the downstream task, but we recommend that future research uses DP in order
to minimize privacy risks.

Limitations of user study: While our user study provides insights into the privacy of
synthetic records, it does not allow us to draw conclusions on the privacy of a synthetic
corpus at large. To be able to publish synthetic corpora under the premise that they protect
privacy of data subjects, principled ways of measuring the involved privacy risks are
needed. Developing these approaches is an important direction for future work.

6. Conclusions

This paper proposes the use of language models to generate synthetic EHRs. By
explicitly adding in-text annotations to the training data, the language models learn to
produce artificial text that is automatically annotated for downstream NER tasks. Our
experiments show that the synthetic data are of sufficient utility for downstream use
in de-identification. In particular, a de-identification method trained on synthetic data
outperforms a rule-based method. Moreover, augmenting real data with synthetic data
further improves the recall of the method at no additional costs or manual annotation
effort. We find that the LSTM-based method produces synthetic text with higher utility
in the downstream task compared to GPT-2. This is despite the fact that GPT-2 texts
are more coherent. This suggests that coherence is not required for synthetic text to be
useful in downstream NER tasks. We furthermore evaluate privacy of the generated
synthetic data using text-proximity metrics and conduct a user study. We find that the
synthetic documents are not free of privacy concerns because language models replicated
potentially identifying chunks of real EHRs. This shows that additional work is needed
before synthetic EHRs can be used as an anonymous alternative to real text in data sharing
settings.
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Appendix A. Fine-Tuning English GPT-2 to Dutch Language

This appendix provides additional information on how we adapted the English GPT-2
model to Dutch healthcare data. At the time when we conducted this research, no study
reported the code or a detailed strategy to adapt GPT-2 for a non-English purpose. There-
fore, we followed the approach described by Pierre Guilliou adapting GPT-2 to Portuguese.
The report can be found here: https://medium.com/@pierre_guillou/faster-than-training-
from-scratch-fine-tuning-the-english-gpt-2-in-any-language-with-hugging-f2ec05c98787, ac-
cessed on 19 May 2021. The approach is similar to the work (published later) by de Vries and
Nissim [28]. Below, we outline how the tokenizer was extended to the Dutch vocabulary
and provide the fine-tuning steps in Table A1.

1. Settings of the Byte-Pair Encoding (BPE) tokenizer: Initial size equals to vocabulary
length |V| of English pre-trained GPT-2 tokenizer. Minimum token frequency is set
to 2. We add a prefix space as well as special tokens for PHI tags and paragraph
delimiters (e.g., <PAR>, <NameSTART>, <NameEND>). Sequences are truncated with a
maximum sequence length of 1024. Padding token is set to <|endoftext|>.

2. New word-token-embedding matrix is initialized by copying English embeddings for
overlapping terms. New (Dutch) terms are subsequently added to the embedding
matrix and initialized with the mean of the English embedding matrix.

3. Model is fine-tuned according to the steps in Table A1.

Table A1. Fine-tuning steps of GPT-2. The fastai library was used to split layer groups and
to fine-tune the model with one-cycle policy [29]. Differential learning for several layers is
applied by passing an array of learning rates fit_one_cycle() (https://docs.fast.ai/callback.
schedule.html#Learner.fit_one_cycle, accessed on 19 May 2021). Training parameters from Pierre
Guillou (https://medium.com/@pierre_guillou/faster-than-training-from-scratch-fine-tuning-the-
english-gpt-2-in-any-language-with-hugging-f2ec05c98787, accessed on 19 May 2021).

Step Layer Groups Learning Rates

1. All frozen, fitted for 1 cycle fit_one_cycle(1, 2e-3)

2.

Last two layer groups
unfrozen. Fitted for 1 cycle:

Decoder blocks 8–11,
Vocabulary embedding,
Positioning embedding,

LayerNorm at model output

fit_one_cycle(1,
slice(1e-3/(2.6**4),1e-3))

3.

