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Abstract: Wood density is a key indicator for tree functionality and end utilization. Appropriate
chemometric methods play an important role in the successful prediction of wood density by visible
and near infrared (Vis-NIR) spectroscopy. The objective of this study was to select appropriate
pre-processing, variable selection and multivariate calibration techniques to improve the prediction
accuracy of density in Chinese white poplar (Populus tomentosa carriere) wood. The Vis-NIR spectra
were de-noised using four methods (lifting wavelet transform, LWT; wavelet transform, WT; mul-
tiplicative scatter correction, MSC; and standard normal variate, SNV), and four variable selection
techniques, including successive projections algorithm (SPA), uninformative variables elimination
(UVE), competitive adaptive reweighted sampling (CARS) and iteratively retains informative vari-
ables (IRIV), were compared to simplify the dimension of the high-dimensional spectral matrix. The
non-linear models of generalized regression neural network (GRNN) and support vector machine
(SVM) were performed using these selected variables. The results showed that the best prediction
was obtained by GRNN models combined with the LWT and CARS method for Chinese white poplar
wood density (R2

p = 0.870; RMSEP = 13 Kg/m3; RPDp = 2.774).

Keywords: Vis-NIR spectroscopy; wood density; spectral pre-processing; chemometrics

1. Introduction

Wood is a porous, complex and heterogeneous organic material. Changes in wood den-
sity result in structural variations at different scales. These molecular, cellular and/or organ
variations are strongly associated with the mechanical, physiological and morphological
properties of wood [1–3]. Thus, the accurate prediction of wood density is an important en-
deavor for the maximization of utility. However, wood density varies with site, tree species
and within trees [4]. For a specific tree, there exist differences in density among different
organs such as branches, trunk and roots [5]. In this situation, it is too time-consuming and
expensive to predict wood density with the traditional density-measurement techniques,
namely gravimetric means measured in the laboratory. Therefore, a simple, rapid and
non-destructive method is needed for forestry researchers and managers.

Many studies have been conducted to predict wood properties using near infrared
(NIR) spectroscopy [6]. This technique is rapid, cost-effective and non-destructive and can
make up for the shortcomings of traditional methods, especially when a large number of
samples are required. Near infrared energy causes vibrational excitation of C–H, N–H,
O–H, and C=O groups of wood samples, and NIR spectra can be translated into structure
and composition information using chemometric tools [7,8].
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Chemometrics is a technique of extracting useful information from chemical data using
statistical and mathematical methods [9]. The main applications of chemometric tools in
spectroscopy include multivariate calibration modeling and pattern recognition [10]. Spec-
tra pre-processing contain various methods on de-noising and dimensionality reduction.
Frequently used de-noising methods include smoothing, multiplicative scatter correction
(MSC), wavelet transform (WT) and derivation. Some variable selection algorithms such
as successive projections algorithm (SPA), genetic algorithm (GA) and iteratively retains
informative variables (IRIV) can effectively extract correlation information and simplify
high-dimensional spectral dimensions [11–14]. For multivariate calibration models, partial
least squares (PLS) and support vector machine (SVM) are the most commonly used linear
and non-linear method, respectively [15,16]. Thus, the selection of appropriate chemomet-
rics is becoming important because model choice will impact prediction performance.

Many comparisons of different chemometric techniques can be found in the scientific
literature. For example, Chen and Li found that a modified random frog (MRF) method com-
bined with Gaussian process regression (GPR) outperformed: random frog (RF), successive
projections algorithm (SPA) and competitive adaptive reweighted sampling (CARS). The
combined MRF and GPR methods led to a better prediction of wood moisture content [17].
Likewise, after a comparison was performed among various variable selection methods
including SPA, CARS, genetic algorithm (GA) and Monte Carlo-uninformative variable
elimination (MC-UVE), Liang et al. [18] revealed that the CARS method obtained higher
accuracy for the estimation of holocellulose and lignin contents for various wood species.
It can be found that none of the chemometric methods can obtain the best performance for
each application [19].

This study aimed to conduct a comparison of various chemometrics, including de-
noising, variables selection methods and calibration models. We then strived to select
the most suitable method for improving the prediction accuracy of density in Chinese
white poplar (Populus tomentosa carriere) samples. Our specific objectives were as follows:
(1) to investigate the optimal de-noising method for Chinese white poplar Vis-NIR spectra
among lifting wavelet transform (LWT), WT, MSC and standard normal variate (SNV);
(2) to explore the important wavelength variables to predict wood density using four
variable selection methods (SPA; uninformative variables elimination, UVE; CARS; and
IRIV); (3) to compare the performance of the non-linear models (GRNN and SVM) based
on the selected variables.

