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Abstract: Intelligent energy management in renewable-based power distribution applications, such
as microgrids, smart grids, smart buildings, and EV systems, is becoming increasingly important in
the context of the transition toward the decentralization, digitalization, and decarbonization of energy
networks. Arguably, many challenges can be overcome, and benefits leveraged, in this transition by
the adoption of intelligent autonomous computer-based decision-making through the introduction
of smart technologies, specifically artificial intelligence. Unlike other numerical or soft computing
optimization methods, the control based on artificial intelligence allows the decentralized power
units to collaborate in making the best decision of fulfilling the administrator’s needs, rather than
only a primitive decentralization based only on the division of tasks. Among the smart approaches,
reinforcement learning stands as the most relevant and successful, particularly in power distribution
management applications. The reason is it does not need an accurate model for attaining an optimized
solution regarding the interaction with the environment. Accordingly, there is an ongoing need to
accomplish a clear, up-to-date, vision of the development level, especially with the lack of recent
comprehensive detailed reviews of this vitally important research field. Therefore, this paper fulfills
the need and presents a comprehensive review of the state-of-the-art successful and distinguished
intelligent control strategies-based RL in optimizing the management of power flow and distribution.
Wherein extensive importance is given to the classification of the literature on emerging strategies, the
proposals based on RL multiagent, and the multiagent primary secondary control of managing power
flow in micro and smart grids, particularly the energy storage. As a result, 126 of the most relevant,
recent, and non-incremental have been reviewed and put into relevant categories. Furthermore,
salient features have been identified of the major positive and negative, of each selection.

Keywords: microgrid; smart grid; multiagent; artificial intelligence; decentralization; autonomy;
renewable energy

1. Introduction

The control of renewable energy in modern power distribution applications, such
as microgrids, smart grids, smart buildings, and electric vehicles (EVs) applications, is
experiencing a large, fundamental transition due to several technological advances and
environmental considerations. For instance, the world is gearing toward the enhancement
of the introduction of renewable energy and transportation based on either EVs or alterna-
tive fuels, due to their economic, technical, and environmental advantages [1]. However,
the current global electricity and alternative fuel generation is still a mixed fuel, with the
supremacy of fossil fuel remaining in many regions of the world. In fact, both trends are
fundamentally related since the use of renewable energy in charging EVs or generating
alternative fuels such as hydrogen would significantly reduce greenhouse gas emissions [2].
Optimal power distribution control is the most prominent challenge in enhancing the
penetration and sustainability of renewable energy and reducing the use of fossil fuels, due
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to the distributed and unpredictable nature of their power generation. This involves the
optimal management of the power variables to enhance a minimized load consumption
cost [3]. Where this can be accomplished, many advantages to the power system can be
conferred, such as minimizing energy production and delivery cost, minimizing power
losses, reducing load shedding, and maximizing system performance [4,5]. Therefore, the
achievement of optimal solutions to energy management problems is the key enabler to the
goals of the aforementioned concept.

In a previous work by the current authors [6], a taxonomy of control requirements
for modern smart grids was elucidated, and it was established that a system-of-systems
approaches (with multiple interconnected microgrids and storage systems) combined with
intelligent control methods were identified as the most likely technologies and paradigms
for solving the complex power management issues which will arise moving forwards
in this sector. Global intelligent search methods, such as genetic algorithms (GAs) and
swarm intelligence (SI), have been dealt with in the literature to solve power management
problems [7,8]. Nevertheless, the methods hold three fundamental defects [9]:

1. In general, they are slow and cannot be operated online, whereas online operation
accomplishes more economical implementation, due to there being no need for a
devoted computer of offline optimization.

2. An economic issue, due to the absence of learning components. Hence, optimization
iteration is mandatory at every change in the generation or load profiles.

3. A separate forecasting algorithm is compulsory for the state variables prediction.

The control based on reinforcement learning (RL) of solving power management
problems in advanced power distribution systems is the most convenient alternative
modern choice. This is because of the following vital features [10]:

1. The qualification for the offline attainment of generation and load measurements, and
applicating them for any expected online generation or load.

2. An accurate model is not mandatory for achieving the optimal solution of solving
power management problems.

3. More precise predictions can be accomplished through the application of an artifi-
cial neural network (ANN) and attain a modernized intelligent application, due to
eliminating the need for a separate forecasting model.

Where the theory of introducing RL to solve power management problems refers
to solving a sequential decision-making problem through the introduction of an active
intelligent bio-inspired machine learning technique via agent-based modeling (ABM) [11].
Whereas ABM implies modeling an independent intelligent agent, or group of agents, to
act as an independent decision-maker, learn from iterative trials and errors and maximize
the total reward [12,13]. In line, the environment can be defined as a field where the agents
interreact and implement their features. In more detail, the environment interacts with
the agents by selecting an action for each state from a set of possible actions, and then
receives feedback on the value of the actions selected [13]. While the multistage decision
problem (MSDP) indicates the consideration of the complicated problem as a multistage
and the practical solution is changed by raising the risks to attain the correct solution [13].
Furthermore, the development of an MSDP model for solving complicated problems
should consider multiple efficiency criteria based on the interests and requirements of the
decision-maker and the changes in the practical situation [14].

Given the variety of proposed recent contributions of both fundamental and applied
research in this vital emerging sector, the paper intends to support the lack of recent compre-
hensive detailed reviews of the research field and offers great assistance for the researchers
to continue and contribute. Accordingly, a detailed and comprehensive review is presented
of the intelligent control strategies based on RL to solve power management problems in
advanced future-facing applications, which is the aimed future vision of intelligent power
distribution management. Furthermore, considered a vital enabler in reducing the use
of fossil fuel and enhancing the introduction of renewable and alternate energy toward
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fulfilling net zero. Wherein, the focus is given to emerging advanced strategies based on
the multiagent RL approach, for reasons outlined above and in our previous exposition [6].
What adds more distinguishment for this review from the previously conducted is the
comprehensiveness of the research methodology from the classical and classical combined
to the advanced emerging AI-based intelligent applications, especially the multiagent. Fur-
thermore, the specialization of vital important advanced power distribution applications at
present and the future image of energy distribution, and the trend in the lifestyle that the
world aspires to. In this research work, existing unique research challenges are reviewed,
and salient features are identified (positive and negative), with subsequent identification
of further research areas. The research methodology for organizing this research work
and selecting the review papers is as follows. Recent research works that demonstrate the
latest unique developments of applicating control strategies were selected. Out-of-scope,
incremental, similar, and repeated works were ignored. In total, 126 of the most relevant,
recent, and non-incremental have been reviewed and put into relevant categories, as demon-
strated in Figure 1. The remainder of this review is structured as follows. Section 2 intro-
duces the basics of RL-based control approaches, with an emphasis on power applications.
Section 3 covers classical RL-based control approaches, whereas emerging advanced RL-
based strategies are demonstrated in Section 4. Finally, Section 5 is reserved for the summary
and conclusions.
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2. Background
2.1. Agent and Agent-Based Modeling

The agent in RL can be described as an action-maker entity qualified for doing actions
and making, or collaborating in making, decisions at a level of intelligence. In particular,
the agent interacts, based on software rooted in artificial intelligence (AI), to make a
mandatory change in the environment continuously and autonomously on behalf of the
administrator [15]. Therefore, the agent within an operation framework should hold some
specifications qualifying it for the role, as demonstrated below [16]:

• Mobility: The agent is flexible to move from one location to another within a specified
operational framework or environment.

• Communication: The agent can communicate with the environment, in addition to
other active agents.

• Autonomy: The independence of the agent to do tasks or make actions on behalf of
the administrator.

• Rationality: The agent should hold a level of intelligence to decide or collaborate of
deciding regarding completing a task for the administrator.

• Reactivity: The quality of the agent to monitor the environment and respond to
its changes.

• Sociality: The collaboration of the agent with the human and other active agents in
accomplishing the mandatory tasks.

• Self-learning: The agent learns from the surrounding environment to make an inde-
pendent improvement or adaptation in the environment.

Consequently, ABM can be offered a more detailed definition as a computational
AI-based paradigm for attaining autonomy and intelligence in deciding on an action to
make a mandatory change in the environment based on the task requirements or the
administrator’s obligations [16]. Hence, agent-oriented programming (AOP) is an entirely
advanced computer programming task to create, activate, and orient an independent agent
for a specific task at a level of intelligence [17,18].

2.2. Markov Decision Process Models

Markov decision process (MDP) refers to the dynamic programming of an RL control
problem to make a sequential decision of the solution under uncertainty, wherein the MDP
model is typically characterized by the following [19–21]:

1. The state space (S): The set of possible states, that holds several versions based on the
level number of the states included, such as finite, denumerable, compact, etc. Where
each of the states can be observed at any time point when a decision or action is being
made regarding a task to make a specific change in the environment.

2. The action sets (A): It refers to a set of actions and holds similar versions for the state
space based on the level number of the actions involved. Wherein each action is taken
depending on an observed state.

3. The decision time point: It is the time interval between the decisions. Accordingly,
the model is an MDP if the decision time points are constant. Otherwise, the model is
semi-MDP.

4. The immediate reward (R): The reward is a function of the action and the state. Where
an immediate reward is earned for the given model state and action, that is inversely
proportional to the cost and can be determined by the reward function in Equation (1).

R : S× A → R (1)

5. The transition probabilities p(s): It implies the probabilities of the possible various
next state, due to the difference between the deterministic and Markovian, environ-
ments, wherein the state transition in the Markovian environment is probabilistic.
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Equation (2) demonstrates the transition function for the distribution of the probability
over the next coming state.

T : S× A → p(S) (2)

6. The planning horizon: The horizon of the controlled time points is planned by the
suggested RL agent based on the problem solver.

The learning methodology of the Markov process is demonstrated in Figure 2, which
explains the sequential decision-making behavior of the intelligent framework. Here, the
agent acts at a time to affect the current state, after preserving a state and a reward from
the environment. Then, this new state will be affected by the new action taken at the time
after taking the state and the reward. Where this verifies the objective of the agent in an
RL interaction of maximizing the expected sum of the discounted reward after a series of
taken states and decided actions, as demonstrated in Equation (3), in which, the infinite
summation of the discounted reward is attained for the reward received at j steps (ri+j)
multiplied by the discount factor (0 ≤ γj ≤ 1) to accomplish the value of the state (Vπ(s))
at the optimal strategy (π) for the given policy.

Vπ(S) = E
[
∑∞

j=0 γjrt+j

]
(3)
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2.3. Markov Game

The MDP has been expanded to a Markov or stochastic game (MG) to accomplish
environments with more than one agent involved, which is in common with the MDP
in considering the state transition as a Markovian. However, the difference is that each
agent has its own set of actions [22]. Therefore, for an (n) number of agents, the overall
action space (A) is the result of the action state of all the interacting agents (A1, A2, . . .), as
demonstrated in Equation (4). In accordance, the state transition equation (T) considers A,
and the reward equation (Ri) considers the overall reward for all the agents, as explained in
Equations (5) and (6). Where S, R signifies the state space, and the total reward, respectively.
Whereas p(S) refers to the probability distribution over the next state. Akin to MDP, the
agent in MG is trying to maximize its expected discounted reward under the overall policy,
as shown in Equations (7) and (8) [20,23]. ri,t+j, Vπ

i (S) are the received reward at j steps for
the agent i, and the value of state, respectively.