Last three layer groups
unfrozen. Fitted for 1 cycle:

Previous layers, Decoder
blocks 4–7

fit_one_cycle(1,
slice(5e-4/(2.6**4),5e-4))

4.
All layer groups unfrozen.

Fitted for 2 cycles: Previous
layers, Decoder blocks 0–3

fit_one_cycle(2,
slice(1e-4/(2.6**4),1e-4))

Appendix B. Distribution of PHI Tags in Synthetic Corpora

We provide the absolute number of PHI tags per corpus in Table A2 and compare the
distribution of tags across corpora in Figure A1. Furthermore, Figure A2 quantifies how
much the PHI distribution in each corpus differs from the PHI distribution of the language
modeling data (raw numbers for Figure 5).

https://medium.com/@pierre_guillou/faster-than-training-from-scratch-fine-tuning-the-english-gpt-2-in-any-language-with-hugging-f2ec05c98787
https://medium.com/@pierre_guillou/faster-than-training-from-scratch-fine-tuning-the-english-gpt-2-in-any-language-with-hugging-f2ec05c98787
https://docs.fast.ai/callback.schedule.html#Learner.fit_one_cycle
https://docs.fast.ai/callback.schedule.html#Learner.fit_one_cycle
https://medium.com/@pierre_guillou/faster-than-training-from-scratch-fine-tuning-the-english-gpt-2-in-any-language-with-hugging-f2ec05c98787
https://medium.com/@pierre_guillou/faster-than-training-from-scratch-fine-tuning-the-english-gpt-2-in-any-language-with-hugging-f2ec05c98787
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Table A2. Absolute PHI counts in all corpora. The “LM Corpus” is used to develop the language
models. “LM Corpus” counts are reproduced from Table 1 and “NUT” counts from [10].

PHI Tag LM
Corpus LSTM-p LSTM-

Temp GPT-p GPT-Beam NUT

Name 782,499 20,697 19,839 34,764 6797 9558
Date 202,929 4270 4240 19,879 12,825 3676

Initials 181,811 4038 4166 11,337 2771 778
Address 46,387 1244 1220 6834 299 748

Care Inst. 38,669 1006 985 8537 437 997
Org. 37,284 1091 1041 11,885 1100 712

Location 6977 115 117 1486 56 242
Phone/Fax 3843 45 27 4539 74 97

Age 3350 40 60 416 12 175
Email 2539 40 26 4298 55 95

Hospital 2425 44 46 191 34 92
Profession 537 4 5 32 0 122

URL/IP 326 4 2 723 9 23
ID 232 0 1 200 1 114

Other 105 1 1 0 0 33
SSN 6 0 0 0 0 2

Total 1,309,919 32,639 31,776 105,121 24,470 17,464

Name Date Initials Address Care Inst. Org.

0%

10%

20%

30%

40%

50%

60%

Location Phone Age Email Hospital Prof. URL ID

0%

1%

2%

3%

4%

Relative PHI frequency per corpus. Infrequent tags (right) zoomed.

LM Corpus GPT-beam GPT-p LSTM-p LSTM-temp

Figure A1. PHI distribution of the synthetic corpora compared to the language modeling corpus.

GPT-beam GPT-p LSTM-p LSTM-temp

Name

Date

Initials

Address

Care Institute

Organization

Internal Location

Phone/Fax

Age

Email

Hospital

Profession

URL/IP

ID

Other

SSN

-32 % -27 % 3.7 % 2.7 %

37 % 3.4 % -2.4 % -2.1 %

-2.6 % -3.1 % -1.5 % -0.77 %

-2.3 % 3 % 0.27 % 0.3 %

-1.2 % 5.2 % 0.13 % 0.15 %

1.6 % 8.5 % 0.5 % 0.43 %

-0.3 % 0.88 % -0.18 % -0.16 %

0.01 % 4 % -0.16 % -0.21 %

-0.21 % 0.14 % -0.13 % -0.07 %

0.03 % 3.9 % -0.07 % -0.11 %

-0.05 % -0 % -0.05 % -0.04 %

-0.04 % -0.01 % -0.03 % -0.03 %

0.01 % 0.66 % -0.01 % -0.02 %

-0.01 % 0.17 % -0.02 % -0.01 %

-0.01 % -0.01 % -0 % -0 %

-0 % -0 % -0 % -0 % -30 %

-20 %

-10 %

0 %

10 %

20 %

30 %

Raw difference in relative PHI frequency per synthetic corpus compared to the language modeling data.

