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Abstract: Network security situational awareness is based on the extraction and analysis of big data,
and by understanding these data to evaluate the current network security status and predict future de-
velopment trends, provide feedback to decision-makers to make corresponding countermeasures, and
achieve security protection for the network environment. This article focuses on artificial intelligence,
summarizes the related definitions and classic models of network security situational awareness,
and provides an overview of artificial intelligence. Starting from the method of machine learning,
it specifically introduces the research status of neural-network-based network security situational
awareness and summarizes the research work in recent years. Finally, the future development trends
of network security situational awareness are summarized, and its prospects.

Keywords: artificial intelligence; machine learning; network security; neural network; situational
awareness

1. Introduction

According to the 50th Statistical Report on Internet Development in China released by
the China Internet Network Information Center (CNNIC), as of June 2022, the number of
Internet users in China has reached 1.051 billion, and the penetration rate of Internet appli-
cations has exceeded 74.4%. This development achievement has resulted in a significant
impact on the history of human society, promoted economic and social development, and
enriched people’s ways of life. At the same time, it has also brought new security risks and
challenges to network security.

In recent years, serious network security incidents have occurred frequently in China,
and security threats and risks have become increasingly prominent. On 22 June 2022,
Northwestern Polytechnical University issued a notice stating that the school’s email
management system had been attacked by network hackers, which posed significant risks
to the school’s teaching and campus life. As the cost of intrusion by network attackers
continues to decrease and attack methods become increasingly advanced, the network
security situation faced by critical information infrastructure is becoming increasingly
severe, posing a serious threat to national security. At the same time, network attacks are
becoming more complex and diversified, and traditional network defense methods are
no longer sufficient to maintain network security. Therefore, situational awareness has
become the key to future national network security. In a large-scale Internet environment,
by searching, analyzing, and displaying various security elements that affect the Internet,
we can better predict future Internet development trends. Among them, machine learning,
as a major technical component of artificial intelligence, is mainly used in network security
situational awareness systems by collecting a large number of data sets to establish training
sets and then building machine-learning models to detect malicious traffic on the Internet
in real time, thereby improving the efficiency and accuracy of the Internet.

This paper mainly summarizes and organizes the basic concepts of Internet situational
awareness, system modeling, and the current research status of machine-learning-based
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network security situational awareness, providing a reference for researchers in the field of
network security; the structure of the article is shown in Figure 1. The contributions of this
paper are as follows:

(1) Summarize the relevant concepts of network security situational awareness and
organize relatively classic network security situational awareness models.

(2) Systematically overview the content of artificial intelligence and analyze in detail the
current research status of network security situational awareness based on neural
networks; and also summarize the specific implementation and application of network
security situational awareness.

(3) Summarize the current research status of network security situational awareness and
provide prospects for future development trends.
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2. Related Concepts of Network Security Situational Awareness

The initial research on network security situational awareness can be traced back
to the research based on intrusion detection systems (IDS). Early IDS mainly focused on
detecting and defending against specific attack methods and features, but this method
was vulnerable to attackers bypassing and deceiving the system [1–3]. Therefore, people
began to study how to extract useful information from large-scale network traffic to more
comprehensively and accurately understand the security status of the network, which is
the foundation of network security situational awareness. However, with the continuous
increase in network scale and complexity, monitoring the security of a single node or host
is no longer sufficient to meet the security needs of the entire network. Therefore, the
network security situational awareness system emerged, which can monitor and analyze
the entire network in real-time and comprehensively, and analyze and predict the security
situation of the network from a global perspective, and has gradually developed into a
comprehensive security system that integrates multiple security technologies and means.

The theory of situational awareness was first proposed by the Air Force in the early
1980s. It mainly includes three stages: perception, comprehension, and prediction. Its aim
is to better understand the changes in the current combat status of the Air Force, so as to
discover, in a timely manner, future situations and make correct responses to ensure the
safety of the Air Force. Nowadays, situational awareness technology has been extended
to many fields in military operations [4], such as emergency dispatch of air traffic [5],
emergency dispatch of medical care [6], and so on.

