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Abstract: Ensuring a sustainable supply for humankind with mineral raw materials and preventing
fuel and energy crises, minimizing human-made accidents and the negative impact of industry on
the environment, the inflow of funds and innovations into the mining sector should be expanding in
time and space. To do this, new mining platforms should have not only innovative and technological,
but also social-and-economic coverage of the latest competencies, which Mining 4.0 fully corresponds
to. The achievements of the Fourth Industrial Revolution, embodied in “end-to-end” digital and
convergent technologies, are able to ensure the stable development of the mineral resource sector
in the face of fluctuations in raw material demand and the profitability of mining enterprises,
strengthening environmental safety legislation. Mining 4.0 is also a response to the technological
shocks associated with the accelerated digital modernization of the manufacturing and infrastructure
industries. This article attempts to give a multilateral overview of mining industries transformation
in the course of the diffusion of Industry 4.0 technologies, to highlight the core and frontiers of Mining
4.0 expansion, to show the opportunities and threats of replacing physical systems and humans in
mining with cyber-physical systems. Further, the technological, economic and social horizons of the
transformation of Mining 4.0 into Mining 5.0 with specific threats of total digitalization are discussed.

Keywords: Mining 4.0; Industry 5.0; Mining 5.0; digital technologies; artificial intellect; machine
vision; virtual reality; digital twins; ESG

1. Introduction

The mining industry is in the midst of a technological transformation as digital and au-
tomated technologies transform traditional geotechnology, both surface and underground.
With volatile global demand for raw materials, rising safety requirements, tightening
environmental regulations and shrinking profits, the mining industry has to increase its
productivity through the introduction of intelligent mining systems in order to survive in a
competitive market.

Thanks to the Mining 4.0 technology platform, in the coming decades, the produc-
tion volumes at each mine, section or surface mine will depend on world prices and
demand. That is, future mining production will become a derived value from global prices
determined by international competition.

Most researchers identify Mining 4.0 with the values of Industry 4.0 perceived in the
mining system (similar to Oil and Gas 4.0) [1,2]. In accordance with this approach, the
qualitative sign of Mining 4.0 is the transfer of the Industry 4.0 technological platform to
the basic sector of the economy—in the mining industry (directly) and energy production
(indirectly). Therefore, within the framework of this approach, Mining 4.0 is associated with
the diffusion of such “end-to-end” innovations as deep digitalization of mining (Internet of
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Things, Digital Twins, Big Data and Cloud Computing, Smart Sensors, 3D visualization and
design, Computational Fluid Dynamics, Blockchain and Neural Networks), robotization
and expansion of unmanned and remotely controlled processes.

Back in 2009, in the era of Mining 3.0 technologies, the dominance of “connected”
mining machines and devices was expected by 2030. Ref. [3] Digital transformation is the
benchmark for the technological transition to Mining 4.0, as it allows launching a new
process and operations management system in minerals mining and processing. If until
now Mining 3.0 technologies have radically expanded human capabilities by endowing
them with high-performance equipment, then Mining 4.0 digital technologies lead to the
convergence of human and machine [4]. As a result of this convergence, the influence
of the human factor on the functioning of extractive enterprises is significantly reduced,
since part of the analysis and decision-making process passes under the control of digital
systems. This is of particular importance for developing countries, where the cohort of
mining engineers is changing qualitatively due to the growth of their share among students
of leading mining universities in Europe, North America, Australia and Russia, on the one
hand, and their career in raw materials multinational corporations, on the other [5].

The connection of Mining 4.0 with the innovation ecosystem of Industry 4.0 is becom-
ing clear as the traditional production model based on the concentration of decision-making
and centralized allocation of resources is being replaced by a new network model. In the
new model, the use of digital communication technologies supported by cyber-physical
systems and the Internet of Things allows achieving an unprecedented level of labor safety
along with a radical increase in its productivity [6]. Indirectly, the digital core of Mining
4.0 is confirmed by the problem of ensuring the digital security of mining enterprises that
implement cyber-physical systems, the Industrial Internet of Things, etc. Organization of
secure data exchange, protection against cyber attacks and sharing of cloud computing
resources—all these problems typical for Industry 4.0 are recognized as highly relevant for
Mining 4.0 [7].

New mining capabilities such as real-time monitoring of product quality, equipment
performance and health, worker safety and mine workings can be reduced to the core of
Industry 4.0-IT 4.0. In this light, Mining 4.0 can be seen as the result of the cyber-physical
integration of smart manufacturing and traditional mining machinery [8]. The prospects
for the further development of the mineral resource complex on the Industry 4.0 platform
are confirmed by the experience of the largest Russian mining enterprises. Their deep
digitalization has made it possible to reduce the loss of minerals by 12–15%, reduce the
number of industrial accidents by 25%, decrease operating costs by 10–15% and increase
the profitability of sales by 5% by improving logistics [9].

There is also a more radical opinion regarding the prospects for the application of
Industry 4.0 technologies in Mining—as a non-alternative path for the development of the
mineral resource complex. This implies that by 2050 up to 90% of the minerals in the world
will be mined on the Mining 4.0 platform, while the integration of digital technologies,
automated and autonomous equipment provides the key to solving not only production
and economic, but also environmental and social problems, that the resource sector faces
today [10].

The concept of Mining 4.0, formulated on the groundwork of Industry 4.0, is based on
4 “pillars”: Combining real machines and the virtual world of the Internet into augmented
reality, extraterritorial access to any information “on demand”, almost limitless possibilities
of distributed cloud computing, artificial intelligence and neural networks. The concept
of Mining 4.0 assumes that due to clearly defined areas of using various innovative tech-
nologies, taking into account the advantages and disadvantages, mining companies relying
on the “end-to-end” technologies of Industry 4.0 receive maximum flexibility and critical
competitive advantages (Table 1) [11].
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Table 1. The concept of Mining 4.0 based on the Industry 4.0 platform (Adapted from Ref. [11]).

Solution Application Area Advantages Disadvantages

Autonomous
machines

Mining, protection of the roof,
crushing of rocks,

transportation

Safe operation, reduced
accidental costs, increased

efficiency

High implementation costs,
reduction in employment,

demand for specialized staff

Monitoring machines in real
time

Mining machines and
equipment

Quick reaction, carrying out
preventive actions, work

control

High implementation costs,
an indispensable qualified

employee

Big Data
Machine operation

parameters, mining, transport
and processing data

Ongoing monitoring of
parameters in real time,
improvement of work

organization, the undertaking
preventive actions

Large amount of processed
data, the need for advanced

analytical tools, maintenance
costs

Data Cloud Digital systems regarding
selected mining parameters

Possibility of remote
cooperation of mining
company departments,

systematized data, open
access to data

Cyber attacks, advanced data
protection, IT support needed,

high maintenance costs

Smart gas sensors Security, data collection

Precise measurement,
constant monitoring of gas

levels, possibility of
predicting mining events

High maintenance costs,
difficult implementation

conditions, technical
limitations

Chips
identifying
employees

Monitoring employees

High implementation costs,
large surveillance in the

employees’ rights, lack of staff
acceptance

Work safety, faster
identification of employees,

constant supervision of work

Innovative
modeling
software

Virtual deposit modeling

Qualified staff, reorganization
of the work of surveying
departments, the need for
additional measurements

Refinement of documentation,
precise geological information,
remote cooperation between

departments

3D scanning system Drilling and Blasting Works
(DBW)

High equipment costs,
organizational work changes,
need for additional training

Improvement of the efficiency
and safety DBW, reduction in

material consumption

GIS System Digital mapping of a mining
company

Connection of various areas of
mining activity, transparency

and legibility of
documentation, conversion of

analogue documents into
digital ones

The need to acquire, process
and analyze a large amount of

data, high implementation
and maintenance costs, the
need to create additional

workplaces for GIS specialists

Virtual and Augmented
Reality

Mining health and vocational
training, maintenance of

machines

Modern way of conducting
trainings, limiting human

error, automatic work control,
preparing the employee for

emergency

High costs, limited equipment
resources, technical

limitations, the need to
improve staff qualifications

Cybersecurity Digital systems

Data protection, control over
the automation of mining

processes, remote assistance
and control

The need for constant
updating, high maintenance

costs, phishing threats,
ransomware

Digital mine Interdisciplinary
application

Increase in competitiveness
and management efficiency,

reduction in costs, possibility
of cooperation between

companies

Qualified staff, high
implementation costs, the
need to integrate systems
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Table 1 allows defining a key factor of influence of Industry 4.0 on mining development—
an increase in productivity by an order of magnitude with each technological transition (from
Industry 1.0 to 2.0 and so on). Until now, productivity growth has been accompanied by
an increase in the burden on the environment, but the spread of Mining 4.0 through the
construction of “smart” mines and open pits contributes to the development of lean and green
extraction of minerals. Since Mining 4.0 is an integral part of Industry 4.0 (the platform of
implementing its technologies in extraction of minerals), the end-to-end technologies such as
smart sensors and Computational Fluid Dynamics can prevent such hazards as landslide, rock
burst shock and endogenous fire (by rock pieces move and products of combustion anticipatory
analysis). Hereafter, neural networks and Artificial Intelligence, used in drilling-and-blasting
works planning, can prevent seismic disturbances by thorough borehole parameters and
explosive consumption calculations. At the same time, as the environmental hazard of mining
in Mining 4.0 (so-called “Green Mining”) decreases, the problem of its cybersecurity, which is
typical for Industry 4.0 production in general, increases [12].