2. Materials and Methods
2.1. Samples Preparation

Five natural Chinese white poplar trees (Populus tomentosa carriere) were harvested
from the Jinsha forest farm in Qitaihe City, Heilongjiang Province, China (131◦08′–131◦21′ E,
45◦44′–45◦53′ N). The study area has Temperate Continental monsoon climate and an
annual precipitation range between 530 and 550 mm. The age of these trees was from 42
to 58 years. Trees heights ranged from 22.4 to 23.3 m and diameter at breast height varied
from 20.9 to 35.6 cm. Five cm disks were made from each tree, with the distance of the
interval 2 m from the breast height (1.3 m) to the top of the stem. Then, the disks were
divided into 2 cm strip samples from the bark, through the pith and to the opposite bark,
and then they were divided into cubes. A total of 87 cube samples with dimensions of
2 cm (longitudinal), 2 cm (radial) and 2 cm (tangential) were used for spectra collection
and model calibration.

As the cross-section of wood samples contain growth rings, wood rays, heartwood/
sapwood and many other property parameters, the cross-section of wood samples was
used for analysis [20]. Before spectral collection, the cross-sections of the samples were
polished with an electric plane to remove the influence of surface roughness. Additionally,
the color of the heartwood was slightly darker than that of the sapwood. A simple random
sample method was employed to divide the calibration (65 samples) and prediction set
(22 samples) populations.
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2.2. Vis-NIR Spectra Collection and Density Measurement

The Vis-NIR spectra of Chinese white poplar wood were obtained using NIR spec-
trometer (LabSpec Pro FR/A114260, Analytical Spectral Devices, Inc., Boulder, CO, USA).
The whole wavelength range was from 350 to 2500 nm, with a spectral resolution of
3 nm@700 nm, 10 nm@1400/2100 nm. The number of scanning was 30 and a spectrum was
automatically generated. The NIR spectrometer was preheated for 30 min before spectra
collection to allow for stabilization. The spectrum was collected for each sample on the
cross section face using a fiber-optic probe after finishing with a white reference collection.
In order to contain the total information of the cross-section, a random sampling point from
heartwood and sapwood was selected for spectral collection from two cross-sections, and
the average spectrum was regarded as the raw spectrum of each sample. The raw Vis-NIR
spectra were reduced to between 350 and 2397 nm and were used to analyze because of
the noise at the edges of the spectra. The density of the wood samples was measured
according to GB/T 1933–2009 (ISO 3131: 1975, Wood-Determination of density for physical
and mechanical tests, MOD). The moisture content of the samples ranged from 38% to 64%
for spectra collection and density determination.

2.3. Spectral Data Analysis
2.3.1. Pre-Processing

The collected Vis-NIR spectra usually contained some noise or interference informa-
tion, such as electrical noise, background noise, scatting, etc. [21]. To eliminate the influence
of noise and further improve the signal-to-noise ratio, several pre-processing algorithms
including LWT, WT, MSC and SNV were employed. LWT and WT can improve the signal-
to-noise ratio [22]; MSC is able to remove scattering variation caused by the distribution
and size of particles [23]; and SNV has similar effects with MSC.

The wood density models with these four pre-processing methods were built based on
PLS regression, and the optimal pre-processing method was determined by the performance
of the PLS models. The PLS technique has been widely applied in the multivariate statistical
analysis with the advantage of robust prediction. However, the linear relationships between
spectral variables and properties can be achieved by the PLS method [24]. It compresses
the data by selecting statistically important latent variables (LVs). The leave-one-out cross-
validation procedure was employed to evaluate the performance of the calibration models.
In this study, the number of Vis-NIR spectral wavelength variables (2048 data points) was
larger than that of samples (87). Therefore, it is suitable to use the PLS algorithm as a
calibration model between pre-processed spectral data and the measurement values of
Chinese white poplar wood density. LWT and WT were conducted using Matlab R2010b
(MathWorks, Natick, MA, USA). MSC, SNV and PLS were implemented in The Unscrambler
V10.4 (CAMO Software AS, Oslo, Norway).