In 1988, foreign scholar Endsley first proposed the new concept of situational aware-
ness [7], which means that, in a specific time and space domain, by extracting, analyzing,
and predicting external environmental factors, one can gain insight into future develop-
ment trends.

A new concept of group situational awareness [8] was proposed by Wellens in 1993,
and it was defined as the consistent view of members of a group on current environmental
events. In 1999, Tim Bass first brought the definition of group situational awareness into
the field of network security applications [9], and believed that multi-sensor data fusion
technology created a critical architecture to enhance the ability of the next-generation
intrusion detection system and network security situational awareness system, which
can fuse various pieces of data analysis information from multiple heterogeneous IDSs
together to accurately determine the identity and danger level of intruders. At present,
the academic community still cannot define network security situational awareness with a
unified concept, and many theories only further explain the theory concept of situational
awareness proposed by Endsley.

Chinese scholars Gong Jian [10] and others re-explained the definition of network secu-
rity situational awareness and made further clarifications on its research object, proposing
that network security situational awareness is a new way of perceiving security situations.
It is not simply organizing and stacking security factors on the network, but finding the
inherent connections between these security factors and using models supported by various
technical conditions, researching the security status of the network according to various
user requirements. It aims to obtain comprehensive and integrated security factors in the
network environment, incorporate them into data, and have a macroscopic understand-
ing [11]. It is able to make accurate predictions about the network’s security situation,
which is the best way to ensure that the network remains secure.

As can be seen from the above, network security situational awareness refers to the
comprehensive analysis of network activities by collecting and analyzing network data,
monitoring environmental changes and network content in different network systems
platforms, and thereby obtaining the current security situation of the network, as illustrated
in Figure 2. This process can help network security professionals to detect network threats
in a timely manner, improve network security prevention and response capabilities, and
ensure the stable and secure operation of network systems.
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3. The Classic Models of Network Security Situational Awareness

As one of the main research focuses of network security situational awareness, network
security situational awareness models can establish a complete situational awareness
system, which helps researchers effectively achieve tasks such as situational acquisition,
understanding, and prediction. Therefore, researchers have proposed different situational
awareness models to cope with different network situations. The following summarizes
and categorizes several commonly used classic situational awareness models, including
Endsley’s three-layer model, the Tim Bass model, JDL model, and OODA control and
loop model.

3.1. Endsley’s Three-Level Model

The Endsley model [12] was originally applied in the aviation field. As shown in
Figure 3, the system first provides corresponding information feedback based on the
characteristics of the task, and then performs situational awareness after obtaining feedback
information in the decision system. The situational awareness model consists of three layers.
The first layer is the acquisition of situation elements, which requires the system to obtain all
elements related to network security in the information and preprocess them. The extraction
of situation elements provides sufficient and accurate information preparation for the last
two layers and is a key factor that affects the processing results of the last two layers. The
second layer is situation comprehension. After the acquisition of situation elements in the
first layer, this layer continues to sort and analyze the situation elements to obtain the real
situation of the current network situation. The third layer is situation prediction, which
integrates the results of the first two layers to predict the future network security situation,
so as to help network administrators make correct judgments and decisions.
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3.2. JDL Model

Data fusion refers to the process of collecting data from multiple information sources,
connecting and cross-combining them to improve the efficiency and accuracy of data
analysis. The Joint Directors of Laboratories (JDL) model [13] was proposed by the United
States military organization, as shown in Figure 4. The JDL model consists of data sources,
data processing, database management systems, and human–computer interfaces, among
which data processing is the most important part, divided into five levels to provide a
unified framework for data processing in different fields and clearly define the process and
function of data processing.
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The first layer is data preprocessing. By preprocessing the obtained information,
bias can be corrected, and spatial and temporal alignment can be made clearer and more
convenient, thus improving the efficiency and accuracy of subsequent operations.

The second layer is data fusion. This layer performs correlation analysis on the data to
obtain more accurate target information, so as to make the situation assessment results of
the next layer more accurate and reliable.