It is impossible not to take into account the heterogeneity of the introductory process
of Industry 4.0 technologies in various sectors of the economy—mining and manufacturing.
Since the latter demonstrates a higher rate of digital modernization (due to the introduction
of technologies such as Product Lifecycle Management, Smart Factory, Software Interop-
erability), the demand for technologies on its sector is ahead, and for new types of raw
materials is lagging behind [13]. As a result, at present, in relation to the spread of Industry
4.0 in the mining sector, it is more appropriate to talk about its impact on energy efficiency,
material intensity and environmental friendliness of mining, safety and labor productivity
than on the production of new types of mineral raw materials.

In this regard, it should be considered that the application of the concept of “Industry
4.0—Mining 4.0” in the real economy cannot be spontaneous and self-initiated; an adequate
strategy of state support for the technological modernization of national mineral resource
complexes is needed. It is advisable to extend tax investment incentives to traditional and
alternative sources of financing for the mass replacement of mining equipment controlled by
humans with artificial intelligence devices, taking into account all possible social effects [14].

The need for governing the transition of the national mineral resource sector to Mining
4.0 is determined by the problems that arise with the growth of investments in the au-
tomation of operations, the use of telecommunication services for digitization, integration,
automation and control of processes at mining enterprises. The experience of Mexico made
it possible to highlight such problems of the transfer of Industry 4.0 technologies to mining
as the concentration of funds and the reduction in competition, the decline in labor force
demand and the tightening of requirements for employees [15].

The formation of Mining 4.0 in the context of the impact of Industry 4.0 technologies
on individual components of the system for the exploration, extraction, transportation
and primary processing of minerals is shown in Figure 1 as a segmentation of the “pene-
tration” of end-to-end technologies into the production processes of the mineral resource
complex [16].

Thus, the set of qualitative features of Mining 4.0 inextricably refers it to the sphere
of influence of Industry 4.0 technologies on the processes of extraction and primary
processing of minerals, in all their diversity and mutual interweaving. Therefore, those
who believe that the implementation of Industry 4.0 concept in the mineral resource
sector are right when consider this to be a complex scientific and technical task that goes
beyond digitalization, artificial intelligence, cyberization of production, and its digital
cloning [17]. The important role of minerals extraction in solving the environmental and
social problems allows us to define Mining 4.0 not only as a technological, but also as
a social-and-economic platform for the future well-being of mankind. The inseparable
connection of Mining 4.0 with digital technologies—the most dynamically developing—
allows us to judge the prospects for its transformation into Mining 5.0, expected in the
second half of the 21st century.
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Along with the qualitative features mentioned above, the quantitative feature of Min-
ing 4.0 is the acceleration of mining growth due to technology-driven productivity growth.
So, for 2000–2019, the world volumes of coal and non-ferrous metals production more than
doubled, iron ore—increased by three times, building materials—by one third [18].

Based on the identified quantitative and qualitative features, the transition from the
previous mining platform (Mining 3.0) to modern Mining 4.0 is a natural objective process
of technology evolution [19]. If by the beginning of the 19th century, the expansion of steam
engines, coal mining for the production of coke (Industry 1) made it possible to mechanize
the auxiliary processes of mines (Mining 1.0), then by the beginning of the 20th century, the
achievements of Industry 2.0 (electricity, in-line production, internal combustion engines)
have led to the gradual mechanization of the main processes of mining and processing of
minerals (Mining 2.0). The most common platform today (Mining 3.0 with characteristic
equipment of high power density, analog telemetry) became widespread in the second half
of the 20th century during the development of Industry 3.0 (advanced analog and first
digital computing and control systems). Along with this, it should be noted about the role
of Mining 4.0 in restoring the prestige of mining engineer profession, which moved into
the rearguard by the end of the 20th century, as mining clusters migrate from developed to
developing countries.

Taking into account the above mentioned, we formulate the purpose of the review:
to give a general overview and constructive analysis of Mining 4.0 technologies, to show
the seriousness of their research, to summarize the trends of development and outline the
horizon of evolution.
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2. Methodology

The main part of the scientific publications analyzed in this review is related to the
technological components of Industry 4.0, the issues and specifics of their implementation
in the mineral resource sector, which form the Mining 4.0 platform. This review is aimed at a
comprehensive analysis of the end-to-end technological and organizational innovations that
form Mining 4.0, as well as the results of their implementation in the activities of companies
in the mineral resource sector, in order to offer recommendations for its improvement
and expand the base for further research. The context of this review is in the form of
a constructive critical analysis in order to identify the advantages and disadvantages
of the latest Mining 4.0 technological systems, thereby highlighting promising areas for
future research.

The purpose of this study is a multilateral review, structuring and generalization of the
author’s concepts, ideas and innovations in the system of transition of mining industry to a
new technological platform—Mining 4.0 during the deployment of the Fourth Industrial
Revolution. The tasks set in accordance with this goal include the analysis of mod-ern
scientific publications in the field of Mining 4.0, the hierarchization of development trends,
the generalization of individual trends and the determination of the prospects for the
transition to the next platform of the second half of the 21st century—Mining 5.0 (the area
of implementation of the Fifth Industrial Revolution end-to-end technologies in minerals
extraction and processing). Its identifying feature is a human-centric development, which
implies fully unmanned operation of “smart” machines, complete restoration of mining
clusters (post-mining) and natural sources recycling.

In preparing this review, research and scientometric databases were used, including
Science Direct, Springer Link, Google Scholar, Scopus, Web of Science. Keywords such as
Industry 4.0, Mining 4.0, IoT, Digital Twins, CFD, Big Data, Cloud Computing, Machine
Learning, Blockchain, Smart Mining, Unmanned Manufacturing, Drones, 3D Visualization
and Mining 5.0 were used in the search. Figure 2 shows the number of viewed and analyzed
scientific publications by years and sections (subtopics of this paper).
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As can be seen from Figure 2, an explosion of interest of researchers to Mining 4.0
has been observed in the last decade since 2018, which indirectly confirms the idea of
insufficient technological maturity of mining industry, which today is only approaching
the threshold of mass digital modernization. Nevertheless, the transition to Mining 5.0
is being laid today—the latest technological platform for mining from the middle of the
21st century, which inspires optimism regarding the accelerated transition to the Mining
4.0 platform.

By their structure, most of the reviewed articles are devoted to Neural Networks,
Smart Sensors, 3D Visualization, Virtual and Augmented Reality, Machine Learning, ESG
investment in mining, as well as Post-Mining. Other areas, such as Big Data and Digital
Twins, Internet of Things and Blockchain, Intelligent Management and Business Projects in
mining, are of less interest to researchers.

3. Digitalization of Processes in Mining 4.0

The evolving digitalization of the mining industry offers new opportunities to increase
productivity and, at the same time, can create new jobs with a fundamentally different level
of safety comparable to office work. The variety of forms in which digitalization in mining
takes place determines the deep transformation of the mineral resource sector, ensuring its
competitiveness in the new conditions.

3.1. General Trend of Deep Digitalization of Processes in Mining

Mining 4.0 is a relatively new platform that allows, with the help of digital innovations,
to move to more advanced production optimization [20].

The trend towards the digitalization of mining in line with Industry 4.0 is fundamen-
tally different from previous industrial revolutions in that instead of deepening production
automation, new forms of connecting people, machines and technologies come to the fore.
These connections are in the nature of supplementing human intelligence with ma-chine
intelligence, as well as receiving and processing huge amounts of information used in
making engineering, organizational and economic decisions. As a result, the global compet-
itiveness of national mineral resource complexes is determined by the level of development
of national projects and programs for the digitalization of industry. It was the Industry 4.0
strategy, being implemented for the first time in Germany that provided this country with
technological leadership in the basic sectors of the economy. Similar global advantages in
the extraction and export of raw materials have been given by such national digitalization
strategies as “Made in China 2025” and “Society 5.0” in Japan [21]. At the level of indi-
vidual enterprises, digital solutions for the development of processes for the extraction
and processing of minerals make it possible to bring productivity to the level that can
guarantee profitable operation in the face of shocks in world prices for raw materials, rising
labor costs and an increase in the volumes required for technological modernization of
investments [22].

The reference method of mining digitalization is the transition to Computer Integrated
Mining (CIM), which reflects a certain level of digital maturity of companies involved in
the extraction and primary processing of minerals. Its quintessence is the integration of
digital systems for planning and managing mining operations, monitoring the condition
of equipment, safety of work and product quality into a single enterprise IT system. The
main principle of the CIMG method is the absence of “gray” zones of digitalization—
processes that are not covered by the use of modern IT, remote sensing, machine vision and
intellectual prediction [23].

The digital core of Mining 4.0 is not formed all at once, but is the result of the evolution
of human competencies in the use of hardware and software platforms, as well as an
increase in the digital maturity of mineral extraction and processing. As the transition
from the use of programmable controllers in individual mechanisms to digital control
systems and further to artificial intelligence, digitalization expanded from individual
mining processes to complete intellectualization of the technological chain up to their
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processing, taking into account market prices and regional demand specifics. As a result, the
concept of Smart Mine involves reducing for a person the growing complexity of organizing
production processes, which are managed at the “right time”, i.e., in the required time and
volume. At the same time, the digital maturity of existing mining enterprises is significantly
lower than that of processing and even metallurgical enterprises, and corresponds to the
Digital 2.0 level, compared to the target Digital 4.0 (characteristic of Mining 4.0) [24].

