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Abstract: Edible oil blends are composed of two or more edible oils in varying proportions, which
can ensure nutritional balance compared to oils comprising a single component oil. In view of their
economical and nutritional benefits, quantitative analysis of the component oils in edible oil blends
is necessary to ensure the rights and interests of consumers and maintain fairness in the edible oil
market. Chemometrics combined with modern analytical instruments has become a main analytical
technology for the quantitative analysis of edible oil blends. This review summarizes the different
oil blend design methods, instrumental techniques and chemometric methods for conducting single
component oil quantification in edible oil blends. The aim is to classify and compare the existing
analytical techniques to highlight suitable and promising determination methods in this field.

Keywords: edible oil blends; sample design; instruments; chemometrics; quantitative analysis

1. Introduction

Edible oil is an important ingredient used for cooking and flavoring a wide range of
foods. Chemically speaking, edible oil not only provides nutrients, such as unsaturated
fatty acids and fat-soluble vitamins, but also offers some essential nutritional requirements
that cannot be endogenously produced by humans [1,2]. However, a single type of edible
oil cannot meet the requirements of functional and nutritional balance. Therefore, it is
common to mix two or more types of edible oils in different proportions to prepare edible
oil blends, which can effectively overcome the nutritional shortcomings of the single
oil types. Furthermore, the various fatty acids found in edible oil blends can provide
protection against some severe chronic illnesses, such as neurodegenerative, inflammation
and cardiovascular diseases [3]. Consequently, the practice of blending edible oils is
becoming increasingly common, with sales volumes of edible oil blends continuing to rise
in recent years.

Due to the different geographical sources, yields and nutritional values, the prices
of different edible oils can vary widely [4]. Conventional edible oils, such as soybean,
sunflower, olive, corn, and rapeseed oils, are most commonly utilized as the base oils for
edible oil blends as they are relatively cheap and readily available. On the other hand,
more unconventional edible oils, such as flaxseed, camellia and peony seed oils, have
higher nutritional value and unique flavors, thus are more expensive than conventional
edible oils. As a result of these large price variances between edible oils, some businesses
market their product with strong emphasis on the presence of the high-grade oil (which
is only present in small amounts) and omit the proportion of lower-grade oil [5], which
can be seen as misleading consumers. Due to the similar appearance of different oils and
the homogeneity of oil blends, the content of each oil cannot be distinguished visually.
Therefore, in order to protect the rights and interests of consumers and maintain a fair
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edible oil market, it is necessary to develop reliable quantitative detection methods for the
quantitative authentication of edible oil blends.

Spectroscopic-based techniques have the advantages of non-destructive testing, simple
operation, rapid analysis and high sensitivity [2], and have been widely used for quantify-
ing single component oil in edible oil blends. However, the spectra from different edible
oils can be difficult to distinguish due to the similarity in their components, making quanti-
tative analysis difficult to implement. Pairing spectroscopic techniques with chemometrics
can help solve this problem. The spectral matrix is processed by chemometric methods,
and multivariate calibration models are established between the spectral matrix and target
values to determine the content of the single component oil. A range of multivariate calibra-
tion methods, including multiple linear regression (MLR), principal component regression
(PCR), partial least square (PLS) regression and support vector regression (SVR), may be
used [6]. As the spectra matrix for model establishment usually contain some useless
information and hundreds of variables, preprocessing and variable selection methods are
used to improve model accuracy and robustness.

There have been several recent reviews covering the quality analysis of edible oils.
Salah et al. [2] reviewed different adulteration detection techniques for edible oils. Mahe-
sar et al. [7] presented an overview of infrared spectroscopy in combination with chemo-
metric techniques to determine the functional compounds in olive oil. Another review by
Ou et al. [8] summarized the advanced sensor methods used to detect adulteration of olive
oil, based on the different physical and chemical properties. Rohman et al. [9] reviewed the
application of infrared spectroscopy combined with chemometrics for the authentication
of various fats and oils. Thus, although specific spectroscopy techniques used for quality
detection of specific oil have been summarized by previous workers, no review focuses on
the quantitative analysis of single component oil in edible oil blends.

The aim of this paper was to review the existing analytical techniques for single com-
ponent oil quantification in edible oil blends, and to classify and compare these techniques
to find suitable and promising determination methods in this field. This review includes:
(1) investigating the main sample design methods used to produce oil blends; (2) summa-
rizing different instrumental techniques for measuring edible oil blends; (3) summarizing
the commonly used preprocessing, variable selection and multivariate calibration methods
used by current researchers.

2. Sample Design Methods

To establish and validate quantitative models for the analysis of single component
oil in edible oil blends, a certain number of oil blend samples must be prepared. If the
edible oil blends are directly purchased from a supermarket, it is difficult to determine the
proportion of each component oil. Therefore, in order to obtain oil blends with accurately
known compositions, almost all researchers use a sample design to obtain oil blend samples
by mixing together designated volumes or weights of pure oils. The general process for
single component oil quantification in edible oil blends is shown in Figure 1. First, the
purchased pure oils are used to prepare oil blend samples with different percentages of each
component oil, before the mixtures are characterized using various analytical instruments.
Following this, the obtained dataset is processed by chemometric methods to create a
quantitative model to predict the content of the component oil. In the quantitative analysis
of single component oil in edible oil blends, the difference among different analytical
techniques is the selection of instruments for signal measurement, while the oil blend
sample preparation for model establishment, chemometric methods and implementation
software are the same. Therefore, the cost of different analytical techniques varied with the
price of the different instruments.
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Figure 1. The general process for single component oil quantification in edible oil blends.