The third layer is situation assessment. This layer analyzes and understands the
data processed by the first two layers as a whole, and then evaluates the current net-
work security situation, providing a reasonable and accurate decision-making basis for
network researchers.

The fourth layer is situation prediction. By evaluating the evaluation results obtained
from the previous layers, network researchers can predict the future network security
situation to better handle security threats.

In the fifth layer, process control is used to control the ongoing data fusion oper-
ation. In this way, the entire process of network security situational awareness can be
better predicted.

3.3. Tim Bass Model

In 1999, Tim Bass introduced the concept of situational awareness technology into
the field of network security. He believed that, to achieve the breakthrough point of
the next-generation intrusion detection system, it was necessary to use the information
fusion of multi-sensor data to achieve the real-time monitoring and early warning of
network situations.

The Tim Bass model [14] was the first to build a network situational awareness frame-
work based on multi-sensor data. It fused data from multiple network security sensors and
intrusion detection devices to achieve real-time monitoring of network security, as shown
in Figure 5.
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The Data Perception Layer, as the bottom layer of the Tim Bass model, consists of two
parts: data collection and preprocessing. These parts are mainly responsible for cleaning
and calibrating data, formatting multiple data formats, and studying their correlations. The
middle layer organizes and analyzes the data collected from the upper layer to evaluate the
network status. The upper layer is responsible for knowledge transformation, predicting
major security events that may occur in the current network system, and assessing the
current network threat level. The Query Selection and Feedback Loop Unit monitors and
evaluates the operation of the entire network system, and co-ordinates the relationships
between each layer to ensure the system can operate smoothly, achieve the conversion from
data to information to knowledge, and thereby improve the efficiency and reliability of
the network.

3.4. OODA Model

The Observe–Orient–Decision–Act (OODA) loop model [15] was proposed by John
Boyd, a U.S. Air Force Colonel, in the 1970s based on his experience as a fighter pilot and his
research on energy maneuverability. It has been widely applied from its original theoretical
foundation on air force strategy to a general strategic approach and to the field of military
theory. The OODA loop model describes the process of perceiving purpose and activity,
and divides the cycle of situational awareness into four stages—observe, orient, decide,
and act—as shown in Figure 6.

The first step is Observation, which mainly uses various sensors to collect data, com-
pleting the transition from the physical domain to the information domain. The second
stage is Orientation, which studies the data obtained in the first step and summarizes useful
key data, thus assisting researchers in making accurate assessments of the corresponding
data quickly. The third stage is Decision, in which researchers formulate plans and make
decisions based on the judgments made in the second stage. Both judgments and decisions
belong to the cognitive domain. The fourth stage is Action, which refers to researchers
taking action in the corresponding direction of the decision made in the previous stage,
completing the cycle by transitioning from the knowledge domain to the physical domain
through action.
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The OODA loop model describes the dynamic execution process of situational aware-
ness. Although it is slightly inferior to the Endsley three-layer model in terms of hierarchy
and division of labor, the looping mechanism and dynamic co-ordination of this model can
still adapt well to situational awareness in the complex cyberspace.

The above models are all typical situational awareness models. In addition, experts
have also provided different situational awareness models to meet the requirements of
different application environments and scenarios.

Shen et al. [16] used the Markov game theory to construct a security situational aware-
ness and risk assessment model that integrates intrusion information systems and intrusion
defense systems. This model can effectively collect and integrate warning information from
both systems. Jia et al. [17] constructed a network security situational awareness model
from three aspects, attack, defense, and network security environment, to enhance the
effectiveness of network security.

To enhance network security and reduce human intervention, a framework based on
the concept of situational awareness is proposed [18], which can provide automation in
several steps of the cybersecurity lifecycle and reduce human interaction. The framework
includes multiple automated steps that utilize SDN technology to discover entities in the
network in real time and assess their vulnerabilities using a Vulnerability Assessment
as a Service component. Then, based on the risk level of the entities, they are assigned
to appropriate network slices and classified more finely using a machine-learning-based
intrusion detection system (IDS) for stronger training results. Finally, real-time data is used
for intrusion detection prediction to improve network security and protection efficiency.