Mining 4.0 is about harnessing the power of digitalization to transform the value chain.
This will be due to the integration of the extraction and processing of mineral resources into
digital ecosystems, which can increase productivity, reduce operating costs and increase
the security of cyber systems and the safety of miners [25].

The peculiarity of Mining 4.0 digital technologies is that they allow changing the
vision, strategy, operating model and business opportunities of companies. Combined with
the digitalization of the management system, this creates the basis for value maximization.
The impact of the introduction of digital technologies on various stages of the value chain
in mining industry is presented in Figure 3 [26].
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The wide impact of IT on mining is forming a digital enterprise ecosystem that
includes digital twinning, intellectualization, console visualization and robotization of all
elements of the supply chain and processes. The actual configuration of mining digital
ecosystem depends on the connection and recombination of interactive information systems
of individual processes in it, such as extracting, transportation and processing of minerals,
material logistics, ventilation and electricity supply [27].

In such digital ecosystem of enterprises of the mineral resource complex, the role of a
worker is radically changing—from the operator of equipment (including automated and
partially robotic) to Operator 4.0. Such a “miner of the future” should have the following
competencies: using biomechanical support to increase strength and endurance, relying
on augmented reality to integrate the digital and physical world (for example, to receive
online help from equipment manufacturers through interactive VR glasses), the mandatory
use of smart sensors (underground 5G) to connect information about the environment and
the health of a miner, the use of intelligent personal assistants to interact with equipment
(training of collaborative robots) and databases (self-learning, operational forecasting based
on the analytics of Big Data) [28]. Industrial digital ecosystems received a new impetus
for development during the COVID-19 pandemic, which in-creased the digital maturity
of construction, transport and energy to Digital 3.0 and above. These same processes will
contribute to the digital maturity of mining in coming years [29].

In the development of the digital ecosystem of Mining 4.0, there is a problem of
insufficient unification of software from different manufacturers and difficulties in their
system integration. The architecture of the digital ecosystem in mining has a domain
structure that integrates IT systems developed by different vendors (for example, ABB—
production solutions, OSIsoft—data integration from various systems, IBM Maximo—asset
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management solutions, Microsoft Azure—cloud data management, Microsoft Dynamics
365—customer relationship management and Microsoft Power BI—integrated business
analysis). These information systems have technology stack and data formats, so one
system can interact with another system of the same vendor, but communicates with
software products from other vendors using Microsoft Excel only. This fact reduces the
overall efficiency of the ecosystem (Figure 4) [30].
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On the frontier of Mining 4.0, progress in the digital transformation of the mineral
sector is largely due to active research in the field of managing dynamic multi-component
multi-loop objects in real time. This allows AI-based control systems to take control of the
interconnected processes in mining and transportation of minerals and achieve a high lev-el
of optimization. The controllers used in such control systems apply the new Flight Control
Language (FCL), which are designed considering the methods of fuzzy logic and use a new
type of data—a linguistic variable, which connects numerical variables with the names of
indicators [31]. A linguistic variable can take on the meaning of artificial language phrases.
Therefore, for safe unmanned control of equipment, the linguistic variable “speed” can
have not only a specific indicator (quantitative value), but also a qualitative one—high, low,
unsafe, safe, etc. This significantly increases the efficiency of decisions made by artificial
intelligence.

3.2. Internet of Things in Mining 4.0

Modern technologies of the Internet of things (IoT) give the mineral resource sector a
unique opportunity to exclude humans from many processes of operating machines and
mechanisms in complex, harmful and dangerous mining conditions. As a result, there is
a radical reduction in the influence of the human factor on mining operations and their
dangerous factor on humans, thanks to Smart Sensors for temperature, humidity, light,
speed, passive infrared radiation and distance [32].

The Internet of Things in Mining 4.0 is functionally closely related to the Energy
Internet, since a significant part of mining equipment has high-power energy drives. Ac-
cordingly, such principles of energy network architecture as plug-and-play, bi-directional
flows of energy and power consumption information and combinations of renewable and
non-renewable sources are implemented using advanced Internet technologies such as
the Internet of Things and Block-chain. Machine-to-machine interactions built on these
technologies allow not only increasing productivity, but also to reduce power consump-
tion [33]. An important point of application of machine-to-machine interactions based
on the Industrial Internet of Things is real-time monitoring of the technical condition of
mining equipment [34].
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The scope of the Internet of Things in mining extends far beyond advanced diagnostics
and control of equipment load along the overall production chain. “Digital Mine” is based
on such interactions on the Internet of Things platform as dynamic planning and scheduling,
safety and security monitoring, automated supply chain [35].

To process the massive data streams generated by the Internet of Things in the industry,
a distributed frequent itemset mining algorithm is required. In relation to the extraction
of minerals, the extraction of key data from the general array of engineering information
can be called “Data Mining in Mining 4.0”. Perspective engine here is Apache Spark,
successfully used for industrial data mining, includes the SWEclat algorithm, which has
good acceleration, parallel scalability and load balancing [36].

3.3. Digital Twins in Mining 4.0

Digital twins in Mining 4.0 are complex cyber-physical systems that combine the
“best skills” of humans and machines to radically increase productivity. Such systems
make it possible to overcome the limitations of unequal capacity, data transfer rates of
various information systems used by engineers and managers of mining enterprises—
mobile devices, personal computers and controllers installed on equipment. The key to
creating digital clones that combine devices of different types and computing performance
is asynchronous requirements for their software interface [37].

Thanks to asynchronous requirements for a single digital twin of the physical process,
reproducible on different devices, linear production chains are transformed into digital
supply networks, and different connected users can quickly respond to any changes in real
time [38].

The dynamically developing digital production platforms of Industry 4.0—Materials
4.0, Mining 4.0, Energy 4.0—face performance limitations associated with the lack of
unified means for processing large amounts of information. This problem can be solved by
simplifying the digital flow as a key concept for creating a digital twin [39]. With regard to
Mining 4.0, the use of virtual reality for managing digital twins of processes in mining will
reduce the number of physical prototypes and speed up the process of making engineering
decisions [40].

Simulation modeling of geophysical and technological processes using digital twins
allows testing them in a virtual environment, and thus move from an autonomous decision
support system to a network one verifying decisions in real time. The functions of digital
twins in the network process of making engineering decisions come down to connecting
all users to a large information system (integrated control), reducing the scale of physical
modeling and prototyping and fully automated design [41].

The transfer of mining information using the Internet of Things can be represented
using a knowledge graph—a method for dynamically extracting knowledge from Big Data
and managing it. This method is especially effective for real-time maintenance of mining
equipment, when the use of the BERT-BiLSTM-CRF neural network made it possible,
with the same data set, to recognize the essence of problems more advanced than with
autonomous sensors. The architecture of the knowledge graph model, which allows
querying, displaying and managing them, creating decision support for the maintenance of
mining equipment, is shown in Figure 5 [42].

From a software point of view, the algorithmic basis of digital twins of processes in
mining is based on neural networks, on the one hand, and on the mathematical description
of physical, mechanical, thermodynamic and chemical processes occurring in the system
of human impact on an array of rocks on the other. The use of neural networks makes
it possible, when operating with digital twins, to carry out multi-channel and multi-user
control of technological processes and, more importantly, to carry out continuous retraining
of networks, creating a high-precision digital copy. In the future, such a digital twin can be
used to optimize a certain process, for example, in connection with a reduction in energy
and resource consumption [43].
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3.4. Big Data and Cloud Computing in Mining 4.0

Corporate information systems (KIS), as well as geographic information systems
(GIS), are developing today in the direction of Big Data integration. Unlike the analysis of
small data streams by autonomous information systems, Big Data allows generating new
knowledge that changes the digital landscape of mining, develops machine learning and
artificial intelligence [44].

Big Data can be considered as the basis for multi-centric and multi-channel manage-
ment of mining processes. The core of such management is the integration of disparate
information systems from various areas of mining. This provides a connection of informa-
tion about the heterogeneous production economic components of the business cycle of an
enterprise (Figure 6) [45].

A special look at the role of Big Data in the development of mining is associated
with overcoming uncertainty in providing the economy with energy and energy carriers.
Uncertainty, forming in the world markets, has a direct impact on the costs and output of
mining enterprises, and their profitability. Therefore, Big Data analysis makes it possible to
adapt mining processes to changes in the global raw materials market, taking into account
the expansion of alternative energy [46].

The complex task of optimizing the operation of various mining equipment requires
reliable means of processing and analyzing data flows with minimal delay. To solve such
optimization problems, the power of existing autonomous computing centers of enterprises
is no longer enough, but distributed cloud computing is quite enough. Modern cloud
computing services allow optimizing the operation of individual units of mining machines
and their entire fleet at the enterprise, which actualizes the reserve for productivity growth
by 25–30% [47].

Along with the operation of mining equipment, reliance on Big Data gives positive
results for exploration. In fact, today intellectual geological exploration is being formed
with the creation of conceptual models of big spatial data. Their use makes it possible
to radically improve the accuracy of geological documentation, ultimately, improve the
quality of a mineral, and reduce the cost of its extraction [48]. The transition of intellectual
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geology makes it possible to develop deposits at previously inaccessible depths, as well
as complexly structured deposits with anomalies in the occurrence of ore bodies and coal
seams [49].
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Numerical modeling of the state of complex objects in mines allows positioning various
objects in them more accurately, including people, as well as effectively predict sudden
movements of rock mass in the working area. The basis of modern numerical modeling—
analysis of the point cloud makes it possible already today to plan the construction of mine
workings on other planets during Space exploration, primarily on the Moon. As studies
show, cloud analysis methods used for the construction of Earth mines are quite suitable
for designing extraterrestrial workings (Figure 7) [50].

