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Abstract: This paper investigates the local stabilization problem of delayed fractional-order neural
networks (FNNs) under the influence of actuator saturation. First, the sector condition and dead-zone
nonlinear function are specially introduced to characterize the features of the saturation phenomenon.
Then, based on the fractional-order Lyapunov method and the estimation technique of the Mittag–
Leffler function, an LMIs-based criterion is derived to guarantee the local stability of closed-loop
delayed FNNs subject to actuator saturation. Furthermore, two corresponding convex optimization
schemes are proposed to minimize the actuator costs and expand the region of admissible initial
values, respectively. At last, two simulation examples are developed to demonstrate the feasibility
and effectiveness of the derived results.
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1. Introduction

With the rapid development of fractional derivative theory, many fractional-order models
have been newly built by using fractional-order differential equations [1–6]. In contrast with
the integer-order cases, the heredity and memory of various processes are consistent with
fractional-order models. For example, the recent works have displayed that the dynami-
cal behaviors of pyramidal neurons can be described accurately based on fractional-order
differentiation [6]. Accordingly, the application of the fractional derivative has gained in-
creasing attention in recent years. It should be mentioned that the corresponding experiments
have demonstrated that the practical capacitors, as for electronic circuits, are with the char-
acteristics of fractional order. In combination with Kirchhoff’s current law, one can obtain
the voltage current relation, i.e., i(t) = C dαV(t)

dtα , C0Dα
t V(t) [5,7], and thus, the so-called

FNNs are established. Thereinto, α denotes the posses of capacitors. Compared with the
traditional integer-order neural networks [8], it is more useful and significant to imitate the
behavior of brain neurons. At the same time, time delays are unavoidable in the transmission
channels, which will cause oscillation or chaos in practical applications [9]. For instance,
when choose the time delays as bifurcation parameters, the Hopf bifurcation and stability
issues have been addressed for complex-valued FNNs by using the Laplace transforms and
fractional-order differential equations theory [10]. Therefore, it is very important to research
the dynamical analysis of delayed FNNs and a lot of excellent results such as stability [11–14],
global stabilization [15–17], synchronization [18,19], and dissipativity [20,21] have been
well reported.

Notice that the published results are obtained in a perfect communication environ-
ment. That is, the control input is unlimited. For instance, the µ-type synchronization
control problem has been discussed for a type of FNNs by designing a linear feedback
controller [22]. The global stabilization problem has been addressed for FNN based on
the comparison principle and positive-system-dependent method [23]. In addition, the
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adaptive synchronization behavior has been solved for FNNs by designing the adaptive
quantized control law [18]. Nevertheless, the control input is usually restricted owing to the
limitation of amplification capacity and switching frequency of the applied amplification
circuits [24–27]. As such, it is important to consider the stability issue for delayed FNNs
in the presence of actuator saturation. At present, two useful approaches, i.e., polytopic
representation approach [24,25] and sector model approach [26,27], have been proposed
to deal with the actuator saturation problem. For example, the local stabilization issue
has been solved for integer-order memristive neural networks by employing discrete-time
and continuous-time Lyapunov theories [26]. Furthermore, an adaptive control method
has been studied for a type of robotic manipulators with input saturation in view of the
Lyapunov–Krasovskii functional method [28]. Although the above-mentioned analysis
techniques are well used to guarantee the stability of integer-order systems, these methods
cannot be applied to fractional-order systems, since they are characterized in the form of
fractional-order differential equations [29,30]. Accordingly, it is challenging to investigate
the stabilization issue of delayed FNNs with actuator saturation. This is the first motivation.