2.3.2. Characteristic Wavelengths Selection

With the rapid development of modern spectrometers, a high-dimensional spectral
matrix can be obtained, which increases the complexity and time of computation. Thus,
after the optimal pre-processing method was obtained, four variable selection methods,
namely, SPA, UVE, CARS and IRIV, were employed to simplify the dimensions of the
spectral matrix and address “the curse of dimensionality” [25]. These four variables
selection methods were also conducted in Matlab R2010b.

2.3.3. Establishment of Vis-NIR Calibration Models

The optimal pre-processing and variable selection methods were determined by the
results of the PLS calibration and validation models. In order to better analyze the rela-
tionship between the selected characteristic wavelengths and measured density values,
two non-linear calibration models of GRNN and SVM were adopted to build prediction
models. For the parameters C and g of SVM models, particle swarm optimization (PSO)
was applied to search for the optimal parameter values.
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The predicted wood density values from different models vs. the measured values
were evaluated by the following diagnostics: coefficient of determination (R2), root mean
square error (RMSE) and ratio of performance standard deviation (RPD). Generally, a good
predictive model was considered to be obtained with large values of R2 and RPD and small
RMSE values [26]. RPD values indicate the predictive ability of prediction models, where
values more than 3 indicate that the model is excellent for prediction, a good prediction
will be obtained when RPD values are between 2.5 and 3, RPD values from 2 to 2.5 indicate
that the model can be used for prediction and models are not usable when RPD values less
than 1.5 [27].

2.4. Overview of Optimization of the Wood Density Model

An appropriate chemometric method is essential for near infrared spectral data analy-
sis. It is well known that spectra noise, “curse of dimensionality” and calibration models
selection are critical for improving the performance of NIR analysis. In this study, four
spectral de-noising techniques (LWT, WT, MSC and SNV) were performed for Chinese
white poplar wood spectra. The optimal pre-processing method was determined based on
the performance of the PLS models. Then, SPA, UVE, CARS and IRIV were employed to
address “the curse of dimensionality”. After the optimal de-noising method and variable
selection method were obtained, two non-linear calibration models were used to analyze
the relationship between these selected characteristic wavelengths and wood density. The
total optimization process is depicted in Figure 1.
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Figure 1. Steps of the optimization process.

3. Results
3.1. Descriptive Statistics of Wood Density

The boxplot of the measured density values is shown in Figure 2. The range of the
entire data set was from 608 to 782 Kg/m3 and the average density content was 696 Kg/m3.
The range of the calibration data set was larger than the prediction data set to ensure no
extrapolation. The distributions of the density values of the prediction set were well within
the calibration set. The standard deviation (SD) indicates the dispersion degree of the
sample set. It can be found that the SD and average values of the calibration and prediction
sets were similar, which indicated that the data set was representative.
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3.2. Comparison of Various Pre-Processing Methods

There exists noise in the spectrum curve due to the influence of background and
environment factors. In this situation, a spectral matrix with noise will results in the
decrease of model accuracy. Therefore, several pre-processing methods including LWT,
WT, MSC and SNV were adopted to remove noise before building models. The optimal
pre-processing method for Chinese white poplar wood spectra was determined by the
results of PLS models. The selection of latent variables (LVs) is a key parameter for PLS
models. The model will be over-fitted when the number of LV is too large. In contrast,
some useful information related wood samples may be removed when the LV number
is too small. Therefore, the minimum value of the prediction residual error sum squares
(PRESS) of internal cross-validation was used to determine the LVs number. As for LWT
and WT, the biorthogonal wavelet family (bior2.6) based on 5 decomposition level was used
to de-noise. Table 1 shows the PLS model’s results with various pre-processing methods.

Table 1. PLS model’s results with different pre-processing for the prediction of Chinese white poplar
wood density.