4. The Current Research Status of AI-Based Network Security Situational Awareness
4.1. Overview of Artificial Intelligence

Artificial intelligence (AI) is a rapidly growing field of study that focuses on developing
theories, methods, technologies, and application systems to simulate, extend, and expand
human intelligence. It involves the use of algorithms and computer programs to analyze
data, recognize patterns, and make decisions or predictions based on that data. AI has
the potential to transform many aspects of modern society, from healthcare and finance to
transportation and entertainment. It aims to develop machines that can react quickly in the
same way as human intelligence. The research achievements in this field [19–25] involve
language and image recognition, medical detection, natural language processing, etc. Not
only can AI help us better understand human intelligence, but it can also improve work
efficiency and thus enhance our quality of life.

In 1956, the concept of a new generation of artificial intelligence was first proposed at
the Dartmouth Conference [26]. Over the next decade, the field made significant progress,
achieving noteworthy results in many areas, as shown in Figure 7. However, in the 1970s,
despite deep research into the field by many developed countries, the technical challenges
faced by artificial intelligence proved difficult to overcome, resulting in slow progress. In
the 1990s, with the development of technology, artificial intelligence once again became
a hot topic. The emergence of machine learning and algorithms also helped to drive the
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development of artificial intelligence. Technology giants joined forces to conduct research
and development, making artificial intelligence a focus of widespread attention once again.
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There are two different ways in which artificial intelligence can be achieved. One is
based on traditional programming techniques, which uses facts and rules to automatically
analyze the logical relationships and draw conclusions, such as text recognition and com-
puter chess. The other method involves analyzing data using algorithms and learning from
it to make intelligent decisions and predictions, as shown in Figure 8. Unlike traditional
coding methods, “training” utilizes massive amounts of data and multiple algorithms to
extract effective solutions to complete tasks.
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As an important research method in the field of artificial intelligence, machine learning
aims to improve the performance of algorithms through empirical learning by running
relevant algorithms on a training data set [27,28]. When describing complex and chang-
ing security situations, machine-learning algorithms have outstanding adaptability, self-
organization, and infinite approximation, which can effectively improve the accuracy of
situational assessment and prediction, in order to better cope with complex and changing
systems that are variable and nonlinear.

Among them, neural networks are an important research branch in machine learning
and can efficiently handle various nonlinear and complex problems [29]. The application
of neural network technology in the field of network security has become a hot topic in
academia and will be a key direction for future research. This field has important research
significance [30,31]. This article mainly introduces several methods of neural networks in
situational awareness research, including BP neural networks, wavelet neural networks,
RBF neural networks, and LSTM neural networks.

4.2. Current State of Research on Neural-Network-Based Network Security Situational Awareness
4.2.1. BP Neural Network

The backpropagation (BP) neural network is a theoretical model proposed by research
scholars, led by Rumelhart and McClelland, in 1986. It uses the method of error back-
propagation and trains with a multi-layer feedforward neural network [32]. The forward
propagation of signals and the backward propagation of mistakes make up its primary
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methodology. That is, when calculating the output error, it follows the direction from input
to output; while adjusting the weights and thresholds follows the direction from output to
input. Its structure is shown in Figure 9. This structure has an excellent nonlinear mapping
ability and a flexible network structure. Depending on the specific situation, the number
of intermediate layers and neurons in the network can be flexibly adjusted, and different
structural designs can also affect the network’s performance.
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A network security situational assessment algorithm based on the sparrow-search-
algorithm-optimized BP neural network is suggested to address the difficulties of low
efficiency and poor convergence of standard situational assessment algorithms [33]. The
optimal weights and thresholds are determined by this algorithm using the sparrow search
algorithm, which are then allocated to the BP neural network to maximize performance.
The situational data is then fed into the training algorithm to produce the situational
assessment value, and the established network security situational indicator system is used
to analyze the dangers to the network system.