In this process, the first step is to design a sufficient number of oil blend samples.
Designing the proportions of each oil is more difficult compared to other situations, such as
solutions comprising a solvent containing different solute concentrations. However, for oil
blend samples, the sum of the oil contents in each sample must be 100%. . The maximum
percentage of each oil can be calculated according to d, which is 200/p. It indicates that the
percentage interval d is related to the number of samples m and number of oils p, while the
maximum percentage is only related to the number of oils p. The maximum percentage
of each oil for oil blends with a different number of component oils is provided in Table 1.
It can be seen that the maximum percentage of each oil decreases with the increase in the
number of component oils. In addition, the percentage of each oil in oil blends cannot
reach 100%, with the exception of binary oil blends. In order to reduce the linear correlation
between different component oils, the percentages of each oil is randomly distributed
(using Matlab or similar software) to obtain the percentage design table for each oil blend
sample under the constraint that the sum of oil percentages is 100.

Table 1. The maximum percentage of each oil for edible oil blends with different number of
component oils.

The Number of Component Oils Minimum Percentage Maximum Percentage

2 0 100
3 0 66.7
4 0 50
5 0 40
6 0 33.3
7 0 28.6
8 0 25
9 0 22.2
10 0 20

The second case is where the percentages are repeated, and the percentage of each oil
ranges from 0 to 100%. To design oil blend samples with equal intervals, the number of
samples is related to the percentage interval d and the number of oils p. According to d, the
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number of gradients contained in each oil is n = 100/d + 1, then the number of samples mn
for oil blends with a different number of component oils can be calculated. For a ternary
oil blend,

mn = ∑n
i=1 C1

i (1)

Similarly, for a quaternary oil blend,

mn = ∑n
j=1 ∑n−j

i=1 C1
i (2)

The repeat times P of different percentages for the same oil is P = mn − mn−1. It
should be noted that the decrease in the repeat times P corresponds to the increase in the
percentages for each oil. For example, assuming that the percentage interval d is 10, then
the number of gradients n is 11. Under this condition, the number of samples mn for ternary
oil blends is 66. The percentages of each oil in 66 samples of ternary oil blends are listed
in Table 2. The repeat times P for each oil of 0% is 11, for 10% is 10, and for 20% is nine.
This method is used by most researchers. However, in this case, the sample size increases
greatly with the decrease in the percentage interval d and the increase in the number of
oils p. Under the same conditions, there would be 286 samples needed for quaternary oil
blends, and 1001 samples needed for quinary oil blends.

Table 2. The percentages of each oil in ternary oil blends.

No. Oil 1 Oil 2 Oil 3 No. Oil 1 Oil 2 Oil 3 No. Oil 1 Oil 2 Oil 3

1 0 0 100 23 20 10 70 45 40 60 0
2 0 10 90 24 20 20 60 46 50 0 50
3 0 20 80 25 20 30 50 47 50 10 40
4 0 30 70 26 20 40 40 48 50 20 30
5 0 40 60 27 20 50 30 49 50 30 20
6 0 50 50 28 20 60 20 50 50 40 10
7 0 60 40 29 20 70 10 51 50 50 0
8 0 70 30 30 20 80 0 52 60 0 40
9 0 80 20 31 30 0 70 53 60 10 30
10 0 90 10 32 30 10 60 54 60 20 20
11 0 100 0 33 30 20 50 55 60 30 10
12 10 0 90 34 30 30 40 56 60 40 0
13 10 10 80 35 30 40 30 57 70 0 30
14 10 20 70 36 30 50 20 58 70 10 20
15 10 30 60 37 30 60 10 59 70 20 10
16 10 40 50 38 30 70 0 60 70 30 0
17 10 50 40 39 40 0 60 61 80 0 20
18 10 60 30 40 40 10 50 62 80 10 10
19 10 70 20 41 40 20 40 63 80 20 0
20 10 80 10 42 40 30 30 64 90 0 10
21 10 90 0 43 40 40 20 65 90 10 0
22 20 0 80 44 40 50 10 66 100 0 0

2.1. Unequal Interval Percentage Design

Under the unequal interval percentage design, the contents of other oils are adjusted
according to that of the targeted oil, thus the total content of each oil in all samples is not
equal. Researchers usually use small percentage intervals at lower concentration, increasing
to large percentage intervals at high concentrations. For instance, when preparing oil blend
samples with p oils, the concentration of a certain oil may be designed to be 0%, 0.5%, 1%,
1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, 6%, 7%, 8%, 9%, 10%, 20%, 30%, 40%, 50%, 75%,
100%. The purpose of this method is to improve the sensitivity of the detection and the
quantitative detection limit of the targeted oil. Nevertheless, as the percentage intervals are
manually chosen, different intervals may provide different outcomes, thus this method is
not universal.



Foods 2022, 11, 2436 5 of 21

2.2. Design of Experiments

The aforementioned methods are all designed to create oil blend samples with different
percentages in a certain concentration range. However, according to the principle of design
of experiments (DOE), only samples containing 0% and 100% of each pure oil are required.
For example, as shown in Figure 2, a ternary oil blend was designed by simplex theory.
The vertices of the equilateral triangle correspond to pure oils, and the edges correspond to
all binary oil blends made up of the pure oils. Any point inside the simplex represents a
ternary oil blend. For example, the point E represents a ternary oil blend containing 20% of
oil 1, 30% of oil 2 and 50% of oil 3, which is determined by drawing lines pass through E and
parallel to the edges. One of the greatest peculiarities of this method is that each point in
the simplex satisfies the constraint that the sum of the oil contents is equal to 100% [10,11].
Given the complexity of edible oil compositions and the requirement of sample size for
building models, it is necessary to conduct multiple tests on pure oil samples. Zhang
et al. [12,13] attempted this method and found that the performance of the quantitative
models established between the original pure oil spectral matrix and target values was
not satisfactory. Consequently, the pure oil spectral matrix should be preprocessed by
variable selection to improve prediction performance. To date, there have been relatively
few studies applying DOE to design oil blend samples. However, in light of its universality
and simplicity, this method is well worth the attention of future researchers.
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Figure 2. The theory of simplex for designing a ternary oil blend. The point E represents a ternary oil
blend containing 20% of oil 1, 30% of oil 2 and 50% of oil 3, which is determined by drawing lines
pass through E and parallel to the edges.