Pre-Processing Methods LVs Number
Calibration Set Cross-Validation

R2 RMSE (Kg/m3) R2 RMSE (Kg/m3)

Raw spectra 3 0.749 22 0.715 24
LWT 6 0.809 19 0.720 24
WT 3 0.748 22 0.721 24

MSC 4 0.646 26 0.522 32
SNV 4 0.654 26 0.540 31

As seen in Table 1, different results were obtained with various pre-processing methods.
The model accuracy of the calibration and cross-validation data set was decreased after
pre-processing with MSC and SNV methods. The reason may be that the samples were
polished using an electric plane and the difference in particle size or surface scatting is too
small. In terms of WT, although the performance of cross-validation was improved, the
R2 value of the calibration model was similar with other models used on the raw spectra.
Regardless of the calibration and cross-validation set, the best performance was achieved
when the LWT method was employed for the Vis-NIR spectra that was pre-processed. The
R2 values of the calibration and cross-validation sets were 0.809 and 0.720, respectively;
and the RMSE values of the calibration and cross-validation sets were 19 and 24 Kg/m3,
respectively. The spectrum curve with LWT processed is shown in Figure 3.
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Figure 3. Raw spectrum and LWT spectrum of a random sample.

It can be seen in Figure 3 that, for raw spectrum and LWT spectrum, the trends and
absorption peaks are the same except for the edges of the spectrum, which indicated that
the useful information related wood properties were maintained after the spectrum was
processed by LWT. Two significant absorption peaks were found around 1417 nm and
1633 nm, and they were related to the first overtone of C-H stretching vibration of lignin
and the O-H stretching of cellulose, respectively [28,29]. Combined with the results of the
PLS model, it was demonstrated that LWT had improved the model accuracy. Hence, the
spectra processed with the LWT method were used for further analysis.

3.3. Characteristic Wavelengths for Predicting Density

Two-dimensional (2D) correlation spectroscopy was adopted to analyze the correlation
between Vis-NIR spectral variables from 350 to 2397 nm. A high correlation coefficient (r)
value indicated that spectra exist with more collinearity and redundant information. The
2-D correlation spectra of wavelength variables are shown in Figure 4.
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As displayed in Figure 4, a relatively low correlation coefficient was achieved between
the visible and long-wave NIR spectral region. However, high correlations were obtained
around the wavelength range of 350–1000 nm and 1000–2500 nm, especially for adjacent
wavelength variables. This demonstrated that the Vis-NIR spectra of Chinese white poplar
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had multiple collinearity or redundant information, which increased the time, memory and
complexity for Vis-NIR modeling. In this study, the spectral region from 350 to 2397 nm
was used for model building and a total of 2048 spectral variables were contained. Hence,
four variable selection methods (SPA, UVE, CARS and IRIV) were employed to simplify the
dimensions of the spectral matrix. To better analyze these four variable selection methods,
the performance of PLS model using characteristic bands is shown in Table 2.

Table 2. The PLS models with various variable selection methods.

Methods Variable Numbers Percentage Decrease
Calibration Set Cross-Validation Set

R2 RMSE (Kg/m3) R2 RMSE (Kg/m3)

Full spectra 2048 0 0.749 22 0.715 24
SPA 64 96.88% 0.765 22 0.682 26
UVE 410 79.98% 0.679 26 0.667 26

CARS 23 98.88% 0.783 21 0.767 22
IRIV 16 99.22% 0.755 22 0.697 25

As shown in Table 2, the performance of the calibration and cross-validation models
were compared. It can be seen that different results were obtained based on the various
variable selection methods. This may be due to the fact that different selection strategies
among the SPA, UVE, CARS and IRIV methods and different wavelengths were achieved.
In terms of the IRIV method, although the percentage decrease in value of the selected
variables was higher than that of CARS, the calibration set and cross-validation accuracy
were worse than CARS with R2 of 0.755 and 0.697, respectively. In addition, as for SPA
and IRIV, the performance of the calibration set was slightly better than the model using
the full spectra; however, the cross-validation results were lower than those of full spectra.
This demonstrated that some informative variables were not selected or that some useful
variables were ignored.

Among these four variable selection methods, the model accuracy of the UVE pro-
cedure resulted in the lowest R2 and the highest RMSE values for the calibration and
cross-validation set. Moreover, the number of selected variables was more than others,
perhaps an indication of a model overfit. Regardless of the performance of calibration set
and cross-validation set, the model accuracy of CARS was better than SPA, UVE, IRIV and
full spectra. Additionally, the dimension of the spectral matrix was reduced from 2048 to
23 (Percentage decrease = 98.88%).

