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Abstract: Smiling has often been incorrectly interpreted as “happy” in the popular facial expression
datasets (AffectNet, RAF-DB, FERPlus). Smiling is the most complex human expression, with positive,
neutral, and negative smiles. We focused on fine-grained facial expression recognition (FER) and built
a new smiling face dataset, named Facial Expression Emotions. This dataset categorizes smiles into
six classes of smiles, containing a total of 11,000 images labeled with corresponding fine-grained facial
expression classes. We propose Smile Transformer, a network architecture for FER based on the Swin
Transformer, to enhance the local perception capability of the model and improve the accuracy of fine-
grained face recognition. Moreover, a convolutional block attention module (CBAM) was designed,
to focus on important features of the face image and suppress unnecessary regional responses. For
better classification results, an image quality evaluation module was used to assign different labels to
images with different qualities. Additionally, a dynamic weight loss function was designed, to assign
different learning strategies according to the labels during training, focusing on hard yet recognizable
samples and discarding unidentifiable samples, to achieve better recognition. Overall, we focused on
(a) creating a novel dataset of smiling facial images from online annotated images, and (b) developing
a method for improved FER in smiling images. Facial Expression Emotions achieved an accuracy of
88.56% and could serve as a new benchmark dataset for future research on fine-grained FER.

Keywords: facial expression recognition (FER); image quality evaluation module; dynamic weight
loss function; Swin Transformer; convolutional block attention module (CBAM)

1. Introduction

Facial expressions play a critical role in expressing thoughts and feelings, and thus
facial expression recognition (FER) is essential in the field of computer vision. Two research
directions in facial expression recognition exist: continuous and categorical [1,2]. In con-
tinuous methods, the face image is usually given, and the facial expression is defined in
two continuous dimensions; that is, valence and arousal, which can effectively identify
subtle differences in expressions with the help of continuous values [3]. Thus, computers
can better understand and distinguish differences in facial expressions. However, the
drawback of continuous methods is that labeling is more demanding for data annotators
and more time-consuming. Therefore, the study of facial expressions based on continuous
methods is limited compared to using categorical methods. Their simple operation and
short annotation time make categorical methods popular for FER. However, most existing
FER datasets [2,4,5] are limited to analyzing only six basic emotion classes (i.e., happy, sad,
surprise, anger, fear, and disgust) or seven classes plus an extra neutral emotion, according
to Ekman’s theory [6], which is widely used in computer vision but is disadvantageous for
fine-grained FER. Most researchers have also conducted research [7–13] on human facial
expressions based on Ekman’s theory, while few have focused on exploring the richness
and diversity of human emotions.

Human facial expressions take various forms; thus, using only six or seven basic
emotion classes is insufficient to cover the current needs of fine-grained FER. Smiling, in
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particular, is the most complex expression. In a study of popular FER datasets, the vast
majority of FER datasets had a large proportion of “non-happy” expressions in the “happy”
class of facial expressions, as shown in Figure 1. This is because there are many types of
human smiles, and slight facial changes correspond to different emotions; a special case
that is worth studying is deception in expressions during public speeches. To solve this
problem, we built a new dataset (named Facial Expression Emotions) that contains six
basic smile classes (i.e., guffaw, laugh, beaming smile, qualifier smile, polite smile, and
contempt smile) based on Duchenne de Boulogne’s theory [14] of the mechanism of human
facial expressions.
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In contrast to early FER datasets, the image data of FER datasets [15–18] based on
laboratory scene collection typically lack data diversity, exaggerated expressions, and clear
positive faces. Currently, motion-blurred and highly degraded images are becoming an
indispensable part of datasets, and the effective use of these data has become an important
problem. To deal with this, we propose an image quality evaluation module and a dynamic
weight loss function to assign different labels to different quality images, focusing on
hard yet recognizable samples and discarding unidentifiable images to achieve better
classification results in Facial Expression Emotions.

