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Abstract: With the continuous advancement of remote sensing technology, the information encap-
sulated within hyperspectral images has become increasingly enriched. The effective and com-
prehensive utilization of spatial and spectral information to achieve the accurate classification of
hyperspectral images presents a significant challenge in the domain of hyperspectral image processing.
To address this, this paper introduces a novel approach to hyperspectral image classification based
on geodesic spatial–spectral collaborative representation. It introduces geodesic distance to extract
spectral neighboring information from hyperspectral images and concurrently employs Euclidean
distance to extract spatial neighboring information. By integrating collaborative representation with
spatial–spectral information, the model is constructed. The collaborative representation coefficients
are obtained by solving the model to reconstruct the testing samples, leading to the classification
results derived from the minimum reconstruction residuals. Finally, with comparative experiments
conducted on three classical hyperspectral image datasets, the effectiveness of the proposed method
is substantiated. On the Indian Pines dataset, the proposed algorithm achieved overall accuracy (OA)
of 91.33%, average accuracy (AA) of 93.81%, and kappa coefficient (Kappa) of 90.13%. In the case of
the Salinas dataset, OA was 95.62%; AA was 97.30%; and Kappa was 93.84%. Lastly, on the PaviaU
dataset, OA stood at 95.77%; AA was 94.13%; and Kappa was 94.38%.

Keywords: collaborative representation; geodesic distance; hyperspectral image classification; minimum
residual

1. Introduction

Remote sensing technology, first proposed by American scientist Pruitt in the 1960s, is
a kind of comprehensive technology that enables the remote detection of target objects [1].
The principle of remote sensing technology involves collecting electromagnetic-wave sig-
nals reflected by targeted objects using imaging spectrometers. By analyzing and processing
these signals, the features of various objects are extracted, providing a data foundation
for subsequent applications. Remote sensing data are widely applied in various fields,
including agriculture, geological exploration, and oceanography. The recent advancements
in intelligent data processing have provided new avenues for enhancing the efficient uti-
lization of data [2–4]. With the rapid advancements in various disciplines, remote sensing
technology has also made significant progress. Imaging technologies have transitioned from
single-band imaging to multi-band imaging, and the acquisition of electromagnetic-wave
signals has expanded to cover a wider range. Consequently, the amount of information
obtained has increased significantly. Remote sensing technology has evolved from panchro-
matic remote sensing to color remote sensing, multispectral remote sensing, and now
hyperspectral remote sensing, which captures data in hundreds of spectral bands based on
the sensor’s capability.
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Hyperspectral remote sensing technology involves the use of imaging spectrometers
to capture hyperspectral images, which consist of tens to hundreds of spectral bands. These
images are then analyzed and processed to extract detailed information about various
features. A hyperspectral image is a three-dimensional image [5] comprising a spectral
dimension and two spatial dimensions. The spectral dimension encompasses a range
of spectral bands from ultraviolet to shortwave infrared, with hundreds of bands [6].
Hyperspectral image data can be acquired with four main methods: vehicle-based acqui-
sition, drone-based acquisition, plane-based acquisition, and satellite-based acquisition.
Vehicle-based acquisition involves placing the hyperspectral image sensor on a vehicle
to collect data, with advancements in telematics enabling the vehicle itself to perform
data collection and processing [7–9]. Each pixel in a hyperspectral image corresponds to
a spectral curve, and these curves differ from each other significantly due to the distinct
performance characteristics of different features with respect to electromagnetic waves
in various bands. By combining rich spectral and spatial information, hyperspectral im-
agery provides enhanced capabilities for characterizing and utilizing information about
the Earth’s surface [10].

To expand the field of view for hyperspectral data collection, UAV (Unmanned Aerial
Vehicle) acquisition can be employed [11,12], wherein the hyperspectral image sensor is
mounted on a UAV. The mobility and flexibility of UAVs enable them to offer various
services to users on the ground [13–15]. Wireless mobile edge computing [16] has provided
new possibilities for powering UAVs and extending their range, allowing for a more
continuous data collection process. In addition to UAVs, planes can also be employed
for the collection of hyperspectral images. Planes offer the advantages of covering larger
geographical areas and often operating at higher altitudes for data acquisition. In contrast,
planes are typically utilized for hyperspectral image acquisition at larger scales, while
UAVs are better suited for obtaining such images in smaller-scale regions. Plane-based data
collection represents an intermediate approach between UAVs and satellites, filling a range
in hyperspectral image acquisition that lies between the capabilities of drones and those
of satellites. Satellite-based acquisition involves using hyperspectral image sensors on
satellites to capture hyperspectral image data of the ground. This method offers the widest
field of view and is the dominant approach in hyperspectral remote sensing. Hyperspectral
images possess the ability to acquire extensive attribute features during the imaging process,
resulting in rich spatial information. Moreover, these images are composed based on
information from different reflectance bands, providing abundant spectral information.
These characteristics enable the fine classification of ground objects [17].

The efficient classification of hyperspectral images obtained from hyperspectral image
sensors plays a crucial role in effectively utilizing a vast number of data. Hyperspectral
image classification is a significant research area within the field of hyperspectral image
processing. It involves the classification of each relatively homogeneous image element
based on a specific criterion using a classifier or classification algorithm. Thanks to the
efforts of numerous researchers, the technology for hyperspectral image classification has
witnessed rapid advancement.