The proportion of studies investigating edible oil blends with a different number of
component oils in the literature from 2002 to 2022 is summarized in Figure 3. It can be seen
that binary and ternary oil blends are the most studied so far, accounting for 72.7% and
19.5% of all work, while quaternary oil blends account for 6.5%. Almost no studies have
focused on oil blends with a higher number of component oils, as the content of each oil is
difficult to control with increasing oils.
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The number of studies using different edible oil types for preparing edible oil blends
is shown in Figure 4. It can be seen that there are over 20 studies on conventional edible
oils such as soybean, sunflower and olive oils, while unconventional edible oils such as
safflower, black seed and red fruit oils were only used once.
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3. Instrumental Techniques

As shown in Figure 1, the prepared oil blend samples should be measured using
different instruments. This section introduces several commonly used instrumental tech-
niques for single component oil quantification in edible oil blends, including infrared,
near-infrared, Raman, fluorescence, ultraviolet-visible, nuclear magnetic resonance spec-
troscopy and mass spectrometry. Chromatography, a common separation method, is usually
used in combination with ultraviolet spectroscopy, diode array detector, nuclear magnetic
resonance spectroscopy and mass spectrometry. Chromatography-based techniques use
these detectors to determine the content of single component oil in edible oil blends by
measuring the ratios of specific compounds, such as fatty acids or triacylglycerol [14–16].
Therefore, chromatography is not discussed in this paper.

3.1. Infrared Spectroscopy

Infrared (IR) spectroscopy, also referred to as mid-infrared (MIR) spectroscopy, com-
monly has a wavenumber range of 4000–400 cm−1. It provides an absorption spectrum of
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energy level transitions caused by molecular vibrations and rotations, which can provide
information regarding molecular functional groups [2]. Fourier transform infrared (FTIR)
spectrometer takes the incident light after Fourier transform, providing the advantages of
high resolution, high sensitivity and fast scanning speed [9]. However, it is usually difficult
to determine the molecular source of each peak due to the complex composition of edible
oils [17]. Consequently, multivariate calibration methods combined with FTIR spectroscopy
are used to analyze this complex information [18–20]. Rohman et al. [21–23] used FTIR
spectroscopy coupled with PLS and PCR to establish models for the quantitative analysis
of binary and ternary oil blends. The results showed that the models could achieve good
prediction performance. Fadzlillah et al. [24] prepared 20 groups of binary oil blends of
sesame and corn oils. They selected the 1072–935 cm−1 region of the FTIR spectra to build
a PLS model to determine the corn oil content. Furthermore, de Souza et al. [25] combined
FTIR spectroscopy with PLS models to quantify the contents of other oils in extra virgin
flaxseed oil (EFO), so as to control the quality of EFO. The results showed that this method
was suitable for quality control of EFO where the other oils were found in levels between
3.50% to 30% (w/w).

Oil blend samples analyzed by transmission FTIR spectroscopy need pretreatment.
The samples should be diluted with solvents, which is a time-consuming process and
produces additional solvent waste. However, it does not require any oil pretreatments by
attenuated total reflectance FTIR (ATR-FTIR) spectroscopy. The spectra can be collected
directly by placing the oil blend samples onto the ATR crystal without dilution [26]. ATR-
FTIR spectroscopy obtains the structural information of the organic components through
the IR signal reflected from the sample’s surface [27]. Jovic et al. [28] combined ATR-FTIR
spectroscopy with PLS and PCR to quantify the content of single component oil in a ternary
oil blend. The obtained limit of detection (LOD) for extra virgin olive oil (EVOO) was low to
0.93%. Akin et al. [29] combined ATR-FTIR spectroscopy with chemometrics to determine
the content of soybean oil in grape seed oil. The content of soybean oil could be determined
at a level <0.59% by PLS model. Both FTIR and ATR-FTIR techniques remain the commonly
used instrumental techniques in the quantitative analysis of edible oil blends.

3.2. Near-Infrared Spectroscopy

Near-infrared (NIR) spectroscopy is a rapid, non-destructive and sensitive technology
operating in the wavenumber range of 12,500–4000 cm−1. It has been widely applied
for qualitative and quantitative analysis of agricultural products and foods [27]. NIR
spectroscopy mainly records hydrogen-containing groups in organic molecules, such as
O-H, N-H, C-H and S-H chemical bonds. However, the broad and often-overlapping
bands caused by molecular overtones and combination vibrations make NIR spectra quite
complex to interpret [2,30]. Therefore, chemometric methods must be used to extract useful
chemical information.