As is well known, it is impossible to achieve the global stabilization for delayed FNNs
under the influence of actuator saturation [31,32]. As such, a key issue is how to estimate
the safety working area, i.e., admissible initial values, as large as possible. It means that
the local stability can be achieved if the selected initial values belong to the safety working
area. To this end, the corresponding convex optimization methods have been used to solve
this problem. Notice that the premise of using these optimization conditions is that the
stability conditions are given by LMIs. Nevertheless, most of the above results, as for
fractional-order systems, are algebraic conditions rather than LMIs-based conditions. The
algebraic conditions of exponential stability and synchronization, via impulsive control,
have been obtained for fractional-order systems [11]. The algebraic conditions of finite-
time stability, by using Gronwall’s inequality method, have been developed for delayed
fractional-order systems with nonlinear perturbation [14]. Furthermore, the algebraic
conditions of stabilization have been established for delayed FNNs with bidirectional asso-
ciative memory by employing Barbalat lemma and some fractional-order inequalities [17].
Namely, these used analysis techniques cannot be applied to establish convex optimization
schemes. To this end, in recent years, some LMIs-based stability techniques have been
proposed for fractional-order systems. For example, the LMIs-based conditions of global
stability and synchronization have been proposed for FNNs based on the fractional-order
Lyapunov method [19]. In addition, the LMIs-based conditions of local Mittag–Leffler
stabilization have been developed for FNNs subject to actuator saturation, and the corre-
sponding LMIs-based optimization schemes have been derived [33]. However, the applied
analysis methods are no longer applicable because the time delay is considered in this paper.
Accordingly, how to derive the corresponding convex optimization schemes is an urgent
question in the presence of the time delay and actuator saturation. Before this, three core
problems need to be solved: (1) how to design feedback controller gain against actuator
saturation; (2) how to obtain the LMIs-based stability conditions under the influence of
time delay; and (3) based on (2), how to design convex optimization schemes to minimize
the actuator costs and enlarge the region of admissible initial values. These provide the
second motivation.

In order to answer the previous discussions and motivations, the local stabilization of
delayed FNNs is investigated suffer from actuator saturation. The main works are included
as follows:

(1) According to the feature of actuator saturation, a dead-zone nonlinear function is
used to design the feedback control gain matrix from the saturation function. Then, a
novel closed-loop model is derived, which can contribute to the stability analysis.

(2) In view of the fractional-order Lyapunov theory and the estimation technique of
Mittag–Leffler function, an LMIs-based stability condition is derived for the closed-
loop systems. On this basis, two optimization schemes, by applying convex optimiza-
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tion techniques, are respectively proposed to enlarge the region of admissible initial
values and minimize the actuator costs.

In this paper, Table 1 shows some useful notations.

Table 1. Notations and Descriptions.

Notation Description

diag(· · · ) a block diagonal matrix

LMIs linear matrix inequalities

E > 0 E is a positive
(or E ≥ 0) definite (or semi-definite) matrix

ET(or E−1) transpose (or inverse) of matrix E

∗ the symmetric element

E(i) the i-th row of matrix E

λmax(E) the maximum eigenvalue of matrix E

0 zero (or identity) matrices
(or I) of appropriate dimensions

2. Preliminaries and Problem Formulation

Consider the following n-dimensional delayed FNNs with input saturation as follows:

0Dα
t z(t) = −Dz(t) + M f(z(t)) + Wg(z(t− $)) + u(t), (1)

where z(t) = [z1(t), z2(t), · · · , zn(t)]T denotes the state vector. D = diag(d1, d2, · · · , dn) >
0, M = (mij)n×n and W = (mij)n×n are connection weight matrices. g(z(t− $)), f (z(t) are
the activation functions. The initial condition is denoted as z(s) = z(0), z ∈ [−$, 0]. $ is
the time delay. u(t) = sat(Kz(t)) denotes the saturation controller and K is the feedback
control gain. sat(Kz(t)) represents the saturated function defined by

sat(K(i)z(t)) = sgn(K(i)z(t))min
{
|K(i)z(t)|, u(i)

}
, i = 1, . . . , n,

with the saturation levels ui > 0.
A dead-zone nonlinear function ψ(Kz(t)) [24], aiming at handling the saturation term,

is defined as
ψ(Kz(t)) = Kz(t)− sat(Kz(t)).

Then, one rewrites system (1) as follows:

0Dα
t z(t) =− Dz(t) + M f (z(t)) + Wg(z(t− $)) + Kz(t)− ψ(Kz(t)). (2)

Assumption 1. The f j(·) and gj(·) are assumed to be monotonically non-decreasing and Lipschitz-
continuous; namely, there exist Lipschitz constants Fj and Gj such that

0 ≤
f j(γ)− f j(v)

γ− v
≤ Fj, 0 ≤

gj(γ)− gj(v)
γ− v

≤ Gj,

for j = 1, 2, · · · , n, γ, v ∈ R, γ 6= v.