Figure A2. Raw increase/decrease in relative PHI frequency per synthetic corpus compared with the
PHI distribution of the language modeling corpus. Raw numbers for Figure 5.
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Appendix C. Additional Examples of Synthetic Documents

Additional examples for each text generation method are shown in Table A3.

Table A3. Example documents generated by each method with manual English translation. For all examples, we used the
same input prompt “Mevr. was vanavond”, which translates to “Mrs. was [...] tonight”. We transformed <PAR> back into
line breaks, but otherwise left in-text annotations as they were generated.

Model Example (Dutch Original) Example (English Translation)

LSTM-p

Mevr. was vanavond veel aan het slaan in de
huiskamer. Mevr. vertelde dat ze het al even kan

laten merken. Op dat moment moest zij even naar
het toilet omdat ze kon plassen. Mevr. voelde zich
in het inco broekje niet een lange broek aan, ik heb

met collega een mail naar de
voedingsadministratie gedaan.

Mrs. was beating much in the living room tonight.
Mrs. told that she could let notice it already. At

that moment she had to go the toilet because she
could pee. Mrs. felt herself in the inco pants not
long pants wearing, I have send an email to the

food administration with a colleague.

LSTM-temp

Mevr. was vanavond niet op de Huismus. Moest
het haar nog een keertje uit zetten. Ik heb mevr.

haar appartement laten zien en met 2 poten op de
stoel gelopen. Mevr. heeft niet veel geslapen. Mevr.
heeft vannacht niet verschoond en deze ging nu

altijd bij, zat prima in haar stoel.

Mrs. was not at the Huismus tonight. Had to turn
her off for once. I showed mrs. her apartment and
walked with 2 legs at the chair. Mrs. has not slept
much. Mrs. did not change tonight and this now

always went with, sat in her chair fine.

GPT-p

Mevr. was vanavond rustig aanwezig. Mw. heeft
vanavond goed gegeten en gedronken.

<NameSTART> Lucy <NameEND> Rapp. <NameSTART>
B. Greenwood <NameEND> broecks

Dag <NameSTART> Barbara <NameEND>, Ik heb net
contact gehad met <NameSTART> Alex <NameEND>.
<Organization_CompanySTART> de Zonnebloem
<Organization_CompanyEND> <NameSTART> Jane

<NameEND> is op de hoogte van de situatie.

Mrs. was quietly present tonight. Mrs. has eaten
and drank well tonight. <NameSTART> Lucy
<NameEND> Rep. <NameSTART> B. Greenwood

<NameEND> broecks
Hello <NameSTART> Barbara <NameEND>, I have just

had contact with <NameSTART> Alex <NameEND>.
<Organization_CompanySTART> de Zonnebloem
<Organization_CompanyEND> <NameSTART> Jane

<NameEND> is aware of the situation.

GPT-beam

Mevr. was vanavond rustig aanwezig. Mevr. heeft
goed gegeten en gedronken. Mevr. is om 21.00 uur
naar bed geholpen. mevr. gaf aan erg moe te zijn

en graag naar bed te willen. Mevr. is om 22.30 uur
in bed geholpen en ligt tot nu toe nog te slapen.

<DateSTART> Zondag <DateEND> komt mevr. weer
naar de dagbesteding. <unk> Mevr. geeft aan het

erg naar haar zin te hebben gehad.

Mrs. was quietly present tonight. Mrs. has eaten
and drank well. Mrs. was helped to bed at 9 pm.
Mrs. indicated to be very tired and would like to

go to bed. Mrs. was helped to bed at 10.30 pm and
is still sleeping until now. <DateSTART> Sunday

<DateEND> mrs. will come to the daytime activities.
Mrs. indicated that she had a great time.