Wireless data transmission technologies in mines (Wi-Fi, 5G) provide a unique op-
portunity to achieve zero harm to the life and health of miners. However, there is still no
unconditionally effective way of wirelessly control detecting and positioning of people in
mine workings. Against this background, it is promising to use smartphones to transmit
and receive WI-FI signals at a speed of up to 80 megabits per second at a distance of up to
60 m (Figure 8) [51].
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3.5. Smart Sensors as a Part of Mining 4.0 Digital Platform

An important part of Industry 4.0 technologies—Smart Sensors—allow monitoring
the state of individual nodes of mining equipment in real time, classifying and analyzing
information to the level of decision-making readiness. An advanced intelligent system for
diagnosing the condition of staggered conveyors developed in Poland—Belt 4.0—allows
avoiding stopping the conveyor due to accumulated and sudden deformations, as well as
optimize its loading [52].

The connection of Smart Sensors with mine ventilation equipment into a single system
makes it possible to visualize air flows with high accuracy, simulate the ventilation efficiency
in various conditions, including emergencies. To achieve a threshold level of modeling
accuracy, at least 30% of mine workings must be equipped with at least 200 units of smart
sensors, which was first tested at the plant of Junmei Corporation Ltd., Shanghai, China [53].
Particular emphasis in the use of smart sensors in ensuring labor safety is placed on portable
wearable gas sensors in mine workings [54].

Active smart sensors have undeniable advantages, which consist in correcting the
transmitted information in the complex obtaining of data on the state of the mountain
range, the environment and the operation of the equipment. The use of active sensors
is of particular importance in open pit mining, for which LiDAR systems are promising,
connected to GPS and creating high-precision spatial 3D point clouds, used both for
predicting rock mass movements and for virtual mining design [55].

In underground mining, it is important to timely determine the surface subsidence
caused by the collapse of undermined spaces. Therefore, the analysis of Big Data in the
form of point clouds obtained using Differential Interferometric Synthetic Aperture Radar
(D-InSAR) allows tracking changes in the subsidence rate in a timely manner and identify
its parameters that are most significant for predicting the disturbance of soil cover: lead
angles, nature of residual deformation, its value along different axes [56]. Differential Radar
Interferometry (DSAR) provides new possibilities for surface deformation monitoring in
the area of intensive mining, which allows remotely creating predictive maps of earth
deformation over working longwall. Combining the obtained point cloud with satellite
images allows achieving an accuracy of 0.04 m [57]. Point clouds, which are a digital
model of mine workings, obtained using Interferometric Synthetic Aperture Radar (InSAR),
make it possible to predict the deformation of the mine workings themselves during the
displacement of rock blocks above them [58].
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The use of a large number of smart sensors to create a scalable model of an intensive
mining site allows using the GrabCut method. With its help, it is possible to build a
Visual Attention Model from remote sensing data with the greatest possible accuracy. The
resulting model is multifunctional and allows switching to full automation of mining and
reducing its losses [59].

The use of underground georadar as smart local positioning sensors for monitoring
mountain ranges can be more accurate when paired with Global Navigation Satellite System
(GNSS) receivers and a Pulse Per Second (PPS) time synchronizer. The result is unsurpassed
modeling accuracy, which is necessary for the safe placement of surface objects in the zone
of intensive underground mining [60].

A new step in the development of smart sensors is multi-sensor unmanned aerial
vehicles that integrate photo image and magnetic field data as a result of the introduction
of innovative machine learning algorithms for processing data from such smart sensors.
Therefore, remote geological mapping of land covered with dense forest and sediments
becomes possible [61].

Technogenic surface subsidence and earthquakes are a source of great danger for
people and infrastructure requiring high accuracy of forecasting. The accuracy of the
External Model-based Deformation Decomposition of Persistent Scatterer Interferometry
(EMDD-PSI) method can be improved by applying images sequentially generated by the
SAR Single Look Complex (SLC) and then modeling the spatial distribution of the fringes
of the interferogram. As a result, the calculation errors during modeling are reduced by
35.2% [62].

A new type of smart GPR for surface mining is the Frequency Modulated Continuous
Wave Ground-Based Synthetic Aperture Radar (The Frequency Modulated Continuous
Wave Ground-Based Synthetic Aperture Radar (FMCW)), made by North China University
of Technology (NCUT). This radar is capable of detecting submillimeter deformation of cliff
slopes, with previously unattainable accuracy. The radar is based on an improved Doppler
Range (RD) algorithm and can monitor a large area inside the pit (Figure 9) [63].
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It should be kept in mind that along with the benefits that Smart Sensors provide to
Mining 4.0, they increase cyber risks, which can cause critical damage to energy infras-
tructure and energy production. Their analysis is important for the progressive digital
modernization of mining complex [64].
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3.6. Three-Dimensional Visualization, Virtual and Augmented Reality, Computational Fluid
Dynamics in Mining 4.0

The management of cargo flows in open pit mines requires the improvement of the
wireless communication system inside the quarry. The use of Geographic Information
Systems (GIS) in conjunction with the positioning of transmitters based on 3D Fresnel
indices will provide the maximum 3D wireless coverage of the quarry field (Figure 10) [65].
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Geomechanical modeling of real mining objects encounters a high heterogeneity of
rock massifs. An original solution to improve the accuracy of modeling is 3D printing of
rock samples for subsequent testing. In this area, such research methods as Mori-Tanaka
(MT) scheme, Self-Consistent Scheme (SCS) method, Differential Effective Medium (DEM)
used in experiments on nanoindexing have positively proven themselves [66].

The stability of the composite roof in deep coal mines is a guarantee for safe and
efficient mining. Prediction of the location of deformation fields and failure of the coal-
rock combination will be more effective when applying the Digital Speckle Correlation
Method (DSCM), the uniaxial compression test was applied to with different height ratios.
The resulting failure patterns of partial combination specimen proved to be effective in
geomechanical modeling [67].

Improving the design of mine shafts requires original technological solutions, in-
cluding those associated with the replacement of large metal assemblies with original
compact parts. To ensure the reliability of the design at the stage of designing underground
mine workings, Virtual Simulation has positively proven itself with the construction of a
full-featured interactive 3D model [68].

A breakthrough in the development of the design of mining enterprises is provided by
the use of 3D scanning and modeling technologies, virtual display of objects. A particularly
complex design process—the reconstruction of old sections of mines—can be significantly
improved through the use of 3D laser scanning and CAD/MBS modeling. In particular,
this makes it possible to exclude collisions between vehicles and equipment (Figure 11,
where the distance between underground sections is 1 m, the green line is arch yielding
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support of the underground working, the blue line is trace of transported load, without
traffic clearances) [69].

Energies 2023, 18, x FOR PEER REVIEW 17 of 39 
 

Geomechanical modeling of real mining objects encounters a high heterogeneity of 
rock massifs. An original solution to improve the accuracy of modeling is 3D printing of 
rock samples for subsequent testing. In this area, such research methods as Mori-Tanaka 
(MT) scheme, Self-Consistent Scheme (SCS) method, Differential Effective Medium 
(DEM) used in experiments on nanoindexing have positively proven themselves [66]. 

The stability of the composite roof in deep coal mines is a guarantee for safe and 
efficient mining. Prediction of the location of deformation fields and failure of the coal-
rock combination will be more effective when applying the Digital Speckle Correlation 
Method (DSCM), the uniaxial compression test was applied to with different height ratios. 
The resulting failure patterns of partial combination specimen proved to be effective in 
geomechanical modeling [67]. 

Improving the design of mine shafts requires original technological solutions, includ-
ing those associated with the replacement of large metal assemblies with original compact 
parts. To ensure the reliability of the design at the stage of designing underground mine 
workings, Virtual Simulation has positively proven itself with the construction of a full-
featured interactive 3D model [68]. 

A breakthrough in the development of the design of mining enterprises is provided 
by the use of 3D scanning and modeling technologies, virtual display of objects. A partic-
ularly complex design process—the reconstruction of old sections of mines—can be sig-
nificantly improved through the use of 3D laser scanning and CAD/MBS modeling. In 
particular, this makes it possible to exclude collisions between vehicles and equipment 
(Figure 11, where the distance between underground sections is 1 m, the green line is arch 
yielding support of the underground working, the blue line is trace of transported load, 
without traffic clearances) [69]. 

 
Figure 11. Three-dimensional model for the purpose of analysis of collision in underground mine 
workings possibility (Reprinted from Ref. [69]). 

Three-dimensional modeling of mine workings using machine learning provides a 
unique opportunity to implement model update cycles with any change in the shape of 
workings. Good results of such adaptive 3D modeling are provided by CFD and CAD 
methods (Figure 12) [70]. 

Figure 11. Three-dimensional model for the purpose of analysis of collision in underground mine
workings possibility (Reprinted from Ref. [69]).

Three-dimensional modeling of mine workings using machine learning provides a
unique opportunity to implement model update cycles with any change in the shape of
workings. Good results of such adaptive 3D modeling are provided by CFD and CAD
methods (Figure 12) [70].
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The use of 3D modeling and virtual reality when displaying objects can be significantly
improved by applying the Simultaneous Location and Mapping (SLAM) and Lidar SLAM,
SegMatch methods in conjunction with the LeGO-LOAM feedback module. As a result, the
improved 3D model has a rotation accuracy 5% higher than the base version due to the
larger point cloud, while the display accuracy reaches 0.01 m [71].