The rapid development of chemometrics has promoted the development of NIR
technology in quantitative analysis. To date, this technology has been widely used in the
quantitative analysis of binary and ternary oil blends [31,32]. Feng et al. [33] selected the
optimal NIR spectra region of 8745–4500 cm−1 to build calibration models to determine
rapeseed oil content in sesame oil. The prediction results showed that the PLS models could
achieve satisfactory results when the content of rapeseed oil was between 10% and 70%.
Chen et al. [34] quantified the contents of four groups of binary oil blends by chemometric
methods combined with NIR spectroscopy. The results indicated that this method could
not only quantify different types of edible oils produced by the same manufacturer, but
also quantify edible oils of the same type produced by different manufacturers. Liu
et al. [35,36] determined the content of peanut oil in ternary and quaternary oil blends.
They combined NIR spectroscopy with multivariate calibration methods to establish PLS,
PCR and stepwise multiple linear regression (SMLR) models. The results showed that the
prediction performance of the PLS model was superior.
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3.3. Raman Spectroscopy

Raman spectroscopy is based on the Raman scattering effect. The Raman effect
allows the acquisition of vibrational situations inside the molecule, thus allowing the
characterization of different functional groups present. Furthermore, quantitative analysis
models can be built based on the area or intensity of characteristic peaks [2,3]. Again,
quantitative analysis is made more challenging due to spectral collinearity, and overlapping
peaks, as well as the Raman intensity highly depends on the concentrations of the target
analytes [37,38]. Therefore, it is necessary to combine advanced chemometric methods with
Raman spectroscopy to improve the efficiency and accuracy of quantitative analysis.

Olive oil is usually more expensive than other oils due to its high contents of vitamins
and antioxidants. Hence, many studies have focused on the quantitative analysis of olive
oils [39–41]. de Lima et al. [42] used Raman spectroscopy and a mathematical method
based on exponential equation fit to determine the volume fraction of rapeseed and corn
oils found in olive oil samples. Li et al. [43] determined the proportion of waste cooking
oil in olive oil using Raman spectroscopy. Interval partial least square (iPLS) and synergy
interval partial least square (SiPLS) quantitative models were investigated. The results
revealed the best theoretical LOD of approximately 0.48% for the SiPLS model. In addition,
Dong et al. [44] used Raman spectroscopy combined with PLS to quantify the content of
each oil in a quinary oil blend of peanut, sesame, rapeseed, soybean and corn oils. The
above-cited studies demonstrate the broad applicability of Raman spectroscopy for the
quantitative analysis of various oils in edible oil blends.

3.4. Fluorescence Spectroscopy

Fluorescence (FS) spectroscopy has the advantages of efficient, convenient and sensi-
tive detection. ‘Fluorescence’ is a cold luminescence phenomenon of photoluminescence.
It operates on the principle that after a substance absorbs electromagnetic radiation, the
excited atoms or molecules return to their ground state. In this process of transitioning from
a higher energy level to a lower energy level, energy is released in the form of electromag-
netic radiation. The relationship between the FS energy and the corresponding wavelength
is the FS spectrum. The content of a substance can be determined according to the FS
intensity [45]. Due to the presence of various common fluorophores in edible oils, the FS
spectra can be overlapped when analyzing oil blends [46]. Again, chemometric means are
needed to extract and optimize the FS spectra to improve prediction performance [47,48].

Since it has a lower detection limit than other spectroscopic techniques [49], FS
spectroscopy is a powerful tool to quantify single component oil in edible oil blends.
Hu et al. [50] used synchronous fluorescence spectroscopy (SyFS) combined with PLS to
quantify the contents of vegetable oils in Eucommia ulmoides seed oil. They selected
the excitation spectral region between 300–500 nm to establish quantitative models. The
LODs of the vegetable oils were as low as 0.48%. Poulli et al. [51] used total synchronous
fluorescence (TSyF) spectroscopy to quantify the contents of olive-pomace, corn, sunflower,
soybean, rapeseed and walnut oils in virgin olive oil. They used the excitation wavelengths
between 250–720 nm and varied the wavelength interval in the region from 20–120 nm to
obtain the TSyF spectra. The quantitative LODs of the six oils were 2.6%, 3.8%, 4.3%, 4.2%,
3.6% and 13.8% (w/w), respectively. Jing et al. [46] used FS spectroscopy to determine the
each oil content in a ternary oil blend. An excitation-emission matrix (EEM) was collected
to obtain comprehensive FS information in a short period of time, and the Quasi-Monte
Carlo (QMC) integral was applied to quantify the concentrations of the three oils and their
recovery rates. As with other studies using this analytical technique, the low LOD of FS
spectroscopy was of great significance for the trace analysis of edible oil blends.

3.5. Ultraviolet-Visible Spectroscopy

Ultraviolet-visible (UV-vis) spectroscopy is a very common analytical technique that
includes parts of the ultraviolet and visible light regions (200–800 nm). The resultant UV-vis
spectrum is the result of electron energy level transitions in molecules or atoms, which
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absorb the UV-vis light. Different substances often show unique UV-vis spectra owing to
their different compositions and spatial structures, although the peaks will often be over-
lapped due to the presence of common UV-active moieties. Particularly in complex matrices
such as oil blends, it is difficult to directly use the spectra for quantitative analysis [52].
However, with the maturation of chemometrics as a discipline, many researchers have
adopted UV-vis spectroscopy combined with chemometric techniques for single component
oil quantification. In this way, the contents of specific substances can be quantified using
the intensity of their characteristic UV-vis peaks [53].

UV-vis spectroscopy combined with chemometric methods has commonly been ap-
plied for quantitative analysis of EVOO. For example, Aroca-Santos et al. [54] used UV-vis
spectroscopy coupled with chemometrics to quantify the volume percentage of EVOO in
other oils. The established artificial neural network (ANN) model could not only discrimi-
nate the types of other oils added to EVOO, but could also achieve a satisfactory result in
EVOO quantification. Additionally, these researchers also quantified the EVOO content
of different brands [55] by constructing a MLR model and multilayer perceptron (MLP)
model based on ANN. Another study by Jiang et al. [56] determined the content of EVOO
in corn, soybean and sunflower oils using PLS models constructed from the UV spectra.