A : A1 × A2 × . . .× An (4)



Energies 2023, 16, 1608 6 of 38

T : S× A1 × A2 × . . .× An → p(S) (5)

Ri : S× R1 × R2 × . . .× Rn → R (6)

πi = (π1, π2, . . . , πn) (7)

Vπ
i (S) = E

[
∑∞

j=0 γj ri,t+j

]
(8)

As a result, the multiagent RL system (MARL) has been introduced as the branch of the
RL that refers to the interaction of multiple RL agents in a common environment [24]. Re-
cently, the MARL system has become the appropriate selection for the immediate real-time
solving of complicated problems in a variety of applications. Examples of them are robotic
applications, telecommunications, economics, and energy distribution management [25].
Among the most prominent of these applications, MARL is the successful solution for
solving power flow management defects in advanced power distribution applications.

2.4. Outliers of Reinforcement Learning and Detection Methods

Since RL is a subset of machine learning (ML) and AOP is an entirely advanced
computer programming task. Therefore, it is vitally important to outline the identification
of outliers in programming, their impact, and the sensitivity of the RL model against them
through the demonstration of detection and prevention methods. Where outliers can be
defined as the points that hold a significant difference from other given observations in a
dataset. This can be the result of errors in data entry, errors of measurement, errors from
an experiment, intentional errors, errors in processing the mandatory data, errors due
to sampling, and natural outliers not resulting from an error [26,27]. The main types of
outliers are:

1. Global outliers: The data point is a global outlier if the value is far from the whole
data of the specific set.

2. Contextual outliers: The outlier is contextual if its value significantly deviates from
the other data of the set.

3. Collective Outliers: A group of data points represents a collective outlier if their values
are close to each other, and they are, as a collection, significantly deviating from all
the other data of the set.

The first action to be taken against introduced outliers is detection. Accordingly, there
have been many detection methods that differ based on the application task that the model
is trained for. However, two methods are considered the main classification of outlier
detection, the detection using distance and density, and the highlighting of the outliers that
do not meet the user threshold of a designed model [26,28].

Specifically, the methods of detecting outliers hold three main classifications [29].

1. Statistical approach: The statical approach refers to the statical computation of param-
eters in a statical distribution, where examples of it are mean and standard deviation,
wherein outliers represent the observations that cannot be classified after some iterations.

2. Depth approach: It refers to the classification of the observations based on the depth,
where data points are organized as convex hill layers. Accordingly, observations of
the same depth are of the same class. Furthermore, observation is classified as an
outlier if it lies in the utmost of these classes.

3. Distance approach: In this method, the distance between the observations is the
enabler of distinguishing an outlier. Where the class here represents a group of
observations with a similar distance between neighbors. Accordingly, the observation
is detected as an outlier if the distance from the neighbors of the class is different.

Accordingly, prevention is the enabler for raising the sensitivity against outliers with
the detection. This holds crucial importance due to the negative impact of these outliers.
The existence of outliers can result in a defect of the dataset, such as an affected standard
deviation, increased variance errors, reduced statistical test power, decreased normality,
and unwell implementation of algorithms. Consequently, there have been existing methods
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of preventing or reducing the chance of outlier appearance such as deleting observations,
transforming values, imputation, and separate treatment. From this, it can be concluded
that the sensitivity against outliers is based majorly on the employed algorithms and
entirely dependent on detection and prevention [26,29].

3. Classical Solutions Based on Reinforcement Learning of Power Management Problems

The solutions to power management problems through the introduction of RL have
proven their success among other AI-based applications. This is because there is no need
for an accurate model of accomplishing the optimized real-time solutions. Which is what
suits energy applications for the changes in the system factors that are highly expected in
the generation, distribution, and transmission of energy [30]. There has been remarkable
progress in the development of this field. Especially in recent times, due to the urgent
need for smart solutions, when pollution and the cost of fossil fuel energy became a
threat. Therefore, there have been many presented proposals to develop RL-based control
algorithms, which can be characterized based on their development level, and the seniority
of appearance in the literature.

The availability of a model to be accessed by the administrator is mandatory in
model-based algorithms to plan the best action and attain an optimal solution in some
applications [31]. However, it is incompatible with some high-complexity applications,
including power management, due to the following downsides [21,32]:

• The difficulty and complexity of obtaining a model of the environment.
• An error in the model is highly expected, because of the sensitive quality of the solution.
• An expected loss of computational efficiency in the case of a highly complex model

and a simple application.

On the other hand, the RL-based solution is model-free if the knowledge of the model
is not mandatory in the optimization. Furthermore, the RL-based solution is characterized
as goal-oriented, and reliable to adapt to the changes in a variety of environment classes.
Therefore, it has become a successful solution for power management applications with a
complexity higher than the applications that can be solved by the module-based [33]. The
model-free solution is value-based if the determination of a good state and state-action
estimate pair value functions is taken as the main aim. It is policy-based if the estimate of
the value functions is not compulsory in the optimization policy [33].

Classical RL solutions have been successfully introduced for solving problems in a
range of applications with varying levels of complexity, especially, for solving problems of
power management in advanced power distribution applications. This field has recently
witnessed steps toward the development and modernization of the classical strategies’ role
in solving complicated energy flow management defects, and the accomplishment of new
intelligent solutions through the combination of more than one classical strategy, or the
introduction of external smart technology.

3.1. Q-Learning

The Q-learning RL is the most popular classical model-free policy-based method for
solving a variety of complicated problems, that is approached based on taking random
actions during the interaction with the environment [34]. In more depth, the Q-learning cre-
ates an every-step updated Q-table based on the Markovian process and Boolean equation,
by utilizing the attained state-action pairs environment-based learning. As a result, an out-
come and reward are accomplished and update the Q-table for every action completed [5,6],
as demonstrated in Equation (9).

Q(s, a) = Q(s, a)+ ∝
[
R(s, a) + γ×maxQ

(
s′, a′

)
−Q(s, a)

]
(9)

Here, an immediate updated value of Q is attained for every newly learning state-
action pair and stored in the Q-table, wherein the newly action–state pair is processed
through the summation of the defined reward for the new state–action pair (R(s, a)), and the
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maximum Q that can be achieved for all expected state-action pars (maxQ(s′, a′)) multiplied
by the discount rate (γ), and then compared with the updated Q and multiply the overall
by the learning rate (∝) to attain the immediate update Q(s, a). The demonstration of the
Q-learning agent in Figure 3 explains how the Q-table is updated for every new state action
by the updated Q value.
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The balance of exploration and exploitation aims to attain an appropriate action
through exploring the status and exploiting the reward. It is of vital importance to achieve
a balance between exploration and exploitation to avoid jamming during the update [5].
Accordingly, E-greedy is a highly qualified model-free Q-learning RL method to balance
exploration/exploitation. Furthermore, it accomplishes immediate action during learning
and provides an optimized update of the Q-table. Therefore, E-greedy can determine the
involvement of the exploration and exploitation nature in the attained actions because it
exploits the Q-table to maximize the reward when employed by the agent [34].

There have been recent and most recent unique attempts in the literature aimed to
develop the application of the Q-learning RL in achieving optimized power management
solutions. The development by B. Xu et al. [35] was planned to optimize the supervisory
management system of an electric vehicle (EV) with a combined charging system of a
battery and ultracapacitor, through the introduction of a Q-learning method. In accordance,
a hierarchical Q-learning network was planned of two independent Q tables to assign two
control layers. Furthermore, a baseline split layer was introduced to attain the power split
ratio of the battery and the ultracapacitor based on the update stored in Q1. Moreover,
the upper layer was developed based on the Q2 update to activate the ultracapacitor
commitment. Therefore, the accomplished results have proven that the introduction of
the RL was the reason for reducing the battery capacity loss by 8%. This was followed
by an extended exploitation of the Q-learning by L. Bo et al. [36] through the training
of the rules and parameters of an adaptive fuzzy network inference system (ANFIS) of
a hybrid off-road EV (HEV). Hence, the results have verified that the proposed online
Q-learning fuzzy inference system (QLFIS) was a new successful approach in off-road
controlling with no prior knowledge of the driving cycle, whereas the optimization of
forecasting models was not far from the interaction with Q-learning. An online forecasting
model was proposed to attain an accurate wind speed prediction to enhance the integration
between wind energy and the utility grid [37]. Therefore, the successful selection of an
intelligent Q-learning (OMS-QL) to implement an online forecasting model pool (FMP) was
the motive of an improvement in the prediction by 48% compared to the model before the
development. In line, the fuel cell hybrid vehicles (FCHVs) had a most recent successful
attempt to attain a new Q-learning-based energy management strategy and extend the
fuel cell (FCS) lifetime [38]. Here, the designed power distribution rules were employed to
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pre-initialize the Q-learning table and accelerate the management process. Furthermore,
the FCS power difference between adjacent moments was exploited to reduce its lifetime
through the Markovian modulation of the driving cycle.

3.2. Deep Q-Network

One of the vital features offered by the RL-based solutions is the more accurate
predictions with no need for a separate forecasting model through integration with an
ANN. Accordingly, deep Q-learning (DQN) has been introduced as the most popular,
in which, the Q-learning is integrated with an ANN, and updates solutions with higher
predictions for higher complicated applications [39,40]. The superiority of the DQN over
the Q-learning lies in three fundamental reasons [41]:

• An approximated action value function through the replacement of the conventional
Q-learning table by an ANN.

• Improved exploration, because of the different agents involved.
• Enhanced exploitation through updating the Q-values by the best solution accomplished.

The expansion of the RL-based solutions to DQN was aimed to overcome the unstable
learning of the senior Q-learning in higher-complexity applications, wherein DQN has
been a collaborative development of four learning-based sub-techniques, experience replay,
target network, clipping rewards, and skipping frames [41]. Furthermore, it trains the
network with uncorrelated past batches to operate the target network and attain enhanced
intelligence, which might be reaching the level of the human brain if organized smartly, for
the benefit of solving problems that cannot be solved by the basic RL-based method. The
demonstration of the DQN agent in Figure 4 illustrates the equivalization of the Q-table in
the Q-learning by an ANN to approximate the action value function.
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The introduction of DQN in solving complicated power management problems has
been dealt with through many successful applications in the recent and most recent lit-
erature. P. Suanpang et al. [42] have recently proposed a solution to the optimization of
autonomous energy management in a microgrid through the introduction of deep RL.
Specifically, the collaboration of the DQN was the management of the microgrid compo-
nents of, renewable resources, storages, and loads, through prioritizing the tasks based
on the optimization obligations. Hence, a saving of the general energy processing cost of
13.19% was accomplished, compared to a similar strategy with no DQN. Followed by an
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effective attempt by Z. Zhu et al. [43] to solve the defect of sequential decision-making
through the introduction of a deep deterministic policy gradient algorithm. As a result,
the operation cost was reduced by 5% with enhanced generalization capabilities, whereas
the inability of the conventional model-based optimization methods in regulating voltage
profiles of distribution networks connected by multi-terminal soft open points (M-SOPs)
was a recent concern. Voltage rise violations were diagnosed due to the high energy pen-
etration of the distributed generators (DGs). Accordingly, P. Li et al. [44] have proposed
the introduction of a deep deterministic policy gradient network (DDPG) to attain a new
method of data-driven voltage control, where the problem in voltage control was taken as
MDP to build the DDPG agent. Therefore, an enhanced improvement has been achieved in
voltage fluctuation due to the high DG energy penetration.

