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Abstract: The privacy of individuals and entire countries is currently threatened by the widespread
use of face-swapping DeepFake models, which result in a sizable number of fake videos that seem
extraordinarily genuine. Because DeepFake production tools have advanced so much and since so
many researchers and businesses are interested in testing their limits, fake media is spreading like
wildfire over the internet. Therefore, this study proposes five-layered convolutional neural networks
(CNNs) for a DeepFake detection and classification model. The CNN enhanced with ReLU is used to
extract features from these faces once the model has extracted the face region from video frames. To
guarantee model accuracy while maintaining a suitable weight, a CNN enabled with ReLU model
was used for the DeepFake-detection-influenced video. The performance evaluation of the proposed
model was tested using Face2Face, and first-order motion DeepFake datasets. Experimental results
revealed that the proposed model has an average prediction rate of 98% for DeepFake videos and
95% for Face2Face videos under actual network diffusion circumstances. When compared with
systems such as Meso4, MesoInception4, Xception, EfficientNet-B0, and VGG16 which utilizes the
convolutional neural network, the suggested model produced the best results with an accuracy rate
of 86%.

Keywords: convolutional neural networks; DeepFake facial reconstruction; deep learning; DeepFake
video detection; image alteration; generative adversarial networks; rectifying linear unit; recurrent
neural networks

1. Introduction

Worry over news that is purposefully incorrect has increased, and artificial intelli-
gence algorithms have recently made it simpler and more realistic to produce so-called
“DeepFake” videos and images. These methods could be used to fabricate statements from
well-known celebrities or videos of fabricated events, fooling large audiences in risky ways.
The DeepFake network is a hotly debated topic in the field of security measures in various
systems. Despite numerous recent developments in facial reconstruction, the hardest ob-
stacle to solving this has been how to compute face similarity or matches in a timely and
effective manner. Due to lossy compression and high data degradation, normal analysis
techniques for detecting image forgery are often inappropriate for video forensics. Hence,
due to restricted hardware and efficiency, real-time DeepFake facial reconstruction for
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security purposes is challenging to complete. Therefore, this study proposes five-layered
convolutional neural networks for DeepFake facial reconstruction and image segmentation.
The performance evaluation of the proposed model was tested using various DeepFake
datasets namely Face2Face, and first-order motion.

Artificially produced audio or visual renderings, most frequently videos, are known
as DeepFakes. These videos, which are frequently made without the subject’s consent,
can be exploited to discredit important figures or sway public opinion. An audio or video
recording might serve as uncontested evidence in a court of law. With generative adversarial
networks (GANs), studied by the authors in [1,2], an attacker can create such accurate
renderings by employing a standard desktop computer equipped with an aftermarket
graphics processing unit. Both machines and people can be duped easily by them. In
recent times, advanced DeepFake techniques used in face-based alteration have created an
opportunity to substitute one person’s face with another [3]. Thus, it appears incredible to
make not only a copy–move modification but also to involve and implement supervised
learning for automatically replacing one person’s face with another. A clear set can now be
animated and transformed into a sequence of video frames. Consequently, technology can
now make even a statue come alive [4].

DeepFake replaces the facial features actively present, using a model known as the
GAN, in actual footage with somebody else’s face. GAN models have been developed
while making use of several thousands of images, so this makes it attainable to create
realistic faces which can be extracted and cropped into the original video in a manner
that looks almost perfect. This resulting video can produce a higher authenticity via
suitable post-processing or post-production processing [5]. The authors in [5] believed that
before the advent of fake videos, videotapes were generally dependable and trustworthy,
and this was in interactive media forensics, which is commonly used as hard evidence.
The emergence of DeepFake videos, on the other hand, is eroding people’s trust. There
is growing concern that once this technology is used as proof in court, the media and
publishing, diplomatic elections, and television and infotainment, it will be misused and
have an impact on the lives of people which would be enormous. Some people even
believe that this kind of technological advancement could mar the development of society.
Therefore, identification and detection of such fake videos, either for official or non-official
purposes, is cogently important.

As these manipulations become more persuading, public figures can be placed into
an unreal scenario, consequently giving an impression that anybody could say anything
you want them to say [6]. Even if the wider populace does not assume they are real,
video evidence will become less reliable as a validation source, and this could also make
the public lose their trust in whatever they see. This increases the urgency and strain on
trusted hands in the mainstream media to help substantiate multimedia for general public
consumption [6]. Several algorithms have been developed to detect DeepFakes, especially
in videos. This study showed that while some of these methods have proven effective to
some extent, most of these algorithms have also failed when evaluated with external data
obtained from outside their study environments.

The privacy of people and nations is currently threatened by the widespread use
of face-swapping DeepFake algorithms, which result in a sizable number of fake videos
that are incredibly authentic. The ability to discern between DeepFake and actual films
has become a crucial issue as a result of their harmful effects on society. The significant
improvements in GANs and other methods of production have produced plausible false
media that may have a very negative impact on society. On the other hand, the advancement
of generation techniques is outpacing the effectiveness of the present DeepFake detection
systems, thus resulting in a need for a better DeepFake detector that can be applied to media
produced using any technique. The development of a DeepFake video/image detector can
be generalized to various creative approaches that are presented within recent challenging
datasets. Creating a system that will outperform the results produced by current state-of-
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the-art methods using various performance measures, served as the underlying reason and
motivation for this study.