The existing methods based on convolutional neural networks (CNNs) still face chal-
lenges [9,10,19–21] in fine-grained FER in-the-wild tasks. When there are different forms
of occlusion in facial expressions, such as occlusion of key parts, insufficient profile face
information, and different lighting conditions, the CNN is affected [22]. Therefore, feature
extraction and recognition methods for expression image features must be further im-
proved [23]. Based on the recent success of the Transformer model in feature extraction and
recognition tasks with expression image features, we propose the Smile Transformer net-
work to enhance the local perception of the model and improve the accuracy of fine-grained
FER, using the Swin Transformer as a backbone [24]. A convolutional block attention
module (CBAM) [25] was designed to focus on important features of the face image and
suppress unnecessary regional responses.

Our contributions are summarized as follows:

1. We have created a dataset of human smile expressions, named Facial Expression
Emotions, which contains six basic smile classes (i.e., guffaw, laugh, beaming smile,
qualifier smile, polite smile, and contempt smile). The dataset can be used for further
research on exploring the richness and diversity of human emotions.

2. We have developed an image quality evaluation module that assigns different weights
to different complex samples according to their image quality. Then it uses them in
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the dynamic weight loss function to dynamically adjust the weights using different
image qualities and avoiding emphasizing unidentifiable images, while focusing on
hard yet recognizable samples in the loss-function stage.

3. We have proposed the Smile Transformer network, to enhance the local perception of
the model and improve the accuracy of fine-grained FER, using the Swin Transformer
as a backbone. A CBAM was designed to focus on important features of the face
image and suppress unnecessary regional responses. The focus was placed on extract-
ing strong expression correlation features and effectively suppressing background
interference.

In summary, our contributions are not only a novel dataset of smiling facial images,
which have been gathered from online images and annotated images, but also a method for
improving FER in smiling images is proposed. The remainder of this paper is organized
as follows: Section 2 presents the recent work on FER datasets and method innovations.
Section 3 introduces the Facial Expression Emotions dataset. Section 4 proposes a method
that can effectively distinguish different smiles. Section 5 describes the implementation
details and the comparative and ablation experiments. Finally, Section 6 summarizes the
contributions and shortcomings of our work.

2. Related Work

In the past, face datasets such as CK+ [15] and JAFFE [16] lacked data diversity, ex-
aggerated expressions, and clear positive faces, limiting the development of the industry.
Early FERs extracted manual features including grayscale, texture, color, and geomet-
ric shape, such as the histogram of oriented gradients (HOG) [26], local binary pattern
(LBP) [27], and scale-invariant feature transform (SIFT) [28]. These have been the most
used methods, although they were influenced and less generalized due to the interference
of external factors (lighting, angle, complex background, etc.), which resulted in serious
degradation of the recognition rate [29,30].

In recent years, Li et al. [5] proposed the RAF-DB dataset based on 29,672 real maps
of seven classes of facial expressions and 12 classes of composite facial expressions. The
dataset contained five accurate landmark locations, 37 landmarks, bounding boxes, race,
age range, and gender attribute annotations. Liang et al. [31] proposed extending the
original six classes of basic expressions according to Parrott’s theory [32], into a more
refined FG-Emotions dataset of 33 classes of field facial expressions. This dataset contained
a total of 10,371 images and 1491 video clips, used to lay the foundation for further research
on fine-grained FER. Wang et al. [33] proposed a large-scale multi-scene FER dataset
(FERV39k) with approximately 38,935 video segments subdivided into four main scenarios,
which can be subdivided into 22 scenes and seven classic expressions. Chen et al. [34]
proposed a method using earlier psycholinguistic research, which selected 135 emotion
names from hundreds of English emotion phrases in a prototypicality evaluation analysis.
By compiling a sizeable 135-class FER image dataset based on 135 emotion categories,
they analyzed the related facial expressions and suggested a follow-up facial emotion
recognition framework.