3.6. Nuclear Magnetic Resonance Spectroscopy

Nuclear magnetic resonance (NMR) is a physical process based on radio frequency
radiation absorbed by atomic nuclei subjected to strong magnetic fields. Under a con-
stant external magnetic field, the atomic nuclei with spin is irradiated by radio frequency
radiation. When the radio frequency is exactly equal to the precession frequency of the
atomic nuclei, it can be absorbed. The resulting resonance absorption spectrum is called
a NMR spectrum [57]. NMR spectroscopy can directly provide the numbers of specific
atoms in a sample present under different chemical environments, as well as the structural
information of their adjacent groups. Consequently, it provides information about the
molecular arrangement of organic samples [3].

With technical developments in automatic sampling, advancement in the resolution
and speed of NMR spectrometers, and the development of new software and techniques
for spectra processing, NMR spectroscopy has become an extremely powerful tool for
analyzing edible oil blends. For instance, Jovic et al. [58] used 1H NMR spectroscopy
to determine the concentration of adulterant oils in hempseed oil. The achieved low
errors indicated that 1H NMR spectroscopy combined with chemometric methods could
effectively quantify the adulterant levels. Alonso-Salces et al. [59] developed a stepwise
strategy based on 1H-NMR fingerprinting to quantify the contents of other vegetable
oils added to EVOO. This method achieved satisfactory results through blind sample
testing. Smejkalova et al. [60] adopted high gradient diffusion NMR spectroscopy to
measure the diffusion coefficients (D) of four oils in EVOO. The minimum adulteration
levels of these oils could be determined by the changes of D. The results showed that
the minimum adulteration levels were 10% for sunflower and soybean oils, and 30% for
hazelnut and peanut oils. Although studies using NMR spectroscopy for single component
oil quantification are not as numerous as those using other spectroscopic techniques, NMR
spectroscopy is also worth the attention of future studies in this field.

3.7. Mass Spectrometry

Mass spectrometry (MS) is a technique used to identify unknown compounds in
samples by preparing, separating and detecting gas-phase ions. It separates the gas-phase
ions according to their mass-to-charge ratio. MS analyzes the structures of compounds by
the position of their mass peaks, and can quantify compounds from the peaks intensities [2].
Zhou et al. [61] used thermogravimetric-gas chromatography/mass spectrometry (TGA-
GC/MS) combined with chemometrics to determine the content of soybean oil in olive
oil. Another study by Li et al. [62] used matrix-assisted laser desorption/ionization mass
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spectrometry (MALDI-MS) to analyze the triacylglycerol in oil blends, and built PLS models
based on the MALDI-MS spectra to quantify the content of olive oil.

3.8. Other Methods

In recent years, the strategy of data fusion has gradually emerged in the field of spectral
analysis. Uncu et al. [49] used data fusion to determine the content of old olive oil in fresh
olive oil. The PLS model based on FT-IR + UV-vis data fusion achieved robust statistical
parameters. Li et al. [63] investigated the combination of NIR and MIR spectroscopy for
the quantification of rapeseed oil in olive oil. They used three data fusion strategies of
low, mid and high-level to build PLS models. The results showed that the high-levels
data fusion strategy could be used as a reliable tool for quantitative analysis. In addition,
some less commonly used instrumental techniques have also been applied to quantify
single component oil content. For example, Chen et al. [64] investigated the peak formation
mechanism of vegetable oils using ion mobility spectrometry (IMS). They established a
mobility spectral library of single component oil and edible oil blends, which was used to
realize the single component oil quantification. Garrido-Delgado et al. [65] used a UV-IMS
sensor in combination with multivariate calibration methods to determine the content
of EVOO in other vegetable oils. Torrecilla et al. [66] combined lag-k autocorrelation
coefficients (LCCs) with readings from a thermogravimetric analyzer (TGA) to quantify the
contents of other vegetable oils in EVOO. Finally, Tsopelas et al. [67] used voltammetric
fingerprinting of oil blends coupled with PLS for the quantitative analysis of olive pomace
and seed oils in EVOO.

The advantages and disadvantages of the various analytical techniques are summa-
rized in Table 3. This should help researchers to choose appropriate instrumental techniques
for the quantitative analysis of single component oil. As can be seen in Figure 5, spectro-
scopic techniques remain the main instruments for the quantitative analysis of oil blends,
particularly IR and NIR spectroscopy. The rapid development of chemometrics promotes
the use of IR and NIR spectroscopy in the quantitative analysis of complex systems. Be-
sides these techniques, FS spectroscopy can be a powerful tool in single component oil
quantification due to its low detection limit. In recent studies, prediction results obtained
by a data fusion strategy of different spectra have been shown to yield better results than
that of individual spectra, hence this strategy provides a new idea for single component oil
quantification in edible oil blends.
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Table 3. The advantages and disadvantages of different analytical techniques used in the quantitative
analysis of edible oil blends.

Techniques Advantages Disadvantages

IR spectroscopy

Simple and fast
Strong absorbance
High sensitivity
No solvent for ATR-IR

Need solvent for traditional IR

NIR spectroscopy Simple and fast
Less or no solvent

Overlapping bands, background and
weak absorbance

Raman spectroscopy High efficiency
Preprocessing-free for sample

Peaks overlapping
Low sensitive for fluorescent and
colored sample

FS spectroscopy
Low detection limit
Fast and accurate
High selectivity

Peaks overlapping
Many measurement parameters

UV-vis spectroscopy
Fast and cheap
No solvent
Real-time analysis

Big noise in 200–400 nm
Only a few peaks

NMR Fast and effective
High selectivity and accuracy Need solvent

MS Sensitivity
Simple and accurate

Time-consuming
Sample destructive

4. Chemometric Methods

The final step in the analysis of oil blend samples is processing of the obtained datasets
using chemometric methods for signal pretreatment and quantitative model establishment.
Chemometrics is used to extract pertinent information from spectra and reduce back-
ground interference. It mainly includes preprocessing, variable selection and multivariate
calibration. This section introduces some popular chemometric methods used for single
component oil quantification in edible oil blends.