1.1. Motivation

Numerous hyperspectral image classification techniques have been proposed by schol-
ars in the field. While sparse representation relies on a competition mechanism, collabora-
tive representation, characterized by a cooperative mechanism, has shown great potential
for improving classification performance [18]. In recent years, several collaborative repre-
sentation classification algorithms have been developed [19,20], demonstrating promising
classification results. The collaborative classification algorithm for hyperspectral images
directly selects various training samples and constructs a dictionary model for collaborative
representation classification. However, the high correlation among spectral atoms in the
dictionary model can impact the efficiency of collaborative classification. Furthermore,
it is often difficult to capture the complex structure information present in hyperspectral
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image data during the classification learning process. To address the issue of insufficient
similarity judgment caused by using Euclidean distance weighting, this paper proposes
a hyperspectral image classification method based on geodesic distance spatial–spectral
collaborative representation. The method incorporates geodesic distance weighting to
enhance classification accuracy, considering the specific classification characteristics of
hyperspectral images.

1.2. Contributions

This paper proposes a geodesic spatial–spectral cooperative representation classifica-
tion algorithm. The algorithm utilizes the cooperative representation classification model
and replaces the traditional Euclidean distance calculation method with geodesic distance
for selecting spectral nearest-neighbor information, thereby fully utilizing the nearest-
neighbor information of hyperspectral images. By integrating spatial information and spec-
tral information based on geodesic distance and effectively leveraging the spatial–spectral
information of hyperspectral images, the regularization term of the traditional collaborative
representation model is enhanced with spatial proximity and geodesic-constrained spectral
information. This results in the generation of a spatial–spectral collaborative representation
coefficient matrix that reveals and utilizes the spatial–spectral neighborhood structure
characteristics of hyperspectral data. Consequently, deep features of hyperspectral data are
effectively extracted. The experimental results demonstrate that the proposed algorithm
surpasses other algorithms in terms of ground-object classification performance. The key
contributions of this paper can be summarized as follows:

• Adoption of geodesic distance, instead of the traditional Euclidean distance, for select-
ing spectral nearest-neighbor information, which fully utilizes the nearest-neighbor
information of hyperspectral images.

• Fusion of spatial information and spectral information based on geodesic distance,
enabling the full utilization of spatial–spectral information in hyperspectral images.

• Establishment of a spatial–spectral joint representation model with the combination
of spatial and spectral information, followed by the classification of hyperspectral
images using the minimum residual method.

The rest of this paper is organized as follows: In Section 2, we review some typical
studies in big data analysis and the related work about hyperspectral image data clas-
sification in detail. Then, we describe the proposed method in Section 3. Performance
evaluations with experiments are discussed in Section 4, followed by the conclusion in
Section 5.

2. Related Works

In this section, we review the related works on data classification, sparse representation
and collaborative representation.

2.1. Data Classification

Over the past decades, numerous data classification methods have been proposed [21,22].
In order to improve the quality of the collected data, it is necessary to enhance the smart
mobility [23] of the data collection platform and make reasonable task scheduling [24].
For hyperspectral image data classification, some commonly used pixel-based classifica-
tion methods include Maximum Likelihood Classification [25], k-nearest neighbor [26],
Independent Component Analysis [27], Linear Discriminant Analysis [28], Support Vector
Machine [29], extreme learning machine [30], Artificial Neural Networks [31], sparse repre-
sentation classifier [32], and collaborative representation classifier [33]. In the process of
transmitting data to the classifier, the integration of edge computing [34] aims to reduce
data transmission latency from sensors to classifiers and improve classification efficiency.
Moreover, blockchain technology [35,36] can enhance the security and efficiency of data
transmission from sensors to classifiers. K-nearest-neighbor classification is a classical
method with a simple principle and low computational complexity. However, it is sensitive
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to noise, especially in hyperspectral images where the phenomena of same object, different
spectrum, and same spectrum, different object occur, leading to suboptimal classification
results. The Support Vector Machine classification algorithm, on the other hand, is widely
used and transforms hyperspectral data into a high-dimensional feature space to search for
the optimal separating hyperplane, maximizing the distance between different categories in
the training set. It exhibits good applicability and effectiveness in supervised classification.
Nonlinear classification problems can be solved by introducing the kernel method when the
training data are indivisible. Unlike traditional function approximation methods, extreme
learning machines can achieve infinite differentiability by setting the activation function
and the number of hidden layer nodes, while also obtaining unique optimal solutions for
classification. This method offers advantages such as a simple network structure layout,
better generalization learning performance, and fast learning speed.

2.2. Sparse Representation

Sparse representation theory [37], which was successfully applied to face classification
by John Wright [38], has garnered significant attention in hyperspectral image processing
and has been successfully utilized in hyperspectral image classification. For instance,
Tang et al. [39] introduced a sparse representation classification algorithm based on mani-
folds, leveraging the local structural information of pixels and manifold regularization to
achieve accurate representation. A manifold is a space with local Euclidean space properties
used in mathematics to describe geometric shapes. Chen et al. [40] proposed a method to
solve the constrained optimization problem and obtain sparse representation coefficients.
These coefficients are then used to reclassify test samples by employing reconstruction
and reconstruction error. The sparse representation classifier based on the l1 norm directly
converts the hyperspectral image classification problem into a convex optimization problem
by minimizing the l1 norm. The corresponding sparse coefficients are solved using a greedy
algorithm, such as orthogonal matching pursuit.