The development of the hybrid electric vehicle (HEVs) was likewise successfully
boosted recently by the intelligent DQN [45]. Here, the minimization of fuel consumption
and the enhancement of computational speed were attained through the introduction of a
DQN with long short-term memory (LSTM). Consequently, the distribution of the power
between the internal combustion engine (ICE) and the electrical motor (EM) was optimized,
whereas home energy management (HEM) was not in isolation from exploiting the recent
DQN development. In consequence, A. Forootani et al. [46] have suggested DQN-based
management to hourly schedule the controllable and time-shiftable home appliances. As a
result, a reduction in the electricity cost with high consumer satisfaction has been indicated,
compared to the same management system with the employment of Q-learning.

3.3. Batch Reinforcement Learning

Batch RL solutions aim to learn the best possible policy from a set of fixed priorly
defined transition samples, to solve complicated applications that cannot be solved by the
basic model-free Q-learning method [47]. The intelligence of batch RL learning relies on
the approach followed in handling a batch of transitions and accomplishing the ultimate
output. In particular, the observed transitions are stored, with a synchronous fitting on
the completed batch transitions through updates. Then, the set of sample experiences is
extended to incrementally improve toward a stable and efficient solution, as demonstrated
in the batch learning schematic in Figure 5. This differs from the classical free-morel
Q-learning that traditionally requires many iterations to attain convenient policies [5,47].
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Solving optimal power management problems through the introduction of batch RL
has been recently enhanced by active proposals. The optimization of energy management in
buildings was a vital application. The energy consumption in buildings represents around
30% of the worldwide energy consumption, and an estimated half of it is to the heating
ventilation, and air conditioning (HVAC). In accordance, the safety and optimization of the
HVAC control were improved by C. Zhang et al. [48] through the introduction of batch RL.
Specifically, a guided exploration was suggested through the adjustment of the introduced
gaussian noise, resulting in a tradeoff between the safety and diverted dataset. The offline
selection of the optimal policy was attained through the application of a rule-based model-
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based solver. Accordingly, an improvement of 12–35% in ramping reduction, 3–10% in
1-lead factor lessening, and 3–8% in daily peak decrease were attained compared to the
classic rule-based management system before the development.

A solution to the many time steps of attaining the learning performance of HVAC un-
der classical RL-based management was suggested by H. Liu et al. [49]. Particularly, a batch
RL was introduced to improve the optimization policy through learning from the historical
solutions with no interactions with the real simulators. Furthermore, a Kullback–Leibler
(KL) regularization term was introduced to prevent policy deviation. Therefore, a reduction
in energy consumption by 7.2% and 16.7% compared to the classic solution based on batch
RL, and other state-of-the-art batch RL solutions, respectively, was achieved when applied
on multi-zone and multi-floor buildings. In line, the optimization of power management
in grids was likewise a recent application of batch RL. The distribution constraints in
unknown grids were prevented by the introduction of batch RL [50]. Accordingly, the
network-safe policy was computed from previously known controlled load aggregations.
Hence, a 95% reduction in the number of rounds with a minimum of one constraint viola-
tion was accomplished. In addition, an assured safe operation for the distribution network
was also accomplished.

3.4. Double Q-Learning

The overvaluation of the actions due to bias is a diagnosed defect in Q-learning, espe-
cially with higher-order applications that require a higher accurate update. Accordingly,
double Q-learning has been the alternative development to overcome this defect through
the boost of their update. Specifically, two Q functions are presented to generate and update
unbiased actions by employing the other’s Q function within their Q function [51,52]. A
comparison between the application of a conventional DQN and a double Q DQN (DDQN)
in terms of the change in the average reward is in [52]. Here, the change in overall reward
has earned The DDQN an outperforming because of eliminating the negative reward drops
due to the incorrect actions of the agent. These drops disappeared in the DDQN in the later
training stage since the agent has learned from this and avoided these wrong actions, which
has proven an outpacing of DDQN over DQN in terms of learning stability and perfor-
mance. Therefore, an improved algorithm’s performance was achieved via the introduction
of DDQN with a total score of 271.73% in both value accuracy and policy quality.

Double Q-Learning has earned a position in solving power management problems,
with an expansion to the role in the recent and most recent literature. Therefore, there
have been several distinctive and successful proposals. The trend towards enhanced
electricity-based transportation was one of the beneficiaries. In accordance, a proposal was
suggested to enhance fuel economy in a plug-in hybrid electric vehicle (PHEV) through the
development of an energy management system (EMS) [53]. Here, double Q-Learning was
applied to attain an effective offline learning controller and solve the rolling optimizing
process in a module predictive controller (MPC). Hence, results have proven an excellent
economic fuel consumption due to the achieved optimal battery output in the predicted
horizon. The enhancement of power consumption of off-highway hybrid EVs was likewise
an application of the double Q-Learning. Consequently, B. Shuai et al. [54] have recently
developed an active predictive double-Q in collaboration with a backup model (PDQL)
to optimize the real-world driving fuel consumption of an off-highway hybrid EV. The
progress of the developed PDQL over the existing standard double Q-learning (SDQL)
was the enabler of achieving better efficiency by only half the iterations. Therefore, the
vehicle efficiency with PDQL was improved by 1.75% higher than with SDQL. While L.
Han et al. [55] have suggested an optimization of hybrid vehicle efficiency with reduced
fuel consumption through the regional distribution of mechanical energy from the engine
and electrical energy from the batteries. This was attained by developing the EMS through
the introduction of a double Q-learning. As a result, the economic fuel consumption and
the batteries’ power flow stability have been greatly improved compared to the strategy
before the introduction of double Q-learning.
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3.5. Actor–Critic

The learning methodology of the actor–critic refers to the setting of the possible
actions from the given state and reward by the actor. The estimated value function, or critic,
evaluates the actor’s actions based on the applied policy, and then updates the actor to
the accomplished evaluation, which is the developed version of the model-free DQN to
enhance learning performance and solve higher complicated problems. The principle and
operational methodology of the actor, represented by a DQN, was modified to a continuous
action domain by combining with the critic, represented by a deterministic policy gradient.
In more depth, the experience relay and slow-learning target networks are employed
by combining the principle of the DQN operational methodology and the deterministic
policy gradient. Furthermore, further progress is achieved by exploiting the critic to
manage continuous action states [39]. Accordingly, the main reason behind the superior
intelligence of actor–critic solutions relies on the combination of policy and value functions,
with the collaboration of both value-based and policy-based methods. Therefore, their
advantages were boosted by combining the good features from both algorithms to solve
higher complexity problems in a variety of advanced power distribution applications. The
actor–critic is in common with the DQN regarding the use of an ANN in approximating
the probabilities of all the actions, as clarified in Figure 6, which explains actor–critic
interaction with a power management environment [56]. The actor takes the action based
on the environment’s state and reward, in addition to the actions’ evaluation update from
the critic.
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There have been several active recent contributions to the introduction of the actor–
critic in solving power management problems. Y. Du et al. [57] aimed to reduce energy
consumption in a multizone HVAC system through the introduction of an actor–critic.
Therefore, an optimized control strategy has been achieved to enhance comfort, reduce
energy consumption, and comply with complex unknown environments. The description
of the control process as a constrained Markov was likewise an aim [58]. The role of
the actor–critic was to attain optimal control of an active distribution network under the
complicated continuous and action space problems. Similarly, the activity of the actor–critic
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has taken its role in the development of power balance and sustainability in micro and
smart grids through active recent proposals. T. Wu et al. [59] suggested the actor–critic
solution to reconfigure hybrid AC-DC networks (HDNs) with a microgrid in the situation
of an extreme event due to special situations, such as high penetration of the distributed
generators and load mixing. In particular, the role of the actor–critic was to assist critical
service restoration through the creation of isolated sections inside the HDNs and satisfy
the different system states.

The random disturbance in microgrid operation due to uncertainty in renewable
energy penetration of the wind and solar generations was a vital defect. Consequently, K.
Han et al. [60] have suggested an adaptable composed management of lightweight actor–
critic learning-based empirical mode decomposition-based networks, and an evolutionary
strategy. Hence, a robust adaptable management system of the microgrid was achieved
compared to the un-adapted management. The optimized coordination of the energy
storage systems for the aim of reducing operational costs in microgrids was recently dealt
with in [61]. Here, a multi-timescale operation method based on soft actor–critic learning
was developed to coordinate the battery and supercapacitor in the microgrid through the
application of a hierarchical two-stage dispatch method.

In line, the optimization of electric-based transportation was present within the recent
actor–critic applications. A unique collaboration was by D. Xu et al. [62] to update the
existing DRL-based management of EVs with a hybrid energy storage system (HESS) to a
soft actor–critic-based system. Hence, the adoption of the extracted dynamic programming
knowledge has decreased the energy loss by 8.75% compared to the strategy based on DQL.
The improvement of EMS for a hybrid electric vehicle (HEV) through the introduction
of actor–critic was recently dealt with to enhance energy saving. Furthermore, reduce
emissions in different driving conditions [63]. Specifically, soft actor–critic (SAC) and
mechanism soft actor–critic (MSAC) algorithms were employed, in addition to the appli-
cation of the posturized experience replay (PER), to attain more experience sampling and
optimize the EMS. Hence, an improvement was accomplished with the proposed strategy
over the classic SAC of fuel consumption and robustness under various driving conditions.
The reduction of the EV charging impact on the power grid has been investigated by Y.
Cao et al. [64]. Accordingly, a smart charging algorithm based on SCA learning was devel-
oped to overcome uncertainties in the charging behavior of EVs through active charging
scheduling. Particularly, an optimal charging learning of EV is accomplished by the SCA
through a continuous charging action rather than the discrete approximation. Hence, a
reduction in the expected cost by 24.03%, 21.49%, and 13.08% was gained compared to the
existing strategy without the introduction of the SCA.

3.6. Multi-Step Q-Learning

The combination of two RL algorithms of attending fast learning has been dealt with
in the literature. The most successful was the combination of the two abovementioned
algorithms, the Q-learning, and actor–critic, that resulted in a reliable updated multi-step
Q-learning [65,66]. Therefore, the updated combined solution with the combined features
of both algorithms is qualified for solving problems at a level of complexity and uncertainty.

The intelligence and robustness of the multi-step Q-Learning were tracked recently to
solve power management problems. L. Xi et al. [67] have integrated a deep Q-Learning and
a double Q-Learning to attain a unified developed multi-step Q algorithm and overcome
the overfitting defect in the management of a multiarea power grid. Consequently, the
random disturbances and the frequency instability due to the over-fitting were improved
in the multi-area that is covered by the interconnected grid. The regulation of the opera-
tors’ protection strategies in smart grids was investigated to attain a multistage RL-based
solution of a multistage game between the attacker and the defender [68]. In accordance,
the sequence of transmission line attack actions was learned for protecting a set of selected
lines by the defender. Hence, more optimization was achieved in the attacking sequences
under different attack aims. Likewise, the online optimization of the electrified off-highway
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vehicle was an implementation field of the multistep RL. Q. Zhou et al. [69] have proposed
a management system based on the introduction of multi-step RL. Therefore, the new
solution with the three multi-step learning strategies was the motive of optimization in
energy efficiency by 44%, compared to 34% with the initial strategy before the development.
Furthermore, an enhancement of prediction horizon length by 71%, in addition to a saving
in energy by 7.8% in the same driving environments.