3.4. Prediction Accuracy of Non-Linear Models

In order to better analyze the performance of these selected variables, the GRNN and
SVM models were employed to analyze the non-linear relationship between the selected
wavelengths and wood density. For the SVM, particle swarm optimization (PSO) was used
to optimize SVM parameter values. These two non-linear models were inputted into the
prediction set as independent variables to analyze the prediction ability. The prediction
results of these two non-linear models are shown in Figure 5.
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As seen in Figure 5, regardless of the de-noising pre-processing of LWT, the GRNN
model achieved higher and lower RMSEP values when compared to the PSO-SVM model,
which indicated the effectiveness of the GRNN model in the prediction of Chinese white
poplar wood density. Additionally, in terms of the performance of de-noising for the
prediction set with LWT, as for the PSO-SVM model, the values were 0.708 and 0.757 for
raw spectra and spectra optimized by LWT, respectively, and the RMSEP values were
19 and 17 Kg/m3, respectively. However, the GRNN models had similar results with the
raw spectra, and its performance was better than that of PSO-SVM models and PLS models
with raw spectra (R2

p = 0.797, RMSEP = 96 Kg/m3). This indicated that original spectra can
be used to predict directly when the GRNN model with LWT de-noising was employed to
determinate Chinese white poplar wood density.

4. Discussion

Wavelength selection technique is a critical step to tackle the huge datasets with
hundreds or even thousands of variables in visible and near infrared spectral analysis.
In this study, four variable selection methods were employed to simplify the dimension
of Chinese white poplar wood spectra. This study demonstrated that CARS can be used
to better optimize characteristic wavelengths for wood density and thus achieve better
model accuracy in the prediction of Chinese white poplar wood density. Compared to
other methods with the same selection strategy, i.e., SPA, UVE, CARS, or a different (IRIV)
selection strategy, the CARS method obtained the best prediction accuracy of wood density,
and the spectral dimension was reduced from 2048 to 23. However, this is not consistent
with the results of the characteristic variables selection for wood density in our previous
study [30], in which UVE was better than CARS in the prediction of Siberian elm (Ulmus
pumila L.) wood density. Therefore, the distributions of the selected characteristic variables
for these methods were analyzed (Figure 6).
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It can be seen from Figure 6 that even though the selection strategy is the same for
SPA, UVE and CARS, different characteristic variables were selected for these methods.
In addition to UVE, other variable selection methods achieved a small amount of char-
acteristic variables related wood density information, and these selected variables were
mainly distributed in the visible and long-wave NIR region. For example, spectral vari-
ables were reduced from 2048 in the whole region to 23 and 16 with the CARS and IRIV
methods, respectively. In contrast, 410 variables were screened by UVE, and these selected
wavelengths were at the one end of spectrum curve (visible spectrum region). The distribu-
tions of selected variables are different from our previous study, which led to the different
optimization results for the same variable selection method.

According to the corresponding band assignment (Table 3), the bands located around
2338 nm, 2352 nm, 2380 nm, 2188 nm and 2330 nm were attributed to the C-H stretching of
cellulose and hemicellulose, while 2384 nm was associated with lignin. This demonstrated
that these selected variables play an important role in the prediction of Chinese white
poplar wood density, which is consistent with our previous results.

Table 3. The band assignment of these selected variables.

Wavelength (nm) Assignment

1660 Cellulose hydroxyls
2338, 2352, 2380 Cellulose [31–33]

2188 Cellulose hydroxyl–water
2330 Hemicellulose
2384 Lignin

Additionally, except for the difference of tree species and geographical origin, the
spectra of the different surfaces of samples also made contributions to the different optimal
variable selection method. The reason is that the surfaces of wood samples including the
cross-section, tangential and radial section have various wood characteristics due to the
difference in anatomical, chemical and physical properties. In this study, the spectra of the
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cross-section were employed for analysis. However, in terms of the characteristics of the
heartwood and sapwood, there also exist little variation in carbon content, with average
values of 41.980% and 41.199%, respectively. Therefore, the influence of various surfaces on
the spectra analysis should be compared in future studies

5. Conclusions

Appropriate chemometric methods including spectral pre-processing, variable selec-
tion and calibration models play an important role in the successful prediction of wood
density by visible and near infrared (Vis-NIR) spectroscopy. The impact of these factors
was discussed and the optimal combination of chemometric methods was determined.
For the prediction of Chinese white poplar wood density, the LWT-CARS-GRNN model
achieved the best prediction accuracy, and the spectral dimension was reduced from 2048
to 23. This study demonstrated that an appropriate chemometric method can simplify the
spectral matrix and improve model performance.
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