2.3. Collaborative Representation

The solution of sparse representation based on the l1 norm is an iterative process,
which is computationally intensive and often yields suboptimal solutions. In contrast,
collaborative representation is introduced when using l2 norm regularization, and it has
been demonstrated that collaborative representation with l2 norm regularization achieves
higher computational efficiency and more discriminative features. The collaborative repre-
sentation classification method is based on the collaborative representation model, which
obtains collaborative representation coefficients. The method then calculates the resid-
ual value between the test samples reconstructed using these coefficients. Based on the
principle of minimizing the reconstructed residuals, the category label of the test sam-
ples is assigned to the subscript with the smallest reconstructed residual value. Scholars
have made numerous improvements to hyperspectral image classification tasks based
on the cooperative representation method. For instance, Chen et al. [41] proposed the
multiregularization cooperative representation classification algorithm, which achieves a
balance among optimal weights by adding weight constraints to the sparsity of cooperative
representation. Li et al. [42] introduced the Tikhonov regularization [43] kernel cooperative
representation algorithm by applying Tikhonov regularization constraints to the cooper-
ative coefficients in the corresponding kernel space. By setting a constant window scale
size and averaging the nearby data information of training and test samples, Li et al. [44]
proposed the joint cooperative representation model. Building upon the joint cooperative
representation model, Xiong et al. [45] proposed the weighted joint cooperative represen-
tation algorithm by assigning different weight values to the selected nearby information
using the Gaussian kernel function. Yang et al. [46] considered the extraction of multiscale
neighborhood information, the construction of local adaptive dictionaries, and the incorpo-
ration of complementary information in the classification process, proposing multiscale
joint collaborative representation based on local adaptive dictionaries.
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Although the aforementioned improved algorithms based on collaborative representa-
tion have achieved good results in hyperspectral image classification, the embedded data
in high-dimensional data space often exhibit nonlinearity, making it challenging to separate
highly similar samples. In the field of hyperspectral image classification research, the joint
extraction technique of spectral and spatial features has garnered significant attention from
scholars, and the fusion of spectral and spatial information is crucial for hyperspectral
image processing. Therefore, selecting appropriate nearest-neighbor information and calcu-
lating weight values by combining spatial and spectral information could further enhance
the classification accuracy of hyperspectral images.

3. The Proposed Method

In this section, we propose a geodesic spatial–spectral collaborative representation
classification (GSSCRC) method for hyperspectral images. The algorithm follows a series
of steps to incorporate spatial and spectral information for improved classification perfor-
mance. Firstly, the spatial distance between the training pixel and the test pixel, and the
nearest-neighbor information of adjacent pixels are calculated. Subsequently, the geodesic
distance between the training pixel and the test pixel is computed to obtain the spectral
nearest-neighbor information. This information is then combined with spatial information
to achieve spatial–spectral fusion. Furthermore, both spatial information and spectral
information are integrated into the regularization term of the collaborative representation
model, facilitating the calculation of the geodesic collaborative representation residual for
the test sample. Finally, adhering to the principle of minimum residual, the classification
result is obtained. The overall process of the GSSCRC algorithm is depicted in Figure 1.
The proposed algorithm encompasses the extraction of spatial neighborhood information
in hyperspectral images (HSIs) based on Euclidean distance, the extraction of spectral
domain information in HSIs based on geodesic distance, and the construction of a geodesic
spatial–spectral collaborative representation model.

Figure 1. GSSCRC algorithm flowchart.
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3.1. Extracting Spatial Neighborhood Information of HSIs Based on Euclidean Distance

In hyperspectral images, spatial neighborhood information among pixels is abundant
and crucial for classification. In this section, we characterize the spatial neighborhood
information among pixels based on Euclidean distance. Let us consider a hyperspectral
image dataset named X = [X1, X2, ..., XM] ∈ Rd×n that consists of a set of training samples
belonging to M different classes. The m-th-class training sample can be represented as
Xm = [xm,1, xm,2, ..., xm,nm ] ∈ Rd×nm , which contains nm distinct pixels from the m-th class.
The training sample size is n = n1 + n2 + · · ·+ nM. Each pixel in the hyperspectral image
is associated with the spectral dimension, denoted by d. The test sample is denoted by
y ∈ Rd. Suppose that the given test sample, y, has coordinates (ay, by) and the given
training sample, xm,j, has coordinates (am,j, bm,j). The spatial information matrix, D, which
represents the spatial neighborhood information between the test sample and the training
sample, can be computed using Formula (1):

D = {dist((ay, by), (am,j, bm,j))} (1)

where dist(·) signifies Euclidean distance. The calculated Euclidean distance values are
arranged diagonally into a matrix D, and D ∈ Rn×n.