Define a polyhedral set

Υ =
{

z ∈ Rn
∣∣∣ ∣∣(K(i) −Q(i))z

∣∣ ≤ u(i)

}
,
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where i = 1, . . . , n, Q ∈ Rn×n. Then, for any diagonal matrix N > 0, if z(t) ∈ Υ, the
following sector condition [24] holds

−ΨT(Kz(t))N[Ψ(Kz(t))−Qz(t)] ≥ 0. (3)

Definition 1 ([1]). The Caputo fractional derivative 0Dα
t x(t), Mittag–Leffler function are de-

fined as

0Dα
t x(t) =

1
Γ(1− α)

∫ t

0
(t− $)−αx′($)d$,

Eα,β(y) = Σk=∞
k=0

yk

Γ(kα + β)
,

where t ≥ 0, y ∈ C, 0 < α < 1, β > 0, and Γ(α) =
∫ +∞

0 e−ttα−1dt. 0 denotes the initial time.
x(t) is a function. When β = 1, it has Eα,β(y) = Eα(y).

Definition 2. The closed-loop system (1) is said to be locally stable if for any trivial solutions z(t)
with initial values z(s) ∈ η(P), s ∈ [−$, 0], belonging to the set η(P) = {z ∈ Rn : zT Pz ≤ 1},
such as

lim
t→+∞

||z(t)||2 = 0,

where P > 0.

Lemma 1 ([34]). Consider a matrix P > 0, one has

1
2 0

Dα
t zT(t)Pz(t) ≤ zT(t)P0Dα

t z(t), ∀α ∈ (0, 1],

where z(t) ∈ Rn denotes a continuous function.

Lemma 2 ([29]). For 0 < α < 1, −∞ < t < +∞, one has

Eα(t) > 0,
d
dt

Eα,α(t) > 0, Eα,α(t) > 0.

Lemma 3 ([24]). For matrix R > 0, a non-singular matrix J, and R̃ = JT RJ, if[
R0 I
I J + JT − R̃

]
> 0,

then R < R0 holds.

3. Main Results

Theorem 1. For given parameters δ > 0, ε > 0, and n × n-matrices Q, K, if there exists an
n× n-matrix P > 0, and diagonal matrices N > 0, U1 > 0, U2 > 0, such that the following
LMIs (4)–(6) are satisfied

Θ =


Θ11 0 PM + FU1 PW −P + QT N
∗ −εP 0 GU2 0
∗ ∗ −2U1 0 0
∗ ∗ ∗ −2U2 0
∗ ∗ ∗ ∗ −2N

 < 0, (4)

[
P (K(i) −Q(i))

T

∗ u2
(i)

]
≥ 0, (5)

δ− ε > 0, (6)
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where Θ11 = −PD − DP + PK + KT P + δP, G = diag(G1, G2, . . . , Gn),
F = diag(F1, F2, . . . , Fn). Then, for any initial values z(s) ∈ η(P), s ∈ [−$, 0], η(P) =
{z ∈ Rn : zT Pz ≤ 1}, the closed-loop system (2) is locally asymptotically stable.

Proof. Choose the auxiliary Lyapunov function as follows:

V(t) = zT(t)Pz(t).

Using Lemma 1, one has

0Dα
t V(t) ≤ 2zT(t)P0Dα

t z(t). (7)

Based on the characteristics of g(z(t− $)), f (z(t)), for diagonal matrices U1 > 0, U2 >
0, one can obtain

0 ≤ 2
[
zT(t) f T(z(t))

][0 FU1
2

∗ −U1

][
z(t)

f (z(t))

]
. (8)

0 ≤ 2
[
zT(t− $) gT(z(t− $))

][0 GU2
2

∗ −U2

][
z(t− $)

g(z(t− $))

]
. (9)

Based on (2), (3), and (7)–(9), one has

0Dα
t V(t) ≤ 2zT(t)P[−Dz(t) + M f(z(t)) + Wg(z(t− $)) + Kz(t)− ψ(Kz(t))]