To recognize the significance of facial area occlusion and construct a robust FER, Wang
et al. [19] proposed the regional attention network (RAN), which includes a feature extrac-
tion module, self-attention module, and relation attention module. The two latter stages
have the objective of learning coarse attention weights and refining them in a global context.
RAN learns the attention weights for each facial region given a set of facial regions in
an end-to-end manner, and then combines their CNN-based features into a small fixed-
length representation. This method can improve occlusion performance and pose variation.
Farzaneh et al. [20] proposed the use of the deep attentive center loss (DACL) method
to flexibly choose a subset of important features. Using the intermediate spatial feature
maps in the CNN as a context, the proposed DACL included an attention mechanism to
estimate the attention weights connected with feature importance. To selectively achieve
intraclass compactness and interclass separation for pertinent information in the embed-
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ding space, the estimated weights accommodated the sparse formulation of the center loss.
Fard et al. [21] proposed an adaptive correlation (Ad-Corre) loss to direct the network
toward producing embedded feature vectors, with a high correlation for within-class
samples and low correlation for between-class samples. The three parts of Ad-Corre are
the feature, mean, and embedding discriminators. Huang et al. [35] proposed a novel
facial expression recognition framework with grid-wise attention and a visual transformer
(FER-VT) for CNN-based models with two attention mechanisms. To capture the depen-
dencies of various regions from a facial expression image, a grid-wise attention approach
was proposed for low-level feature learning, thus regularizing the parameter updating of
convolutional filters. A visual transformer attention mechanism in a high-level semantic rep-
resentation employed a series of visual-semantic tokens to learn the overall representation.
Aouayeb et al. [36] achieved competitive results using a squeeze-and-excitation (SE) [37]
module in a Vision Transformer.

We summarize the discussed studies in Table 1. In the above innovative datasets,
smiling expressions are often incorrectly categorized as “happy”, thus ignoring the com-
plexity of smiling. The datasets in related works were based on the six basic emotions
defined by Ekman or their extensions, which cannot effectively distinguish the fine-grained
expressions of smiling faces. Although the above innovative methods can improve the
accuracy of recognition, they do not consider the problem from the perspective of image
quality and loss function. Additionally, to overcome the deficiency of the datasets, we built
the Facial Expression Emotions dataset, which contains six basic smile classes. To resolve
the shortcomings of previous methods, we proposed the Smile Transformer network, to
enhance the local perception of the model.

Table 1. Summary of related works.

Related Work Methods Contributions

CK+ [15] Active appearance models Laboratory dataset
JAFFE [16] Gabor coding Laboratory dataset
RAF-DB [5] Deep locality-preserving CNN In-the-wild dataset

FG-Emotions [31] Multi-scale action unit-based Fine-grained facial expression recognition
in-the-wild dataset

FERV 39k [33] Four stage candidate clip generation and two-stage
annotation workflow Largescale multi-scene in-the-wild dataset

135-class FER [34] Pre-trained facial expression embedding and
correlation-guided classification

Semantic-rich facial emotional expression
recognition in-the-wild dataset

HOG [26], LBP [27], SIFT [28] Manual design filter Extract features
RAN [19] Region attention networks and region generation Solves real-world pose and occlusion problem

DACL [20] Sparse center loss and attention network Improves generalization ability

Ad-Corre [21] Feature and mean discriminator,
embedding discriminator. Improves generalization ability

FER-VT [35] Low-level feature learning and high-level
feature learning

Solves real-world pose and occlusion problem
and improves generalization ability

3. Facial Expression Emotions Dataset

In this section, we introduce Facial Expression Emotions, a new fine-grained facial
expression in-the-wild dataset. The most popular categorical method in computer vision is
Ekman’s basic emotion theory, with six basic emotions (i.e., happy, sad, surprise, anger, fear,
and disgust). However, Ekman’s basic emotion theory has shortcomings for fine-grained
FER. Therefore, our approach is based on Duchenne de Boulogne’s theory of the mechanism
of human facial expressions, which uses six categories of smiles, accounting for different
distinctive features. As shown in Figure 2, we used a hierarchical structure with a root
node, secondary nodes (positive, neutral, and negative smiles) [38], and tertiary nodes
(i.e., guffaw, laugh, beaming smile, qualifier smile, polite smile, and contempt smile). The
process of building the Facial Expression Emotions dataset consisted of three phases: image
definition, image collection and preprocessing, and image annotation and inspection.