3.7. Dyna Algorithm

The combination of model-free and model-based algorithms is an effective way of
enhancing learning and attaining an updated version of solving complicated problems.
For example, the learning of Q-learning model-free can be boosted by the introduction
of another model-based to accomplish a combined Dyna algorithm, as demonstrated
in Figure 7. A model is introduced to make a prediction of the experiences. Then, the
policy is updated by the estimated model predictions of state, reward, and action. [39,70].
Accordingly, the Dyna algorithm is in line with the aforesaid actor–critic on the side of
the features and operational methodologies. Both are combined algorithms, to enhance
the learning performance of a model-free algorithm. The Dyna algorithm aims to address
shortcomings of the model-free approach, particularly Q-learning, while the actor–critic
is to adapt the model-free DQN to a continuous action domain. On the other hand, Dyna
differs by the accomplishment of the best action based on predictivity. The Dyna algorithm
develops a transition and reward model by using the estimated predicted experience and
then updates the developed model by the accomplished experience, which lastly updates
the Q-learning and provides the best action. The actor–critic is accomplishing the best
action based on the state and the update from the critic. The critic is evaluating the actor’s
actions for the given policy to attain an updated Q for the actor [39].
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Recently, the energy management of hybrid electric vehicles has benefited from the
fast learning of the Dyna. G. Du et al. [70] have suggested a solution based on the Dyna
algorithm to overcome the “curse of directionality” of a management system in a hybrid
EV. Here, a developed DQL was applied with the collaboration of a new version of Dyna
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algorithm, named (Dyna-H). Furthermore, a new optimization method (AMSGard) was
activated for updating the ANN weight. Hence, faster release to the training speed and
lower fuel consumption were gained.

The new queue Dyna RL algorithm has taken effect to improve the performance and
fuel consumption of hybrid electric vehicles (HEVs) [71]. Specifically, an updated combined
Dyna of direct and indirect RL algorithms was suggested to overcome the defect of direct
and indirect RL through the online construction of the model, and to deal with backward
focusing and posturized sweeping. Hence, great optimized performance and reduced fuel
consumption were achieved by the new queue Dyna over the direct RL, indirect RL, and
conventional Dyna. Power marketing was an application field of Dyna interaction through
an attempt by Q. Jia et al. [72] to suppliers bidding under a limitation of information. In
accordance, an updated continuous action RL automata algorithm with the introduction of
the discretization and Dyna structure was suggested to attain an improved execution in a
separate game. Thus, the success of the achieved effective algorithm was verified by the
simulation results.

Table 1 demonstrates a summary of the reviewed classical RL-based solutions for
managing power flow, with the major strengths and weaknesses of each one.

Table 1. Summary of the classical RL-based solutions of power flow management problems.

Strategy/Application Strengths Weaknesses

Ref. [35] EVs

12%, and 8% Reduction of battery capacity and
battery capacity loss, respectively.

Extended vehicle’s range and batteries life.
Qualified for different driving cycles and

measurement noises.
Extendable to different hybrid power systems.

More state variables consideration
is mandatory.

Not validated for some experimental data
from externally introduced models.

Ref. [36] HEVs Improved dynamic performance.
Reduced fuel consumption and calculation time.

The attained power response performance
is close to the existing DP-based strategy.

Ref. [37] Wind turbines
system Integrated to grid

Optimized wind speed forecasting by 48% and 67%
of two case studies in comparison with 9 previously

existing methods.

Optimization is mandatory regarding the
online selection of the model and the

application of dynamic
ensemble approaches.

Ref. [38] FCHVs
5.59%, and 13% reduction of fuel consumption and

power fluctuation, respectively.
69% increase in convergence speed.

Real-time applications are mandatory.

Ref. [42] Microgrid
13.19% saved energy costs.

Extendable to other industries require
energy management.

Instability and sluggish convergence
in real-time.

Prediction of energy price is
not considered.

Ref. [43] Microgrid 5% reduced operation cost.
Enhanced generalization capability.

PV and load uncertainties are not included.
Ignored fuel efficiency.

Ref. [44]
Distribution networks

Enhanced regulation of voltage fluctuation due to
the high penetration of DGs.

Further modification can be achieved of the
reward function.

Ref. [45] HEVs

Efficient utilization of learned information.
Enhanced computational speed.

Improved fuel economy.
Independence of prior knowledge in driving cycles.

Unextendible to other applications.
Participation in the electricity market is

not included.

Ref. [46] HEM Reduced electricity costs.
Enhanced customer satisfaction.

Participation in the electricity market is
not included.

Ref. [48] Building HVAC

12%-35%, 3%-10%, and 3%-8% reduction in ramping,
1 h factor, and daily peak at deployment, respectively.
Improved performance degradation compared to the

existing strategy.

Still an existing performance degradation.
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Table 1. Cont.

Strategy/Application Strengths Weaknesses

Ref. [49] Building HVAC

7.2%, and 16.7% reduction of energy consumption
compared to the existing batch algorithm and the

rule-based algorithm, respectively.
Enhanced thermal comfort.

A more frequent data writing rate
is mandatory.

Ref. [50] Unknown
electric grids

95% reduction of the total number of rounds with at
least one constraint violation. Low setpoint tracking performance.

Ref. [53] PHEV
A superior optimization of fuel economy.

Perfect adaptability to different SOC
reference trajectories.

Real-time speed reduction under complex
traffic conditions is not considered.

Ref. [55] HEVs

Only half of the learning iterations are needed to
attain battery efficiency.

1.75%, and 5.03% improvement in vehicle energy
efficiency and energy saving, respectively.

Despite an improvement achieved in
energy efficiency, it is still low.

Ref. [55] HEVs Improved fuel economy.
Enhanced SOC stability. Computational speed is not taken.

Ref. [57] Residential
building HVAC

15% reduced energy consumption.
79%, and 98% reduced comfort violation compared

to DQN and rule-based, respectively.

Different seasoning scenarios are
not considered.

Various user preferences are not included.

Ref. [58] Active
distribution network

Balanced bus voltage to the allowed range.
15% reduction of system loss.

Many training episodes are required to
achieve the solutions.

Slow convergence.

Ref. [59] Hybrid AC-DC
networks (HDNs)

with microgrid

Optimized computation efficiency.
Enhanced stability.

Solutions can be used as an initial value to accelerate
the existing traditional method.

Active in various states and scales.

The accomplished optimization is similar
to the existing single-agent DRL algorithm.

Ref. [60] Microgrid

Improved dynamic performance.
Enhanced online learning capabilities.

High control performance.
Low economic costs.

The dynamic topology of the microgrid is
not considered.

Repeated tests in different real-life systems
are essential.

Ref. [61] Microgrid

Fast convergence.
Efficient addressing of

exploration-exploitation defect.
Improved robustness in making decisions.

Different types of energy storage systems
are not considered.

Ref. [62] EV with hybrid
energy storage system

8.75%, 6.09%, and 5.19% reduction of energy storage
system loss compared to DQN, DDPG, and

DP-based, respectively.
Faster convergence compared to DDPG by 205.66%

32.24% improved energy saving.

The difficulty of tuning parameters.
Tedious training time.

Real-time performance is not verified.

Ref. [63] HEVs Reduced fuel consumption.
Improved robustness under different driving cycles.

Real-world validation is not attained.
Platoon control is not introduced.

Ref. [64] EVs

24.03%, 21.49%, and 13.8 reduced energy costs
compared to EC, OA, and AEM

algorithms, respectively.
7.24% reduced charging cost compared to AEM.

5.56% increased charging cost in CALC
compared to SCA.

The coordination of multiple charging
stations is not considered.

Ref. [67] multi-area
energy system

Reduced random disturbance.
Enhanced frequency stability.

Fast convergence.

An increase in the time consumption for
the convergence when the problem size

is large.

Ref. [68] Smart grid
Optimal identification of the attack sequence under

several attack objectives.
Enhanced system security.

The performance of identifying vulnerable
branches is required to be improved.
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Table 1. Cont.

Strategy/Application Strengths Weaknesses

Ref. [69] Electrified
off-highway vehicle

Optimized energy efficiency.
Optimized real-time prediction.

Enhanced energy saving.

The optimized energy efficiency takes long
real-time learning (5 h) to be achieved.

Ref. [70] HEVs

Optimized energy management.
Faster training speed.

Lower fuel consumption.
Adaptive to different driving cycles.

Incompatible sample selection in the
planning process.

Ref. [71] HEVs Fast learning.
Satisfiable fuel consumption.

More optimized fuel consumption
is needed.

Ref. [72] Power suppliers
with limited information

Effective under both stationary and
nonstationary environments.

Lack of reliability for virtual experience in
nonstationary environments.

Further validation is mandatory for
scalability in more complex and

variable environments.

4. Emerging Advanced Reinforcement Learning-Based Solutions of Power
Management Problems

Despite the progress accomplished by the classical and classical combined solutions
based on RL, there remains an urgent need for more intelligent and efficient algorithms
to solve complex problems that cannot be solved with classical solutions. Among these
complex applications is what interests this research on highly complicated energy manage-
ment problems.

4.1. Synchronous and Asynchronous RL Solutions

The asynchronous actor–critic (A3C) has been established by Google DeepMind tech-
nologies to maintain the unstable recursions of the Q-learning in the case of an introduced
neural network [73], in which a group of ANN-based agents is trained with various copies
of the environment to update the master agent until reaching convergence and attaining
the optimal solution. The A3C has shown an advancement in learning efficiency compared
to the classical DQN of solving complicated problems. However, there has been a defect
in the less achieved advantage compared to its complexity. Therefore, an updated more
efficient solution with less complexity and easier implementation was released in 2017
by the USA AI research company, Open AI, named synchronous actor–critic (A2C) [74].
The secret of its superiority over A3C lies in the use of the N-step return technique that
guarantees improved bias-overfitting.

The A3C and A2C actor–critic solutions were involved recently in fulfilling an op-
timization of managing power flow and solving problems in a variety of complicated
applications. A. Biwas et al. [75] have suggested an updated online energy management
framework of a multimode hybrid electric powertrain through a collaborated solution of
A3C based on DQN and a Markov chain model (MCM). Accordingly, the energy manage-
ment policy was updated periodically by the asynchronous-based DQN, then plenty of
probable future drive cycles were generated by the MCM. Therefore, the results of two train-
ing trials have demonstrated a 99% achievement in fuel economy of the global optimal and
a 0.12% reduction of the deviation from the charge sustainability, in the case of unknown
drive cycles generated from the same historical data. Additionally, an extra 6–10% fuel
consumption than the global optimal was achieved in the case of unknown drive cycles not
generated from the same historical data. The energy management system of a hybrid power
train was enhanced through the introduction of the asynchronous advantage actor–critic
(A3C+) to attain optimal economical operation [76]. In consequence, an enhancement of
the fuel consumption optimality of 92% in charge substance and 83% in charge depletion,
was achieved compared to the energy management under dynamic programming.



