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Abstract: Due to the influence of signal-to-noise ratio in the early failure stage of rolling bearings
in rotating machinery, it is difficult to effectively extract feature information. Variational Mode
Decomposition (VMD) has been widely used to decompose vibration signals which can reflect more
fault omens. In order to improve the efficiency and accuracy, a method to optimize VMD by using
the Niche Genetic Algorithm (NGA) is proposed in this paper. In this method, the optimal Shannon
entropy of modal components in a VMD algorithm is taken as the optimization objective, by using
the NGA to constantly update and optimize the combination of influencing parameters composed
of α and K so as to minimize the local minimum entropy. According to the obtained optimization
results, the optimal input parameters of the VMD algorithm were set. The method mentioned is
applied to the fault extraction of a simulated signal and a measured signal of a rolling bearing. The
decomposition process of the rolling-bearing fault signal was transferred to the variational frame by
the NGA-VMD algorithm, and several eigenmode function components were obtained. The energy
feature extracted from the modal component containing the main fault information was used as the
input vector of a particle swarm optimized support vector machine (PSO-SVM) and used to identify
the fault type of the rolling bearing. The analysis results of the simulation signal and measured
signal show that: the NGA-VMD algorithm can decompose the vibration signal of a rolling bearing
accurately and has a better robust performance and correct recognition rate than the VMD algorithm.
It can highlight the local characteristics of the original sample data and reduce the interference of
the parameters selected artificially in the VMD algorithm on the processing results, improving the
fault-diagnosis efficiency of rolling bearings.

Keywords: variational mode decomposition; the Niche Genetic Algorithm; rolling bearing; Shannon
entropy; fault diagnosis

1. Introduction

As an important component of rotating machinery, rolling bearings play a vital role in
the normal operation of the machine. Once a failure occurs, it will have a huge impact on
production safety. Therefore, it is necessary to collect and accurately identify faults in the
early stages of failure. Furthermore, it is necessary to replace or repair damaged bearings
to avoid cascading failures [1–4].

During the acquisition process, the vibration signal will be affected by many fac-
tors such as load, friction, and shock. It will then show non-stationary and non-linear
characteristics. In response to the shortcomings of traditional signal analysis methods,
Konstantin Dragomiretskiy et al. proposed a self-adaptive, quasi-orthogonal, and com-
pletely non-recursive decomposition method—the Variational Mode Decomposition (VMD)
method—in 2014 [5]. This method transforms signal decomposition into a constrained
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variational problem, adaptively decomposing the signal into the sum of several Intrinsic
Mode Function (IMF) components. It also overcomes problems in Empirical Mode Decom-
position (EMD) [6] and traditional signal analysis methods, which have the problems of
modal aliasing, inaccurate components and similar frequency components. The Variational
Mode Decomposition (VMD) method has the advantages of high computing efficiency,
modal stability, and robustness. Based on this, it was applied to the fault diagnosis of
mechanical equipment [7–10].

It is known that the decomposed result of the VMD algorithm is affected by the
selection of parameters, such as the secondary penalty factor α (balance constraint pa-
rameter) and the number of modal components K, when processing the signal, which
makes the algorithm largely affected by human experience [11]. Yi et al. [12] applied the
particle swarm optimization (PSO) algorithm into the parameter selection of VMD, with the
cross-correlation coefficient between the decomposed mode component and the original
signal being regarded as an evaluation index. Lian et al. [13] used a series of indicators,
such as permutation entropy, to judge the decomposition results, then constantly adjusted
the mode number until the appropriate K value is obtained. However, running VMD
repeatedly increased the cumulative error and decreased efficiency. Li et al. [14] chose the
initial mode number and the most suitable number by peak searching and the similarity
principle, then combined the similar modes to enhance the fault feature, although the initial
mode number was still chosen artificially. Zhang et al. [15] proposed a parameter-adaptive
VMD method based on a grasshopper optimization algorithm (GOA) which constructed
a weighted kurtosis index as an optimized objective to select the VMD parameters. The
method took the mode frequency bandwidth into account, but it ignored the effect of the
penalty factor. In [16], a coarse-to-fine decomposing strategy was applied into the VMD.
The balance parameter and the number of the decomposed modes were used to evaluate
the selection of the parameter. Ni et al. [17] established two nested statistical models,
namely the generalized Gaussian cyclostationary model and generalized Gaussian station-
ary model, to characterize the fault vibrations, then calculated the statistical indicator and
threshold as the criteria for parameter optimization. Liang et al. [18] selected the envelop
entropy and Renyi entropy as fitness functions, using the multi-island genetic algorithm
(MIGA) algorithm to search the most suitable VMD parameters K and α. He et al. [19]
applied an artificial bee colony algorithm (ABC) to find the optimal parameters of VMD.
A novel index called syncretic impact index was used to determine the hyper-parameters.
Li et al. [20] constructed a new objective function, the maximum average envelope kurtosis,
to reduce the impact of random noise and determine the mode number and quadratic
penalty term adaptively through an intelligent optimization algorithm. Wang et al. [21]
applied cross-correlation theory into the determination of the penalty factor, but ignored
the influence of the penalty factor.