The steps involved in extracting spatial neighborhood information using Euclidean
distance in HSIs are as follows:

1. Obtain the coordinates of the test sample.
2. Obtain the coordinates of the training samples.
3. Calculate the Euclidean distance between the coordinates of the test sample and the

training samples.
4. Convert the calculated Euclidean distances into matrix form to obtain the spatial

information matrix, D.

3.2. Extracting Spectral Neighborhood Information of HSIs Based on Geodesic Distance

This section focuses on characterizing the spectral neighborhood information among
pixels based on geodesic distance. Conventional approaches employ Euclidean distance to
determine the spectral neighbors of a given sample point. However, this approximation
may lead to misjudgments when considering distances in manifold structures. To ensure
that sample points that are far apart in the original data structure are also considered distant,
geodesic distance is employed to represent the shortest spectral distance between two pixels.
This paper utilizes geodesic distance [47] to substitute the traditional Euclidean distance,
as geodesic distance is more adept at capturing local structures and geometric relationships
within data. While Euclidean distance stands as the most common distance metric, it
assumes a flat feature space. However, data within hyperspectral images frequently exhibit
intricate local structures and nonlinear relationships. Geodesic distance measures the
separation among points on a manifold, taking into account the data’s geometric properties
and nonlinear associations. By considering the distribution of data points across the
manifold, geodesic distance can provide a more accurate assessment of the distances
among data points. In comparison to Euclidean distance, geodesic distance is more adept
at representing the authentic distribution and geometric shape of the data, thus amplifying
the classification model’s capability to evaluate the similarity among data points.

Definition of geodesic distance: Geodesic distance dL(bk, bp) is defined as the shortest
path length connecting points bk and bp on the structure of manifold L, where bk, bp ∈
RD, L ⊂ RD. When the manifold structure is a plane, the geodesic distance essentially
corresponds to a straight line. In the case of a spherical manifold structure, the geodesic
distance represents a segment of the shortest arc. The geodesic distance discussed in this
paper should not be conflated with its definition in geodesy, which pertains to the shortest
path between two points along the Earth’s surface, accounting for its curvature. Instead,
in this context, geodesic distance serves as a mathematical extension, denoting the shortest
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path distance between two nodes within a graph. This distinction also contrasts with the
definition of Euclidean distance, which represents the shortest distance between two points.

The process of finding neighboring points based on geodesic distance involves the
following two fundamental steps:

1. Determine the connected sample points in the sample set by calculating the Euclidean
distance and constructing a weighted graph. Any similarity measurement model can
be utilized to determine neighborhood relationships. Typically, Euclidean distance
dE is employed to determine whether two sample points are considered neighbors.
A pair of neighboring points must satisfy that one sample point is a k-nearest neighbor
of the other sample point.

2. Utilize either the Floyd algorithm or the Dijkstra algorithm to identify the nearest
neighbors for each test sample point based on geodesic distance.

The steps involved in extracting spectral neighborhood information based on geodesic
distance in HSIs are as follows:

1. Calculate Euclidean distance dy(y, xm,j) along the spectral dimension between test
sample y and training sample xm,j. If y is a k-nearest neighbor of xm,j , then y is
considered a neighbor of xm,j. In this case, the weight of the edge is dy(y, xm,j).

2. Determine the shortest path between y and xm,j. If an edge exists between them,
consider the shortest path to be dG(y, xm,j) = dy(y, xm,j). If no edge exists, consider
the shortest path to be dG(y, xm,j) = ∞.

3. Calculate the spectral geodesic distance using Formula (2):

dG(y, xm,j) = min(dG(y, xm,j), dG(y, xm,l) + dG(xm,l , xm,j)) (2)

where l = 1, 2, ..., n.
4. Obtain spectral information matrix S = {dG(y, xm,j)}, with S ∈ Rn×n .

Finally, the spectral neighborhood information between the test samples and training
samples is characterized using spectral information matrix S.

3.3. Building a Spatial–Spectral Collaborative Representation Model Based on Geodesic Distance

The test sample can be expressed using Formula (3):

y = Xz (3)

where z represents the collaborative representation coefficients and is denoted by
z = [z1, z2, ..., zM] ∈ Rn.

The elements of z may have small values that approach zero but are not exactly
zero. Hence, the constraint on the collaborative representation vector can be expressed as
Formula (4): {

min ‖z‖2
s.t.Xz=y (4)

Considering practical scenarios, the collaborative representation of the test sample
may not be precisely equal to that of the training sample but may contain some errors,
denoted by ε. Therefore, Equation (4) can be rewritten as Equation (5):{

arg min ‖z‖2
s.t.Xz+ε=y (5)

Equation (5) can be transformed into a minimization problem that aims to reconstruct
the test sample while satisfying a certain sparsity constraint, as expressed in Equation (6):{

min‖Xz−y‖2
s.t.‖z‖2<r (6)

where r represents sparsity.
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By incorporating regularization methods into Equation (6), it can be further expressed
as Equation (7):

arg min
z
‖y− Xz‖2

2 + λ‖z‖2
2 (7)

where λ is a regularization parameter that controls collaborative representation vector z
and ‖.‖2 denotes the l2 norm.