− 2ψT(Kz(t))Nψ(Kz(t)) + 2ψT(Kz(t))NQz(t) + 2 f T(z(t))U1Fz(t)

− 2 f T(z(t))U1 f (z(t)) + 2gT(z(t− $))U2Gz(t− $)− 2gT(z(t− $))U2g(z(t− $))

+ δzT(t)Pz(t)− εzT(t− $)Pz(t− $)− δV(t) + εV(t− $)

= ρT(t)Θρ(t)− δV(t) + εV(t− $),

where ρ(t) = [zT(t), zT(t− $), f T(z(t)), gT(z(t− $)), ψT(Kz(t))]T .
By using (4), one has

0Dα
t V(t) ≤ −δV(t) + εV(t− $)

≤ −δV(t) + ε sup
t−$≤ξ≤t

V(ξ).

Thus, for a non-negative function κ(t), it yields

0Dα
t V(t) + κ(t) = −δV(t) + ε sup

t−$≤ξ≤t
V(ξ). (10)

By solving (10), one can obtain

V(t) =
∫ t

0

Eα,α(−δ(t− s)α)[ε sups−$≤ξ≤s V(ξ)− κ(s)]

(t− s)1−α
ds + V(0)Eα(−δtα). (11)

Owing to κ(t) ≥ 0, from Lemma 2, it yields

V(t) ≤ ε sup
−$≤ξ≤t

V(ξ)
∫ t

0

Eα,α(−δ(t− s)α)

(t− s)1−α
ds + V(0)Eα(−δtα).
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Notice that p(t) ,
∫ t

0
Eα,α(−δ(t−s)α)

(t−s)1−α ds = tαEα,1+α(−δtα). Thus, by using the asymptotic

expansion [1], one can obtain 0 < p(t) < 1
δ , 0 < Eα(−δtα) < 1. Then, one has

V(t) ≤ V(0) +
ε

δ
sup
−$≤ξ≤t

V(ξ).

Combined with (6) and the Lemma 2.1 in [30], it can be derived that

V(t) ≤ δ

δ− ε
V(0) + M0, t > 0,

where M0 = sup−$≤ξ≤0 V(ξ). Hence, V(t) is bounded in t ∈ [0,+∞), that is, V(t) ≤
δ

δ−ε V(0) + M0 = Y0. Obviously, the supremum R(t) = supξ∈[t,+∞) V(ξ) exists and de-
creases monotonically for any t ∈ [0,+∞). Aiming at deriving the upper bound of V(t),
t→ +∞, from (11), it can be obtained that

V(t) ≤ ε
∫ t

0

Eα,α(−δ(t− s)α) sups−$≤ξ≤s V(ξ)

(t− s)1−α
ds + V(0)Eα(−δtα). (12)

Set limt→+∞ R(t) = R. Then, there exists t1 > 0 such that supξ∈[t1,+∞) V(ξ) < R + ι1,
t > t1. It should be mentioned that limt→+∞(t− $) = +∞; then, there also exists t2 ≥ t1
such that t− $ ≥ t1 for any t ≥ t2 > 0. Thus, one has

sup
ξ∈[t−$,t]

V(ξ) ≤ sup
ξ∈[t1,t]

V(ξ) ≤ R + ι1, t ≥ t2.

Meanwhile, for any given ι2, it has

lim
t→+∞

sup
s∈[t,+∞)

∫ t2

0

Eα,α(−δ(s− r)α)

(s− r)1−α
dr ≤ lim

t→+∞
sup

s∈[t,+∞)

t2

(s− t2)1−α
< ι2.

From the above analysis, it yields

lim
t→+∞

sup
s∈[t,+∞)

∫ s

0

Eα,α(−δ(s− r)α) supr−$≤ξ≤r V(ξ)

(s− r)1−α
dr

= lim
t→+∞

sup
s∈[t,+∞)

∫ t3

0

Eα,α(−δ(s− r)α) supr−$≤ξ≤r V(ξ)

(s− r)1−α
dr

+ lim
t→+∞

sup
s∈[t,+∞)

∫ s

t3

Eα,α(−δ(s− r)α) supr−$≤ξ≤r V(ξ)

(s− r)1−α
dr

≤ Y0 lim
t→+∞

sup
s∈[t,+∞)

∫ t3

0

Eα,α(−δ(s− r)α)

(s− r)1−α
dr

+ (R + ι1) lim
t→+∞

sup
s∈[t,+∞)

∫ s

t3

Eα,α(−δ(s− r)α)

(s− r)1−α
dr

≤ Y0ι2 +
R + ι1

δ
.

