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Abstract: With the continuous penetration and development of renewable energy power generation,
distributed grids and microgrids are becoming increasingly important in power systems. In the
distribution networks and microgrids, the grid impedance is comparatively large and cannot be
ignored. Usually, the parallel compensation is used to improve the grid quality. In these three-phase
four-wire power systems, analyzing the impedance characteristics of the grid-connected inverter
is vital to carry out the small-signal stability analysis. Thus, it is vital to consider the influence of
the zero-sequence component in addition to the positive-sequence component and the negative-
sequence component when it comes to analyzing system stability. In this paper, the impedances of
three-phase four-wire split capacitor inverter and three-phase four-leg inverter are established. Based
on the achieved impedance, the similarities and differences between the impedances of three-phase
four-wire split capacitor inverter and impedance of three-phase four-leg inverter are studied. The
main difference is reflected in zero-sequence impedance. Additionally, the zero-sequence impedance
characteristics and the dominating factors deciding the zero-sequence impedance are analyzed. Then,
the stability of the system considering the grid impedance and impedance of three-phase four-wire
inverter is investigated by separately considering the stability of the positive–negative-sequence
component and the stability of the zero-sequence component. Several cases of small-signal instability
caused by the positive–negative-sequence component or zero-sequence component are revealed. The
experimental results validate the theoretical analysis.

Keywords: three-phase four-wire inverter; impedance modeling; stability

1. Introduction

With the continuous penetration and development of renewable energy power gen-
eration, distribution networks and microgrids account for an increasing proportion of
contemporary power grids [1–3]. In distribution networks and microgrids, the three-phase
four-wire system has been widely promoted and applied [4–9], because it can provide a
zero-sequence current path and is suitable for both symmetrical and asymmetrical condi-
tions. In the three-phase four-wire system, the three-phase four-wire inverter has important
functions such as power transmission and power quality improvement devices. The
three-phase four-wire split capacitor inverter (TFSCI) and three-phase four-leg inverter
(TFGI) have been widely used due to their low cost, simple control, and small size. Their
application scenarios include islanded microgrid [4], active filter [5], power redistribu-
tion device [6], renewable energy power generation system [7], uninterruptible power
supply [8], and power distribution system [9].

Because the distribution network and microgrid are usually weak grids with large
impedance, parallel compensation capacitors are typically equipped to perform reactive
power compensation and harmonic filtering to improve voltage quality and enlarge power
transmission capacity [10–12]. Therefore, it is a very common scenario in a three-phase
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four-wire system that the three-phase four-wire inverter connects to a weak grid with
parallel compensation capacitors.

When the three-phase four-wire inverter connects to the grid whose impedance cannot
be neglected, the interactions between the inverter systems and weak grid may cause stability
issues. Many methods can be used to analyze the characteristics of system stability. These
methods include the loop-gain method [13–15], eigenvalues analysis based on system state-
space method [16], the passivity method [17,18], and the impedance-based method [19–25].

Among these analytical methods, the impedance-based analysis method is proved
as an effective way to study and resolve the small-signal instability problems caused by
the interaction between the converter and the grid [21–25]. A stability criterion for grid-
connected inverters based on Gershgorin’s theorem and impedance model is proposed
in [21]. Reference [22] establishes the entire impedance of RSC and VSC considering
coupling factors to analyze the system stability. In [23], a single-in-single-out impedance
model of grid-connected inverters with a virtual synchronous generator using a cascaded
inner control loop is established to analyze the system stability under different kinds of
weak grids.

The small-signal instability problems of the three-phase three-wire grid-connected
inverter system have received wide attention and research, and numerous meaningful
conclusions have been achieved. However, these conclusions cannot accurately reflect
the stability of three-phase four-wire grid-connected inverter system because the zero-
sequence component is not considered. The zero-sequence component is also a factor that
will cause the small-signal instability of the system except the negative-sequence and the
positive-sequence components.

To analyze the small-signal stability of the three-phase four-wire system including zero-
sequence stability by the analysis method based on impedance, the impedance of the three-
phase four-wire inverter should be achieved firstly. By analyzing the transmission path of
the zero-sequence, positive-sequence, and negative-sequence small-signals perturbation
in each sequence loop considering all the control blocks, the relationship between the
small signal perturbation and the corresponding response in the frequency domain will be
achieved as an impedance model of the inverter.

The derivation process of the impedance model including the zero-sequence impedance,
positive-sequence impedance, and negative-sequence impedance is much more complex
than that of the three-phase three-wire inverter impedance model. The matrix dimension
increases from two-dimensional to three-dimensional, and the effect of the zero-sequence
component on the disturbance loop should be considered. Then, the small-signal instability
issue can be studied on the basis of the obtained impedance model. When performing sta-
bility analysis, it is not only necessary to consider the stability of the positive and negative
sequences, but also to consider whether the zero-sequence impedance will bring stability
problems, which increases the complexity of the analysis process.

Additionally, based on the obtained impedance model, the impedance characteristics
of TFSCI and TFGI are analyzed in this paper. The small-signal stability of TFSCI and
TFGI are analyzed, and the instability cases are given in the weak grid and weak grid with
parallel compensation.