Electronics 2023, 12, 1089 5 of 14

Electronics 2023, 12, 1089 5 of 15 
 

 

fear, and disgust). However, Ekman’s basic emotion theory has shortcomings for fine-
grained FER. Therefore, our approach is based on Duchenne de Boulogne’s theory of the 
mechanism of human facial expressions, which uses six categories of smiles, accounting 
for different distinctive features. As shown in Figure 2, we used a hierarchical structure 
with a root node, secondary nodes (positive, neutral, and negative smiles) [38], and ter-
tiary nodes (i.e., guffaw, laugh, beaming smile, qualifier smile, polite smile, and contempt 
smile). The process of building the Facial Expression Emotions dataset consisted of three 
phases: image definition, image collection and preprocessing, and image annotation and 
inspection. 

 
Figure 2. Hierarchical structure adopted in Facial Expression Emotions. 

In the image definition phase, 11 experts defined a set of phrases for each category 
(smile-related keywords combined with gender- and age-related words) and obtained 
about 50 phrases in English, such as “crazy laughing girl”, “laughing boy”, “middle-aged 
man smiling contemptuously”, “grandma with a mocking smile”, and “grandpa with a 
polite smile”. We translated the keywords into nine other languages based on the number 
of speakers worldwide: Chinese, Spanish, Hindi, Arabic, Malay, French, Bengali, Russian, 
and Portuguese. Translating English into other languages does not always accurately con-
vey the intended sentiment, as different languages and cultures have their own unique 
forms of expression. Thus, translation cross-references were obtained from professionals, 
for accurate search-engine searches. 

In the image collection and preprocessing phase, image collection using four search 
engines (Google, Bing, Yahoo, Baidu) queried approximately 450 emotion-related tags; 
expressions included only human facial expressions, excluding animation, painting, and 
other non-human objects. In this phase, because the images were collected using popular 
search engines, a series of preprocessing processes were carried out considering the dif-
ferent face sizes, positions, and background noise levels, as well as the face detection, face 
alignment, and image size. The FaceNet [39] face detection framework and the Dlib [40] 
algorithm were used for detection and face alignment, respectively. The final image was 
unified as a 224 × 224 image, as shown in Figure 3. 

Figure 2. Hierarchical structure adopted in Facial Expression Emotions.

In the image definition phase, 11 experts defined a set of phrases for each category
(smile-related keywords combined with gender- and age-related words) and obtained
about 50 phrases in English, such as “crazy laughing girl”, “laughing boy”, “middle-aged
man smiling contemptuously”, “grandma with a mocking smile”, and “grandpa with a
polite smile”. We translated the keywords into nine other languages based on the number
of speakers worldwide: Chinese, Spanish, Hindi, Arabic, Malay, French, Bengali, Russian,
and Portuguese. Translating English into other languages does not always accurately
convey the intended sentiment, as different languages and cultures have their own unique
forms of expression. Thus, translation cross-references were obtained from professionals,
for accurate search-engine searches.

In the image collection and preprocessing phase, image collection using four search
engines (Google, Bing, Yahoo, Baidu) queried approximately 450 emotion-related tags;
expressions included only human facial expressions, excluding animation, painting, and
other non-human objects. In this phase, because the images were collected using popular
search engines, a series of preprocessing processes were carried out considering the different
face sizes, positions, and background noise levels, as well as the face detection, face
alignment, and image size. The FaceNet [39] face detection framework and the Dlib [40]
algorithm were used for detection and face alignment, respectively. The final image was
unified as a 224 × 224 image, as shown in Figure 3.