On the other hand, limt→+∞ Eα(−δtα) = 0. Accordingly, there exists t3 > 0 for any
given ι3 > 0 such that

V(0)Eα(−δtα) ≤ ι3, t ≥ t3.

Combined with inequality (12), one has
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R = lim
t→+∞

sup
s∈[t,+∞)

V(s) ≤ ι3 + ε

(
Y0ι2 +

R + ι1
δ

)
,

which means that R ≤ ι, where ι = δι3+εδY0ι2+ει1
δ−ε . That is to say, for any given ι > 0, there

exists t∗ = t∗(M0, ι) > 0 such that

V(t) ≤ ι, t ≥ t∗.

Then, it yields
V(t) ≤ 0, t→ +∞.

Thus, we have
lim

t→+∞
||z(t)||2 = 0.

Accordingly, the closed-loop system (2), for any initial values z(s) ∈ η(P), s ∈ [−$, 0],
is locally asymptotically stable.

If we do not take the time delay into account, system (2) is reduced to

0Dα
t z(t) = −Dz(t) + M f (z(t)) + Kz(t)− ψ(Kz(t)). (13)

Then, we can derive the next corollary.

Corollary 1. For given n× n-matrices Q, K, a parameter δ > 0, and if there exists an n× n-matrix
P > 0, and diagonal matrices N > 0, U1 > 0, such that the LMIs (5), (14) are satisfied

Θ =


Θ11 0 PM + FU1 −P + QT N
∗ −εP 0 0
∗ ∗ −2U1 0
∗ ∗ ∗ −2N

 < 0, (14)

where Θ11 = −PD − DP + PK + KT P + δP, F = diag(F1, F2, . . . , Fn). Then, for any initial
values z(0) ∈ η(P), η(P) = {z ∈ Rn : zT Pz ≤ 1}, the closed-loop system (13) is locally
asymptotically stable.

4. Optimization Schemes

Scheme A: It is worth noting that the maximization of the estimation set of admissible
initial values is equivalent to the minimization of the value of λmax(P). Thus, for given
parameters δ > 0, ε > 0, u(i) > 0 and n× n-matrices Q, K, the aim is to obtain the region of
admissible initial values by employing the next optimization scheme:

min µ
subject to

(4)–(6) and[
µI I
I 2I − P

]
> 0.

According to Lemma 3, the above inequality guarantees λmax(P) < µ.
Scheme B: In general, the lower saturation level means less actuator cost. Thus, for

given parameters δ > 0, ε > 0, n× n-matrix Q, and the set η(P) = {z ∈ Rn : zT Pz ≤ 1},
denote ū(i) = u2

(i), the aim is to minimize the cost of actuators and obtain the gain matrix K
by utilizing the next optimization scheme:

min ∑n
i=1 ξiū(i)

subject to
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(4), (6) and[
P (K(i) −Q(i))

T

∗ ū(i)

]
≥ 0,

where ξi > 0 represent the weights on the actuator costs in the constitution of the cost function.

Remark 1. For the delayed FNNs with actuator saturation, it is necessary to enlarge the set of
admissible initial values. In addition, reducing the actuator cost has always been a matter of concern.
Accordingly, we transform the presented theoretical condition in Theorem 1 into LMIs-based convex
optimization problems to expand the set of admissible initial values and minimize the actuator
costs, respectively.

Remark 2. In contrast with some previous results [15–17], the main challenge is how to build
the LMIs-based stability criteria (2) when taking the actuator saturation into account. A function
ψ(Kx(t)), aiming at handling the effects of saturation term, is especially introduced to obtain

controller K from sat(Kz(t)). Then, the set Υ =
{

z ∈ Rn
∣∣∣ ∣∣(K(i) −Q(i))z

∣∣ ≤ u(i)

}
is employed

to keep the authenticity of saturation phenomenon. On this basis, the inequality (5) is established
when η(P) = {z(t) ∈ Rn : zT(t)Pz(t) ≤ 1}. Finally, by using sector condition, fractional-order
Lyapunov theory, and the Mittag–Leffler function estimation technique, an LMIs-based criterion is
derived for delayed FNNs subject to actuator saturation.