The structure of the paper is organized as follows. Section 2 gives the system de-
scription and impedance models of TFSCI and TFGI. Then, the comparison of impedance
characteristics between TFSCI and TFGI is presented in Section 3. The stability analyses
of TFSCI and TFGI are studied in Section 4. The validity of the established impedance
and stability analysis method are verified by experiments in Section 5. Section 6 concludes
this paper.

2. System Description and Impedance Modeling of TFSCI and TFGI
2.1. Impedance Modeling of TFSCI

The block diagram of TFSCI connected to the parallel compensation grid is shown
in Figure 1. In Figure 1, Lfa, Lfb, Lfc, and Lfn represent the filter inductors; Rfa, Rfb, Rfc, and
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Rfn represent corresponding parasitic resistances. C1 and C2 are the DC-side capacitors,
where C1 = C2 = Cdc. In Figure 1, the SRF-PLL is the synchronous reference frame phase-
locked loop to achieve the synchronous angle of the grid. Based on the achieved angle, the
currents and voltage in the dq0-domain can be obtained by the Park transformation. The
PI controllers PId, PIq, and PI0 are used to control the d-axis, q-axis, and 0-axis currents,
respectively. The PI controller PIDC is used to balance the DC voltage of C1 and C2.
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Figure 1. Block diagram of TFSCI. 
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The voltages in each leg of the TFSCI, measured from the negative point of the DC-link
N, can be obtained as,  uaN

ubN
ucN

 =

 Sa
Sb
Sc

udc (1)

where Sa, Sb, and Sc are the signals used to control the switching states.
According to (1), the phase voltage can be expressed as, uan

ubn
ucn

 =

 uaN − unN
ubN − unN
ucN − unN

−
 udc2

udc2
udc2

 =

 da
db
dc

udc −

 udc2
udc2
udc2

 (2)

where da, db, dc are the duty ratios of phase a, phase b, and phase c, respectively.
From Figure 1, under the assumption that L f a = L f b = L f c = L f , R f a = R f b = R f c = R f ,

L f n = Ln, R f n = Rn, through Kirchhoff’s voltage law, the voltages in the three-phase
domain can be written as,
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 uan
ubn
ucn

 =

 L f a 0 0
0 L f b 0
0 0 L f c

 pia
pib
pic

+

 R f a 0 0
0 R f b 0
0 0 R f c

 ia
ib
ic

+ L f n

 pin
pin
pin

+ R f n

 in
in
in

+

 uag
ubg
ucg

 (3)

where p represents the differential operator d/dt.
Through Kirchhoff’s current law, the zero-sequence current can be written as,

i0 =
C f

3
d(uc2 − uc1)

dt
(4)

Practically, the circuit model is usually converted to the dq0 coordinate system to
achieve decoupling control of active and reactive currents. The synchronous reference frame
phase-locked loop (SRF-PLL) is extensively used to obtain the coordinate transformation
angle θ between the three-phase frames and the dq0 frames. The block diagram of SRF-PLL
is shown in Figure 2.
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Then, with joints (2) and (3), through the Park transformation, the mathematical model
in the system dq0 frame can be obtained as,


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In Equation (5), p is the differential operator d/dt.
From Figure 3, assuming ∆ds

d = ∆ds
q = ∆ds

0, the transfer function matrix from pertur-
bation voltage to current response in the system frame can be expressed as,

ZSCout =

 sL f + R f ωL f 0

−ωL f sL f + R f 0

0 0 s(L f + 3Ln) + R f + 3Rn − 3
2sC

 (6)

The ‘s’ represents the Laplace operator in Equation (6). The detailed derivation process
can be seen in Appendix A.

The small-signal model from (5) can be derived. Figure 4 shows its equivalent circuit
in which X is the steady-state value of X, and ∆x represents the small-signal perturbation.
Note that the small-signal model is established on the quiescent operation point.

Similarly, in Figure 3, assuming ∆us
d = ∆us

q = ∆us
q = 0, the transfer function matrix

from duty ratio perturbance to the corresponding current response can be expressed as,

HSCid =



−(sL f +R f )Udc

(sL f +R f )
2+(ωL f )

2
ωL f Udc

(sL f +R f )
2+(ωL f )

2 0

− ωL f Udc

(sL f +R f )
2+(ωL f )

2
−(sL f +R f )Udc

(sL f +R f )
2+(ωL f )

2 0

0 0 −Udc
s(3Ln+L f )+3Rn+R f− 3

2sC

 (7)
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 
 (8)

Figure 4. Relationship between controller frame and system frame.

Because of the dynamic performance of SRF-PLL, harmonic voltages will bring about
corresponding phase perturbation, leading to an angular difference ∆θ between the con-
troller dq0dq0 frame and system dq0dq0 frame in the d-axis and q-axis except 0-axis. In this
paper, the variable in the controller dq0dq0 frame is defined as Xc with superscript c while
Xs with superscript s is in the system dq0 frame. The relationship between the controller
and system dq0 frames can be seen in Figure 4.