Virtual 3D models of mining equipment allow not only improving its individual units,
but also reducing the impact of harmful factors on humans. One of these factors is vibration,
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which can be reduced in the area where machine operators are located using dynamic 3D
models of vibration transmission between different nodes at the stage of their design [72].

Modeling of complex contour ore bodies has a long history, and is often carried out
by building fairly simple geometric models based on exploration well data. However,
the accuracy of this method is low, which affects the cost of ore mining and its quality. A
radical improvement in the quality of the 3D ore body model is possible using the Hermite
Radial Basis Function (HRBF) in implicit model of the body with spatial interpolation [73].
Another innovative way of accurate 3D modeling of an ore body is the combination of
multispectral images, geological observations and magnetic surveys from unmanned aerial
vehicles [74].

Three-dimensional modeling of mine workings and other objects plays a special role
in the design of underwater mining complexes with extreme conditions of pressure and
fluid resistance. The application of the Computational Fluid Dynamics (CFD) method with
the OrcaFlex and Tracsim tools makes it possible to develop motion models for controlled
underwater roots in various types of soils [75].

The development of 3D geological models is important for the virtualization of com-
plex systems of underground mine workings, which makes it possible to synchronously
predict changes in geological and hydrogeological conditions. This is of critical impor-
tance when designing Underground Coal Gasification (UCG) and Coal-to-Liquids Supply
Chain (CLSC) systems in difficult geological conditions, when production costs can exceed
marginal values [76]. The study of the independence of CFD model cells makes it possible
to reduce the probability of a discrepancy between the model of gas flows in mine workings
and real trajectories, which will significantly increase the degree of gases dilution during
ventilation of mine workings [77].

3.7. Blockchain Technology in the Core of Mining 4.0

Blockchain technology in the mining industry during its ESG transformation takes
the form of “Platform plus Mobile Application plus Ecology”. The blockchain ecosystem
in Mining 4.0 will be gradually improved, contributing to the establishment of a cross-
chain ecosystem. This technology allows transferring information between blockchains
to achieve its efficient transferring among different industries. In addition, information
about disparate processes can be transferred to other participants in the technological
chain of extraction and use of minerals, and information exchange becomes more intense.
All sectors of the mineral resource complex are expected to be connected by distributed
contracts in the future, forming a truly transparent energy system [78].

Inspection of mining assets is an important part of the mining safety process. Modern
digital technologies make it possible to raise the impartiality and confidence of mining
inspectorate, through the widespread use of blockchain technology, cloud computing and
mobile devices. The stakeholders of the mining inspectorate—equipment manufacturers,
asset owners, inspectors, authorities—interact with the four main elements of digital
architecture: cloud module, mobile application, connected peripherals and blockchain
(Figure 13) [79].

Along with the implementation of mining inspection, distributed computing tech-
nology looks promising in predicting gas concentration in coal mines. For this, the Spark
Streaming framework, Autoregressive Integrated Moving Average (ARIMA) model and
Support Vector Machine (SVM) is proposed. Such an infrastructure is used to build a
new SPARS prediction model during the processing of large batches of streaming data in
the minimum time. This model can be used to implement ultra-precise prediction of the
concentration of harmful gases in coal mines in real time [80].

Separately, it should be mentioned about the peculiarity of blockchain technology,
which consists in a high level of security and safety of transmitted information, which plays
an important role in ensuring the cybersecurity of modern mining [81].
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3.8. Neural Networks and ArtificialIntelligence as the Core Technologies of Mining 4.0

In modern fuel and energy complex, the connection between energy efficiency and
asset performance is in a complex functional relationship, the modeling of which requires
all the power of neural networks [82,83].

In the context of fluctuations in the world market for raw materials, planning for the
extraction of coal and ore by an open method loses its accuracy due to the increase in
uncertainty. This requires solving a large-scale mixed-integer linear programming problem
with high computational costs. The original approach to its solution includes two stages:
first, an iterative selection of resource combinations using the parametric graph closure
algorithm, then the application of the branching and pruning algorithm [84].

Discrete Event Simulation (DES) is a modern computational method, the implemen-
tation of which, on the basis of the Artificial Neural Network (ANN) in the industry of
refractory gold mining, allows coordinating processes in such complex mining systems as
the processing of preconcentrated refractory gold ores at a centralized plant. Thanks to the
modeling of ore processing with the analysis of information based on swarm of the sensors,
it becomes possible to develop poor deposits with marginal profitability on the periphery
of large gold ore regions [85].

Timely detection of damage to the conveyor belt requires the analysis of a large
number of photographs every second. This can be achieved using deep learning based on
lightweight Convolutional Neural Network (CNN). A successful example of the use of such
a neural network in mining can be considered the integration of MobileNet and Yolov4
networks. As a test, an analysis of 3000 images containing minor damage to the shaft
conveyor belt was made. The integrated lightweight neural network effectively detected
conveyor belt damage at up to 70.26 frames per second with a test accuracy of 93.22%,
which is an impressive result [86]. The use of a deep learning convolutional neural network
(1D CNN) to track the causes of drill bit failure that are not related to the actions of the
operator makes it possible to apply artificial intelligence, obtaining an accuracy of 88.7%
failure predictions on average for all tested modes (normal, defective, attrition, with high
pressure and deviation from the direction) of horizontal drilling of a sample of granite rock
with a volume of 18 m3 [87].
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Along with the use of neural networks to analyze individual mining processes and
equipment performance, the so-called self-learning network (also known as “the network
without a teacher”) can be successfully used to analyze and solve environmental problems
in mineral extracting countries and clusters. In particular, the application of Kohonen’s
network to determine the compliance of changes in pollutants’ emissions from mining
and quarrying sector of each EU country with policy documents in the field of “Green
Economy” was successful. As a result, possible adjustments of the new European climate
strategy—“The European Green Deal”—were identified [88].

The use of a neural network to ensure labor safety in coal mines can significantly
improve the prediction of methane concentration. A successful example of this can be
considered the application of three deep learning methods—Recurrent Neural Network
(RNN), Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). The impor-
tance of their use is due to the fact that gas formation in the faces is always non-linear
in time and space, and changes as mining progresses. With the help of deep learning,
it is possible to simultaneously process a large amount of historical and current data on
methane concentration, which makes it possible to accurately predict it to ensure the level
in the bottomhole is no more than 1% (according to the Coal Mine Safety Regulations in
China) [89].

Another application of neural networks to ensure the safety of mining operations and
adjacent areas is microseismic monitoring for early recognition of dynamic disasters in coal
mines, especially rock bursts and massive water in-flows. In the course of the study, the
artificial intelligence recognition model based on two neural networks—Support Vector
Machine (SVM) and Wavelet Scattering Decomposition (WSD)—has positively proved
itself [90]. The neural network model for assessing the risk of physical impact on coal
seams takes into account several factors, such as the depth of mining, the direction of the
impact tendency, geological structure, coal seams bedding and dipping mining method.
The application of the BP Neural Network Model gives a high accuracy of the rock burst
risk level with a high calculation speed [91].

The complexity of mining operations causes their geotechnical uncertainty, which
reduces both their safety and productivity. Reducing this uncertainty is possible in the
course of accumulating knowledge about the physical, mechanical and mining properties of
the site, which can be significantly accelerated in the course of iterative modeling based on
neural networks. As a result, a cause-and-effect model of mining operations at a high-level
site will be obtained, in which various parameters are in interaction with each other, and
the accumulated data are used to train the neural network. Such a network can be used to
predict future production based on current and forecast (semi-synthetic) data [92].

Artificial neural networks (ANN) as a computing approach to design the model of
blast in the mines should contribute to solving the fundamental problem of drilling and
blasting—30% of the energy of the explosion goes to the destruction and movement of the
rock and 70% is irretrievably lost. A general view of the neural network architecture for
optimizing blasting is shown in Figure 14. Numerous experiments have shown that ANN
allows optimizing the parameters of drilling and blasting operations, ensuring the efficiency
of destruction and movement of rocks by explosion and, thereby, reduce operating costs
and improve labor and environmental safety [93].

Machine Learning Algorithms (AML) used to predict the parameters of the blasted
rock mass can significantly improve the use of nonlinear functions in the design of drilling
and blasting. The use of multilayered Artificial Neural Network (ANN) and Support Vector
Regression (SVR) in AML can significantly improve explosion performance, which was
demonstrated at ANN using Bayesian optimization in the Keras Python library [94].
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4. Machine Vision and Learning, Drones, Unmanned Processes as the Main Material
Forms of Mining 4.0
4.1. Machine Learning and Machine Vision

Artificial intelligence, a unique mode of human-machine interaction, has enabled
machines to interact with each other and with industrial systems via the Internet of Things.
Transferring this pattern to mining, we can state an increase in the level of integration of
mining, transport and processing systems, the gradual exclusion of a person from especially
dangerous zones and the increase in uninterrupted operation of mining equipment during
the introduction of machine learning technologies [95,96].

Machine vision is a set of sophisticated technologies that give machines a visual
representation of their environment. Machine vision opens up new ways to automate
mining enterprises that are being upgraded on the Mining 4.0 platform by integrating
traditional mining equipment and robotics, traditional human decision making and their
adjustment by machines to optimize processes. The development of machine vision makes
it possible not only to create unmanned mining equipment, but also to turn machine
complexes into collaborative robots that work safely together with people. It is machine
vision that is expected to become a bridge to Mining 5.0, when more advanced systems
with powerful artificial intelligence will completely displace humans from underground
mining, dangerous and harmful areas of open pit mining and processing plants [97].