Kou G et al. proposed a network security situational element recognition method com-
bining a deep-stacked encoder with the BP algorithm [34]. This method uses unsupervised
learning algorithms to train the network layer by layer and obtains a deep-stacked encoder
by stacking. The network achieves unsupervised training by employing the encoder to
extract the features from the data collection. Simulation studies demonstrate that this
approach can successfully enhance the effectiveness and precision of situational awareness.

In addition, Tian Fu et al. [35] proposed to use an adaptive genetic algorithm to effec-
tively optimize the traditional APT attack prediction model, thereby improving prediction
accuracy. This model’s ability to accurately predict risk nodes that may be present in the
network system as well as to track the progress of APT attacks in real time and determine
the attack path through sequence attacks greatly enhances the network system’s security.

Figure 10 illustrates the CS–BP neural network model that Yin Kun et al. [36] presented
for assessing network situational awareness. This model was optimized by the D–S evi-
dence theory. They adapted the conjugate gradient method to the cuckoo search algorithm
to speed up training convergence and successfully address the issue of the local minimum
in order to enhance the model’s local search capability.

A situational assessment model based on SDN networks was proposed by Zhiqiang
Du et al. [37]. This model uses an improved algorithm to modify the weights and thresholds
of the BP neural network in order to achieve the globally optimal solution and fulfill the
objectives of situational assessment and a thorough evaluation of SDN networks.
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4.2.2. Wavelet Neural Network

The wavelet neural network (WNN) has the advantages of a simple structure [38],
fast convergence rate, strong learning ability, and high accuracy when processing the same
learning tasks, as shown in Figure 11. It can not only guarantee the optimal solution of local
details but also achieve the global optimal solution, thus improving the learning efficiency.
Based on these advantages of the WNN, people have begun to apply it to the field of
network situational awareness, constantly improving and optimizing it, and combining it
with genetic algorithms, population optimization algorithms, and other technologies to
improve the accuracy and reliability of the model.
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Using the modified cuckoo search algorithm (MCSA), Ong and colleagues suggested
an enhanced initialization method for conventional wavelet neural networks (WNN) [39].
The wavelet hidden nodes’ translation vectors are represented by a population of cuckoo
eggs in the MCSA algorithm. The cuckoo mimics its own breeding process to improve its
positions as it reproduces. The WNN produces its initial transformation vectors using the
MCSA solutions. By forecasting the benchmark chaotic time series, this method’s viability
was assessed, and it outperformed conventional WNN in terms of prediction accuracy.

Huang Cong et al. [40] proposed a new CPSO–DS dynamic wavelet neural network
algorithm that can organically combine security information data in heterogeneous systems
with the evolution trend of threats to achieve self-adjustment and control management,
thereby improving system security and reliability. While achieving the goal of situational
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awareness, it can not only supervise and manage the network more effectively, but also
provide new effective methods.

For network security situational awareness in power control systems, applying artifi-
cial intelligence algorithms based on wavelet neural networks was made [41]. By fusing
operational data collecting and integrated processing with scenario index screening and
extraction, the sample data set is trained using a wavelet neural network analysis approach.
Future state values are anticipated to assist network security employees in making evalua-
tions and judgments by using deep intelligent learning to evaluate the true worth of the
network security status.

4.2.3. RBF Neural Network

The radial basis function neural network (RBF neural network) is a type of commonly
used three-layer feedforward neural network, as shown in Figure 12. It is a model proposed
by Broomhead, Lowe, Moody, and Darken in 1988, which uses radial basis functions in neu-
ral networks. The RBF network system [42,43] has the advantages of a simple construction,
fast learning rate, excellent approximation performance, and strong generalization ability,
making it an ideal choice for complex nonlinear systems, especially for network security
situation prediction. By combining the RBF neural network with time series prediction
techniques, network security conditions can be effectively predicted, thereby improving
network security performance.
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However, in practical use, neural networks are prone to slow convergence rates,
complex network hierarchy designs, and local optimal solution problems. Therefore, many
researchers have combined the model structure of RBF neural networks with other technical
methods and improved and optimized them.