From Figure 2, ∆θ can be obtained as,

∆θ = ∆uc
q

(
kpp +

kip

s

)
1
s

(8)

The conversion of the variables in the system dq0-domain to the controller dq0-domain
can be obtained as,

→
X

c
=

 cos(∆θ) − sin(∆θ) 0

sin(∆θ) cos(∆θ) 0

0 0 1

→Xs
(9)
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Introducing the perturbation, the relationships between
→
U

c
and

→
U

s
, and

→
I

c
and

→
I

s
in

the small-signal model can be expressed as: Uc
d + ∆uc

d
Uc

q + ∆uc
q

Uc
0 + ∆uc

0

 =

 cos(∆θ) − sin(∆θ) 0
sin(∆θ) cos(∆θ) 0

0 0 1

 Us
d + ∆us

d
Us

q + ∆us
q

Us
0 + ∆us

0

 (10)

 Ic
d + ∆ic

d
Ic
q + ∆ic

q
Ic
0 + ∆ic

0

 =

 cos(∆θ) − sin(∆θ) 0
sin(∆θ) cos(∆θ) 0

0 0 1

 Is
d + ∆is

d
Is
q + ∆is

q
Is
0 + ∆is

0

 (11)

The ∆θ is ignorable; then, (10) and (11) can be simplified as, ∆uc
d

∆uc
q

∆uc
0

 ≈
 ∆us

d + Us
q∆θ

∆us
q −Us

d∆θ

∆us
0

 (12)

 ∆ic
d

∆ic
q

∆ic
0

 ≈
 ∆is

d + Is
q∆θ

∆us
q − Is

d∆θ

∆is
0

 (13)

Combining (8) and (10), the relationship between ∆θ and ∆uq
s can be expressed as,

∆θ =
kpp + kpi/s

s + Us
d ∗
(
kpp + kpi/s

)∆us
q (14)

Defining

HPLL =
kpp + kip/s

s + Us
d ∗
(
kpp + kip/s

) (15)

Joining (12) to (11), the relationship between
→
∆u

s
can

→
∆i

c
be obtained as, ∆ic

d
∆ic

q
∆ic

0

 =

 0 Is
q HPLL 0

0 −Is
d HPLL 0

0 0 0

 ∗
 ∆us

d
∆us

q
∆us

0

 (16)

Defining Hi
PLL as the matrix of

→
∆u

s
to
→
∆i

c
,

Hi
PLL =

 0 HPLL Is
q 0

0 −HPLL Is
d 0

0 0 0

 (17)

Similarly, the matrix Hd
PLL of

→
∆u

s
to duty ratio perturbation can be obtained as,

Hd
PLL =

 0 −Ds
qHPLL 0

0 Ds
qHPLL 0

0 0 0

 (18)

The control block diagram, mainly including the DC voltage balance PI controller, the
PLL, and the current PI controller, makes a great contribution to the performance of the
system, which is necessary to be considered in the modeling process.
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The block diagram of the impedance model of TFSCI can be seen in Figure 5. Matrix
Hdel represents the control delay element, matrix Hdec represents the d-q decoupling term
in the current controller, and matrix Hci represents the PI regulator in the current controller.

Hdec =

 0 −ωL f 0
ωL f 0 0

0 0 0

 (19)

Hdc =

 1/Udc 0 0
0 1/Udc 0
0 0 1/Udc

 (20)

Hdel =

 e−Tdels 0 0
0 e−Tdel s 0
0 0 e−Tdel s

 (21)

Hci =

 kdip +
kdii

s 0 0

0 kqip +
kqii
s 0

0 0 k0ip +
k0ii

s

 (22)
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From (4), matrix Hui of the perturbation of current in the system dq0 frame to the
perturbation of DC voltage can be expressed as,

Hui =

 0 0 0
0 0 0
0 0 −3/2SC f

 (23)

From Figure 1, in the DC voltage balance PI controller, the expression Gcu from the
perturbation of DC voltage to the perturbation current reference can be obtained as,

Gcu =

 0 0 0
0 0 0
0 0 kdcp + kdci/s

 (24)

According to Figure 5, the admittance from ∆
→
i

s
to ∆

→
u

s
, or the admittance of TFSCI in

the dq0-domian, can be obtained as,

YSCdq0=
HSCidHdelHdc

(
Hi

PLL(Hdec−Hci)
)
+HSCidHdel

(
Hd

PLL+(HSCidHdel)
−1Z−1

out

)
I−HSCidHdelHdc(Hdec−Hci)−GcuHciHdcHuiHSCidHdel

(25)
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In the actual system, the components in the pn0-domain are easier to measure than
the components in the dq0-domian. Therefore, it is necessary to transform the impedances
in the dq0-domain to the impedances in the pn0-domain. In the case of three-phase sym-
metrical conditions, reference [26] indicates that the admittance in the dq0-domain can be
equivalently transformed into the sequence domain as,

YSCpn0= TZYdq0T−1
Z =

[
Yipn 0

0 Yi0

]
=

 Y11 Y12 0
Y21 Y22 0
0 0 Y33

 (26)

TZ =
1√
2

 1 j 0
1 −j 0
0 0

√
2

 (27)

2.2. Impedance Modeling of the TFGI

The block diagram of the TFGI connected to the parallel compensation grid is shown
in Figure 6. In Figure 1, Lf and Ln represent the filter inductor, and Rf and Rfn represent the
corresponding parasitic resistance. Referring to the derivation process in Section 2.1, the
admittance of TFGI in the dq0-domian can be expressed as [27],

YFLpn0= TZYdq0T−1
Z =

[
Yipn 0

0 Yi0

]
=

 Y11 Y12 0
Y21 Y22 0
0 0 Y33

 (28)