The issues of reliability of the operation of mining machine units are becoming decisive
in the formation of operating costs in the extraction of minerals. With the expansion of
artificial intelligence in mining and the development of machine learning (to the level of
the so-called deep learning), fault diagnosis will be completely transferred to the control
of self-learning intelligent systems. At the same time, the limitation of the use of such
systems is the mandatory sufficient amount of information for analysis in various neural
networks, which is achievable with the widespread use of machine vision. The use of
automatic data collection methods makes it possible to move from machine vision to
machine knowledge, which allows equipment to make decisions independently, providing
safer working conditions for people and optimal resource consumption [98]. Based on the
example of machine data acquisition about the operation of a wheel loader in a quarry,
their clustering and classification (using DBSCAN, CART, C5.0 as well as a GPS signal),
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conclusions were made about the possibility of a gradual transition to replacing individual
functions of operators and maintenance stuff with a robotic control system as artificial
intelligence is involved in this process [99].

Along with the use of machine vision for safer and more optimal equipment perfor-
mance, automatic reality recognition looks promising for the recognition of faults in mining
areas. The processing of digitized information about the state of the mountain range is
carried out using the Convolutional Neural Network (CNN), which is characterized by
powerful feature-learning and classification capabilities. The results indicate that the fault
results predicted by CNN are matching the manual interpretation in a high extent (the
accuracy of prediction model is more than 85%)—Figure 15 [100].
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Machine vision and learning methods used in mining are increasingly contributing to
a comprehensive coverage of the processes occurring in mine workings—the state of the
rock mass, the location and operation of equipment, dust and gas emissions. The spillover
effect obtained during the diffusion of Mining 4.0 technologies into related industries
makes it possible to apply machine vision and learning in the analysis of the intensity
of damage to buildings during many years of exposure to the aggressive impact of coal
mining. Such machine learning is possible using probabilistic neural network, support
vector machine, naive Bayes classification and Bayesian belief networks. The best results
of machine learning implementation were obtained for Bayesian belief network with the
TAN-CL AIC structure learning method [101].

Machine vision also has significant prospects in improving the quality of graded coal
and its enrichment. In particular, the use of the host rock identification model PCViT made
it possible to automate the process of analyzing features of hyperspectral data through the
use of a self-control module [102].

Image processing (IP) and Machine learning (ML) enables mining engineers and
designers to radically improve the recovery of valuable components from ores. Specific to
Mining 4.0 flotation systems of the Fourth Generation has a special major effect for recovery
of precious minerals in the concentrate. Modeling of the bubbles using the Watershed
segmentation technique is recognized as delivering expected results [103].

Prediction of crosscut instabilities is a valuable key to prevention of geological disas-
ters and acceleration of the projects. Replacement of time-consuming and expensive stress
monitoring is possible with extreme learning machine (ELM) algorithm, which processes
converged data obtained with crosscut response by means of FLAC3D finite difference soft-
ware. Application of this ELM system on Yanqianshan iron mine, Liaoning Province, China,
proved its accuracy and Efficiency in prediction stresses and crosscut instabilities [104].

The finite target of application of artificial neural network in rock bursts is achieving
100% accuracy. The challenge of applying trained models of machine learning algorithms
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(MLPC and D.T.) was successfully overcome in numerous cases where the opening was
not damaged due to the tremor. It allowed computing the maximum forecast energy of
the tremors for workings and pillars of the coal mines as well as the faults with a large
throw [105].

The use of machine learning algorithms to prevent coal dust explosions can signifi-
cantly reduce the risks of man-made accidents in coal mines and thermal power plants.
However, simulation of the risks of coal dust explosions based on artificial intelligence
is not sufficiently reflected in modern research. In this regard, the positive experience of
using the random forest Artificial Intellect model for sensitivity analysis by SHAP (Shapley
Additive exPlanations) to predict the risks of coal dust explosions should be noted [106].

4.2. Robots, Drones and Unmanned Mining

The cutting edge of the implementation of the Industry 4.0 platform is represented by
robotic environmentally friendly equipment. At the same time, the issues of increasing the
energy efficiency of robotic systems of mining equipment are either poorly studied or have
not received proper discussion at all. Therefore, the problem of technical re-equipment
of mines and open pits with the use of robotics, taking into account the optimization of
energy consumption of robotic systems, seems to be a very important and timely solution
to minimize the negative environmental effect from the growth of mining by increasing
productivity [107].

An original example of combining machine vision and robotization of mine transport
is the creation of an effective algorithm for recognizing road signs by an autonomous
self-learning robot that cyclically moves along a planned route in underground workings.
Recognition of road signs at the intersection of underground mine workings occurs due
to the algorithm of geometric comparison of machine vision, using data from the LiDAR
sensor (Figure 16). The results showed that when using machine vision, all road signs were
recognized quite accurately (979.14 cases out of 1000), which confirms the stable movement
along the planned route [108].
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Regular monitoring of mine mechanical systems, which include belt conveyors (es-
pecially in deep mines), is necessary for the smooth operation of the entire enterprise as a
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whole. However, this requires the presence of a significant number of people—operators,
mechanics—underground in harsh conditions. A potential solution to this problem, which
is associated with an increase in the reliability of drives and conveyor belts, is the cre-
ation of mobile robot inspectors based on an autonomous unmanned aerial vehicle that
collects heterogeneous information (RGB image, sound, gas sensor, etc.—Figure 17). The
carried-out tests have shown that the AMCL-based robotic control system for the state of
the conveyor is able to autonomously perform the entire verification procedure [109].

Energies 2023, 18, x FOR PEER REVIEW 24 of 39 
 

 
Figure 16. View of recognizing road signs in the experimental area using vision system developed 
in this study, (a) Site 2. (b) Site 3. (c) Site 4. (d) Site 5. (e) Site 6. (f) Site 7 (Reprinted from Ref. [108]). 

Regular monitoring of mine mechanical systems, which include belt conveyors (es-
pecially in deep mines), is necessary for the smooth operation of the entire enterprise as a 
whole. However, this requires the presence of a significant number of people—operators, 
mechanics—underground in harsh conditions. A potential solution to this problem, which 
is associated with an increase in the reliability of drives and conveyor belts, is the creation 
of mobile robot inspectors based on an autonomous unmanned aerial vehicle that collects 
heterogeneous information (RGB image, sound, gas sensor, etc.—Figure 17). The carried-
out tests have shown that the AMCL-based robotic control system for the state of the con-
veyor is able to autonomously perform the entire verification procedure [109]. 

 
Figure 17. An inspection robot during the experiment: (a) general photo; (b) zoom on sensor (Re-
printed from Ref. [109]). 

The prototype of this system, created by Polish scientists, has four skid-steer wheels 
and is driven by two DC motors built into the gearbox. Visualization of data on the oper-
ation of the mine conveyor, recorded by the robot inspectors, is shown in Figure 18 [110]. 

Figure 17. An inspection robot during the experiment: (a) general photo; (b) zoom on sensor
(Reprinted from Ref. [109]).

The prototype of this system, created by Polish scientists, has four skid-steer wheels
and is driven by two DC motors built into the gearbox. Visualization of data on the opera-
tion of the mine conveyor, recorded by the robot inspectors, is shown in Figure 18 [110].
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The areas of application of similar devices for fully autonomous robotic control of
mine conveyors (Figure 19) may be monitoring equipment in especially dangerous and
hard-to-reach places, diagnosing the state of the conveyor belt in various types of mines
and different climatic conditions of quarries, adapting control methods for extraordinary
conditions mines (high dust content, gas contamination, etc.) [111].
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Along with the control of mining equipment, robotic inspector systems show great
promise for monitoring blasting operations in open pits. The control methods used today
are discrete and manual, thus exposing personnel to danger. An alternative is pre-explosive,
explosive and post-explosive monitoring using unmanned aerial vehicles. In particular,
the following drone-assisted drilling and blasting monitoring system has shown positive
results: DJI Matrice 600 Pro hexacopter with redundant control system, DJI Zenmuse X5
and X5S cameras with DJI 15 mm f/1.7 ASPH lens and Olympus M.Zuiko 45 mm f/1.8 lens
with a resolution of 16 and 20.8 megapixels, respectively [112].

The use of drones in mining industry today is quite diverse: 3D mapping of the mine
environment, quality control of drilling and blasting operations and the state of coal depots,
monitoring the sustainability of tailings. In accordance with this, there is also a significant
diversity among the types of drone designs and their equipment. The most modern trend in
practice of using drones in mining is their use in underground mines, gradually overcoming
specific problems, such as lack of GPS and heterogeneity of the wireless signal, limited
space, concentration of dust and gases (Table 2) [113].

Table 2. Applications of drone technology in mining missions (Adapted from Ref. [113]).

Application Description

Abandoned Surface Mines

Surveying photogrammetry and hazardous subsidence
mapping

Creating a subsidence inventory map demonstrating the
locations and details of past subsidence

Photogrammetry and filling material calculation
Creating a high-quality 3D digital elevation model to calculate

the amount of required soil for the reclamation of a closed
surface mine

Anthropogenic formations of invasive plants on abandoned
surface mine lands

Creating a map and determining accurate dimensions and
volumes of anthropogenic landscape forms, such as landfill.