Based on the above literature, this paper proposes a rolling-bearing fault-diagnosis
method based on Variational Mode Decomposition improved by the Niche Genetic Algo-
rithm (NGA-VMD). In this method, the optimal Shannon entropy of modal components in
the VMD algorithm is taken as the optimization objective, by using the NGA to constantly
update and optimize the combination of influencing parameters composed of α and K so
as to minimize the local minimum entropy. The energy feature conducted by the entropy
factor is then extracted from the original fault signal. Finally, the feature factor is fed into a
particle swarm optimized support vector machine (PSO-SVM) [22] classification model to
identify the different fault patterns in the rolling bearing. The main work and contributions
of this paper can be summarized as follows:

(1) The NGA is introduced into the VMD to optimize the selection of the mode number
K and penalty factor α.

(2) Compared to VMD and EMD, the effectiveness and accuracy of the NGA-VMD
is verified.

(3) The NGA-VMD and PSO-SVM are combined into an effective fault-diagnosis method.
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The rest of the paper is organized as follows. In Section 2, the idea of NGA-VMD
is introduced. The simulation signal analysis is described in Section 3. In Section 4, the
diagnostic process based on the optimized algorithm is introduced. The measured signal in
the rolling-bearing experiment system is analyzed in Section 5. The final conclusions are
given in Section 6.

2. Theoretical Basis
2.1. Variational Modal Decomposition

VMD is a non-recursive algorithm that solves and constructs variational problems
as the main overall framework. In the process of iteratively solving a variational model,
the algorithm uses the alternating multiplier method to continuously update the IMF and
its center frequency. IMF demodulates to the corresponding base frequency band and,
finally, extracts each IMF and its corresponding center frequency, effectively implementing
adaptive decomposition of the original input signal.

The IMF is defined in the VMD algorithm as an AM-FM signal, and its modal function
can be regarded as a harmonic signal. The specific expression is as follows:

uk(t) = Ak(t)· cos[φk(t)] (1)

where Ak(t) is the instantaneous amplitude and uk(t) is the instantaneous frequency,
ωk(t) = φk(t);

The expression of the optimization variational model is as follows:{
min{∑k ‖ ∂t

[(
δ(t) + j

πt

)
uk(t)

]
e−jωk(t) ‖2

2}
∑k uk = f

, (2)

where {uk} = {u1, u2, · · · , uK} is the decomposed K modal components and {ωk} =
{ω1, ω2, · · · , ωK} is the corresponding center frequency of {uk}.

By introducing the Lagrange multiplication operators λ(t), an extended Lagrange ex-
pression is constructed, and the constrained problem is transformed into a non-constrained
sub-optimization problem:

Γ({uk}, {ωk}, λ) = α ∑
k
‖ ∂t

[(
δ(t) + j

πt

)
uk(t)

]
e−jωkt ‖2

2 +

‖ f (t)−∑k uk(t) ‖2
2 + 〈λ(t), f (t)−∑k uk(t)〉,

(3)

Based on the above augmented Lagrange expression, the saddle point of the multiplica-
tion operator alternating direction method is used to obtain its saddle point, and iteratively
updates {uk} and {ωk} continuously to obtain the optimal solution of the variational
model. Specific conversion solutions were presented in the literature [5].

2.2. NGA-VMD Algorithm

The decomposition result of VMD is largely affected by the value α and the preset
K value. Although the introduced value α can ensure the reconstruction accuracy of the
signal, as the value increases, the bandwidth of the modal component will also decrease;
the K value needs to be set manually, and there is great uncertainty. If it is too large, then it
will lead to over-decomposition, false modes appear, and too many decomposed signals
are irregular; if it is too small, it will lead to loss of signal components and modal aliasing.