Equation (7) reveals the collaborative representation relationship between the test
sample and the training samples. However, it fails to capture the local manifold structure
between them. Hence, an additional local constraint term, µ

∥∥y− Xz
∥∥2

2, is introduced as
expressed in Equation (8):

arg min
z
‖y− Xz‖2

2 + λ‖z‖2
2 + µ

∥∥y− Xz
∥∥2

2 (8)

where X ∈ Rd×n represents the k-nearest neighbors of the training sample with respect
to y and the values of the remaining n − k pixels are set to zero. µ > 0 denotes the
regularization parameter.

Equation (8) constructs a competitive collaborative representation model between a
test pixel and a given class of training data. To fully leverage the spectral information
of the hyperspectral image, spatial information matrix D from Section 3.1 and spectral
information matrix S from Section 3.2 are combined in the regularization constraint term
of the collaborative representation model. This leads to the construction of a geodesic
spatial–spectral collaborative representation model, expressed in Equation (9):

arg min
z
‖y− Xz‖2

2 + λ‖z‖2
2 + µ

∥∥y− Xz
∥∥2

2 + β‖diag(SD)z‖2
2 (9)

The collaborative representation coefficients, as the solution to Equation (9), can be
obtained as shown in Equation (10).

z = (XTX + λI + µXTX + βdiag(SD))
−1

(µXT
+ XT)y (10)

where I denotes the identity matrix. By solving Equation (10), the weights are obtained.
Subsequently, the test pixel is reconstructed using Equation (3), and the reconstruction
residual is calculated. The reconstruction residual using the i-th-class training sample is
represented by Equation (11):

ri(y) = ‖y− Xizi‖2 (11)

By minimizing the reconstruction residual and calculating the residual between the test
sample and the reconstructed sample, the class label label(y) of the test sample corresponds
to the index of the minimum residual, as depicted in Equation (12):

label(y) = arg min
i=1,2,...,M

ri(y) = ‖y− Xizi‖2 (12)

In summary, for each class of the test sample dataset, a geodesic spatial–spectral
collaborative representation model is constructed, and the collaborative representation co-
efficients are obtained. Then, based on these coefficients, the test samples are reconstructed
using the training samples, and the reconstruction residuals are calculated. The class label
of the test sample is determined by selecting the class label of the training sample with the
minimum reconstruction residual.

4. Experiments
4.1. Experimental Dataset

In this study, three publicly available datasets, namely, the Indian Pines dataset,
the Salinas dataset, and the PaviaU dataset, are selected to evaluate the performance of each
algorithm. The Indian Pines dataset contains a hyperspectral image acquired by Airborne
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Visible/Infrared Imaging Spectrometer (AVIRIS) on 12 June 1992. This dataset covers
an observed area located at the Indian Pines test site in northwestern Indiana. Similarly,
the Salinas dataset, also obtained using the AVIRIS sensor, captured a hyperspectral image
over the Salinas Valley region in southern California, USA, in 1992. Furthermore, the PaviaU
dataset was collected over University of Pavia in northern Italy in 2003, utilizing Reflective
Optics System Imaging Spectrometer (ROSIS). These datasets are widely recognized as
standard datasets for researching feature extraction and classification methods in the field
of hyperspectral images. They were acquired at different times and scenes, exhibiting
variations in ground feature categories, resolution, coverage areas, and frequency bands.
The utilization of these datasets enables us to assess algorithmic performance under diverse
conditions and validate the effectiveness of different algorithms.

4.1.1. Indian Pines Dataset

The Indian Pines dataset employed in this study encompasses 16 distinct land feature
classes and a total of 220 spectral bands. Typically, the number of bands is reduced to 200
by removing bands covering the region of water absorption; see, e.g., [104–108], [150–163],
220. Figure 2 illustrates the pseudo-color map of the data, along with the class diagram
representing the actual features and the corresponding category labels. Table 1 provides
detailed category information of the Indian Pines dataset.

(a) (b) (c)

Figure 2. Indian Pines dataset: (a) pseudo-color images, (b) real terrain maps, (c) category labels.

Table 1. Indian Pines dataset category information.

Index Class Name Sample Size

1 Alfalfa 46
2 Corn-notill 1428
3 Corn-mintill 830
4 Corn 237
5 Grass-pasture 483
6 Grass-trees 730
7 Grass-pasture-mowed 28
8 Hay-windrowed 478
9 Oats 20
10 Soybean-nottill 972
11 Soybean-mintill 2455
12 Soybean-clean 593
13 Wheat 205
14 Woods 1265
15 Buildings-Grass-Trees-Drives 386
16 Stone-Steel-Towers 93

4.1.2. Salinas Dataset

The Salinas dataset utilized in this research primarily encompasses land types such
as vegetables and fallow land, and a total of 16 categories. For this study, 204 bands were
employed for the experimental analysis, excluding the absorption bands. Figure 3 visually
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presents the pseudo-color map of the data, the class diagram illustrating the actual features,
and the corresponding category labels. Detailed category information of the Salinas dataset
is provided in Table 2.

(a) (b) (c)

Figure 3. Salinas dataset: (a) pseudo-color image, (b) class diagram of real features, (c) category labels.

Table 2. Salinas dataset category information.