Mapping of places where some invasive plants exist

Rehabilitation Creating a 3D train model of mine lake in order to rehabilitate
the abandoned surface mine
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Table 2. Cont.

Application Description

Abandoned Underground Mines

Pillar mapping
Collecting data, communicating and mapping pillars in
abandoned underground mines when there is a risk of

deploying a crew

Detection of gas storage
Creating a 3D virtual mine map from 3D point cloud

information of optical sensors to calculate the volume capacity
for gas storage in abandoned mines

Monitoring acid mine drainage Investigation and monitoring of acid mine drainage from
abandoned mines and tailings to the water stream

Mine shaft investigation Combination of the GPS data with the digital photographs
taken by the drone to create orthorectified photography maps

The use of drones in geological exploration is associated not only with mapping areas
of the surface of mineral deposits, but also with magnetic field prospection, especially in
areas where dense vegetation, swampy and rugged terrain restrict people’s access. By the
example of the use of a vapor magnetometer from the Matrice 600 Pro Hexacopter drone,
carried out in the old mines of Don Jacobo (Betic Cordillera, Spain), 24 parallel profiles were
passed at a speed of 5 m/s, orthogonal to the regional strike of the geological structure.
The interpretation of the magnetic data allowed modeling two bodies of high magnetic
susceptibility with remnant magnetization near old mines (Figure 20) [114].
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The transition to unmanned processes in mines is logical to start with the robotization
of group work in confined spaces with a high risk for people. This should be facilitated
by unmanned and intelligent tunneling work. The first step might be path rectification
planning of roadheaders. The dynamic model of the roadheader and the grid model
of the path were used to propose a route planning and tracking algorithm based on an
optimization model of the environment and traffic characteristics of the roadheader. The
efficiency of the created algorithm was tested using simulations in MATLAB, which made it
possible to ensure the reliable execution of the intelligent functions of the roadheader [115].
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The technological core of Mining 4.0—the Internet of Things, 5G, artificial intelligence,
neural networks—penetrating coal mining, gradually forms an intelligent adaptive mining
mode based on integrated equipment automation and remote visualization. In this adaptive
mode of unmanned production, machine vision, using data from many sources, forms
physical models of mining processes for data mining and automatic equipment control
(such as self-adaptive adjustment and self-adaptation of the shearer drum). Operators of
unmanned processes analyze machine vision data and control fully mechanized mining
equipment, minimizing remote intervention (Figure 21) [116].
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Figure 21. Schematic diagram of intelligent video surveillance technology (Reprinted from Ref. [116]).

Installing Smart Sensors to control dump trucks traditional operation (by humans as
the drivers) using artificial intelligence was very successful in Kuzbass—the largest coal
basin in Russian Federation. Here are two cases of implementation of these Mining 4.0
technologies in this region [117].

The first case concerns avoiding the road accidents in surface mine (dump trucks
collisions and roll-over) caused by drivers’ fatigue. Cameras and optical sensors with
machine vision, a vibration motor and a sound detector were installed on dump trucks at
the Kuzbass surface mine (Western Siberia, Russia). Optical sensors located at the level of
the driver’s eyes read the movement of a person’s gaze and head while the car is moving
at a speed of more than 10 km/h. Artificial intelligence system analyzes the received data
and makes a decision. If the driver is distracted, the system sounds a warning horn and
activates a vibration motor under the seat. If the driver does not respond to these signals
within 8 s, the siren mode is turned on.

The second case is related to the use of “smart assistants” for drivers of dump trucks,
automating the following operations: Passing with oncoming mining equipment, moving
in a convoy, crossing technological roads at night and in heavy weather conditions. Such
systems complement the actions of the drivers, adjusting the position of the steering wheel,
gas and brake pedals.

The economic effect of introducing these artificial intelligence systems in traditional
transport technology implied achieving zero accidents in three years of their use (2017–2019).
Based on the experience of 10 previous years, this allowed avoiding unforeseen expenses
of 540 thousand dollars, while the cost of these systems was 330 thousand dollars. Their
payback period was less than 2 years.

Another case of successful implementation of smart sensors and artificial intelligence
systems in ore and rock transportation is Australian company “Rio Tinto Group”. Eighty
unmanned dump trucks from 400 in total used at surface mining sections transport more
than a quarter of iron ore and overburden. The reduction in operating expenses achieved
$80 million, with an additional $500 million in revenue expected from 2022 [118].
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It should be taken into account that the transition to unmanned mining processes
does not mean the complete exclusion of a person from direct control over them. The
transition to robotic mining equipment means zoning sections of a mine or a quarry field in
which equipment with elements of machine vision and artificial intelligence is operated.
In particular, it is necessary to distinguish three types of zones with different levels of
balance between human and machine control: production zones with “zero entry”, zones
of human presence for servicing machines and mechanisms, zones of constant human
presence (Figure 22). In accordance with these zones, it is advisable to adjust the safety
requirements for mining operations [119].
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5. Intelligent Management and Business Projects Making as Mining 4.0 Economic Basis

A distinctive feature of Mining 4.0 is the transition from relying on the competence
of people in the design and management of mining operations to “smart” cyber-physical
systems. The technical component of such “smart” systems was discussed in detail above
as the integrated use of smart sensors, machine vision and learning, artificial intelligence,
unmanned mining equipment. At the same time, the “smartness” of Mining 4.0 also consists
in optimizing technological and management systems of mining enterprises. Therefore,
smart management and projects making must satisfy the conditions for optimizing the
entire enterprise as a whole, and not its individual processes in terms of a single profit
indicator, taking into account both production and financial, as well as information and
cognitive limitations.

Further, the system optimization in the management of mining companies should
go through all the stages of creating a “smart” enterprise: optimization of technological
solutions using unmanned equipment and artificial intelligence, drones, 3D modeling;
structural optimization of production and financing; parametric optimization of processes.

System optimization of processes, typical for “smart” mining enterprise, requires
a multi-criteria decision-making (MCDM) system. The well-established selection and
prioritizing smart mine strategies using is a combination of Z-number theory and fuzzy
weighted VIKOR technique with a Fuzzy Cognitive Map (FCM) [120]. Design, planning
of mining operations and sustainable operation of mining enterprises in the context of
the expansion of Industry 4.0 technologies should be carried out on the basis of those
strategies that emphasize the social license to operate green mining [121]. For example, the
introduction of machine learning in the mining industry requires the formation of a new
business model for optimizing production processes, at the heart of which lies the flexible
methodology of the Industry 5.0 paradigm, which takes into account the importance of
environmental innovation and ESG investment [122]. Systemic digital transformation
of extractive enterprises requires the combined efforts of all stakeholders—extractive
companies, the state, civil society and academic circles [123].
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A “smart” tool for making optimized decisions is Cloud Mining—the integration
of the core business through the use of cloud technologies, resources and services. As a
result, a new mining cluster management mode is being formed, based on five pillars:
digital data, digital technology, digital talent, cloud business and cooperation. On the cloud
platform, you can implement geological modeling, reserve estimation, mine design and
sales planning (Figure 23) [124].
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Increasing the availability for data analysis at the most detailed level using the In-
dustrial Internet of Things (IIoT) allows creating Key Performance Indicators (KPI) for
managers and engineers of different levels based on aggregated information in the chain
of cause-and-effect relationships. Consistent operational optimization of all production,
logistics, and financial operations of an enterprise can be achieved through the use of
modern solutions for IIoT data logging and real-time analysis [125].

Systematic optimization of mining production is impossible without the complete
extraction of minerals, which are considered secondary, as well as without reducing indus-
trial injuries in the mining industry. Accurate forecasting of the production and economic
potential of recovering secondary minerals requires the use of a computational tool using
a decision analysis model with several criteria, for which Analytical Hierarchical Process
(AHP) and Python can be used [126]. For a systematic analysis of occupational injury
factors, it is possible to use the machine learning models such as DAFW, ANN and MSE.
In particular, DAFW is an indicator of the severity of the injury; it also could help the
stuff management to plan for replacements when an injury occurs. Using the method of
synthetic data augmentation using words embedding allows solving the problem of data
imbalance [127].

6. Mining 5.0: Expectations of Mining 4.0 Evolution

In general, the guidelines for the transition to Industry 5.0 are associated with both
technological convergence and a human-centric economy, which generally means the pri-
ority of protecting the life and health of workers, and reducing human impact on the
environment [128]. At the same time, the Mining 5.0 technological platform occupies a sub-
ordinate place in Industry 5.0 research, ahead of work in the field of IT development [129]
(Table 3).
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Table 3. Mining 5.0 Innovations (Adapted from Ref. [130]).

Stages of
Industrial

Development
Description Key Innovations

Stages of
Development of
Geotechnology

Mining
Innovations

Industry 5.0 Synergy of humans and
autonomous machines

Ubiquitous machine
learning, self-educating

collaborative robots,
integration of the

physical and virtual
world into Big Data,

Data Mining by
machines

Mining 5.0

Complete replacement
of people by

collaborative robots in
mines, Smart Contracts

in the raw materials
market, machine vision,

artificial intelligence,
digital twins based on

Data Mining

The concept of Industry 5.0 provides an ideal platform for the transition to circular
production in mining industry, which today intensively uses scarce resources—water and
non-renewable fossil fuels. At the same time, the mining sector, along with energy, is an
important source of greenhouse gas emissions. Projects such as water purification and
desalination, coal dust capture and coal bed methane combustion in power plants, designed
on the basis of Big Data and neural networks analysis, are a significant step towards a
circular economy on a national and global scale [131].