Appendix D. Privacy User Study: Annotation Guidelines and Data Sampling

We provide annotation guidelines in Figure A4. Below, we outline the steps to filter a
sample of real-synthetic document pairs SR for presentation to participants. We denote a
synthetic document as s ∈ S and a real document as r ∈ R.

1. Remove duplicates: for the same document s, ROUGE-3 and ROUGE-5 may retrieve
the same document r.

2. Sort the synthetic documents by ROUGE-3 and ROUGE-5 recall and keep the top-100
of both lists. (The top 100 ROUGE-3 recall scores were between 0.18 and 1.0 with
an average of 0.307 and a median of 0.233. The top 100 ROUGE-5 recall scores were
between 0.111 and 1.0 with an average of 0.236 and a median of 0.164.) The idea is
that we investigate high risk documents with highly similar counterparts among the
real data. Add these documents to SR.

3. For the remaining documents in SR, retrieve the most similar document with BM25.
4. Remove documents longer than 1000 characters to control annotation effort.
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5. Remove documents that had a high overlap due to structural elements (e.g., <PAR>
token or punctuation).

Appendix E. Evaluating the Impact of the Synthetic Dataset Size

The effectiveness of a downstream machine learning method necessarily depends on
the number of (synthetic) training examples. For simplicity, we fixed the size of the synthetic
datasets across all our experiments (cf. Section 3.3.3). To analyze if it would be beneficial to
increase/decrease the size of the synthetic corpora, we trained de-identification models
on subsets of the data. Figure A3 shows the entity-level F1-score for varying training set
sizes. We find that the learning curve flattens at around 70% of the training data, indicating
that there is little benefit to generate even larger synthetic corpora. Due to computational
constraints, we limited this experiment to one synthetic corpus (LSTM-p).

10% 25% 40% 55% 70% 85% 100%
Synthetic training set size (%)
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Training BiLSTM-CRF on subsets of the LSTM-p corpus.

Figure A3. Entity-level F1-score for varying LSTM-p training set sizes. The full training set (100%)
consists of all training and validation documents in LSTM-p. The F1-score is measured on the NUT
test set. For each subset size, we train/test each model 3 times. The line shows the averaged scores
along with the 95% confidence interval.
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User Study: Synthetic Text Privacy

This research aims to create synthetic text data using a machine learning model trained on real patient data. While this

synthetic text is meant to share properties with the realdata to be of use in further research, it should not contain

information from the real data that could help re-identifying people contained in the real dataset. For example you

could ask: If I was a patient mentioned in the real dataset, could one learn something about me by looking at the

synthetic data?

Differently to structured datasets with clearly defined attributes (Name, Date, Diagnosis...), free text data is more

complicated and harder to evaluate, as privacy sensitive information can be disclosed via context or different phrasing.

As machine-calculated similarity scores are not very indicative of privacy breaches, it is necessary to have a human

evaluate some examples, especially because there is not always a right or wrong answer.

Data: During the evaluation, you will get (1) a synthetic piece of text and (2) a similar text from the real dataset, which

we present as potential source document for the given synthetic text. There are no true 1:1 matches between original

and fake texts, so you may get to see the same synthetic text twice, but with different potential source texts.

Questions: You will be asked the same questions for each example. The aim is to better understand whether privacy of

people in the real dataset is compromised by looking at the synthetic data. Note that we do NOT care about how

realistic/grammatical the synthetic texts are. Please read each text carefully. It is up to you to decide whether you

consider certain information as privacy sensitive, as there is no right or wrong answer.

For any questions or feedback, please contact me on Slack @claudia.libbi 

Ethical Approval

We did a DPIA (Data Protection Impact Assessment) with the Privacy Officer at Nedap. 

The data that will be shown to you is privacy sensitive and may be used within this research project and can not be

shared with any third person.

I understand that I may not share this data with anyone else.

Confidentiality

Your answers will be treated confidentially and stored anonymously for the duration of this study, as we do not need to

re-identify you as evaluator after data collection.

Your name will not be mentioned in any publications resulting from this research unless you explicitly consent to this. 

I understand that my answers will be treated confidentially and will be stored anonymously for the duration of this research.

Next

Figure A4. Annotation guidelines for the privacy user study.
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