Index Class Name Sample Size

1 Brocoli_green_weeds_1 2009
2 Brocoli_green_weeds_2 3726
3 Fallow 1976
4 Fallow_rough_plow 1394
5 Fallow_smooth 2678
6 Stubble 3959
7 Celery 3579
8 Grapes_untrained 11,271
9 Soil_vinyard_develop 6203
10 Corn_senesced_green_weeds 3278
11 Lettuce_romaine_4wk 1068
12 Lettuce_romaine_5wk 1927
13 Lettuce_romaine_6wk 916
14 Lettuce_romaine_7wk 1070
15 Vinyard_ untrained 7268
16 Vinyard_vertical_trellis 1807

4.1.3. PaviaU Dataset

The PaviaU dataset primarily consists of nine categories representing different land
features, including asphalt and grassland. Figure 4 provides a pseudo-color map of the
data, along with the class diagram depicting the actual features and their corresponding
category labels. Detailed category information of the PaviaU dataset is presented in Table 3.

Table 3. PaviaU dataset category information.

Index Class Name Sample Size

1 Asphalt 6631
2 Meadows 18,649
3 Gravel 2099
4 Trees 3064
5 Metal sheets 1345
6 Bare soil 5029
7 Bitumen 1330
8 Bricks 3682
9 Shadows 947
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(a) (b) (c)

Figure 4. PaviaU dataset: (a) pseudo-color image, (b) class diagram of real features, (c) category labels.

4.2. Experimental Results and Analysis

To validate the classification performance of the GSSCRC algorithm, several compari-
son algorithms, namely, Support Vector Machine (SVM), Sparse Representation Classifi-
cation (SRC), Kernel Sparse Representation Classification (KSRC), and Joint Cooperative
Representation Classification (JCR), are reported in this section. The evaluation criteria used
to quantitatively assess the experimental results include average classification accuracy
(AA), overall classification accuracy (OA), and kappa coefficient (Kappa).

In the experiments, the selection of the number of neighbors, denoted by k, was
set to 7. Specific parameter settings were used for each dataset, where λ = 5 × 102,
µ = 5 × 10−3, β = 1 × 102 for the Indian Pines dataset; λ = 1 × 10−2, µ = 1 × 102,
β = 1× 101 for the Salinas dataset; and λ = 5× 101, µ = 5× 101, β = 1× 101 for the
PaviaU dataset. For the Indian Pines dataset, 10% of the data were used for training,
with the remaining data serving as the test samples. Similarly, for the Salinas dataset, 5%
of the data were allocated for training, and for the PaviaU dataset, 10% of the data were
used as the training samples. The chosen partitioning strategy was selected to directly
reflect the scarcity of labeled hyperspectral data in a real scenario. For each dataset, we
dedicated a significant portion to the testing set while allocating a comparatively smaller
proportion for training. This deliberate division allows us to effectively assess and validate
the performance of the proposed method, even when operating with a restricted number
of training samples.

Once the necessary parameters were set, the GSSCRC algorithm could be compared
and analyzed against the other algorithms to assess its overall performance. The experi-
mental results are presented in the form of graphs. Table 4 and Figure 5 provide a detailed
overview of the classification results and visualization of the effects achieved by the GSS-
CRC algorithm and the other algorithms for each feature within the Indian Pines dataset,
respectively.

Based on the data presented in Table 4, it is evident that the GSSCRC algorithm
proposed in this study exhibits improved classification accuracy for most ground objects
compared with other classification methods. In comparison to the SVM, SRC, and KSRC
algorithms, which solely utilize spectral information, as well as the JCR algorithm, which
incorporates both spatial and spectral information, the GSSCRC algorithm achieved higher
OA, AA, and kappa coefficient. These results indicate that by employing geodesic-based
spectral neighbor information selection, the GSSCRC algorithm effectively extracts spectral
discrimination information. Additionally, the GSSCRC algorithm leverages the combination
of spectral and spatial information, enabling it to extract a greater amount of information.
Therefore, the GSSCRC algorithm proposed in this study demonstrates promising potential
for improving the accurate classification of ground objects.
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Table 4. Detailed classification results of GSSCRC algorithm and other algorithms for various features
in the Indian Pines dataset (%).

Category
Sample Size Classification Methods

Training Samples Test Samples SVM SRC KSRC JCR GSSCRC

1 5 41 87.96 100 100 100 100
2 143 1285 60.38 81.58 86.97 88.44 90.97
3 83 747 45.36 80.60 84.58 86.50 88.07
4 24 213 42.61 56.12 72.80 78.48 84.39
5 48 435 80.12 90.68 92.75 95.03 95.65
6 73 657 93.65 98.63 97.53 98.76 98.77
7 3 25 92.80 100 100 100 100
8 48 430 88.62 97.48 97.90 99.79 99.79
9 2 18 93.25 100 100 100 100

10 97 875 57.68 81.17 85.70 89.40 90.53
11 246 2209 74.06 82.20 86.27 86.29 86.76
12 59 534 60.85 85.16 88.70 87.18 94.94
13 21 184 93.67 99.02 99.02 99.51 99.51
14 127 1138 90.76 97.87 96.92 97.54 97.63
15 39 347 50.27 62.17 73.83 79.53 79.53
16 9 84 94.38 100 100 100 100

OA (%) 75.40 84.82 88.33 89.92 91.33
AA (%) 77.71 87.34 90.66 92.32 93.81

Kappa (%) 73.86 82.68 86.70 88.53 90.13

Figure 5 illustrates the classification results obtained using the GSSCRC algorithm
and the comparison algorithms on the Indian Pines dataset. The graph highlights that the
algorithm proposed in this study exhibits classification performance that closely resembles
the actual terrain map of the Indian Pines dataset. It is observed that the misclassification of
terrain pixels is relatively minimal, resulting in a smoother overall effect. Particularly, the al-
gorithm demonstrates superior performance in the classification of the Hay Windrowed
and Corn-notill features compared with the other algorithms.