4.1. Preprocessing Methods

In addition to possessing useful chemical information of samples, the measured
matrix also contains some useless information and noise, which can affect the accuracy of
quantitative analysis. Therefore, signal pretreatment is necessary to eliminate the influence
of useless information and noise before constructing quantitative models. The frequency
of use for different preprocessing methods is shown in Figure 6a. These include mean
centering (MC), normalization, smoothing, derivative, standard normal variate (SNV)
transformation and multiplicative scatter correction (MSC).

MC subtracts the average spectrum of the calibration set from the sample spectrum
and removes the common information found in all spectra. This method can improve
the stability of models [68,69]. Spectral normalization is usually used to eliminate effects
caused by the changes in light path and sample dilution [47,70]. The purpose of smoothing
is to reduce the noise from spectra signal. Savitzky–Golay (SG) smoothing is widely used to
improve the appearance of peaks that are obscured by noise [69,71]. Taking the derivative is
the most commonly applied preprocessing method in quantitative analysis. It can be used
for baseline correction by deducting the influence of the instrument background or signal
drift [72,73]. SNV is used to reduce the multiplicative effect of different solid particle sizes
and surface scattering on NIR or IR spectra. The spectra transposed by this method are free
from multi-collinearity [74]. The purpose of MSC is similar to that of SNV, in that it can
reduce the effect of spectra caused by solid particle size and uneven particle distribution.
Under certain conditions, SNV and MSC are interconvertible [75,76].

In the quantitative analysis of single component oil in edible oil blends, the measured
matrix is usually preprocessed before model establishment to increase the accuracy and
reliability of the results [77–80]. Du et al. [81] used MSC, SNV, SG smoothing, Norris
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derivative and normalization pretreatments in the quantification of other oils in camellia oil.
Ding et al. [82] performed pretreatments of offset, offset + SNV, offset + second derivative
and offset + SNV + second derivative on IR spectra to quantify the concentrations of soybean
and sunflower oils in ternary oil blends. Li et al. [83] applied continuous wavelet transform,
smoothing and first derivative pretreatments on NIR spectra before building PLS models to
perform quantitative analysis of a quaternary oil blend. Compared with no preprocessing,
the prediction performance of the models was improved through optimal preprocessing
methods. Furthermore, Bian et al. [84] proposed a selective ensemble preprocessing strategy.
The results demonstrated that this strategy could achieve comparable or even better results
than the best preprocessing method selected through traditional means.
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4.2. Variable Selection Methods

The measured matrix usually contains hundreds of variables due to the complex
composition of edible oil blends. Each of these variables may be informative, uninformative
or just represent inter-correlated variables. Additionally, using a large number of variables
and small number of samples may cause overfitting problems [85,86]. Thus, it is necessary
to select the most informative variables before constructing quantitative models. The
process of variable selection aims to choose a small number of variables, which relate to
the properties of interest to improve the prediction performance of the models. Previous
reviews by Mehmood et al. [87] and Yun et al. [88] introduced and classified spectral
variable selection methods from different perspectives.

Competitive adaptive reweighted sampling (CARS) and bootstrapping soft shrinkage
(BOSS) are the two most commonly used variable selection methods. CARS selects N
subsets of wavelengths from N Monte Carlo (MC) sampling runs in an iterative and
competitive manner. In each sampling run, a fixed proportion (e.g., 80%) of samples is
first randomly selected to build a calibration model. Then, the optimal combination of
wavelengths is selected through an exponentially decreasing function (EDF) and adaptive
reweighted sampling (ARS) [89]. BOSS, a new variable selection method proposed in recent
years, is used to select informative variables where collinearity exists. It is developed from
the idea of weighted bootstrap sampling (WBS) and model population analysis (MPA).
WBS is used to generate sub-models according to the weights, and MPA is used to analyze
the sub-models to update weights for variables. This algorithm follows the rule of soft
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shrinkage, wherein the less important variables are not directly eliminated but are assigned
smaller weights. This method runs in an iterative manner until the number of variables
reaches one [90].

Although variable selection methods are not as commonly used as preprocessing
methods, it is undeniable that the prediction results of quantitative models are more
accurate and reliable after variable selection. Basri et al. [80,91] used NIR spectroscopy to
determine the lard content in palm oil. In order to remove the uninformative variables, the
CARS method was applied. The results after variable selection for both transflectance and
transmission spectra were improved significantly. Chen et al. [92] performed CARS to select
10 variables from NIR spectra for use in PLS regression. They successfully quantified the
contents of other oils in sesame oil. Jiang et al. [30] applied the BOSS algorithm to select the
optimal variable subset for PLS modeling to determine the contents of other oils in EVOO,
which include 15 wavenumbers. Compared with the optimal models of CARS-PLS, Monte
Carlo uninformative variable elimination PLS (MCUVE-PLS), and iteratively retaining
informative variables PLS (IRIV-PLS), the predictive ability of BOSS-PLS was the best. In
addition, Ruiz–Samblas et al. [93] adopted PLS to build regression models relating the
triacylglycerol profiles of oil blends to quantify the content of olive oil. Genetic algorithm
(GA) was used as a variable selection method to improve the model, with the GA-PLS
model showing improved predictive ability. With the development of variable selection
methods, different combinations or hybridizations of different algorithms are attracting
increasing attention from specialists and scholars [72].