Remark 3. In contrast with the recent results [33], the technique’s difficulty lies in studying the
stability of FNNs with time delay. In [33], owing to the absence of time delay, it is very easy to,
based on asymptotic expansion theory [1], derive the local Mittag–leffler stability of FNNs without
time delay. Nevertheless, when it comes to time delay, such a method is invalid to this paper. To
this end, the piecewise integral and Mittag–Leffler function estimation techniques are co-applied
to guarantee the local stability of the closed-loop FNNs with time delay. As such, the obtained
conclusions can improve the published works in [33].

5. Numerical Examples

Example 1. Consider a two-dimensional delayed FNNs (1) with D = diag(1, 1), M =

[
1.7 1.5
0.1 1.7

]
,

W =

[
−1.5 0.1
0.1 −1.5

]
, α = 0.5, f j(zj) = 1

2 (|zj(t) + 1| − |zj(t) − 1|), gj(zj(t − $)) =

1
2 (|zj(t − $) + 1| − |zj(t − $) − 1|), j = 1, 2, $ = 1. By simple calculation, we have F =

G = diag(1, 1). Then, the open-loop system state with the initial value z(s) = (0.9,−0.3)T ,
s ∈ [−1, 0], is shown in Figure 1. Take δ = 2.0, ε = 1.8 such that δ− ε > 0; then, the simulation
results based on optimization scheme A and scheme B are given as follows.

I. Optimization scheme A for Example 1

Select u(i) = 7, i = 1, 2, K =

[
−7 −0.1001
−0.61 −6

]
, Q =

[
−0.01 −0.101
−0.02 −0.09

]
. Then,

based on the optimization scheme A, one has µ = 1.0314, N =

[
5.9576 0

0 9.8954

]
, U1 =[

2.2848 0
0 3.2104

]
, U2 =

[
0.9083 0

0 0.9893

]
. The largest set of admissible initial values is

solved as

η(P) = {z ∈ Rn : zT
[

0.9977 −0.0149
−0.0149 1.0229

]
z ≤ 1},

which is displayed in Figure 2. It is easy to see that the initial value z(s) = (0.9,−0.3)T , s ∈ [−1, 0],
belongs to η(P).
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Figure 1. Response of the open-loop system state for Example 1.
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Figure 2. The set of admissible initial values for Example 1.

Based on the obtained parameters, the simulation results about the trajectories of the system
state z(t) and the controller u(t) are displayed in Figure 3. We can find that the closed-loop
system (2) can achieve the asymptotical stability with the designed saturating controller.
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Figure 3. Trajectories of (a): z(t); (b): u(t) of Example 1 based optimization scheme A.

II. Optimization scheme B for Example 1

Take the set as η(P) = {z ∈ Rn : zT
[

1 0
0 1

]
z ≤ 1} and select ξi = 1, i = 1, 2,

Q =

[
−0.01 −0.101
−0.02 −0.09

]
. Then, based on the scheme B, one can obtain u(1) =

√
8.0131 =

2.8307, u(2) =
√

7.2459 = 2.6918, N =

[
9.8998 0

0 10.3512

]
, U1 =

[
2.2752 0

0 3.0646

]
,

U2 =

[
0.9961 0

0 1.0235

]
, and the control gain matrix K =

[
−2.7772 −0.6975
−0.6165 −2.7149

]
. From

Figure 4a,b, we can find that the closed-loop delayed FNNs (2) can achieve the asymptotical stability
with the obtained saturating controller.
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Figure 4. Trajectories of (a): z(t); (b): u(t) of Example 1 based on optimization scheme B.