Energies 2023, 16, 1608 18 of 38

Likewise, the optimization of bidding in renewable energy trading has taken its
position in the recent A3C applications, intending to maximize profit. Accordingly, M.
Sanayha et al. [77] have proposed an adapted bidding strategy for wind energy through
the introduction of the model MB-A3C. Hence, the results of the investigation in Denmark
and Sweden of the “Herein conventional benchmark” that represents six wind power
datasets have confirmed the success of the adapted bidding policy. Therefore, less cost
was achieved compared to the previous model-free and model-based policy, followed by a
reduction of the input cost of a microgrid operation through the improvement of flexible
scheduling on the demand side [78]. Here, the advantage of the asynchronous memory
actor–critic (M-A3C) to overcome correlation in data and instability of distribution during
the training, was exploited. Therefore, enhanced convergence and optimized economic
operation were achieved compared to the algorithm with no A3C. In line with the recent
enhancement to the introduction of A3C, the lack of foresight in the decision-making of a
demand-side management system (DSM) was improved by L. Yu et al. [79]. In accordance,
an (A3C) was introduced in collaboration with a long-short-term memory (LSTM) to attain
an optimized demand side management. Therefore, the learning process was speeded up
with guaranteed users' privacy. Furthermore, the economy in the decision-making was
confirmed. F. Sun et al. [80] have enhanced the economy of a DSM. The A3C collaborated
with the LSTM to accomplish an updated pricing method for the service provider. Hence,
the attainment of DSM pricing decisions under a cloud-edge environment was implemented
with less mandatory historical data than in other classical methods, and Improved profit.

Similarly, the optimization of power management in grid-connected microgrids was
investigated to minimize the losses of generation, transmission, and overall losses in a
microgrid network [81]. The A2C was introduced as a third stage to maximize the efficiency
of the microgrid and the grid. Hence, the results have shown an optimization of the
prediction rapidity to 40 times than before applicating the A2C. The optimum autonomous
deriving was a distinctive application of the A2C RL. This was demonstrated in a proposed
strategy by W. Zhou et al. [82] to formulate a line charging decision maker of an autonomous
vehicle in a highway environment of mixed traffic. Accordingly, the effective Intelligent
multiagent synchronous actor–critic (MA2C) enables each autonomous vehicle of the
multiagent to decide regarding the motion of both the neighboring autonomous vehicles
and human-driving vehicles. Therefore, simulation results have shown progressed A2C-
based strategy over several state-of-the-art strategies in overall efficiency, driving safety,
and comfort during driving.

4.2. Multiagent RL Solutions

Regardless of the successful classical, combined, and advanced, single-agent-based
strategies in solving complex power management problems, there is still an ongoing need
to solve complicated power management problems that cannot be solved by a single-agent-
based RL approach. An example of this is the accomplishment of autonomy in managing
power distribution systems with multi-stage control or multiple optimization requirements,
such as fulfilling the autonomy of managing micro or smart grid networks with several
distributed power units of generation, distribution, storage, and demand. In accordance,
multiagent RL (MARL) was the emerging solution to fill the gap and verify decentralization
and independence of power management, which comprises the solution to an interacted
learning of several agents to attain combined actions from the associated environment’s
state and the emerged reward signals [83]. The demonstration of the agent interaction
with the environment and other interacting agents in the MARL is shown in Figure 8. The
transfer of mandatory information is in progress between the (N) number of interacting
agents and the environment.
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MARL solutions are typed and classified based on the kind of the given reward.
Therefore, they are cooperative if the maximization of a long-term return is a collaborative
role by all the interacting agents [84]. An example of this is micro or smart grids, where the
minimization of utility grid reliance is a collaborative aim of all the power agents, whether
they are a resource, storage, or demand. Another is the autonomous driving systems,
in which all the control units collaborate to verify the autonomous driving and avoid
collisions, in line with maximizing the possibility of optimized traffic flow and reduced fuel
consumption [84]. The competitive MARL aims for the return sum of all the interacting
agents to be zero. Then, the third class is the cooperative–competitive, which combines the
characteristics of the two above-mentioned MARL solutions and aims for the reward to be
a general sum.

There are challenges influencing the transition from simple single-agent solutions to
the complicated multiagent approach, as explained below:

1. Stationarity: In MARL solutions, all the interacting agents can make a modification
in the environment, which differs from the non-stationarity single-agent solutions,
wherein the environment can be influenced by only one agent [85].

2. Scalability: The algorithms for implementing the MARL need to be scalable to a high
number of agents, exchanging information between them, in addition to the environ-
ment. Accordingly, most MARL approaches to attain scalability are decentralized
because of the absence of a central controller and the uncertainty of communication
links [86].

3. Partial observability: The observability is set to be partial when correlated with a
limited geographical due to the vision of the agent on only the surrounding. This
can be recovered in the MARL by the similar solution that is followed in setting the
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DQN, which is that the first layer is replaced by a long short-term memory (LSTM) to
enhance the non-observability that is occurred [87].

There has been a wide collaboration in the recent and most recent literature for the
aim of improving power management optimization and intelligence of advanced power
distribution systems through the introduction of MARL.

The optimization of power management in DC microgrids was rich in unique MARL
attempts. Y. Mi et al. [88] were successful in managing the power flow of ESS in a DC
microgrid through the enhancement of their lossy communication by the introduction
of MARL. Here, the global information estimation of the lossy-communicated network
was accomplished by a suggested secondary control. Furthermore, an adapted current
algorithm was employed to balance the SOC of the ESS. Hence, an effective current shar-
ing and voltage balance, and enhanced robustness to lossy information, were verified
by the simulation results. A solution for the scaled consensus defect in DC microgrid
with a heterogeneous multiagent system with cascaded two layers was proposed by S.
Mo et al. [89]. Specifically, a two-layer controller of, a continuous feedback controller to
converge with target values, and an impulsive controller to enforce the scaled consensus to
the upper state component. Therefore, an appropriately scaled consensus was attained in
terms of inequalities of the linear matrix achieved with the use of the Lyapunov function.
Furthermore, an accomplished optionable relaxation of the distributed hybrid secondary
control. In line, MARL was the motive for improving the performance of a DC-DC buck
converter with constant load in a DC microgrid. In accordance, H. Sorouri et al. [90] have
suggested a learning-based MPC (FCS-MPC) to address an ongoing challenge through the
learning of a deep deterministic policy for the aim of an optimal coefficient design policy.
Therefore, robustness was achieved against uncertainties and unknown load scenarios,
in addition to, the attainment of the plug-and-play feature. The establishment of more
active cyber security solutions in DC microgrid applications was one of the crucial recent
needs. Therefore, a MARL algorithm was designed by A. J. Abianeh et al. [91] to fulfill the
automatic discovery of the conventional detection approaches in DC microgrid applications.
In addition, an enhancement sniffing feature was applied to keep the stealthy attacks under
sudden connection. Hence, a more reliable performance was verified by the results.

Similarly, AC microgrids existed in the recent MARL applications. Y. Xia et al. [92]
have considered time delay in optimizing the control of an AC microgrid through a pro-
posed secondary control approach based on MARL. Specifically, each agent of the MARL
was formulated by a trained DNN. Furthermore, an improved deep deterministic algo-
rithm was applied to the secondary control to attain the optimal policy. Thus, optimal
solutions under different loads and variated time delays were accomplished. Followed by
another optimized secondary controller to maintain frequency in an AC microgrid by H.
K. Vanashi et al. [93] through the introduction of an additional secondary controller-based
MARL. Here, the secondary control parameters were tuned by particle swarm optimiza-
tion (PSO) and adaptive dynamic programming (ADP) algorithms and then applied to
the agents in the MARL. Therefore, improved performance was attained by oscillation
results. On the trend, a proposed decentralized secondary controller-based MARL by P.
Chen et al. [94] was the frequency regulator of the AC microgrid with heterogeneous BESSs.
A centralized off-line learning A3C based on the MARL algorithm, with the collaboration
of a conventional neural network was developed to maximize the global reward. Hence,
simultaneous frequency regulation was achieved, in addition to a balanced SOC. This was
followed by a successful frequency regulation-based MARL by Y. Xu et al. [95] to con-
trol the distributed frequency in AC islanded microgrid. Accordingly, each of the MARL
agents provides a control action based on neighboring information with a driven deep
deterministic algorithm to update the agent’s parameters. Therefore, effective regulation
of frequency was accomplished with an optimized tolerance of time delay and reduced
parameters. Energy management of renewable energy in an AC microgrid has benefited
from the introduction of MARL. Renewable energy management was suggested by K.
Deshpande et al. [96]. In accordance, the MARL agents were trained by the historic energy
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profile and consumption to make an optimized decision of adapting the load consumption
of the microgrid. Thus, a good performance was attained in terms of the energy manage-
ment balance. Furthermore, a great generalization capability, power management reliability,
and resilience.

Likewise, optimization in solving power management problems of smart grids was
existing within the recent MARL applications. The charge/discharge scheduling problem
of plug-in electric vehicles (PEVs) in a smart grid was resolved by Y. Wan et al. [97] with
consideration to the driver’s satisfaction regarding SOC and batteries degradation cost.
Here, the minimization of the energy cost was taken as a Markov game of unknown proba-
bilities, then the Markov game was solved through the development of a multiagent deep
RL-based data-driven algorithm. Therefore, a lower energy cost within an unknown market
was achieved, in addition to the online optimal charge/discharge. This was followed by
an energy scheduling attempt by Y. Zhang et al. [98] to accomplish stabilization in the
electricity market and optimization of the charging demands for EV charging stations in
a smart grid. Thus, an energy distribution strategy was developed through the introduc-
tion of MARL to fulfill optimization in the energy purchasing approach and the online
dispatch scheme. Therefore, optimized performance was attained with the implementation
of the developed energy scheduling, which resulted in enhanced economic profit and
consumer satisfaction. The complexity of implementing security situational awareness
(SSA) in attaining an intelligent automated smart grid was a recently diagnosed concern by
W. Lei et al. [99]. The huge heterogeneous power terminals referred to failed undelivered
information. In consequence, the traditional power paradigm was addressed by the intro-
duction of a computing edge between the cloud and power terminals, and the development
of a multiagent deep deterministic policy gradient (MADDPG). Hence, faster convergence
and protection in real-time were achieved with the smart grid operation.

MARL was a solution for solving recent defects in the power management of build-
ings. R. Shen et al. [100] have optimized the energy management of a building energy
system (BES) by developing an energy management framework of a double Q network
for single-agent optimization, and a value-decomposed network for multiagent cooper-
ation. Furthermore, accelerated the convergence and enhanced the stability through the
application of a feasible cation screening mechanism. Subsequently, a multi-objectives col-
laboration of the BES was achieved by the introduction of the MARL algorithm. Therefore,
84%, 43%, and 8% reductions in comfortability, renewable energy, and consumption cost, re-
spectively, were attained compared to the conventional energy management approach with
no introduced MARL. The reduction of the energy consumption of a heating ventilation
and air conditioning (HVAC) system in an intelligent building was a point of interest for R.
Z. Homod et al. [101]. Therefore, the high learning capacity of the hybrid deep clustering
MARL was exploited to afford the high amount of training data sets and attain accurate
weight layers. Hence, an energy saving of 32% was accomplished with enhanced thermal
comfort of 21%.