In the image annotation and inspection phase, crowdsourcing services such as Alibaba
and Amazon Mechanical Turk provided good options. However, the quality of annotation
from crowdsourcing services varied. We hired 11 full-time and part-time annotators from
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences to
label the database. A total of 12,400 images were given to these professional data annotators,
to label the faces in the images. Images that were categorized in the same smile class by
six experts were considered a reliable label; otherwise, the 11 experts re-voted on the
category of the image and discarded the image if its category was still difficult to determine.
This task was performed by 11 professional data annotators in a month. The associated
characteristics of the resulting 11,000 images of Facial Expression Emotions are shown
in Table 2.

Table 2. List of associated characteristics for Facial Expression Emotions.

Dataset Annotation Training Set Validation Set Test Set Total

Facial Expression Emotions 6 fine-grained class 7856 1572 1572 11,000
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Figure 4 shows the data volume distribution of the six classes of expressions; it is
obvious that our dataset suffers from a class imbalance. To improve this situation, we used
flipping, scaling, and cropping to achieve data augmentation.
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We improved the early FER model in terms of the data preprocessing, backbone net-
work, and loss function. The backbone network is based on the Swin Transformer [24] and
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was mainly composed of the patch partition, linear embedding, Swin Transformer, patch
merging, and fully connected (FC) layers. The patch partition layer segments images into
non-overlapping patches. The linear embedding layer is applied to this raw-valued feature
to project it to an arbitrary dimension. With the deepening of the network, the number of
tokens is reduced by the patch merging layer, and finally a hierarchical representation is
generated. The FC layer plays the role of mapping the learned distributed feature repre-
sentation onto the sample label space. The remainder of this section introduces the Swin
Transformer block, data preprocessing, and loss function. The overall architecture is shown
in Figure 5, and we propose a method that can effectively distinguish different smiles.
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4.1. Data Preprocessing

FER of low-quality images is a challenge, because of the blurring and degradation of
images. Image quality is affected by many factors, including noise, brightness, contrast,
sharpness, resolution, and hue. Human faces present different images under different facial
expressions, poses, and lighting; occasionally, facial expressions are captured in extreme
situations, and it is difficult to recognize them. When the facial image quality is low, the
FER task becomes infeasible. Figure 6 shows high-quality images, low-quality images, and
images with different recognition levels.

Currently, laboratory datasets, such as CK+ [15] and JAFFE [16], have been validated
as having over 95% accuracy; nevertheless, FER is primarily intended for use in real-life
situations. With the widespread use of cameras, the challenge of FER has shifted to data-
rich, low-quality image datasets, and low-quality facial expression images are increasingly
becoming an important part of facial expression datasets such as AffectNet and RAF-
DB. When low-quality images are excessively degraded, the information related to facial
expressions also disappears from the images; thus, the images cannot be recognized. These
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unrecognized images are harmful to network training, as the model cannot focus on useful
features when there are incorrectly identified features in the images (e.g., hair, occlusions, or
image color). Therefore, the model may perform poorly if low-quality images are present in
the dataset. To solve the image quality problem, we developed an image quality evaluation
module, which mainly consists of overexposed, over-dark, Gaussian-blurred, and object-
obscured smiling face images, and generates image quality labels, thus guiding the loss
function according to the labels. Based on this, a new loss function, called the dynamic
weight loss function, was designed, to assign different weights to different image qualities
and to enhance the learning of high-quality complex and low-quality simple samples, as
well as to reduce the learning of impossible identification images.
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4.2. Backbone Network

CNNs are advantageous for extracting deep features and visual aspects but have
modelling limitations because of their convolutional structure with low-level semantic
information, as shown in Figure 7. A two-layer multilayer perceptron (MLP) [41] with
Gaussian error linear unit (GELU) nonlinearity followed a shifted window-based multi-
head self-attention (MSA) [42] module in the Swin Transformer block. Each MSA module
and MLP underwent layer normalization (LN) in advance; after that, each module also
had an residual connection added. In the subsequent Transformer block, window-based
multi-head self-attention (W-MSA) and shifted-window multi-head self-attention (SW-
MSA) were used. Based on the shifted-window partitioning approach, the successive Swin
Transformer blocks can be defined as follows:

t̂l = W−MSA
(

LN
(

tl−1
))