Along with resource recycling in the mining industry, its future lies in post-mining,
which should ensure that clusters with a high concentration of mining flourish after the
extraction of minerals is completed. The transition to post-mining requires a detailed
analysis of the state of closed underground facilities and damaged land, the chemical
composition of water and soil. This involves the use of all technological resources of
Mining 4.0—machine vision, drones and inspecting robots, neural networks and cloud
computing to analyze large amounts of data [132].

The success of the transition to a circular economy is impossible without the introduc-
tion of the cleanest methods of mining (Green Mining). Based on IoT technology, real-time
energy consumption data can be collected and analyzed to increase the load on the mining
complex, which must be controlled throughout all production chains, at the bottom of
which there is raw material. Big Data allows implementing a strategy for the transition to
Green Mining through the analysis of data on the intensity of the use of raw materials and
energy in the manufacturing industries [133].

Today, investing interest in traditional technologies in the mineral resource sector
is giving way to ESG investments that prioritize environmental, social and corporate
responsibility. At the same time, the study of the digital transformation of the mining
complex is limited in the analysis of sustainability factors. To maximize the benefits of
Industry 4.0 technologies in the transition of mining enterprises to sustainable development,
investors and owners should plan ESG optimization and greening of all business operations
during the investment planning stage. For example, a study of the prospects for the
introduction of the Industrial Internet of Things at underground or surface mine should
include the prospects for the introduction of closed water technologies, more efficient use
of energy and increased labor safety [134].

The bridge for the transition from Mining 4.0 to Mining 5.0 can be the Internet of
Things, which is considered as a factor in overcoming environmental and social restrictions
on industrial development, including mineral resource sector [135].

The relationship between digital transformation and green innovation, as applied to
mining enterprises, lies, firstly, in a common technological architecture, thanks to which the
achievements of Industry 4.0 and Green Mining are jointly changing the technological, en-
vironmental and economic landscape of the industry. Secondly, it is digital transformation
that is the key to increasing the return on green investments in mining, since the digital
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ecosystem being created is attractive to ESG investors and is rapidly becoming the “gold
standard” for investing in industry [136].

The European Decision Support experience shows the great potential of creating a
consortium of industrial and academic experts to develop an integrated system for digital
modeling of the transition from coal mining to landscape revitalization, the development of
infrastructure for agriculture and the manufacturing industry and the production of energy
from coal mining waste. TRIM4Post-Mining, a project funded by H2020/RFCS, allows
interactively exploring alternative land-use planning scenarios by embedding actual data
into the Transition Information Modelling (TRIM) System model based on technologies of
virtual and augmented reality [137].

The basis of Mining 5.0-Industry 5.0—in addition to relying on the convergence of
information, cognitive, nano- and biotechnologies, brings the industry to the place of a
significant social force, which will put the well-being of workers in the industry at the
center of stakeholder interests. Today it has become obvious that the concepts of Lean
Manufacturing, Industry 4.0 and 5.0, Mining 4.0 and 5.0 will be discussed as parts of a single
system, since they have common goals and a single convergent technological platform [138].
The social basis of Mining 5.0-Society 5.0—is being formed in the conditions of total
computerization of the industrial sector of developed economies. The main condition is to
optimize the consumption of minerals per capita, which forces to revise long-term forecasts
of demand for them [139]. We expect that the technologies that form the core of Mining 5.0
will be the main object of the intelligent mining policy [140–142].

The transition from Mining 4.0 to Mining 5.0, along with the strengthening of the ESG
factor of investment and social responsibility of companies, affects another aspect of the
convergent technological development of mineral extraction—the biochemical method. In
particular, some success has been achieved in pyrite bio-oxidation by chemolithotrophic
acidophile bacteria, RNA modification of which makes it possible to achieve impressive
practical results [143].

7. Results and Discussion

In this review, an attempt to summarize the impact of end-to-end technologies of
Industry 4.0 on mining during the formation of the Mining 4.0 technology platform is made.
In most existing publications, Mining 4.0 is considered as a result of the digitalization of the
main and auxiliary processes of minerals extraction. In our study, we go further, considering
the systemic and complex essence of Mining 4.0, which allows the mineral resource sector
of the world economy to progressively develop in the conditions of fluctuations in prices,
demand and supply of energy sources. We attribute this to the possibility of a radical
increase in labor productivity and a reduction in operating costs during the implementation
of cyber-physical systems, unmanned technologies and robotic equipment. We see the
success of the transition to Mining 4.0 in the systemic optimization of mining, both at the
level of single enterprise and the entire mining sector through the core digital technologies
of Industry 4.0.

The general development trend of Mining 4.0 is the transition to Computer Integrated
Mining, which is characterized by a high digital maturity of the extraction and primary
processing of mineral raw materials due to the rapid development of digital production
ecosystems. The digital transformation of mining gives rise to its domain organization, in
which various processes receive their digital reflection and management.

A variety of areas of digital technologies diffusion in mining indicates the gradual re-
placement of physical systems with cyber-physical ones (thanks to artificial intelligence and
neural networks), the possibility of accelerating the construction of underground structures
for the colonization of nearby planets, the imminent possibility of completely predicting
natural and man-made disturbances in the earth’s crust and surface, fully position people
in underground workings and monitor their condition, visualize the movement of cargo
flows for their unprecedented optimization, obtain full control over the reliable and safe
operation of equipment.
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For further increase in the productivity and safety of mining operations, a new gener-
ation of collaborative robots is needed, which can combine the technologies of Machine
Vision and Learning, largely eliminate the human factor in human-made accidents and
radically increase the sustainability of mining. Expansion of the fleet of robotic excavators,
drilling rigs and dump trucks will completely exclude a person from drilling and blasting,
excavation and loading, transport processes, geodetic surveys, planning and operational
process control. In turn, the “bottleneck” in the development of open-pit and underground
mining opens up to the wide use of drones and is associated with obtaining the most
complete visual, spectral and magnetometric information about geological and industrial
objects necessary for unmanned impact on them.

System optimization of the extraction of minerals, as an important task of Mining 4.0,
requires the optimization of not only production, but also management and financial operations.

The highest degree of coordination and flexibility in managing mining processes will
ensure profitable mining at any level of prices and demand for raw materials. This is
achievable through digital design of the development of depleted, deep and hard-to-reach
deposits, flexible change in the KPI of managers of mining enterprises in the face of growing
uncertainty, due to the release of digital management technologies to the Cloud Mining
frontier and synthetic data augmentation.

At the same time, industrial, technical, social and environmental challenges for Mining
4.0 development remain, associated with objective obstacles to the complete transfer of
production processes under the control of “smart” machines (their limited creative ca-
pabilities, demanded in conditions of high uncertainty; cybersecurity risks; the need for
modernization of existing technologies). Along with this, there are subjective challenges
to Mining 4.0 (non-acceptance of the full control of machines over people, the need to
plan to reduce environmental damage, etc.). The answer to these challenges should be the
evolution of Mining 4.0 into a new technological platform in the second half of the 21st
century—Mining 5.0.

Its distinguishing feature is the human-centricity, associated primarily with new forms
of connecting a person, artificial intelligence and “smart” robots, such as direct emulation
of remote control over equipment and mining operations, the use of “collaborative” robots-
partners and ultra-modern digital technologies to protect the health of miners in the areas
where a person cannot be excluded from mining. Another important feature of Mining
5.0 is its nature-centricity, which means expansion of convergent technologies and the
development of post-mining, the introduction of closed cycle and biochemical technologies
for extracting mineral resources. The evolution of Mining 5.0 will be accompanied by
the completion of the transition to “Green Mining” and Lean Mining Production as ESG
investments emerge as the main source of funding in the mining sector.

8. Conclusions and Prospects

Since the end of the 20th century, the development of mining has faced a new challenge
associated with the growth of energy consumption and, accordingly, the demand for energy
resources on the one hand, and the instability of world prices for raw materials on the
other. The answer to this challenge in the expected future is to increase the production of
mining enterprises and reduce costs, coupled with a radical increase in labor safety. The
condition for their achievements is the transition to a new technological platform—Mining
4.0—which has been developing since the beginning of the 21st century, based on digital
and cyber-physical technologies of Industry 4.0.

In this review, a cohort of research papers on various aspects of Mining 4.0 was
analyzed, systematized and classified according to its technological components: deep
digitalization of mineral extraction, artificial intelligence and neural networks, machine
vision and learning, virtual and augmented reality, drones and smart sensors, unmanned
processes and enterprises and digital systems in mining management. Analysis of more
than 140 publications, most of which were published from 2019 to 2022, made it possible
to identify the area of greatest interest for Mining 4.0 researchers—the implementation of
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advanced digital technologies in mining (3D visualization, virtual and augmented reality,
smart sensors and neural networks). Industry 4.0 technologies that modify traditional
geotechnology (the use of digital twins of processes, unmanned equipment and drones and
machine vision) receive relatively less attention, as well as the use of cloud mining and
intelligent design in the management of mining enterprises.

Therefore, it is these components of Mining 4.0 that should become a priority for its
future research in the context of system optimization and integration of different operating
and managerial processes. An equally important area of future research should be filling
the theoretical gaps in post-mining and ESG investments, which, along with the use of
collaborative partner robots and integrated unmanned processes, form the core of Mining
5.0. This technological platform is expected in the second half of the 21st century as a
stage in the evolution of Mining 4.0, which will bring the principles of human- and nature-
centricity to mining, and increase its productivity to the level of manufacturing industries.
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