TZ =
1√
2

 1 j 0
1 −j 0
0 0

√
2

 (29)

YFLdq0=
HidHdelHdc

(
Hi

PLL(Hdec−Hci)
)

I−HFLidHdelHdc(Hdec−Hci)
+

HFLidHdel

(
Hd

PLL+(HFLidHdel)
−1Z−1

FLout

)
I−HFLidHdelHdc(Hdec−Hci)

(30)

where

ZFLout =

 sL f + R f ωL f 0
−ωL f sL f + R f 0

0 0 s(L f + 3Ln) + R f + 3Rn

 (31)

HFLid =


−(sL f +R f )Udc

(sL f +R f )
2+(ωL f )

2
ωL f Udc

(sL f +R f )
2+(ωL f )

2 0

− ωL f Udc

(sL f +R f )
2+(ωL f )

2
−(sL f +R f )Udc

(sL f +R f )
2+(ωL f )

2 0

0 0 −Udc
s(3Ln+L f )+3Rn+R f

 (32)

It should be noted that the main contribution of paper [27] is to establish the impedance
model of the three-phase four-leg inverter and verify the decoupling relationships between
the zero-sequence component and the positive-sequence component as well as the negative-
sequence component. Compared to paper [27], although the derivation process in this
paper for positive-sequence impedance and negative-sequence impedance is similar, the
derivation process for zero-sequence impedance is completely different due to the different
zero-sequence path and zero-sequence current control strategy.

The MATLAB/Simulink simulation is implemented for the purpose of verifying the
correctness of the established impedance model. The frequency scanning result and the
established impedance model of TFSCI and TFGI are presented in Figure A1 in Appendix B.
In Figure A1, Yij denotes the ith element in the jth column in the admittance matrix of
TFSCI YSCpn0 and the admittance matrix of TFGI YFLpn0. From Figure A1, the established
impedance model matches the measurement result well, which indicates that the estab-
lished impedance model is accurate.
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3. Comparison of Impedance Characteristics between TFSCI and TFGI

According to Equations (26) and (28), the negative-sequence impedance and positive-
sequence impedance of TFGI and TFSCI are the same, and are also similar to those of
the three-phase three-wire inverter [21–25]. To avoid a repetitive discussion of similar
content, a detailed analysis of the negative-sequence impedance and the positive-sequence
impedance will not be presented in this article. In the three-phase four-wire inverter,
the zero-sequence impedance is special compared to the three-phase three-wire inverter.
Hence, the zero-sequence impedance characteristics of TFSCI and TFGI will be analyzed in
this section.

3.1. Zero-Sequence Impedance Characteristics of TFSCI

From (24), the zero-sequence admittance can be obtained as,

Yz_TFSCI =
1

Km ∗ (k0ip + k0ii/s + 3
2sCdc

(k0vp + k0vi/s)) + s(3Ln + L f ) + 3Rn + R f
(33)

By organizing the above equation, the following equation can be obtained,

Yz_TFSCI =
1

Km ∗
(

Rz_TFSCI + sLz_TFSCI +
1

s(Cz_TFSCI)

) (34)

where
Rz_TFSCI = k0ip +

3k0vi
2Cdcs2 + 3Rn + R f

Lz_TFSCI = 3Ln + L f

Cz_TFSCI =
2Cdc

3k0vp+2Cdck0ii
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From (32), it shows that the zero-sequence admittance of TFSCI is relevant not
only to the filter parameters and zero-sequence current controller parameters, but the
DC voltage balance PI controller parameters and the DC-side capacitor as well. Ac-
cording to Equation (32), zero-sequence admittance will reach an amplitude peak when
|sLz_TFSCI| = 1/|sCz_TFSCI|, and the value of the amplitude peak is decided by Rz_TFSCI
according to Equation (32). An evident fact can be achieved that a larger Rz_TFSCI will bring
a lower amplitude peak.

Figure 7 shows bode diagrams of TFSCI when different filter parameters are applied.
As the filter inductance Lf and Ln increase, the amplitude peaks occur at lower frequencies.
Under the same filter inductance, the zero-sequence admittance gradually transitions from
inductive characteristics to capacitive characteristics as the frequency increases.
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From (32), it shows that the zero-sequence admittance of TFSCI is relevant not only 
to the filter parameters and zero-sequence current controller parameters, but the DC volt-
age balance PI controller parameters and the DC-side capacitor as well. According to 
Equation (32), zero-sequence admittance will reach an amplitude peak when |sLz_TFSCI| = 
1/|sCz_TFSCI|, and the value of the amplitude peak is decided by Rz_TFSCI according to Equa-
tion (32). An evident fact can be achieved that a larger Rz_TFSCI will bring a lower amplitude 
peak. 
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Figure 7. The zero_sequence admittance bode diagrams of TFSCI under different filter parameters. Figure 7. The zero_sequence admittance bode diagrams of TFSCI under different filter parameters.

Figure 8 shows the zero-sequence admittance bode diagrams of TFSCI under different
control bandwidths of the zero-sequence current controller. Under the same control band-
width, the zero-sequence admittance gradually transitions from inductive characteristics to
capacitive characteristics as the frequency increases. As the control bandwidth increases,
the amplitude peak occurs at higher frequencies with lower amplitude due to a larger
Rz_TFSCI and smaller Cz_TFSCI.
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Figure 9. The zero_sequence admittance bode diagrams of TFSCI under different DC_side capaci-
tors Cdc. 