4.3. Multivariate Calibration Methods

Multivariate calibration methods, including linear and nonlinear calibration methods,
are often used for model development in the quantitative analysis of single component oil
in edible oil blends. The premise of linear calibration methods is that the spectral matrix
has linear additivity, that is, it obeys the Lambert–Beer law. It mainly includes MLR, PCR,
and PLS models. However, in practice, there is not always a linear relationship between the
spectral matrix and the target values due to instrument noise, baseline drift and other issues.
In this case, nonlinear calibration models need to be established. The most commonly used
nonlinear calibration methods include ANN, SVR and extreme learning machine (ELM).

Different statistical criteria are used to evaluate the performance of calibration models.
These include the coefficient of determination (R2), root mean square error of calibration
(RMSEC) for the calibration set, root mean square error of prediction (RMSEP) for the
prediction set, and root mean square error of cross-validation (RMSECV) for the cross-
validation set. R2 represents the percentage of response variables, which can be explained
by spectral matrix; the closer R2 is to one, the closer the predicted value is to the actual
value. RMSEC is used to evaluate the feasibility of modeling, RMSEP is used to evaluate
the predictive ability of the established model to external samples, and RMSECV is used to
evaluate the degree of fitting during the cross-validation process. An ideal model should
have a high R2 value, low RMSEC, RMSEP and RMSECV values. In addition, the residual
predictive deviation (RPD) can also be used to evaluate the performance of models. The
RPD value of a good model should be at least 2.5 [94,95].

4.3.1. Linear Calibration Methods

Multiple regression analysis refers to the use of regression equations to quantitatively
explain the linear relationship between the dependent variable and two or more inde-
pendent variables. MLR is a linear calibration method, which is easy to calculate and
generally shows good statistical properties. It is suitable for systems with simple linear
relationships, and where there are no mutual effects between components. However, MLR
can only be applied to situations where the number of variables is less than the number of
samples. Furthermore, when the degree of correlation between independent variables in
dataset is too high, multi-collinearity makes it difficult to achieve satisfactory prediction
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results [96,97]. Finally, it often leads to overfitting due to not considering the noise, which
exists in the spectral matrix X.

In many spectral matrices, the number of variables is usually more than the number
of samples. In these situations, MLR is not feasible. PCR, which combines principal
component analysis (PCA) with MLR to overcome collinearity, is more suited to these
complex systems [98]. It calculates the final prediction equation by diagnosing collinearity
between independent variables [96,99]. Jamwal et al. [100] combined IR spectroscopy with
PCR to determine the linseed oil content in mustard oil. The predictive R2 values of the
established PCR models ranged from 0.979 to 0.998, while the RMSEP ranged from 1.51%
to 0.46% v/v, and the highest RPD was 23.02. Wang et al. [101] analyzed the fatty acid
compositions of peony seed oil based on its characteristic Raman peaks. The established
PCR model successfully quantified the content of peony seed oil in other oils with a small
residual error.

PLS was first proposed by S. Wold in 1982 and used in chemical applications [102]. It
brings together the concepts of MLR, PCR and canonical correlation analysis. PLS not only
has the advantages of PCR, but also considers the concentration information of samples
that is not considered by PCR. It combines the decomposition and regression of the spectral
matrix X and concentration matrix Y (or vector y) to increase the model accuracy and
stability [103,104]. In spectral analysis, PLS can complete the orthogonal decomposition
of the spectral matrix X and the concentration matrix Y (or vector y), and simulate a
linear relationship between the spectral matrix X and the chemical composition [105,106].
Generally, PLS has low computational errors, good predictive ability and high accuracy. In
the calibration problems, PLS outperforms MLR, PCR and ridge regression (RR).

For the quantitative analysis of single component oil in edible oil blends, PLS and
improved PLS are the most widely used calibration methods. Numerous previous stud-
ies [107–114] have applied spectroscopic techniques combined with PLS to quantify the
contents of component oils. The R2 values of the models were all greater than 0.95. One
study demonstrated that the improved model of N-way partial least square (N-PLS) [115]
could achieve good results with R2 > 0.98, and RMSECV < 3.91%. Jović investigated binary
oil blends, finding that the established first-break forward interval PLS (FB-FiPLS) model
could successfully quantify the contents of other oils in hempseed oil with R2 > 0.995,
RMSECV and RMSEP in the range of 0.9%–2.9% and 0%–3.2% [116]. The established
Durbin–Watson PLS (dwPLS) model could successfully quantify the contents of other oils
in cold-pressed linseed oil. The RMSECV ranged from 1.2% to 2.6%, the RMSEP ranged
from 1.3% to 2.5%, and the LOD ranged from 0.85% to 1.69% [117].

4.3.2. Nonlinear Calibration Methods

ANN is a nonlinear calibration method developed by attempting to simulate the
human brain. The connections between the neurons form a network, which can store
and calculate information. It has the advantages of self-learning, self-adaptation and self-
organization. The purpose of ANN training is to minimize the prediction error of neural
network through altering the weights and biases of different connections [118]. The most
widely used neural network is back propagation-artificial neural network (BP-ANN). It
is a multilayer feed-forward network and comprises an input layer, hidden layer(s) and
an output layer. Usually, the transfer functions used by BP-ANN neurons are sigmoid
differentiable functions or linear functions [119,120]. This method has excellent nonlinear
mapping approximation ability and prediction performance. Aroca-Santos et al. [121]
coupled UV-vis spectroscopy with ANN for the quantitative analysis of binary oil blends.
For oil blends with refined olive oil content between 0% and 20%, the quantitative mean
prediction error for EVOO was 2.14%.