(a) (b) (c)

(d) (e) (f)

Figure 5. Classification performance of GSSCRC algorithm and other algorithms on the Indian Pines
dataset: (a) ground truth, (b) SVM, (c) SRC, (d) KSRC, (e) JCR, (f) GSSCRC.

Moving forward, the experiment was conducted on the Salinas dataset. The detailed
classification results and the classification effects of the GSSCRC algorithm and other
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algorithms for different features on the Salinas dataset are presented in Table 5 and Figure 6,
respectively.

Table 5. Detailed classification results of various features in the Salinas dataset using GSSCRC
algorithm and other algorithms (%).

Category
Sample Size Classification Methods

Training Samples Test Samples SVM SRC KSRC JCR GSSCRC

1 101 1908 99.65 99.25 99.60 99.70 100
2 187 3539 97.69 98.87 99.97 100 100
3 99 1877 98.93 98.38 99.79 99.70 99.80
4 70 1324 99.56 99.64 100 99.71 99.92
5 144 2648 96.71 98.84 98.58 98.14 99.10
6 198 3761 99.04 99.62 99.62 99.72 99.72
7 179 3400 99.46 99.61 99.80 99.86 99.86
8 564 10,707 80.25 96.51 81.68 89.62 89.76
9 311 6173 99.45 97.34 99.84 99.98 100
10 164 3248 90.91 96.92 97.83 98.28 98.32
11 54 1012 94.75 99.53 99.91 98.60 98.65
12 97 1830 98.91 100 100 100 100
13 46 870 99.56 97.92 99.45 99.12 99.13
14 54 1016 80.56 98.59 99.34 95.70 95.70
15 364 7238 97.48 97.33 96.79 78.23 77.43
16 91 1716 96.84 99.33 99.61 99.43 99.45

OA (%) 89.34 91.19 92.21 94.45 95.62
AA (%) 93.21 95.81 96.76 97.28 97.30

Kappa(%) 88.15 90.19 91.33 93.76 93.84

(a) (b) (c)

(d) (e) (f)

Figure 6. Classification performance of GSSCRC algorithm and other algorithms on the Salinas
dataset: (a) ground truth, (b) SVM, (c) SRC, (d) KSRC, (e) JCR, (f) GSSCRC.
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Based on the data presented in Table 5, it is evident that the GSSCRC algorithm
proposed in this paper significantly improved the classification accuracy compared with
other classification methods. Furthermore, the GSSCRC algorithm exhibited slightly higher
values for OA, AA, and Kappa coefficient when compared with other algorithms. Notably,
the algorithm demonstrated correct classification of ground objects of class 1 and class 9,
indicating the beneficial effect of geodesic distance on selecting spectral nearest-neighbor
information and affirming the effectiveness of the algorithm.

Figure 6 provides a visual representation of the classification performance of the GSS-
CRC algorithm and the comparison algorithms on the Salinas dataset. Upon analyzing
the classification performance of each algorithm, it can be concluded that the algorithm
proposed in this study achieved classification results that closely resemble the real ter-
rain map of the Salinas dataset. The algorithm exhibited fewer misclassifications in the
dataset, resulting in a smoother overall effect. Particularly, in the classification of the
weeds1 and Soil land features, the performance of the GSSCRC algorithm surpassed that of
other algorithms. This observation highlights the capability of the GSSCRC algorithm of
extracting spectral information more comprehensively with the usage of geodesic distance
for selecting spectral nearest-neighbor information. By incorporating spatial information
from hyperspectral images, the algorithm effectively captures the deep characteristics of
hyperspectral image data.

To further validate the effectiveness of the GSSCRC algorithm, experiments were
conducted on the PaviaU dataset. The detailed classification results and classification
effects of the GSSCRC algorithm, along with those of other algorithms, are presented in
Table 6 and Figure 7, respectively.

From the data in Table 6, it is evident that the GSSCRC algorithm proposed in this
paper significantly improved the classification accuracy compared with other classification
methods. The OA, AA, and Kappa coefficient of the GSSCRC algorithm are slightly higher
than those of other algorithms, indicating the effectiveness of using geodesic distance in
the selection of spectral nearest-neighbor information.

Figure 7 presents the classification effect maps of the GSSCRC algorithm and the
comparison algorithms on the PaviaU dataset. By observing the classification effect map
of each algorithm, it can be concluded that in the Asphalt, Meadow, and Gravel regions,
there are fewer misclassified pixels of ground features compared with the comparison
algorithms, resulting in a smoother overall effect map. This demonstrates that the GSS-
CRC algorithm proposed in this paper can effectively reveal the intrinsic features hidden
behind a hyperspectral image by combining the geodesic-based spectral information and
spatial information.