Figure 8. The zero_sequence admittance bode diagrams of TFSCI under different control bandwidths
of zero-axis current controller.
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Figure 9 shows bode diagrams of the zero-sequence admittance of TFSCI when dif-
ferent DC-side capacitor Cdc values are applied. As the capacitor increases, the amplitude
peak occurs at a lower frequency with lower amplitude. The reason is that the Cz_TFSCI and
Rz_TFSCI will increase as Cdc increases. The larger Cz_TFSCI will lead the amplitude peak to
occur at a lower frequency, and the larger Rz_TFSCI brings a lower amplitude peak and a
wider transition zone from inductive characteristics to capacitive characteristics.
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Figure 9. The zero_sequence admittance bode diagrams of TFSCI under different DC_side capacitors Cdc.

Figure 10 shows bode diagrams of the zero-sequence admittance of TFSCI under
different voltage loop bandwidth used in the zero-axis DC voltage loop. It can be seen
that the zero-sequence admittance gradually transitions from inductive characteristics
to capacitive characteristics as the frequency increases. As the capacitor increases, the
amplitude peak occurs at higher frequencies with higher amplitude. This is because the
Cz_TFSCI and Rz_TFSCI will decrease as the control bandwidth increases. The smaller Cz_TFSCI
will lead the amplitude peak to occur at a higher frequency and the smaller Rz_TFSCI brings
a higher amplitude peak and a narrower transition zone from inductive characteristics to
capacitive characteristics.
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3.2. Zero-Sequence Impedance Characteristics of TFGI

From Equation (26), the zero-sequence admittance of TFGI can be expressed as,

Yz_TFGI = 1/
(

s(3Ln + L f ) + 3Rn + R f +

(
k0ip +

k0ii
s

))
(35)

Figure 11 shows zero-sequence admittance bode diagrams of TFGI under different
control bandwidths of the zero-axis current controller. Figure 11 shows that as the control
bandwidth increases, the region with resistive characteristics gradually expands, and the
admittance magnitude becomes smaller. Under the same bandwidth parameters, the
zero-sequence admittance gradually changes from resistive characteristics to capacitive
characteristics with the frequency increasing.
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Figure 11. The zero_sequence admittance bode diagrams of TFSCI under different control bandwidths
of zero_axis current controller.

Figure 12 shows the zero-sequence admittance bode diagrams of TFGI when different
filter parameters are applied. From Figure 12, the amplitude of the zero-sequence admit-
tance of TFGI decreases and the region with resistive characteristic shrinks as the AC-side
filter increases. Additionally, the zero-sequence admittance gradually transitions from
resistive characteristics to capacitive characteristics as the frequency increases.
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To analyze the system stability, the generalized Nyquist criterion is applied to the 
Nyquist plot of the eigenvalues of Yipn0*Zg, where the impedance ratio matrix can be writ-
ten as, 
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From Equation (37), since the relationship between zero-sequence impedance and 
negative-sequence impedance as well as positive impedance is decoupled, the premise for 
the system to remain stable is that the positive and negative subsystems and the zero-
sequence subsystem can remain stable at the same time. In other words, the system insta-
bility may be caused by positive- and negative-sequence components or may be brought 
about by the zero-sequence component. 

Figure 12. The zero_sequence admittance bode diagrams of TFGI under different filter parameters.
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4. Stability Analysis

Based on the impedance stability theory [25], the small-signal stability of the three-
phase four-wire grid-connected inverter system will be analyzed in this section. In order to
investigate different impedance conditions of the distribution network and microgrid, the
grid-side impedance can be intuitively equivalent to the circuit in Figure 13. In Figure 13,
the capacitor Cg represents the parallel compensation degree, and the inductor Lg represents
the strength of the grid. RCg and RLg present the parasitic resistance [10–12]. Hence, the
grid impedance matrix can be expressed as,

Zg =

 Zgp 0 0
0 Zgn 0
0 0 Zg0

 =

[
Zgpn 0

0 Zg0

]
(36)

where

Zgp = Zgn =

(
sLg + RLg

)(
sCgRCg + 1

)
RCg

(
sLg + RLg

)
+ sCgRCg + 1

(37)

Zg0 =

(
1 + sCgRCg

)(
s
(

Lg + 3Lgn
)
+ RLg + 3RLgn

)
sCg
(
s
(

La + 3Lgn
)
+ RLg + 3RLgn

)
+ 1 + sCgRCg
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Figure 13. The equivalent circuit of the grid impedance. 
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Figure 14. Characteristic root locus of Yipn·Zgpn. (a) Proportional gain of SRF-PLL kpp = 0.58. (b) Pro-
portional gain of SRF_PLL kpp = 2.85. 
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and ic change from 0.5 p.u. to 1 p.u. According to Figure 14a, there is no risk of instability 
when ia = ib = ic = 0.5 p.u. According to Figure 14b, it also can be seen that there is a risk of 
instability at 265 Hz when ia = ib = ic =1 p.u. 
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To analyze the system stability, the generalized Nyquist criterion is applied to the
Nyquist plot of the eigenvalues of Yipn0∗Zg, where the impedance ratio matrix can be
written as,

L = Yipn0 ∗ Zg =

[
YipnZgpn 0

0 Yi0Zg0

]
(38)

From Equation (37), since the relationship between zero-sequence impedance and
negative-sequence impedance as well as positive impedance is decoupled, the premise
for the system to remain stable is that the positive and negative subsystems and the
zero-sequence subsystem can remain stable at the same time. In other words, the system
instability may be caused by positive- and negative-sequence components or may be
brought about by the zero-sequence component.