Support vector machine (SVM) is a pattern recognition method proposed by
Vapnik [122] in 1995. It uses an optimal hyperplane to separate two sample classes without
error [123]. The main idea of SVM is to utilize a kernel function to map low-dimensional
input variables into a high-dimensional feature space through nonlinear transformation,
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and then to perform a linear solution in the feature space to generate a linear regres-
sion equation [105,106]. At present, three types of kernel functions are commonly used,
polynomial, radial basis, and S-shaped kernel functions [124]. In recent years, SVM has
been popularized for nonlinear regression and function approximation in spectral anal-
ysis. In some situations, the predictive accuracy of SVR is higher than that of PLS [125].
Zhang et al. [126,127] developed two new algorithms of particle swarm optimization least
square support vector machine (PSO-LSSVM) and quantum-behaved particle swarm opti-
mization multi-output least square support vector machine (QPSO-MLSSVM) to realize
the quantitative analysis of single component oil in ternary and quaternary oil blends. The
predictive mean square errors of these two algorithms were both less than 0.1%.

ELM is a single-hidden layer feed-forward neural network, which has characteristics of
easy parameter selection, fast learning speed and good generalization ability. In nonlinear
methods, ELM is much faster than BP-ANN, k-nearest neighbor (K-NN), and least square
SVM (LS-SVM) [128]. ELM randomly generates the connection weights between the input
layer and hidden layer. In addition, the hidden layer does not need to be adjusted during
the training process [129]. It only needs to optimize the number of hidden layer nodes
and the activation function to obtain the unique optimal solution. However, ELM suffers
from reduced stability and robustness due to the random generation of input weights and
hidden layer biases [130]. A boosting ELM proposed by Bian et al. [131] was used for
quantitative analysis of edible oil blends. This method established a large number of ELM
sub-models according to the distribution of the sampling weights, and generated the final
result by aggregating the prediction results of these sub-models through the weighted
median. The accuracy and stability of the boosting ELM were both higher than those of
ELM and PLS.

The advantages and disadvantages of multivariate calibration methods are summa-
rized in Table 4, to aid researchers in comparing these methods. Additionally, Figure 6b
shows the frequency of occurrence of different calibration methods in the literature. It can
be seen that PLS is by far the most preferred calibration method for quantitative analysis of
single component oil in edible oil blends, being used in around 75.3% of relevant studies.
Although it is the least used method to date, ELM appears worthy of further exploration
in the single component oil quantification, due to its fast learning speed and broad gener-
alization ability. The concept of an ensemble strategy has also come to the fore in recent
years. Ensemble modeling combines the predictions from multiple sub-models to obtain a
more accurate, stable and robust prediction. Hence, new and effective ensemble modeling
methods should be developed.

Table 4. The advantages and disadvantages of multivariate calibration methods.

Methods Advantages Disadvantages

MLR Simple calculation
No parameter

Number of samples should be more than
that of variables

PCR Good predictive ability
Only one parameter

Concentration information is not
considered in the dimensionality
reduction process

PLS

Fast calculated speed
Only one parameter
Good predictive ability
High accuracy

Unsuitable for nonlinear problems

ANN

Self-learning
Self-adaptation
Excellent nonlinear mapping
approximation ability

Difficult convergence
Unstable solution
Poor generalization ability
Over-fitting

SVR
Suitable for pattern recognition and
nonlinear high dimensional space
problems

Small number of samples
Three parameters need to be optimized

ELM Fast learning speed
Good generalization ability Low stability and robustness
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5. Conclusions and Perspectives

In order to determine the content of single component oil in edible oil blends, various
analytical methods combined with chemometric techniques have gained attention from
researchers. These analytical techniques require a large number of oil blend samples with a
different number of component oils and proportions to establish quantitative models. This
review first summarized the three sample design methods used in studies: (1) designing
oil blend samples with equal intervals in a specified concentration range; (2) designing
oil blend samples with unequal intervals in a specified concentration range; (3) designing
oil blend samples following the principles of DOE. Among these, the use of DOE to
design edible oil blend samples is worth trying in future studies, due to its universality
and simplicity.

Spectroscopic technology has become the main instrumental technique in the quan-
titative analysis of single component oil in edible oil blends. Among them, IR and NIR
spectroscopy are still the most widely used instruments. In addition to these, FS spec-
troscopy and the use of data fusion are worth future exploration due to their low detection
limit and excellent predictive ability, respectively. Chemometrics is an indispensable step
in the process of single component oil quantification due to its ability to extract key spectral
information and reduce background interference. Among the multivariate calibration
methods, PLS remains the most widely used method. However, ELM shows promise as an
alternative prediction method due to its fast learning speed and good generalization ability.
In addition, preprocessing methods such as derivative, SNV and smoothing are used to
increase model accuracy and robustness, while CARS and BOSS are the commonly used
variable selection methods. With the maturation of chemometric techniques, applying the
idea of ensemble strategy into preprocessing, variable selection and multivariate calibration
can help researchers obtain more stable, accurate and robust prediction results.

At present, most researchers investigate single component oil quantification in edible
oil blend samples with certain component oils and concentrations, while few researchers
directly determine the content of single component oil in edible oil blends purchased from
supermarkets. In practice, it is feasible for edible oil industries to use these analytical
techniques to determine the edible oil blends produced by themselves (i.e., for quality
assurance purposes). However, the component oils and concentrations of the most edible
oil blends are unknown in supermarkets, which means these techniques have limitations in
determining the completely unknown edible oil blends in practice. Therefore, there is still
much groundwork to be done before these methods can be used in practical applications.
In addition, it is always necessary to establish a quantitative model corresponding to the
target component oil whether in binary or ternary oil blends, which is a cumbersome and
time-consuming process. If a general model can be developed for the quantitative analysis
of a certain conventional basic edible oil in edible oil blends with different number of
component oils, it would provide a great benefit to future workers.
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