+ tl−1 (1)

tl = MLP
(

LN
(

t̂l
))

+ t̂l (2)

T̂l+1
= SW−MSA

(
LN

(
tl
))

+ tl (3)
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tl+1 = MLP
(

LN
(

t̂l+1
))

+ t̂l+1 (4)

where t̂l represents either W −MSA or SW −MSA; LN represents the LN layer; and
tl represents MLP.
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Moreover, the Swin Transformer is an improved model based on the Transformer,
which not only models the native network, focusing on global information, but also uses a
shifted-window partitioning approach to realize the connection between different windows,
so that the model can better focus on the relevant information of other adjacent windows.
The feature interaction of different windows expands the feeling field to a certain extent,
thus resulting in a higher efficiency, and greatly reduces the computational complexity
compared to the Transformer. We used a CBAM that comprises two parts: a channel
attention module (CAM) and a spatial attention module (SAM). The combination of these
two modules allowed us to better extract global feature information of faces and strong
correlation features, suppress background interference of facial expressions in neural
network feature maps, improve the Swin Transformer focus on facial expressions, and
partially solve the local occlusion problem.

4.3. Dynamic Weight Loss Function

It is difficult to fully portray the differences in facial expressions with the standard
cross-entropy loss training network, and it is also impossible to exploit the information of
images with different qualities. Only random guesses can be made for unidentifiable im-
ages, which inevitably exist in dataset production and make the results of image annotation
unreliable. We proposed a new loss function, to guide model learning by assigning different
weights to images of different complexities according to the image quality, expressed as
follows:

y1 = −∑n
i=1α× p(xi)logq(xi), (5)

Y2 = −∑n
i=1p(xi)logq(xi), (6)

L =
CEpoch

AllEpoch
× y1 +

AllEpoch−CEpoch
AllEpoch

× y2, (7)

where AllEpoch is the total number of epochs, CEpoch is the current number of epochs,
α is the image quality weight, q(xi) is the probability of each category, and p(xi) is the
corresponding category value. There was a gradual transition from the standard cross-
entropy loss function to a loss function dominated by image quality. This design allowed



Electronics 2023, 12, 1089 10 of 14

the network to make easy identifications in the early stage, enhanced the learning of hard
images, and suppressed the learning of impossible to identify images in the later stage.

5. Results
5.1. Dataset

We used our Facial Expression Emotions dataset, which contained more than 11,000 fa-
cial images of expressions downloaded from the Internet and professionally annotated,
using six basic smile images (i.e., guffaw, laugh, beaming smile, qualifier smile, polite
smile, and contempt smile). Facial Expression Emotions contained 7856 images for training,
1572 images for validation, and 1572 images for testing.

5.2. Implementation Details

The framework of the image quality evaluation module was built on a PyTorch GPU
using NVIDIA GeForce RTX 2080Ti GPUs. The image quality evaluation module used
was ResNet-18 [43], which is a standard CNN. The input and output image sizes were
224 × 224 pixels. We used a standard stochastic gradient descent (SGD) optimizer with a
momentum of 0.9 and a weight decay of 0.0005. We augmented the input images on the fly,
by extracting random crops.

The implementation environment was the same as above; namely, images with image
quality labels were fed into the network. As the facial smile expression recognition domain
was close to the FER, we pre-trained the Smile Transformer on RAF-DB, which is a facial
expression dataset with 30,000 images. For testing, the central crop of the input image
was used. A crop of size 224 × 224 was obtained from the input images of size 256 × 256.
For all training cases, data augmentation was used to balance the data and increase data
diversity. The input image and patch sizes were set to 224 × 224 and 3 × 4, respectively. An
AdamW [44] optimizer was used for 200 epochs, with a batch size of 64, an initial learning
rate of 0.0001, and a weight decay of 0.05. At the dynamic weight loss function stage, we
focused on hard yet recognizable samples and discarded unidentifiable samples. According
to experimental tests, the hyperparameters were set to 0.3, 0.5, and 0.1, for easy, hard, and
impossible identification, respectively, to obtain optimal results.