Based on the above stability analysis theory, the adaptability and instability risk of
TFSCI and TFGI in two typical grids, weak grids with and without parallel compensation,
are studied in this section.

4.1. Weak Grid without Parallel Compensation

When the power grid is a weak grid without parallel compensation, the impedance of
the grid can be expressed as shown in Equation (38). According to reference [26,27], the
three-phase three-wire grid-connected inverter system has the instability risk caused by
the SRF-PLL in the weak grid. Since the SRF-PLL also exists in the TFGI and TFSCI, along
with the decoupled relationship between zero-sequence impedance and positive-sequence
impedance as well as negative-sequence impedance, the three-phase four-wire inverter
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also has the instability risk caused by SRF-PLL. To avoid a repetitive discussion of similar
content, a detailed analysis is not given in this paper. The figure below shows the root locus
of YipnZgpn when the proportional gain of SRF-PLL changes from 0.58 to 2.85. According
to Figure 14, there is a risk of instability at 265 Hz.

Zg =

 Zgp 0 0
0 Zgn 0
0 0 Zg0

 =

[
Zgpn 0

0 Zg0

]
(39)

where

Zgpn =

[
sLg + RLg 0

0 sLg + RLg

]
Zg0 = s

(
Lg + 3Lgn

)
+ RLg + 3RLgn
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Figure 14. Characteristic root locus of Yipn·Zgpn. (a) Proportional gain of SRF-PLL kpp = 0.58. (b) Pro-
portional gain of SRF_PLL kpp = 2.85. 

Figure 15 shows the root locus of the inverter current when the phase currents ia, ib, 
and ic change from 0.5 p.u. to 1 p.u. According to Figure 14a, there is no risk of instability 
when ia = ib = ic = 0.5 p.u. According to Figure 14b, it also can be seen that there is a risk of 
instability at 265 Hz when ia = ib = ic =1 p.u. 

Figure 14. Characteristic root locus of Yipn·Zgpn. (a) Proportional gain of SRF-PLL kpp = 0.58.
(b) Proportional gain of SRF_PLL kpp = 2.85.

Figure 15 shows the root locus of the inverter current when the phase currents ia, ib,
and ic change from 0.5 p.u. to 1 p.u. According to Figure 14a, there is no risk of instability
when ia = ib = ic = 0.5 p.u. According to Figure 14b, it also can be seen that there is a risk of
instability at 265 Hz when ia = ib = ic =1 p.u.
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4.2. Weak Grid with Parallel Compensation 
Under the weak grid with parallel compensation, the grid impedance can be ex-

pressed as Equation (34). 
Combined with the bode diagram of the split capacitor inverter impedance, we know 

that there is a risk of high-frequency resonance in the system under the parallel compen-
sation grid. The bode diagram of the capacitor split inverter impedance and grid imped-
ance are shown in Figure 17. It can be seen from Figure 17 that the positive-sequence and 
negative-sequence impedances of the inverter are inductive at high frequency and the 
phase difference between the impedance of the TFSCI system and the impedance of the 
grid is 178°, close to 180°, at the amplitude intersection point 930 Hz. The zero-sequence 
impedance characteristics of the inverter gradually transition from capacitive to inductive 

Figure 15. Characteristic root locus of Yipn·Zgpn. (a) Proportional gain of SRF_PLL kpp = 2.85 and
phase current ia = ib = ic = 0.5 p.u. (b) Proportional gain of SRF_PLL kpp = 2.85 and phase currents
ia = ib = ic = 1 p.u.

In addition, the TFSCI also has the instability risk brought by the zero-sequence subsys-
tem because, according to the bode diagram of the TFSCI shown in Figure 7, the impedance
characteristics of the TFSCI undergo a gradual transition from capacitive characteristics
to inductive characteristics. According to stability theory of impedance proposed in refer-
ence [25], in the frequency region where the zero-sequence impedance shows capacitive
characteristics, if the phase angle difference of impedance between TFSCI and the weak grid
at the impedance amplitude intersection is close to 180◦, it will cause system small-signal
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instability. Figure 16 shows the zero-sequence admittance bode diagrams of TFSCI and
grid when the risk of small-signal instability is caused by the zero-sequence component. In
Figure 15, YSC33 is the zero-sequence admittance of the TFSCI and Yg0 is the zero-sequence
admittances of grid.
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According to the above analyses, the difference in zero-sequence impedance will lead
to poor adaptability and a higher risk of instability of TFSCI compared with TFGI in the
weak grid.

4.2. Weak Grid with Parallel Compensation

Under the weak grid with parallel compensation, the grid impedance can be expressed
as Equation (34).