With the aid of the particle swarm optimization algorithm, Li Yuan et al. [44] enhanced
the RBF function neural network and suggested an improved particle swarm optimization–
radial basis function algorithm as the prediction model. The findings demonstrated that
the enhanced method had a quick convergence rate, high computational efficiency, quick
operation time, small error values, and good prediction performance, which are advan-
tageous for advancing network security. By combining the simulated annealing (SA)
algorithm with the hybrid hierarchical genetic algorithm (HHGA), Zhihua Chen et al. [45]
presented an RBF neural network prediction model based on SA–HHGA optimization.
The improved RBF neural network can better maintain network security and has a strong
prediction performance.

Then, we put out a fresh methodology for predicting network security conditions that
can effectively assess the network security state of small- and medium-sized businesses.
The proposed model successfully overcomes the drawback of the RBF gradient descent
method easily falling into a local extremum by combining the K-means clustering algorithm
and RBF neural network, and using the PSO algorithm to optimize learning parameters
such as base width and weight vector. This increases the prediction accuracy of network
security situations for enterprises.
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4.2.4. Long Short-Term Memory Network

Due to the problem of long-term dependencies in recurrent neural network (RNN)
models, they cannot effectively learn features in longer time series. Therefore, to solve this
problem, foreign scholars Sepp Hochreiter and Jurgen Schmidhuber designed long short-
term memory networks (LSTM) as an improvement solution [46], with the expectation of
effectively alleviating this problem.

The recurrent neural network (RNN) is composed of repeating neural network mod-
ules, each module containing only one tanh layer. It calculates the current output based on
the current input and the previous output from the last time step, as shown in Figure 13.
The long short-term memory network (LSTM) is a special type of RNN that effectively
solves the problem of long-term dependencies [47]. After improvement, the structure of
the LSTM is more flexible and efficient, as shown in Figure 14. The structure of the LSTM is
similar to RNN, but the repeating modules are more complex.
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Haofang Zhang et al. [48] combined the decision tree algorithm (DT) with long short-
term memory (LSTM) networks to construct an LSTM–DT model. The model predicts
attack probability using the LSTM network on processed data sets while using the DT
algorithm to identify attack types. This model provides better risk assessment indicators
and quantification methods for describing complex network environment problems.

By combining fractal theory with evolutionary algorithm optimization, we created a
fractal neural network (FNN) to address gradient explosion or disappearance concerns [49].
Their situational awareness and prediction model for network security used LSTM net-
works as its main structural component. The viability and effectiveness of neural network
structures for situational awareness and prediction in network security are improved by
employing the fractal differential function as the activation function, according to experi-
mental results.

Qi Wang et al. [50] proposed a novel situational awareness (SA) model by aggregating
convolutional neural networks (CNN) and long short-term memory (LSTM) recurrent
neural networks, which has some advantages in the co-data mining of spatiotemporal
measurement data. The CNN–LSTM module provided in the model simultaneously learns
spatial and temporal features from the phasor measurement unit data. The SA model is
designed with two functional branches, an emergency locator for monitoring the exact
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location of current faults, and a stability predictor for predicting the future stable perfor-
mance of the system. Test results showed the high performance (accuracy) of the model
even in situations with low data adequacy. The proposed SA model is expected to promote
quick actions by system operators after faults to prevent any unstable operating states in
the power system.

5. Implementation and Application

Network security situational awareness is at the core of modern network security
defense. This paper will introduce several key aspects of network security situational
awareness from the perspective of implementation and application, including vulnerability
scanning and management, behavior analysis and anomaly detection, and security incident
response and management. These applications and implementation methods can help
enterprises and organizations protect their network security more comprehensively and
effectively, and prevent and respond to various security threats.

5.1. Vulnerability Scanning and Management

In today’s internet environment, network attacks and security vulnerabilities have
become increasingly important concerns for enterprises and organizations. As network
attacks become more complex and frequent, enterprises and organizations need a compre-
hensive and efficient method to identify and fix network vulnerabilities in order to ensure
the security of their networks. Through vulnerability scanning, network administrators
can identify various vulnerabilities that exist in the network, categorize and record them,
and then use vulnerability management tools to track and fix these vulnerabilities. The
goal of vulnerability scanning and management is to ensure the integrity, availability, and
confidentiality of the network, and to help enterprises and organizations avoid data leaks
and other security threats [51,52].