As an improved search optimization algorithm, the Niche Genetic Algorithm (NGA)
allows individuals to evolve in a specific living environment, so that they can find all the
optimal solutions to the problem [23]. Based on the NGA good global search ability and
high convergence speed, the NGA is introduced to VMD to optimize the selection of the
optimal parameter combination of the α and K values. At the same time, genetic operators
are used before selection as an elite retention strategy to ensure the convergence of the
NGA, retain the best genes to the greatest extent, and avoid the loss of elite individuals [24].
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It is also necessary to define a fitness function when using the NGA to search for the
influence parameters of the VMD algorithm. In terms of evaluating the sparse characteris-
tics of signals, the Shannon entropy has obvious advantages as an evaluation standard [25]:
the higher the degree of uncertainty of a signal, the greater its entropy value. The original
signal is demodulated to obtain the envelope signal probability distribution sequence. After
calculation, the entropy value of ej is the envelope entropy, which can be used to represent
the sparse characteristics of the original input signal. This paper uses the signal envelope
entropy to evaluate the sparse characteristics of the signal.

Zero mean signal x(j), j = 1, 2, · · · , N’s envelope entropy is E, which can be presented
as follows:  Ee = −∑N

j=1 lgej

ej =
a(j)

∑N
j=1 a(ej)

, (4)

where a(j) is the zero-mean signal and the envelope signal x(j) obtained after Hilbert
transform; and ej is the normalized form of a(j).

In each cycle of NGA optimization, all the entropy values of the envelope after VMD
processing as uk are calculated. Define the one with the smallest entropy value as the local
minimum entropy value Eemin, which will be used as the fitness value in the optimization.
During the optimization process, the global optimal solution in evolutionary generation is
found through continuous updates, and the corresponding (K, α) and combinations (uk)
are extracted.

3. Simulation Signal Analysis

In order to verify the superiority of the NGA-VMD algorithm without loss of generality,
a multi-component simulation experimental signal was constructed for analysis. The
specific expression of the simulation signal is:

X(t) = x1(t) + x2(t) + x3(t) + x4(t) + s(t)
x1(t) = 2 cos(2π f1t)
x2(t) = 4 cos(2π f2t)
x3(t) = 8 cos(2π f3t)
x4(t) = 16 cos(2π f4t)
s(t) = 0.3rand(1, n), n = length(t)

, (5)

where the frequencies f1 ∼ f4 corresponding to the four component signal components
are 2 Hz, 24 Hz, 120 Hz, and 288 Hz; Gaussian white noise with a variance of 0.3 s(t) were
added as the superimposed interference signal.

The time-domain waveforms of the original simulation signal are shown in Figure 1a,
and its component signals are shown in Figure 1b:

No features can be seen from Figure 1a. The NGA-VMD algorithm was used to
decompose the simulation signals. Figure 2 is a graph of the minimum entropy of simulated
signals under different evolutional generations during the optimization of the VMD input
parameters by the NGA. The local minimum entropy value of the modal component 0.217
appeared in the 6th generation. The optimal input parameter combination (K, α) = (4, 645)
was searched. Therefore, the K value in the VMD was set to 4 and the second penalty
factor α set to 645 to perform modal decomposition on the simulation signal. Figure 3 is
a component time-domain waveform diagram obtained by analyzing and processing the
simulated signal through the NGA-VMD algorithm.
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By executing the NGA-VMD algorithm, four IMF components were obtained. Com-
paring Figures 3 and 4, it can be found that the waveforms of the IMF component and
the original component signal have good consistency. Compared with traditional VMD,
this algorithm achieves fast adaptive decomposition of signals, avoids the occurrence of
over-decomposition and under-decomposition, and greatly reduces the interference of
human factors.
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4. Diagnostic Process

In order to realize the intelligent diagnosis of rolling-bearing faults, increase the
accuracy and speed of recognition, and reduce the impact of human factors on the diagnosis
results, the energy features extracted from the original fault signal are calculated as the
input vector of the PSO-SVM, and a “One-on-One” classifier structure is adopted. The
diagnosis process is shown in Figure 5. The specific steps are as follows:

(1) Collect and load the operating data of each state of the rolling bearing;
(2) Use the NGA-VMD algorithm to optimize the collected rolling-bearing experimental data

to obtain the optimal combination of influencing parameters, and realize the collected
signals by decomposition to obtain K modal components, where is k = 1, 2, · · · , K

(3) Calculate the entropy value containing uk, to construct the corresponding energy
eigenvector T; construct the value of T as follows: T =

[
E1
E , E1

E , · · · , Ek
E

]
E =

√
∑K

k=1|Ek|2
, k = 1, 2, · · · , K, (6)

(4) Input the obtained T value into the PSO-SVM as an input vector and complete the
fault type identification and classification of the rolling bearing through the PSO-SVM.
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5. Application Case Analysis

In order to further illustrate the effectiveness of the NGA-VMD algorithm, experiments
were performed using bearing data from the Bearing Data Center of Case Engineering,
Electrical Engineering Laboratory, Case Western Reserve University.