Combined with the bode diagram of the split capacitor inverter impedance, we know
that there is a risk of high-frequency resonance in the system under the parallel compensa-
tion grid. The bode diagram of the capacitor split inverter impedance and grid impedance
are shown in Figure 17. It can be seen from Figure 17 that the positive-sequence and
negative-sequence impedances of the inverter are inductive at high frequency and the
phase difference between the impedance of the TFSCI system and the impedance of the
grid is 178◦, close to 180◦, at the amplitude intersection point 930 Hz. The zero-sequence
impedance characteristics of the inverter gradually transition from capacitive to inductive
and the phase difference between the impedance of TFSCI system and the impedance of
the grid is 176◦, close to 180◦, at the amplitude intersection point 356 Hz. Figure 16 reveals
that the system has a risk of resonance at 356 Hz and 930 Hz.

Similarly, combined with the bode diagram of the TFGI impedance, there is a risk
of high-frequency resonance in the system. The bode diagram of the TFGI admittance
and grid admittance are shown in Figure 18. According to Figure 18, the zero-sequence
impedance, negative-sequence impedance, and positive-sequence impedance of TFGI are
inductive at high frequency, and the phase difference between the impedance of TFSCI
system and the impedance of grid is close to 180◦ at the amplitude intersection points
930 Hz and 460 Hz. Figure 18 reveals that the system has a risk of resonance at 930 Hz and
460 Hz.
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5. Experimental Verification

To better verify the achieved conclusions, the hardware platform based on control-
hardware-in-loop (CHIL) is established, which can be seen in Figure 19. The models of the
three-phase four-wire split capacitor grid-connected inverter system and the three-phase
four-leg grid-connected inverter system are established in Typhoon 602 +. The controllers
of TFSCI and TFGI are carried out on a TMS320F28335/Spartan6 XC6SLX16 DSP + FPGA
control board. The CHIL was used to analyze and verify the conclusion presented in [28,29].
The corresponding parameters of the system are listed in Tables A1 and A2 in Appendix C.
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Figure 19. Hardware platform of CHIL experiment.

Figure 20 shows the voltages, currents, active power, and reactive power of the TFSCI
when the SRF-PLL proportional gain (kpp) changes from 0.58 to 2.85. Figure 21 shows the
FFT analysis of phase-a current (ia) when kpp = 2.85. It can be seen from Figures 20 and 21
that there are considerable harmonic components at 174 Hz and 274 Hz in the system.
From Figure 21, it also can be found that instability of the positive–negative-sequence
sub-system occurs due to there being no zero-sequence harmonics in the system. The
instability characteristics coincide with Figure 14.
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Figure 22 shows the voltages, currents, active power, and reactive power of the TFSCI 
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Figure 20. Experiment results of the instability of positive–negative-sequence sub-system when kpp
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Figure 22 shows the voltages, currents, active power, and reactive power of the TFSCI
when the SRF-PLL proportional gain kpp = 2.85 and phase currents ia, ib, and ic change from
0.5 p.u. to 1 p.u. Figure 23 shows the FFT analysis of phase-a current (ia) when ia = ib = ic = 1 p.u.
It can be seen from Figures 22 and 23 that there are considerable harmonic components at
174 Hz and 274 Hz in the system. From Figure 22, it can also be found that instability of the
positive- and negative-sequence sub-system occurs due to there being no zero-sequence
harmonics in the system. The instability characteristics coincide with Figure 15.
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Figure 24 shows the voltages, currents, active power, and reactive power of the TFSCI 
when the proportional gain of current PI controller (k0ip) changes from 3 to 10. Figure 25 
shows the FFT analysis of phase-a current (ia) when k0ip = 10. It can be seen from Figure 24 
and Figure 25 that there is a considerable harmonic component at 327 Hz in the system. 
From Figure 24, it also can be seen that instability of zero-sequence sub-system occurs. 
The instability characteristics coincide with Figure 16. 

Figure 22. Experiment results of the instability of positive–negative-sequence sub-system when kpp

changes from 0.58 to 2.85.

Figure 24 shows the voltages, currents, active power, and reactive power of the TFSCI
when the proportional gain of current PI controller (k0ip) changes from 3 to 10. Figure 25 shows
the FFT analysis of phase-a current (ia) when k0ip = 10. It can be seen from Figures 24 and 25
that there is a considerable harmonic component at 327 Hz in the system. From Figure 24,
it also can be seen that instability of zero-sequence sub-system occurs. The instability
characteristics coincide with Figure 16.
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Figure 26. Experiment results of the instability of TFSCI when Cg changes from 0 to 40 μF. 
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Figure 26 shows the voltages, currents, active power, and reactive power of the TFSCI
connected to the parallel compensation grid when capacitor Cg changes from 0 to 40µF. Figure 27
shows the FFT analysis of ia when Cg = 40 µF. It can be seen from Figures 26 and 27 that
there are considerable harmonic components at 365 Hz and 930 Hz in the system. From
Figure 26, it also can be found that the resonance at 431 Hz is caused by the zero-sequence
components and the resonance at 930 Hz is caused by the negative-sequence component and
the positive-sequence component. The instability characteristics coincide with Figure 17.
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Figure 27. FFT analysis of ia of TFSCI when Cg = 40 µF.