5.3. Recognition Results

To verify the performance of the Smile Transformer, we compared our method with
the state-of-the-art open-source methods developed in the past three years on RAF-DB
and FERPlus, in terms of accuracy on the Facial Expression Emotions dataset, as shown in
Table 3. We plotted the receiver operating characteristic (ROC) curve, as shown in Figure 8

Table 3. Expression recognition performance (in terms of accuracy) of the various methods.

Model Accuracy (%)

Swin Transformer [24] 80.03%
RAN [18] 84.10%

AD-Corre [21] 84.86%
DACL [20] 85.34%

FER-VT [35] 86.36%
Smile Transformer 88.56%

On the Facial Expression Emotions wild FER, our Smile Transformer model exhibited a
very good performance, with a higher accuracy (88.56%) than FER-VT (86.36%) and DACL
(85.34%). Our ROC curve was better than the other methods. This was achieved because we
used the image quality evaluation module to label each image, which enabled the network
to learn more detailed features from different quality images. The Smile Transformer was
used to enhance the local perception capability of the model, which gave the network a
more accurate recognition ability and better recognition results. Concurrently, the standard
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Transformer models have more parameters than CNNs. However, the Smile Transformer
has a higher recognition accuracy and less parameters than FER-VT Transformer models.
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To verify the effectiveness of the image quality evaluation module, dynamic weight
loss function, and CBAM, we performed ablation experiments on the Facial Expression
Emotions dataset using the Swin Transformer as the benchmark model. The experiments
were conducted using the same training settings and images with a size of 224 × 224, as
shown in Table 4. An image quality evaluation module was added to the baseline, and the
loss function was modified to improve the recognition accuracy by 6.50%; the recognition
accuracy was improved by 2.33% using only the CBAM and by 8.53% when the image
quality evaluation module, dynamic weight loss function, and CBAM were used together.
The Smile Transformer achieved better performance because the image quality evaluation
module assigned different weights to different quality images before training, which better
guided the network. Moreover, the model training phase strengthened the attention to
global facial features and used a better loss function; thus, it effectively solved difficult
images, such as facial occlusions and profile images.

Table 4. Ablation experiment on the Facial Expression Emotions dataset (in terms of accuracy).

Image Quality Evaluation Module
and Dynamic Weight Loss Function CBAM Facial Expression

Emotions

× × 80.03%√
× 86.53%

×
√

82.36%√ √
88.56%
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Owing to the different feature map sizes at different stages of the baseline, the main
difference for CBAM being placed at different stages was the different global information
and dimensionality represented by the feature maps. To verify the accuracy with the being
CBAM placed at different locations, the final accuracy results (when the CBAM was located
at different stages) are shown in Table 5. The best accuracy was obtained at Stage 2.

Table 5. Accuracy of CBAM being placed at different stages.

Stage Accuracy (%)

Stage 1 81.01%
Stage 2 82.36%
Stage 3 81.53%
Stage 4 82.20%

6. Conclusions

To solve the complex problem of smile recognition, we introduced a new benchmark
dataset, named Facial Expression Emotions, which consists of six types of fine-grained
smile images, to promote research in the field of fine-grained FER. Our Smile Transformer
used the Swin Transformer as our baseline for facial expression recognition. The image
quality evaluation module assigned different labels to images of different quality; the
dynamic weight loss function improved the attention of the network, and CBAM focused on
important features of the face image and suppressed unnecessary regions. The experimental
results showed that the recognition accuracy on the Facial Expression Emotions dataset
reached 88.56%, which was better than that of the other methods. In the future, we will
continue our efforts to build a more comprehensive fine-grained smiling face dataset,
with more smiling face images and detailed category annotations, to further promote
fine-grained FER research.
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