Additionally, electric-based transportation was positively influenced by the recent
development of MARL. In accordance, D. Qiu et al. [102] enhanced the energy resilience
of EVs’ energy management system through the introduction of MARL. Specifically, both
continuous and discrete actions were simultaneously computed to enhance the stability
and scalability of the learning. Therefore, the resilience of the power network integrated
into EVs was attained, in addition to the accomplishment of the carbon intensity service.
Accelerated loss of life (LOL) of the EV charging transformers was dealt with recently by
S. Li et al. [103]. Here, an updated algorithm was proposed through the collaboration of
evolutionary curriculum learning (ECL) and MARL to optimize the charging transformers
of LOL with the consideration of various EV charging demands. Thus, enhanced charging
of too many EVs that satisfy different charging demands was accomplished. Followed by
an attempt to reduce uncertainties of the autonomous mobility on demand system (AMoD)
of EVs. An optimized solution was suggested by S. He et al. [104] through the development
of a constrained MARL and a transition kernel uncertainty to recover charging defects.
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Therefore, an effective rebalancing policy was achieved in the existence of uncertainty.
Furthermore, a 19.9% increase in fairness and a 75.8% decrease in rebalancing costs were
accomplished. The low programming intelligence of an electric vehicle charging system
(EVCS) in defending advanced mitigate persistent threats (APT) was researched in by M.
Basnet et al. [105]. In consequence, a developed algorithm was suggested based on MARL
in collaboration with a twin delayed deep deterministic policy gradient (TD3) to attain
efficient learning of the control approach and mitigate cyberattacks. As a result, the EVCS
operation was restored in the event of a threat incident by the proper correction of the
legacy control generated signal. Furthermore, high accuracy was accomplished in learning
nonlinear control approaches.

4.3. The Decentralized Multiagent Primary–Secondary Control

The decentralized multiagent primary–secondary control is one of the applications
of MARL, which is a successful approach to decentralized power flow management in
micro and smart grids, especially ESS. This is because of the qualification for providing
immediate real-time information with no need for central controller or communication
reliance. Furthermore, more stability and sustainability can be attained in power flow due
to the several correction stages included. Moreover, the flexibility of boosting the level of
intelligence through the introduction of other smart applications [106,107]. However, there
has been a defect in the inaccurate synchronization of charge–discharge scenarios of the
ESS agents, which has been identified as a tradeoff between the utilization of the real-time
capacity and the attainment of accurate charge–discharge synchronization. This is due
to the limitation of the consensus correction of fulfilling the accurate real-time balance in
managing the participation of the load demand implementation, especially in the situation
of a sudden high, or excessively continuous, load variation [6,108].

Accordingly, there have been attempts to improve the above-mentioned drawbacks.
For instance, C. Li et al. [109] were tending toward frequency scheduling rather than droop
control coefficient adaptation in fulfilling the SOC balance of energy storage systems of an
AC microgrid. Here, each distributed ESS of the microgrid was considered an independent
agent and responsible for scheduling an independent frequency reference. Furthermore,
attaining the droop control based on the SOC of all other ESS agents. However, the plug-
and-play was not attained. T. Wu et al. [110] have proposed a time-oriented SOC balancing
of energy storage units in a DC microgrid, even though the speed of SOC balancing in
the conventional primary–secondary consensus strategy was faster. In line, the balance
of the SOC of BESS agents in a DC microgrid through the introduction of sliding mode
control was suggested by T. Morstyn et al. [111]. A sliding mode controller was employed
to balance the SOC of the BESS agent based on the average SOC of the neighbors’ BESS.
Nevertheless, solving the overloading problem of some participating BESS agents was
prioritized over the accomplishment of accurate SOC synchronization to reduce sliding
mode chattering. L. Zhou et al. [112] have adopted a consensus scheme to manage the
operation of BESSs in an AC-islanded microgrid and accomplish balanced SOC. Specifically,
each BESS shares information with the neighbors’ BESS, then a combined approach of
droop control and the proposed consensus collaborating of managing the power until
reaches balanced SOC. Though, heterogeneous BESSs were not considered. A recent
application was suggested in [113] to balance the SOC of energy storage units in a DC
microgrid. Accordingly, a designed SOC equilibrium algorithm was proposed based on
the accomplishment of accurate load sharing. Still, some instability of output voltage
was existing.

The Adaptive Multiagent Primary–Secondary Control

An adaptation was recently suggested for the aforesaid defect [106], which trended
towards the exploitation of the information that can be provided by multiagent communi-
cation rather than the adaptation of the droop coefficient. Specifically, each participating
BESS agent shares the immediate real-time droop drop in the voltage due to the variation
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in the load demand and accomplishes an adapted immediate real-time reference of the
local controller (Vd_i) at each participating BESS agent, which is the summation of all
the neighbors’ real-time droop-regulation (Vre f _droop_j_M), including the specific BESS
droop-regulation (Vre f _droop_i_M), and divided all by the number of neighbors plus 1
(|N| + 1), as explained in (10). This refers to the fact that any immediate real-time variation
in the load participation at any of the BESS agents is collaboratively implemented by all
the participating BESS agents. Thus, accurate charge/discharge synchronization can be
achieved. This supports solving the circulating current between the participating BESS
agents, which was due to the unsynchronized SOC because of the unbalanced implemen-
tation to the level of the participation of the load demand. The balance in the level of
participation in the load demand has already been achieved by the adapted controller.
Furthermore, improving the overloading defect, which was likewise due to the unbalanced
SOC of the BESSs, when one or a group of BESS agents are participating in implementing
the load demand, in addition to charging other BESS agents. The balance in the output
voltage in the multiagent primary–secondary controller is via the collaboration of the
primary and secondary control stages of the multistage decentralized controller. However,
the role is arduous in the case of an excessive continuous load variation, and the deviation
in the output voltage is highly expected. Accordingly, an adaptation was suggested of the
real-time voltage consensus to enhance the balance of output voltage, which is that the
neighbor’s voltage consensus correction (VLj_dash) is compared to the microgrid nominal
voltage (Vmg) before sending it to the neighbor via the multiagent. This reduces the impact
of the real-time variation in the voltage due to the variation in load demand and enhances
the output voltage balance against the excessive continuous load variation, as demonstrated
in Equation (11).

Vd_i (t) =
1

|N|+ 1
((∑N

j=1 Vre f _droop_j_M (t)) + Vre f _droop_i_M(t) (10)

VLi_dash (t) = VLi(t) +
av
|Ni|

∫ t

0

(
VLj_dash(t) + Vmg

2

)
−VLi_dash(t) dt (11)

The control methodology of the proposed adapted multiagent primary–secondary
control in [101] is explained in Figure 9, which is a multistage control approach, of pri-
mary control, secondary control, and secondary average consensus based on the mul-
tiagent. A consensus correction to the secondary controller is attained for both out-
put voltage (VLi_dash, ) and participation current (ILi_dash), by the real-time average
consensus of both, voltage

(
VLi + av

|Ni|
∫ t

0

(
VLj_dash+Vmg

2

)
−VLi_dash dt

)
, and current

(ILi + ai
|Ni|

∫ t
0 ∑

j
N=1 ILj_dash− ILi_dash dt). VLi, ILi, are local’s output voltage and cur-

rent, and VLj_dash, ILj_dash are neighbors’ consensus correction of voltage and current,
respectively, where av, ai, Ni are voltage consensus gain, current consensus gain, and the
number of BESS neighbors, respectively.

Then, a secondary voltage correction reference (Vre f _ sec _i) is accomplished for the
primary controller based on the attained consensus correction, which is the summation of
secondary voltage correction

((
ev_sec× Ksec _v

p
)
+
∫ t

0 (ev_ sec×Ksec _v
i dt

)
, secondary cur-

rent correction
((

ei_ sec×Ksec _i
p

)
+
∫ t

0 (ei_ sec×Ksec _i
i dt

)
, and the microgrid nominal volt-

age (Vmg). Where ev_sec, ei_sec, are the secondary errors of voltage and current, and
Ksec _v

p , Ksec _i
i are secondary voltage gain, and secondary current gain, respectively.

Followed by the attainment of droop correction (Vre f _droop_i_M) by subtracting the
droop drop in the voltage due to the variation in the load participation (ILi ∗ rdi) from
Vre f _ sec _i, where rdi is the droop coefficient. Next, an adapted reference of the local
controller (Vd_i) is achieved from the summation of the immediate real-time drop in the
voltage due to the variation in the load demand of all the neighbors divided by the number
of neighbors plus 1 ( 1

|N|+1 ((∑
N
j=1 Vre f _droop_j_M) + Vre f _droop_i_M).
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autonomous microgrid.

Subsequently, a voltage controller is employed to attain a correction current reference
for both charge and discharge (Ire f _ch_dis_i) based on the compensation of the difference
between VLi and Vd_i. Finally, a current controller is employed to accomplish control action
of the battery’s converter’s switches (ei_C) based on the different errors of Ire f _ch_dis_i
subtracted from the measured battery current (IB_i). Accordingly, the bidirectional DC-DC
buck–boost converter that interfaces the 24 V battery to the 48 V microgrid DC bus is
responsible for balancing the output voltage with the variation of the battery current, based
on the received control action for both charge or discharge.

The flow chart demonstrated in Figure 10 explains the design methodology stages of
fulfilling the proposed decentralized primary–secondary control strategy. The management
of output voltage balance and real-time participation in implementing the load demand is
accomplished at the local controller. The regulation of the local controller accomplishments
(output voltage and the level of load participation) is the role of the droop control. Followed
by the immediate real-time correction of the local controller that provides the appropriate
balance to the level of participation and attains accurate charge–discharge synchronization
based on the real-time multiagent information. Next, the secondary correction of the pri-
mary voltage and the participation of the load demand is achieved at the decentralized
secondary controller, which is under the supervision and correction of the average consen-
sus for both voltage and current based on the information from the neighbor BESS agents
via the multiagent communication. The average voltage consensus is correcting secondary
voltage reference based on the average corrections from the neighbors. The average current
consensus is correcting the level of the participants provided by the secondary based on
the average correction in the variation of the neighbors’ participation current. Lastly, the
accomplishment of the plug-and-play feature that allows any BESS to participate and ends
the participation based on operational obligations.
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Figure 10. The methodological stages of designing the adapted multiagent primary–secondary
control of BESS agents in DC autonomous microgrid.