The test bench is shown in Figure 6. The test bearings were installed at both ends of the
motor. The drive end bearings were 6205-2RS SKF deep-groove ball bearings. Single-point
faults were processed by electric spark machining technology. The inner and outer rings of
the test bearings and rolling elements were introduced. The vibration data were collected
by an acceleration sensor placed in the direction of the radial load of the test bearing. The
experiment took four states to verify: normal bearing (NOR), inner ring fault (IRF), outer
ring fault (ORF) and rolling element fault (REF). In order to improve the accuracy of the
data, the real industrial production environment was highly simulated without loss of
generality, and the collected signal was mixed with a Gaussian white noise component with
a signal-to-noise ratio of −1 dB The specific data of bearings and experimental conditions
are shown in Tables 1 and 2.

Figure 7 shows the collected bearing data waveform and spectrum of different fault
modes. Analysis shows that the fault characteristics of rolling bearings cannot be dis-
tinguished in the collected signals in different states, and there are obvious peaks near



Entropy 2022, 24, 825 8 of 14

different frequency bands of the spectrum of each signal. In addition, the influence of noise
cannot be used to distinguish fault features. Therefore, the signals need to be decomposed
by corresponding algorithms.
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Table 2. Parameters of the experiment.

Rotational Speed Diameter of Fault
Point Sampling Frequency Initial Number of

Sampling Point
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Figure 8 shows the NGA-VMD decomposition results of bearing inner ring fault
signals. In order to improve the accuracy of the algorithm and fault classification, the
number of signal sampling points was properly screened before signal processing. Table 3
displays the calculated average entropy of the signal at different sampling points. Analysis
shows that as the signal length increases, the entropy value of the signal will also gradually
decrease. After the number of sampling points exceeds 2048, the entropy value will be
stable, and the entropy value will balance after 4086. Therefore, the data length was taken
as 4086 in the subsequent PSO-SVM training and testing.
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NGA-VMD for inner ring fault signal.

Table 3. Average entropy of signal at different sampling points.

Sampling Points Average Entropy

512 0.863
1024 0.851
2048 0.644
4086 0.631
8192 0.620

For the vibration signals collected in the four states of the bearing: NOR, IRF, RRF
and BEF, 40 sets of data were taken in each of the four states, for a total of 160 sets of
experimental data, of which the data sample length is 4086. For bearing signal data
collected in different states, 10 groups were randomly selected from the samples in each
state, a total of 40 groups were used as training samples for PSO-SVM, and the remaining
120 groups of data were used as test samples.
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NGA-VMD decomposition was performed on the randomly selected training samples.
Figure 9 shows the NGA-VMD algorithm optimizing the optimal parameters of the col-
lected bearing signals in four different states. The results for searching optimizations are
shown in Table 4.
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Table 4. Results for searching optimization.

State Local Minimum Entropy (K, α)

NOR 0.5602 (4, 860)
IRF 0.5998 (7, 1000)
ORF 0.5473 (9, 1200)
REF 0.5728 (5, 600)

NGA-VMD decomposition was performed on the training sample data. Each training
sample obtained K modal components and calculated the modal entropy values. The en-
tropy values obtained from each training sample were combined to form the corresponding
T and then the normalization process was used as an input to the PSO-SVM for training.
Due to space limitations, only some sample data of T value after processing calculation are
listed in Table 5.

Table 5. T values of partial bearings in four states.

State Sample
T

E1 E2 E3 E4 E5 E6 E7 E8 E9

NOR
1 0.2159 0.3151 0.2621 0.2319 — — — — —
2 0.2239 0.3381 0.2113 0.2245 — — — — —

IRF
1 0.1023 0.1802 0.2634 0.3011 0.3689 0.3731 0.3623 — —
2 0.1076 0.1864 0.2788 0.2193 0.3514 0.3677 0.3799 — —

ORF
1 0.1143 0.2001 0.3114 0.2987 0.4567 0.4312 0.4501 0.3644 0.3127
2 0.1533 0.2409 0.3002 0.3233 0.4763 0.4772 0.3986 0.3876 0.3321

REF
1 0.1556 0.2192 0.4018 0.4871 0.1984 — — — —
2 0.1848 0.2997 0.3851 0.4639 0.1869 — — — —

The fault classification and identification results for rolling bearings under different
signal processing modes are listed in Table 6. Figure 10 shows the trend of fault recognition
rate of the four algorithms. The analysis shows that no matter which signal process-
ing method is used, the bearing can achieve 100% recognition under normal conditions;
however, when the bearing is in a fault state, the difference in the accuracy rate of fault
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recognition is obvious. The NGA-VMD algorithm is used for modal decomposition. The
average correct rate of fault recognition is 99.17%. The result is 1.67% better than that of
the other optimization algorithm (GOA-VMD). The traditional VMD algorithm or EMD
algorithm were used for signal processing. The average correct rate of fault recognition
was significantly reduced. The average correct rates of fault recognition were 94.17% and
87.5%, respectively.