Example 2. Consider a three-dimensional delayed FNNs (1), D = diag(1, 1, 1),

M =

 0 8 0
1 0 1
0 −11 1

, W =

 2 0 0
0.2 −0.1 0
9 0 0.1

, α = 0.99, f j(zj) = tanh(zj), gj(zj(t −

$)) = tanh(zj(t− $)), j = 1, 2, 3, $ = 3. By simple calculation, one has F = G = diag(1, 1, 1).
Figure 5 shows the evolution of the system (2) without controller when z(s) = (−0.6, 0.3, 0.8)T ,
s ∈ [−3, 0]. Take δ = 1.2, ε = 0.8 such that δ− ε > 0; then, the simulation results are displayed
in the following.
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Figure 5. Trajectory of the open−loop system state for Example 2.

I. Optimization scheme A for Example 2

Select K =

 −18 −0.1001 0.01
−0.61 −12 −0.02
−0.05 0.1 −13

, Q =

 −0.01 −0.101 −0.02
−0.02 −0.09 −0.01
−0.02 0.02 −0.08

,

u(i) = 15.6205, i = 1, 2, 3. Then, it yields µ = 1.6007,

N =

 10.4435 0 0
0 17.1171 0
0 0 8.2110

, U1 =

 13.3681 0 0
0 17.2440 0
0 0 0.2258

,

U2 =

 3.4473 0 0
0 0.1885 0
0 0 0.1408

,

and the region of admissible initial values (see Figure 6) is solved as

η(P) = {z ∈ Rn : zT

1.3508 0.0040 0.1242
0.0040 1.3736 −0.0181
0.1242 −0.0181 0.6956

z ≤ 1}.

In view of the derived control parameters, Figure 7a,b display the simulation results regarding
the trajectories of the system state z(t) and the controller u(t), respectively. From Figure 7a,b, it can
be found that the closed-loop system (2) can achieve the asymptotical stability by using the designed
saturating controller.
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Figure 6. The set of admissible initial values for Example 2.
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Figure 7. Trajectories of (a): z(t); (b): u(t) of Example 2 based on optimization scheme B.

II. Optimization Scheme B for Example 2

Take the set as η(P) = {z ∈ Rn : zT

1 0 0
0 1 0
0 0 1

z ≤ 1} and select ξ j = 1, j = 1, 2, 3,

Q =

 −0.01 −0.101 −0.02
−0.02 −0.09 −0.01
−0.02 0.02 −0.08

. Then, using optimization scheme B, one can obtain u(1) =

√
38.6229 = 6.2147, u(2) =

√
29.8080 = 5.4597, u(3) =

√
77.7384 = 8.8169,

N =

 11.2186 0 0
0 9.9823 0
0 0 11.5601

, U1 =

 10.1982 0 0
0 17.7403 0
0 0 1.0263

,

U2 =

 3.2529 0 0
0 0.1516 0
0 0 0.1460

,
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and the control gain matrix K is solved as

K =

 −5.7046 −2.5859 −0.1582
−2.5049 −4.4700 2.0992
−0.1582 2.1292 −8.6398

.

As displayed in Figure 8a,b, it is easy to see that the response of closed-loop delayed FNNs (1)
asymptotically converge to origin with the obtained controller. From the above analysis, the local
stabilization can be successfully achieved for delayed FNNs subject to actuator saturation.
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Figure 8. Trajectories of (a): z(t); (b): u(t) of Example 2 based on optimization scheme B.

6. Conclusions

In this paper, the local stabilization problem is investigated for a class of delayed FNNs
with actuator saturation. To obtain feedback control gain matrix, the dead-zone nonlinear
function is used to deal with the saturation term. To derive the relevant stability results,
the fractional-order Lyapunov theory and estimation technique of Mittag–Leffler function
are utilized to establish an LMIs-based stability condition. To minimize the actuator costs
and enlarge the region of admissible initial values, the convex optimization techniques
are applied to develop two convex optimization schemes. Simulation results display that
the proposed control scheme can guarantee the local stabilization for delayed FNNs with
actuator saturation. In the future, the semi-global stabilization issue will be discussed
for FNNs with actuator saturation and incommensurate orders. Nevertheless, two core
issues are required to be answered: (1) How do we establish a fractional-order Lyapunov
function by employing the pseudo-state variables? (2) How do we derive the fractional
order α-dependent optimization schemes by using the Riccati equation? In future research,
we will discuss these topics.
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Abbreviation
The following abbreviation is used in this manuscript:

FNNs fractional-order neural networks
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