Figure 28 shows the voltages, currents, active power, and reactive power of the TFGI
connected to parallel compensation grid when capacitor Cg changes from 0 to 40 µF.
Figure 29 shows the FFT analysis of phase-a current (ia) when Cg = 40 µF. It can be seen
from Figures 28 and 29 that there are considerable harmonic components at 460 Hz and
930 Hz in the system. From Figure 28, it also can be seen that the resonance at 431 Hz is
generated by the zero-sequence component and the resonance at 930 Hz is brought about
by the positive-sequence and negative-sequence components. The instability characteristics
coincide with Figure 18.
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6. Conclusions

The impedances of TFSCI and TFGI with consideration of the zero-sequence compo-
nent were studied in this paper. The specific conclusions achieved here are as follows.

(1) The impedance models of TFSCI and TFGI, commonly used in three-phase four-wire
systems, including positive-sequence impedance, negative-sequence impedance, and
zero-sequence impedance were established.

(2) The similarity and difference of TFSCI impedance and TFGI impedance were re-
vealed. The similarity lies in the similarity of the positive-sequence impedance and
negative-sequence impedance. The difference is that the zero-sequence impedances
are different, and these differences are mainly caused by the different zero-sequence
current paths. The zero-sequence impedance of TFSCI has both capacitive and induc-
tive characteristics, while the zero-sequence impedance of TFGI is mainly resistive
and inductive.

(3) The stability analysis was carried out through the impedance model, and the instability
risk of the power grid under the weak grid and the parallel compensation grid were
revealed. The difference in zero-sequence impedance leads to poor adaptability and
higher instability risk of TFSCI compared with TFGI in the weak grid.
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In addition, based on the established impedance of TFSCI and TFGI, the instability risk
of the system can be analyzed through the impedance stability theory, and the phase margin
can be improved when designing the system parameters to avoid system instability. When
a small signal instability occurs in the system, the inverter impedance can be reshaped by
changing the system parameters or the control strategy to restore the stability of the system.
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Appendix A

According to Figure 3, the equation of the small-signal circuit model of TFSCI can be
achieved as follows: ∆us
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In this paper, the DC voltage of the inverter is assumed to be constant to simplify the
modeling process. ∆udc = 0.

Then, ∆us
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According to the Laplace transformation, the following equation can be achieved: ∆us
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Assuming ∆ds
d = ∆ds

q = ∆ds
0, the relationship between the small-signal perturbation

voltage and the corresponding current in the system frame can be expressed as: ∆us
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Combining Equation (4), the transfer function matrix from perturbation voltage to
current response in the system frame can be expressed as follows.

ZSCout =

 sL f + R f ωL f 0
−ωL f sL f + R f 0

0 0 s(L f + 3Ln) + R f + 3Rn − 3
2sC

 (A5)

Appendix B

Figure A1 shows the bode diagrams of the analytical admittance and frequency scan-
ning admittance of the TFSCI and TFGI, in which Yij denotes the ith element in the jth
column in the admittance matrix of TFSCI YSCpn0 and the admittance matrix of TFGI YFLpn0.
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Appendix B 
Figure A1 shows the bode diagrams of the analytical admittance and frequency scan-

ning admittance of the TFSCI and TFGI, in which Yij denotes the ith element in the jth col-
umn in the admittance matrix of TFSCI SCpn 0Y  and the admittance matrix of TFGI FLpn 0Y . 
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Figure A1. Bode diagram comparation of the output admittance of the inverter (red curve denotes 
the established model result and blue asterisk denotes the frequency scanning measurement result). 
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Appendix C

Table A1. Three-phase four-wire split capacitor inverter parameters.

Symbol Parameter Value

Us Rated voltage 380 V
Pn Rated power 30 kW
f1 Fundamental frequency 50 Hz
fs Switching frequency 5 kHz
Lf Filter inductance 3 mH

RLf Parasitic resistance of filter inductance 0.02 Ω
kpp SRF-PLL proportional gain 0.58
kpi SRF-PLL integral gain 0.25
kdip d-axis current controller proportional gain 1
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Table A1. Cont.

Symbol Parameter Value

kdii d-axis current controller integral gain 18
kqip q-axis current controller proportional gain 1
kqii q-axis current controller integral gain 18
k0ip 0-axis current controller proportional gain 3
k0ii 0-axis current controller integral gain 54
kdcp Proportional parameter of DC voltage balance PI controller 2.1
kdci Integral parameter of DC voltage balance PI controller 4.2

Table A2. Three-phase four-leg inverter parameters.

Symbol Parameter Value

Us Rated voltage 380 V
Pn Rated power 30 kW
f1 Fundamental frequency 50 Hz
fs Switching frequency 5 kHz
Lf Filter inductance 3 mH

RLf Parasitic resistance of filter inductance 0.02 Ω
kpp SRF-PLL proportional gain 0.58
kpi SRF-PLL integral gain 0.25
kdip d-axis current controller proportional gain 1
kdii d-axis current controller integral gain 18
kqip q-axis current controller proportional gain 1
kqii q-axis current controller integral gain 18
k0ip 0-axis current controller proportional gain 3
k0ii 0-axis current controller integral gain 54

Table A3. List of some special symbols.

Symbol Parameter

p Differential operator
s Laplace operator

Xc Variable in the controller dq0 frame
Xs Variable in the system dq0 frame
d Duty ratio
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