Table 6. Fault classification and identification results for rolling bearings under different signal
processing modes.

State NOR IRF ORF REF Average
Accuracy

Running
Time/s

Number of samples 30 30 30 30

99.17% 95.8

Signal
processing

NGA-VMD

NOR 30 0 0 0
IRF 0 30 0 1
ORF 0 0 30 0
REF 0 0 0 29

Classification
accuracy 100% 100% 100% 96.67%

GOA-VMD

NOR 30 0 0 0

97.50% 103.1
IRF 0 29 1 1
ORF 0 0 29 0
REF 0 1 0 29

Classification
accuracy 100% 96.67% 96.67% 96.67%

VMD

NOR 30 0 0 0

94.17% 143.6
IRF 0 29 0 0
ORF 0 1 28 4
REF 0 0 2 26

Classification
accuracy 100% 96.67% 93.33% 86.67%

EMD

NOR 30 0 0 0

87.50% 171.9
IRF 0 26 2 3
ORF 0 4 25 2
REF 0 0 3 24

Classification
accuracy 100% 86.67% 83.33% 80.00%
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Figure 10. Comparison of fault recognition rate of four algorithms.

The comparison results of the three different signal processing methods show that the
NGA-VMD algorithm proposed in this paper performs signal modal decomposition, which
can more easily and effectively extract fault features, and its fault recognition rate is im-
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proved. According to experimental analysis and testing, the NGA-VMD algorithm achieves
better than the optimization of traditional algorithms, when processing the same exper-
imental data. Moreover, its algorithm processing efficiency and PSO-SVM classification
time are significantly better than other similar algorithms.

In order to study the impact of different types of training samples on the classification
and recognition results of the running status of rolling bearings, the experimental data
in the four states of NOR, TRF, ORF, and BEF were used to randomly select different
proportions of data as training samples to complete the training of the PSO-SVM. The
remaining data were tested to complete fault classification and identification. Figure 11
shows the fault recognition rate under different training samples. The analysis shows that
when the training sample is less than 5%, the NGA-VMD decomposition proposed in this
article is used to classify the rolling bearing faults through PSO-SVM, and the classification
accuracy rate is less than 80%. When the sample proportion exceeds 10%, the classification
accuracy rate is fast. The improvement is stable at 25%; when the sample proportion
exceeds 40%, the classification accuracy rate can reach 100%. Increasing the proportion of
training samples can make the established PSO-SVM prediction model more accurate, and
the correct rate of fault recognition can be improved accordingly.
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6. Conclusions

(1) This paper proposes the NGA-VMD algorithm to reduce the influence of the two key
parameters (α, K) of the VMD algorithm. The two affected parameters are optimized
for the VMD algorithm to implement signal processing more effectively and accurately.
The NGA-VMD algorithm, as a new signal processing method, greatly reduces the
interference of human factors on the processing results, has better noise robustness
and data processing efficiency, and can better highlight the local characteristics of the
original sample data.

(2) Simulation and analysis of experimental results show that relative to VMD and EMD,
the NGA-VMD algorithm can achieve rapid adaptive signal decomposition, avoid
the occurrence of over or under decomposition, and greatly reduce the interference of
human factors. Under the same experimental conditions, the NGA-VMD algorithm
performs modal decomposition, and the average correct recognition rate of faults is
99.17%, with the average correct recognition rates of GOA-VMD, VMD, and EMD
algorithms being 97.5%, 94.17%, and 87.5%, respectively. The NGA-VMD algorithm
takes 95.8 s, which is 7.62% faster than GOA-VMD, 49.9% faster than VMD, and 79.5%
faster than EMD.

(3) The NGA introduced in this paper realized the optimization of the VMD algorithm,
combined with PSO-SVM to accurately complete the fault identification and classifi-
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cation of rolling bearings, and obtained a good diagnostic effect. It provides a more
practical solution for the analysis and treatment of other types of mechanical faults
and is worth further in-depth research.
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