Vulnerability control (VULCON) was created and evaluated as a successful vulner-
ability management technique based on two essential performance indicators: time to
vulnerability remediation (TVR) and total vulnerability exposure (TVE) [53]. VULCON
incorporates true vulnerability scanning reports, information about found vulnerabilities,
asset criticality, and human resource metadata. It then employs a mixed-integer multi-
objective optimization method to prioritize patching vulnerabilities in order to optimize
the aforementioned performance metrics under specified resource restrictions. VULCON
provides useful operational assistance for optimizing the vulnerability response process in
a network security operations center.

Because software vulnerabilities have always posed a danger to the reliability of
public and critical infrastructure, many studies have been dedicated to detecting and
mitigating software faults [54], the majority of which use static and dynamic analysis [55,56].
These techniques do have certain disadvantages, though, such as a lot of manual labor
and intricacy. A deep-learning-based VulANalyzeR model is proposed for automated
binary vulnerability detection, classification of common vulnerability enumeration types,
and root cause analysis to improve security, in order to address the issue where current
solutions cannot capture the complex relationships between various variables from raw
binary code [57]. To simulate programme execution, attention mechanisms are included
throughout the model for sequential and topological learning via recurrent units and graph
convolution. It also uses multitask learning to classify certain vulnerability categories,
which not only provides further explanations but also allows zero-day vulnerabilities to be
corrected more quickly.

Because patching all susceptible machines in an enterprise or organization at once
is unrealistic, patch priorities can be established first. By ranking vulnerabilities in the
planning graph, Olswang et al. proposed using network topology vulnerability scoring
(NTVS) to provide more desirable outcomes [58]. When analyzing logical attack graphs,
planners employ the planning graph as a temporary data structure. The key findings from
two real-world networks show that patching vulnerabilities with a higher NTVS priority
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reduces the number of possible attack pathways against critical assets faster. As a result,
the proposed visualization can assist specialists in determining the priority of vulnerability
patches and explaining their conclusions to upper management and operations teams.

5.2. Behavioral Analysis and Anomaly Detection

Behavioral analysis and anomaly detection can improve network security effectiveness
and accuracy by analyzing and monitoring the behavior patterns of users and devices in
the network, and identifying potential security threats and abnormal behavior [59,60]. This
method is widely used in fields such as intrusion detection and malware detection.

In the network, encrypted traffic is mainly identified for subsequent intrusion detection
and malware detection. Because many network attackers use encryption to conceal their
attacks, identifying encrypted traffic is crucial for effective intrusion detection and malware
detection. Once encrypted traffic is identified, intrusion detection systems can use intrusion
detection rules to detect attack behavior and take corresponding measures upon discovering
attacks. Malware detection systems can detect malware by examining malicious software
indicators in encrypted traffic.

In today’s complex network environment, traditional methods of capturing patterns
and keywords from payloads in data packets are no longer applicable [61,62]. More and
more research is using machine-learning and deep-learning technologies for encrypted
traffic classification [63–68]. The advantage of deep learning over traditional machine
learning is its ability to handle more complex tasks and data with higher accuracy and
adaptability. Deep learning uses neural network models to automatically extract features
and perform classification, avoiding the laborious and inaccurate manual feature extraction.
In addition, deep learning can handle large amounts of data, learn statistical regularities
in the data more effectively, and improve the generalization ability of the model. The
flowchart of deep learning is shown in the Figure 15.
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The emergence of pretrained models has brought better performance to the task of
encrypted traffic classification. The transformer, a neural network model based on attention
mechanisms, as shown in Figure 16, was initially applied in the field of natural language
processing [69], but has been successfully applied in computer networks in recent years.
Compared with traditional convolutional neural networks and recurrent neural networks,
the transformer model can use a large amount of unlabeled data to improve classification
accuracy and generalization capability, and has a better parallel computing performance
and stronger modeling ability [70,71], which can better capture the temporal relationships
and long-distance dependencies in traffic, and thus performs well in traffic classification
tasks [72–74].