Additionally, multiagent communication has been formulated to accomplish an active
enhanced protective plug-and-play feature. Accordingly, any BESS agent can participate
if the absolute battery current is either over zero or under/equal to the battery nominal
current (0 < |IB_i| ≤ IB_N). Otherwise, the BESS ends the participation if the battery
current is either zero or over the battery nominal current (IBi = 0, | IB_i| > IB_N)
with no impact on the stabilization of the control process and the accuracy of the charge-
discharge synchronization. Then the closest BESS agent will take its position as a neighbor,
as explained in the demonstration of the multiagent topology of BESSs in Figure 11.
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The results of several case studies, varying based on the number of BESS agents of
the microgrid, BESS agents‘ capacities, and initial SOC have confirmed that the proposed
adapted strategy has outperformed the conventional strategy in attaining accurate syn-
chronized charge–discharge scenarios and enhanced balanced output voltage under a 24 h
excessive continuous load variation. This confirms that there is no circulation current
between the participating BESS agents. Furthermore, no overloading on any of the par-
ticipating BESS agents. The proposed plug-and-play has likewise been confirmed by the
results. Accordingly, any BESS can participate or end the participation with no impact on
the stabilization of the control process and the accuracy of the charge–discharge synchro-
nization. This positively affects the optimization and stabilization of the control process,
supports healthier and longer-life batteries, enhanced the batteries’ protection against high
faulty currents, and improves renewable energy penetration and sustainability.

4.4. Transfer Learning Solutions

Transfer of learning refers to the use of RL knowledge that was attained to perform
a task of solving a problem, in solving another RL problem not belonging to the first
problem-solving task. This is to compensate for the lack of learning due to the limitation
in the historical data [114]. There have been recent efforts of introducing transfer learning
in solving complicated power management problems with a historical data shortage. The
optimization of bidding in the electricity market was at the forefront due to the much
historical information needed for attaining optimized bidding. As an application of it,
J. Wu et al. [115] have proposed a bidding approach in a competitive electricity market.
Specifically, the collaboration of MARL to enhance the learning of the agents interact-
ing with varying environments, and multiagent transfer learning (MATL) to learn from
other similar tasks, were exploited to attain an optimized bidding algorithm. Then, an
enhancement of the accuracy and convergence in the learning speed was verified by the
results. The less accurate prediction due to the insufficient historical data on microgrid
power consumption was addressed by Y. Ahn et al. [116] through the introduction of
transfer learning based on the collected data of a reference building. A transfer learning
long-short-term memory (TL-LSTM) was developed and trained with a 24 h power con-
sumption of an office building. Accordingly, higher accuracy was achieved by the TL-LSTM
over the conventional LSTM with a 4.25% percentage variation of error. In line, transfer
learning existed in the optimization of the economic operation for an integrated energy
system. Here, C. Li et al. [117] have enhanced the accuracy of load forecasting through
a three-stage solution. The first stage was the filter out of metrological variables by the
Pearson coefficient based on the load demand and the metrological data. The second was
the development of a combined model based on an ANN and the recurrent unit. Then, the
third was coping with the complicated prediction environment through the adjustment to
the model structure. Subsequently, a synergy was accomplished between the source and
the mandatory domain data. Furthermore, an optimization of model performance was
verified through the enhancement of forecasting by transfer learning.

4.5. Priority Experience Replay RL Solutions

The biased sampling of past experiences in an RL agent for accomplishing the current
time learning has two major advantages, the first is optimizing stability in the classical batch
and deep RL solutions, and the second is raising the learning speed [118]. RL solution-based
propriety experience replay has positively influenced the resolution of power management
problems in the recent literature. Accordingly, the sum rate of a multi-cell network was
enhanced by A. Anzaldo et al. [119] through a proposed experience replay-based power
control approach. In consequence, both historical and current knowledge were explored.
Furthermore, the task degradation was reduced and learning capability was enhanced.
The minimized weighted sum of time cost, and the reduced expected outage duration
were recent aims of an unmanned aerial vehicle (UAV) with a cellular connection. This
encouraged Y. Li et al. [120] to suggest a solution based on the collaborative introduction of
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deep reinforcement learning (DRL) and quantum-inspired experience replay (QiER). Here,
the formulation of UAV navigation was attained through a proposed QiER to accomplish
an advantageous tradeoff between the priority of sampling and diversity. Thus, the results
verified the effectiveness and supremacy of the proposed strategy compared to several
DRL- based strategies. In sequence, the crucial aim of optimizing fuel consumption in
nuclear plants has accomplished vital advantageous achievement through the application
of QiER. M.I Radaideh et al. [121] have developed a prioritized replay evolutionary and
swarm algorithm (PESA), in addition to an E-greedy replay to improve PESA exploration.
Accordingly, an optimized fuel was achieved with a competitive performance of PESA over
the other conventional algorithms.

4.6. Policy Optimization Methods

The identification of step size for updating an RL algorithm policy is a major challenge.
Large step size results in going too far in the wrong correction direction of the agent
policy [122]. This is highly expected under bad gathered data or misleading experiences. In
accordance, policy optimization methods have been the emerging solutions to compensate
for the defect, wherein two sub-methods were included, as explained below.

4.6.1. Trust Region Policy Optimization

The optimization methodology of a surrogate in the trust region policy optimization
(TRPO) is dependent upon the boundary of the updated step size. Accordingly, the
avoidance of accumulated misleading experiences is restricted to a trust region [123].
Furthermore, a quadric function is employed to approximate the constraint of the policy.

TRPO has been the optimal solution for many recent modern applications. Vehicular
communications were the most benefited. This can be applicated via two technical theorems,
the dedicated short-range communication (DARC) and the cellular vehicle-to-everything
(C-V2X) that fulfills the concept of the internet of vehicle (IoV). IoV can be defined as an
emerging application of the intelligent transportation system (ITS) to attain intelligent
communication between vehicles, in addition to the infrastructure, through integration
with the internet of things (IoT). From the two vehicular communication technologies, the
C-V2x can offer a high-performance application of IoV in terms of coverage, bandwidth,
and scalability, to present it as a reliable and more convenient application of vehicular
communications. Accordingly, two communication versions can be offered by C-V2X
to the IoV to accomplish efficient intelligent traffic management. The first is vehicle-to-
vehicle communications (V2V), and the second is vehicle-to-infrastructure communications
(V2I). This supports efficient intelligent traffic management, enhanced road safety, and
improved real-time information services. V2V refers to the bidirectional exchange of
information between two vehicles, both holding the feature. V2I implies the bidirectional
communication between the featured vehicle and the road infrastructure, to attain the
mandatory knowledge regarding road management and safety, such as synchronizing with
traffic light signal changes [124].

In the most recent application of TRPO, the optimization of road safety and infor-
mation freshness of the “internet of vehicles” (IoV) were discussed with consideration to
vehicular user pairs and cellular users during driving. Particularly, an optimization policy
based on TRPO was suggested by N. Peng et al. [124] to formulate the resolution of the
problem as an MDP with the adoption of TROP. In consequence, the minimization of the
sum of the average age of information (AOI), and the average consumption of all users
was accomplished. Hence, an optimized fast convergence speed was implemented with
enhanced high stability.

4.6.2. Proximal Policy Optimization

The simpler version of TRPO is known as proximal policy optimization (PPO) and
is responsible for linearizing the objective of the surrogate, in addition to linearizing the
approximation of the step size. This has been verified as the most convenient for the
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actor–critic when dealing with multi-dimensional and continuous environments [123].
Where the activation of the demand flexibility through the residential demand response
schedules was a recent beneficiary of the PPO. Accordingly, T. Peirelinck et al. [125] have
overcome the shortage in data efficiency of a conventional RL-based algorithm through
the introduction of PPO. Furthermore, enhanced the performance of learning through
the incorporation of a demand-side response domain. Hence, the combination of PPO
and transfer learning has reduced the cost by 14.51% compared to the controller with no
PPO, and by 6.68% compared with a traditional controller with only PPO and no transfer
learning. The tie-line power adjustment problem has earned a vital recent solution by J.
Hou et al. [126] to optimize system calculations of the operation state. Specifically, the
solving of the low calculation efficiency problem was formulated as a Markov process, with
a designed ANN for the introduced PP. Therefore, successful validation of the optimized
designed algorithm was attained by the verification via the IEEE 39-bus system.

A summary of the reviewed emerging advanced RL-based solutions to power man-
agement problems is presented in Table 2, with an explanation of the major strengths and
weaknesses of each strategy.

Table 2. Summary of the emerging advanced RL-based solutions of power flow management problems.

Strategy/Application Strengths Weaknesses

Ref. [75] Hybrid
electric powertrain

99% of the fuel economy is achieved.
0.12% Reduced deviation from

charge sustainability.

Sensitivity of the DRL algorithms is
not included.

Ref. [76] Hybrid powertrain
92% and 88% of fuel economy are achieved under

training, and test cycles, respectively.
Optimized training and running efficiency.

Reduction of fuel economy lower than 75%
relative to DP EMS.

Ref. [77] Wind
energy system

Reduced average per-day bidding cost.
Optimized profit.

Lowered uncertainties.

A very slight reduction in bidding cost
compared to conventional existing A3C

(nearly the same).

Ref. [78] Microgrid Optimized performance in terms of convergence
and economics.

A further enhancement is mandatory for the
generalization ability of the model.

Ref. [79] Demand side
management system

Faster learning process.
Guaranteed users’ privacy.

More economic decision-making.

Extra improvement to the decision-making is
required by the separate training in

each period.

Ref. [80] Demand side
management system

High day-ahead achieved profit.
Less required historical data.

Improvement is mandatory for real-time
pricing decisions.

Ref. [81] Grid-connected
hydropower plant

Optimal control policy.
Maximized system efficiency.

Higher variation of the generator bus voltage.
Voltage restrictions need to be improved.

Ref. [82]
Autonomous vehicle

Enhanced system efficiency.
Improved safety and driver comfort.

More attention is needed on
fuel consumption.

Ref. [88] DC microgrid Optimized voltage regulation and current sharing. Requires more accurate compensation for
packet loss data.

Ref. [89] DC microgrid Improved balance of current sharing.
Enhanced communication.

Communication delay.
The presence of external disturbances is

not considered.

Ref. [90] DC microgrid

The dependency of converter control on the
operating set-point conditions is resolved.

plug-and-play feature.
Robust against uncertainties.

Unextendible strategy.

Ref. [91] DC microgrid
Reliable identification.

Robust against communication delays and
load changes.

Needs more enhancement to the
identification of FDI attacks.
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Table 2. Cont.

Strategy/Application Strengths Weaknesses

Ref. [92] AC microgrid
Robust under communication delays.

Improved frequency/voltage restoration.
Optimized active/reactive power sharing.

Unrobust against different
communication topologies.

A limitation due to the offline training model.
A violation of privacy in communication.

Ref. [93] AC microgrid Improved control performance.
Faster reaction against disturbance.

More dependency on
network configurations.

Ref. [94] AC microgrid
Optimized system performance.

Better communication due to the reduction of
channel congestion.

More training time compared to FCNN.

Ref. [95] AC microgrid Greater frequency regulation.
Better time-delay tolerance. Real-time validation is not taken.

Ref. [96] AC microgrid
Good generalization capabilities.

Enhanced reliability and resilience of
energy management.

Limited to only three problem instances.
Limited experienced energy profiles.

Restricted energy management to only
5 agent components in the microgrid.

Ref. [97] Smart grid
Optimal charge/discharge.

Reduced energy cost within an unknown
market environment.

The randomness of PEV charging behavior.