Table 6. Detailed classification results of GSSCRC algorithm and other algorithms for various features
in the PaviaU dataset (%).

Category
Sample Size Classification Methods

Training Samples Test Samples SVM SRC KSRC JCR GSSCRC

1 663 5968 86.79 92.76 91.38 92.09 96.20
2 1864 16,785 88.78 96.65 96.75 95.93 98.44
3 210 1889 83.33 82.56 75.27 81.89 83.66
4 306 2758 97.81 96.41 96.41 96.96 96.21
5 135 1210 99.63 99.70 99.18 99.63 99.63
6 503 4526 93.39 91.91 90.97 94.65 93.82
7 133 1197 93.98 90.98 92.93 92.26 90.60
8 368 3314 85.85 88.29 91.01 92.50 91.91
9 95 852 100 99.89 100 99.89 99.89

OA (%) 89.81 93.86 93.35 94.18 95.77
AA (%) 91.99 92.98 92.14 93.73 94.13

Kappa (%) 86.77 91.88 91.21 92.33 94.38
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(a) (b) (c)

(d) (e) (f)

Figure 7. Classification effects of GSSCRC algorithm and other algorithms on PaviaU dataset:
(a) ground truth, (b) SVM, (c) SRC, (d) KSRC, (e) JCR, (f) GSSCRC.

In order to examine the impact of the GSSCRC algorithm, as well as that of the
SVM, SRC, KSRC, and JCR algorithms, on the overall classification results with varying
numbers of training samples, this study conducts experiments on three datasets to assess
the influence of different training sample sizes. For the Indian Pines dataset, the selected
training sample proportions range from 1% to 10%, with the remaining samples being used
as the test sample set. Similarly, for the Salinas dataset, the proportions range from 0.2%
to 5%, and for the PaviaU dataset, the proportions range from 1% to 10%. The effect of
different training sample sizes on the classification performance is depicted in Figure 8.
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Figure 8. Impact of different algorithms on overall classification accuracy with different training
sample sizes: (a) Indian Pines dataset, (b) Salinas dataset, (c) PaviaU dataset.
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Figure 8 illustrates the impact of different algorithms on the overall classification
accuracy with varying training sample sizes across the three datasets. From Figure 8a–c,
it is evident that as the proportion of training datasets increases, the OA values of each
algorithm also increase correspondingly.

To compare the running time of the GSSCRC algorithm with that of the SVM, SRC,
KSRC, and JCR algorithms, Table 7 presents the running time results of GSSCRC and the
comparison algorithms on different datasets. It can be observed that SVM had the shortest
running time, followed by the SRC, KSRC, and JCR algorithms. However, the GSSCRC
algorithm in this paper had the longest running time due to the additional computa-
tional resources required for spectral information nearest-neighbor selection. Furthermore,
the computation of the regularization term based on the competitive representation of
spatial and spectral information also contributes to the increased computational cost. It
is expected that the efficiency of the algorithm can be improved by combining some opti-
mization methods [48,49]. Image processing combined with machine learning [50,51] may
also bring some improvements. Despite the higher computational resource consumption,
the GSSCRC algorithm demonstrates satisfactory classification performance, surpassing
other similar algorithms in various aspects.

Table 7. Running time of GSSCRC and comparison algorithm on different datasets (s).

Method Indian Pines Dataset Salinas Dataset PaviaU Dataset

SVM 293.97 2168.53 1301.62
SRC 334.91 2865.72 1425.13
KSRC 338.34 4114.06 1476.75
JCR 348.08 4800.50 1685.32
GSSCRC 365.36 5176.28 2244.06

5. Conclusions

This paper presents the GSSCRC algorithm for hyperspectral image classification.
The algorithm incorporates the cooperative representation classification model and in-
troduces the geodesic distance calculation method to select spectral nearest-neighbor
information, thereby effectively utilizing the neighbor information in hyperspectral im-
ages. By integrating spatial information and spectral information based on geodesic
distance, the algorithm effectively harnesses the spatial–spectral characteristics inherent in
hyperspectral images. Specifically, the regularization term of the traditional collaborative
representation model is enhanced by incorporating spatial proximity information and
spectral information based on geodesic distance, resulting in the derivation of a geodesic-
constrained spatial–spectral collaborative representation coefficient matrix. This approach
facilitates the exploration and utilization of the spatial–spectral neighborhood structure of
hyperspectral data, enabling the effective extraction of deep features. Experimental results
demonstrate that the proposed algorithm outperforms the SVM, SRC, KSRC, and JCR
algorithms in ground-object classification performance. The hyperspectral image data clas-
sification method proposed in this study is specifically designed to handle the complexities
introduced by high-dimensional data in hyperspectral remote sensing in the era of big
data, where the fusion of spectral and spatial information plays a crucial role in achiev-
ing accurate and efficient classification. While the classification methods we introduced
demonstrate promising outcomes in hyperspectral image classification, it is important to
note that the proposed algorithm’s applicability beyond this context has not been explored
yet. In future research, we could try to validate the performance of the proposed algorithm
on other hyperspectral datasets and improve it.
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