Based on the pretrained transformer model, a method for encrypted traffic classifica-
tion called ET–BERT was proposed [75]. This method represents packets in vector form
and then uses the pretrained BERT model to process these vectors and extract meaningful
features; the BERT model is shown in Figure 17. Finally, these features are input into a
classifier for classification. Peng Lin et al. designed a novel multimodal deep learning
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framework called PEAN [65], which uses raw byte and length sequences as inputs and
uses self-attention mechanisms to learn deep relationships between network packets. In
addition, unsupervised pretraining is introduced to enhance PEAN’s ability to represent
network packets, and experiments conducted on a large-scale data set of real traces captured
in data centers have demonstrated the effectiveness of PEAN.
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5.3. Security Incident Response and Management

Security incident response and management is a crucial part of network security situa-
tional awareness. It refers to the quick, accurate, and effective response and management
of security incidents such as malicious attacks, exploitation of vulnerabilities, and data
leaks, once they are detected. Security incident response and management is an active
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defense method, whose purpose is to detect and respond to security incidents as quickly
as possible, in order to minimize the losses caused by security incidents and protect the
security of information systems and users [76–78].

Security incident response and management mainly consists of the following steps [79]:
The first is event monitoring and identification, which is a critical step in identifying
potential security incidents. Next is event analysis and classification, which involves the
further analysis of events to determine their sources, types, and levels of harm. Then,
there is event response and disposal, which involves taking the appropriate response and
disposal measures based on the urgency and level of harm of the event. Finally, there is
event evaluation and summary, which involves evaluating and summarizing the results of
event handling, in order to improve security incident response and management strategies.

In network security situational awareness, security incident response and management
need to work in co-ordination with other modules, such as threat intelligence collection
and analysis, vulnerability management, and anomaly detection. Only by working in
co-ordination with these modules can network security be better protected.

6. Summary and Future Directions

This article summarizes the relevant work on network security situational awareness,
with a focus on artificial intelligence. The concept and classical models of network security
situational awareness are specifically elaborated, and artificial intelligence is introduced
accordingly. Starting from machine-learning-based methods, the current research status
of neural-network-based network security situational awareness is discussed, and recent
research work is summarized.

As information technology matures, the number and complexity of network security
risks faced by networks are increasing, and the attack methods are becoming more diversi-
fied. Consequently, it is becoming increasingly difficult to deal with various risk events on
the Internet. The following analysis and outlook will be made on the development trend of
current network security situational awareness:

(1) Integration with new research fields

Traditional network situational awareness is usually designed to address relatively
traditional network threats such as network viruses, malware, and encrypted traffic. How-
ever, with the development of emerging fields, network security situational awareness will
not be limited to traditional network threats, but will be expanded to new areas such as
cloud computing and edge computing.

(2) Integration with new technological developments

When it comes to the future development of network security situational awareness,
the integration with new technologies is a promising direction to explore. For instance, the
development of artificial intelligence, big data, and blockchain technologies have brought
new solutions and ideas to network security. By integrating these technologies with network
security situational awareness, it is possible to further enhance the accuracy, real-time
nature, and intelligence level of network security, thus better protecting network security.

(3) Integration with visualization display

Visualization display is the intuitive display of the important information and analysis
results hidden in the massive data of network security situational awareness, which helps
decision makers to understand and analyze data more clearly and effectively and make
corresponding decisions. Nowadays, we have entered the era of big data, and the original
methods cannot meet the needs of information communication in large data sets. A large
amount of dynamic information can only be conveyed through more efficient processing
and expression forms. Therefore, how to construct an efficient and interactive big data
analysis and visualization method to convey large-scale real-time information data has
become a key exploration in data analysis and visualization.

Overall, the research work of situational awareness is still in its infancy, and there are
still many aspects that need to be improved and developed. However, with the continuous
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improvement of related technologies and research, more perfect mathematical models will
be constructed, more scientific evaluation methods will be adopted, and the advantages
and characteristics of situational awareness will be fully utilized to achieve more effective
protection of network security.
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