Ref. [98] EV charging
system in Smart grid

Better economic profits.
Higher satisfaction ratio of EVs.

More extensive mathematical analysis
is mandatory.

Lack of estimation of actor and critic weights.
Requires deeper analyzed multiagent

energy scheduling.

Ref. [99] Smart grid Faster convergence.
Improved real-time protection.

Various grid environments are
not considered.

Ref. [100] Building
energy system

Optimized multi-objective management of the
multiagent algorithm.

84%, 43%, and 8% reduction of uncomfortable
duration, renewable energy consumption, and

energy cost, respectively.

Lack of activity in indoor evaluation
and control.

Further control parameters of indoor comfort
are essential.

Ref. [101]
Intelligent building

32%, and 21% enhancement of energy saving and
thermal comfort, respectively.

The multiagent approach needs to be
extended to more functional agents.

Reconfiguration of the RL algorithm and
clustering structure is mandatory.

Ref. [102] EVs Better system resilience.
Accomplished carbon intensity service.

More enhancement of system resilience
is required.

Multi-energy systems are not considered.

Ref. [103] EVs
Extendable charging performance to a larger

number of EVs.
More satisfaction of EV owners charging demands.

No improvement in the performance
compared to the existing NLopt centralized

approach in terms of the test set.

Ref. [104] EVs 19.6% increase in system fairness.
Robust against uncertainties.

Slight increase in rebalancing cost compared
to the non-constrained MARL.

Ref. [105] EV
charging station A successful correction of the control signal. Further analyze of the cyber security

is mandatory.

Ref. [109] AC microgrid Balanced SOC.
Regulated active power.

Unrobust against communication failure.
Scalability enhancement is mandatory.

Plug and play is not included.

Ref. [110] DC microgrid
Balanced and fast charge/discharge.
Active with different ESS capacities.

Enhanced ESS protection.

The speed of SOC balance is still faster in the
conventional strategy.
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Table 2. Cont.

Strategy/Application Strengths Weaknesses

Ref. [111] DC microgrid
Balanced SOC.

No circulating current and overloading.
Activated plug and play.

Solving the overloading defect is prioritized
over the accuracy of charge–discharge

synchronization to reduce sliding
mode chattering.

Ref. [112] AC microgrid
Balanced SOC.

An enhanced balance of frequency, voltage, and
reactive power sharing.

The control with heterogeneous BESSs is
not considered.

Ref. [113] DC microgrid

Active under various microgrid operating
conditions and weak communication.
Balanced SOC under different energy

storage capacities.
The control is independent of line impedance.

Still existing instability of output voltage.

Ref. [115] Competitive
electricity market

Better performance in terms of accuracy and
convergence speed.

Game theory and Nash equilibrium are not
introduced to make the entire electricity

market closer to reality.
More accurate results can be achieved

through a more optimized
load-forecasting model.

Ref. [116] Office buildings Higher accuracy under different
building locations.

Limited to office buildings.
Applicable only with the availability of 24 h

weather forecast data.

Ref. [117] Integrated
energy systems

Satisfactory predictions can be achieved with small
sample data.

Economic energy price, and demand
response factors are not considered.

Ref. [119] multi-cell network Reduced transient time.
Improved long-term network performance. Unadaptive to different network conditions.

Ref. [120] Unmanned
aerial vehicle

Better learning efficiency.
Extendable to other existing frameworks.

Energy saving due to the optimized
navigation is not investigated.

Ref. [121] Nuclear
power plant

Good, achieved scalability.
Optimized nuclear fuel.

Enhanced competitive performance.

Despite good scalability, still, replay memory
management consumes 53% of the

computing time.

Ref. [124] Internet of
vehicles system

Optimized average cumulative reward.
Improved convergence speed.

Higher scalability.

A still decrease in the reward with the
increase in the initial load. Despite it is
higher than the random and the DQN.

Ref. [125] Residential
demand response system

14.51%, and 6.68% reduction of the cost compared
to regular hysteresis controllers and traditional

PPO, respectively.

A computation drawback during the
inclusion of expert knowledge in the

learning pipeline.

Ref. [126] Power grid
management system

Optimized policy.
No reliance on the expert experience.

Imitation learning algorithm is
not introduced.

5. Conclusions and Summary

This paper has presented a detailed and comprehensive review of the state-of-the-art
intelligent control strategies based on RL for advanced power distribution systems, such
as microgrids, smart grids, smart buildings, and EV charging system applications. In
line with the recent trend towards digitalization and decentralized power systems with
heavy renewables penetration, agent-based intelligent systems for managing power flows
to enhance decarbonization and integration of renewable have been focused upon with
heavy interest. Therefore, it is prudent to support research and development initiatives in
the field with an up-to-date exposition and reference of both the latest contributions and
more established ideas. The presented research work in this study is a product of intense
reviews and careful selection of 126 scientific research contributions of the most unique and
recent proposals related to intelligent power management. The works have been classified,
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and a distinctive summary of each reviewed proposal highlights the major strengths and
weaknesses that have been evaluated. Work by the current authors has also been described
in a separate section, in an open and transparent way.

Recently, a variety of vital important power distribution defects has earned an intelli-
gent solution that positively impacted their future development trend. The updates of the
Q-table in the model-free Q-learning based on the Markov process and baleen education
has actively raised the learning accuracy of the supervisory management for EVs, due
to the highly precise response needed. The great treatment offered by the Batch RL of
learning from past experiences was a brilliant enhancement of energy forecasting and
bidding applications. Past experiences play a vital role in making the best energy price.
The equivalent of the Q-table by an ANN in the DQN can magnificently provide the high
correctness needed for an optimized fuel economy of EVs and HEVs. In line, the update
to double Q-table learning has effectively treated the overvalued actions due to bias and
enhanced the performance of EVs due to the capability of overcoming negative reward
drops. On the same trend, the combination of the good features from both policy and value
functions of the actor–critic was an intelligent method for the extreme events expected in
hybrid AC-DC networks. The prediction of the best actions of Dyna was a talented solution
to power management applications comprising many affecting variables and parameters.

There is still an ongoing need for stepping towards the ultimate in RL-learning intelli-
gence. Since the technological revolution of modern power management resulted in more
complicated problems. The asynchronous A3C was a qualified emerging RL solution for
the unstable recursions of Q-learning and raising profits from renewable energy. However,
a less advantage is achieved compared to the algorithm’s complexity. Therefore, the al-
ternative A2C with less complexity and easier implementation emerged to solve power
management problems in microgrids and reduce losses of renewable energy generation.
Solutions for complicated multi-step or multi-factors power management problems have
found the evolving MARL the convenient solution. A fundamental example of this is the
decentralization and autonomy in power flow management of advanced power distribution
systems such as microgrids, smart grids, smart buildings, and electric-based transportation
approaches. Accordingly, the multiagent primary–secondary control has been a successful
application of MARL to resolve a variety of complicated power distribution management
problems of micro and smart grids, such as the inaccurate synchronization of charge–
discharge scenarios of energy storage power flow management. The immediate real-time
information, the optimized accuracy from the several correction stages, and the raising of
intelligence level by introducing other smart technologies were behind the success.

Likewise, the lack of learning due to limitations in historical data was a defect in
the bidding of electricity markets applications. Accordingly, transfer learning was the
appropriate solution due to the use of past solutions in a current different event. The
benefit of biased sampling for attaining convenient learning time in TRPO was the enabler
of solving highly precise learning time settings of IoV applications. On the other hand,
linearizing the objective of the surrogate can be accomplished by the simpler version of
TRPO, the PPO, which reduced the energy cost of demand-side energy applications.

This research work is the second review in a series investigating distributed/decentralized
power management approaches, where the first edition was successfully published last
year [34]. Therefore, the sequel and forthcoming third edition in this series will specifically
focus on some new developments and related testing of new control strategies based on AI-
multiagent control developed by the authors, built upon previous works and the summary
points drawn from this (and the previous) study.
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Nomenclature

EV Electric vehicle
EVs Electric vehicles
ESS Energy storage system
ESSs Energy storage systems
BESS Battery energy storage system
BESSs Battery energy storage systems
SOC State of charge
GAs Genetic algorithms
SI Swarm intelligence
RL Reinforcement learning
ANN Artificial neural network
ABM Agent based modeling
MSDP Multistage decision problem
AI Artificial intelligence
AOP Agent-oriented programming
MDP Markov decision process
semi-MDP Semi Markov decision process
S State space
A Action sets
R Immediate reward
T State transition equation
p(s) Transition probabilities
Vπ(s) Value of the state
R(s, a) Reward for the new state-action pair
maxQ(s′, a′) Maximum Q-value for all expected state-action pars
Q(s, a) Current Q-value
π Optimal strategy
γ Discount rate
∝ Learning rate
MG Stochastic game
MARL Multiagent reinforcement learning system
ML Machine learning
ANFIS Adaptive fuzzy network inference system
QLFIS Q-learning fuzzy inference system
HEV Hybrid electric vehicle
HEVs hybrid electric vehicles
HVAC Heating, ventilation, and air conditioning
OMS-QL Intelligent Q learning
FMP Forecasting model pool
FCS Fuel cell
FCHEVs Fuel cell hybrid electric vehicles
DQN Deep Q-learning
M-SOPs Multi-terminal soft open points
DGs Distributed generators
DDPG Deep deterministic policy gradient network
LSTM Long short-term memory
ICE Internal combustion engine
EM Electrical motor
KL Kullback–Leibler
DDQN Double deep Q learning
PHEV Plug-in hybrid electric vehicle
EMS Energy management system
HEM Home energy management
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MPC Module predictive controller
PDQL Predictive double Q learning
SDQL Standard double Q-learning
HDNs Hybrid AC-DC networks
SAC Soft actor–critic
MSAC Mechanism soft actor–critic
PER Posturized experience replay
Dyna-H New version of the Dyna algorithm
AMSGard Optimization method of updating ANN
A3C Asynchronous actor–critic
A3C+ Asynchronous advantage actor–critic
A2C Synchronous actor–critic
MCM Markov chain model
M-A3C Asynchronous memory actor–critic
DSM Demand side management
MA2C Multiagent synchronous actor–critic
FCS-MPC Learning-based MPC
ADP Adaptive dynamic programming
PSO Particle swarm optimization
PEVs Plug-in electric vehicles
SSA Security situational awareness
MADDPG Multiagent deep deterministic policy gradient
BES Building energy system
LOL Accelerated loss of life
ECL Evolutionary curriculum learning
AMoD Autonomous mobility on demand system
EVCS Electric vehicle charging system
APT Advanced mitigate persistent threats
TD3 Twin delayed deep deterministic policy gradient
MATL Multiagent transfer learning
TL-LSTM Transfer learning long-short term memory
UAV Unnamed aerial vehicle
DRL Deep reinforcement learning
QiER Quantum-inspired experience replay
PESA Prioritized replay evolutionary and swarm algorithm
TRPO Trust-region policy optimization
IoV Internet of vehicles
DARC Dedicated short-range communication
C-V2X Cellular vehicle-to-everything
ITS Intelligent transportation system
IoT Internet of things
V2V Vehicle-to-vehicle communications
V2I Vehicle-to-infrastructure communications
AOI Average age of information
PPO Proximal policy optimization
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