In order to determine whether the target material has been edited or synthesized,
DeepFake detection solutions typically employ multimodal detection techniques. Current
detection methods frequently concentrate on creating AI-based algorithms for algorithmic
detection techniques such as a Vision Transformer [7,8], MesoNet, which was suggested by
the authors in [9], two-stream neural network [10], among others. Manual image processing,
on the other hand, receives less consideration in favor of emphasizing the key areas of
an image [11]. The model frequently becomes heavier as a result of processing all of the
videos. In this study, we combined a human processing method with a DL-based model
to enhance the DeepFake detection approach. Before being fed into a CNN-based model,
the most crucial data, regions, and features are carefully selected and processed. Focusing
on the most pertinent information helps these networks train more efficiently while also
increasing the accuracy of the model as a whole.

To address these challenges, the proposed model has been trained against a large
dataset of videos containing realistic manipulations and evaluated to ensure that the
system works efficiently and effectively, and also, this is used to easily detect and classify
a video as being a DeepFake or not. The main idea of the suggested model is to use a
few of the most widely used classification models to recognize fraudulent videos and
demonstrate how to reduce the complexity of the DeepFake detection challenge. Since
the current classification models are built for high accuracy, judicious model selection
will also improve the capacity to address the DeepFake detection issue. Therefore, this
study aims to enhance the method of DeepFake detection using five-layered convolutional
neural networks and image segmentation. The following are the main contributions of the
proposed model.

i. Design a method of DeepFake video detection using CNN with a modified ReLU
activation function to enhance the binary classification of DeepFakes on face-to-face
and first-order motion datasets.

ii. To identify videos with high compression factors on the datasets, the performance of the
optimized CNN algorithms and their modifications is experimentally demonstrated.

iii. Improving accuracy in low-resolution videos with less reliance on the number of
frames needed for each video than current techniques, and evaluating the perfor-
mance of the DeepFake detection system.

This paper is organized as follows. Section 2 gives a literature review of related works,
Section 3 gives details about the methodology of the proposed system, Section 4 discusses
the experiments, datasets used, classification and evaluation techniques used, and Section 5
presents the conclusion, recommendations for future improvement, and limitations of the
proposed method.

2. Related Work

DeepFake codes are generated at the core using an autoencoder which is a deep neural
network that studies and learns how to take an input, compress it down into a small
representation or encoding, and then recreate the original input from this encoding [9].
Once the training of the dataset is complete, an image/video (source/original video) can be
passed into the encoder. Then the place of trying to recreate the source from the encoding
is passed to the decoder. Figure 1 displays a forged video creation process using the
GAN model.
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Various authors have been working on the identification of DeepFakes for the past
few years. The early studies investigated visual irregularities and inconsistencies inside
the frames. Some methods [12–14] focused on biological signals, whereas others [9,15]
delegated feature extraction to convolutional neural networks (CNNs). The authors
in [16] proposed to employ capsule networks with dynamic routing and obtain extremely
good results. Several other methods were successful in localizing the altered regions
(generally, the face) [17–19]. DeepFakes’ capacity to disseminate false information that
looks to emanate from international leaders is a serious worry, therefore, authors in [16]
suggested tracking facial landmarks to learn behaviors typical of particular people and use
them to distinguish between authentic and false video content.

Image alteration has been practiced for many years, but it is time- and money-
consuming. Deep convolutional neural networks have recently advanced (CNNs), nonethe-
less, making it simple to construct fabricated visual images automatically [20]. DeepFakes
are the common name for the videos produced with this technique, and there are numerous
similar techniques. On social media applications such as Snapchat, the graphics-based
face-swap approach [21] is a quick but subpar way that is employed. When faces are added
to the learned frames from source videos or a collection of images, DeepFakes based on
GANs [2] provide more desirable output. Both the FakeApp and the Faceswap Github host
the method for public use [22]. In Face2Face [23], facial expressions are reenacted from
source to target frames by an algorithm. These techniques allow for the merging of videos
with separately fabricated sound data to produce fully fabricated material. Based on text or
the words of another speaker, algorithms can produce speech that convincingly resembles
a target speaker [24].

When detecting audio, interesting outcomes from the ASVSpoof challenges have been
obtained [25], even if it is more concerned with stopping people from getting around voice
biometrics. Although modern techniques attain very high accuracy, they do not provide
a comprehensive solution that is resistant to various video modifications, and as a result,
they are not trustworthy for spotting DeepFakes in the field.

According to the authors of [26], DeepFake detection was considered a binary classifi-
cation problem and evaluated the ability of detection approaches to distinguish original
videos from DeepFake videos, this technique was centered on the quality of image measures
with an SVM classifier capable of detecting high-quality DeepFake videos with an equal
error rate of 8.97%. However, this method’s limitation comes with subjective evaluations to
study the vulnerability of human subjects to DeepFakes, which are needed, and the method
needs a more robust detection algorithm.

The authors of [27] developed a LAIR dataset which was applied to refine data fed
into the language model to generate arrays of words, which are then fed into the deep
learning models. This method needs an increase in detection accuracy by merging the
gated recurrent unit (GRU) and CNNs to obtain the best result.

A rather simple but efficient method was created by the authors of [28]. This combines
CNNs, RNNs, and, DFDC Dataset to give the best possible result as at this time. The
system employs a single GPU to process videos rapidly (in less than eight seconds), but it
only concentrates on face modification detection and ignores any audio content analysis,
which might enhance detection accuracy significantly in the future study. The study was
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proposed to enable national and international journalists to explore the requirements to
craft a device for the spotting of DeepFake videos. The authors in [29] studied the directions
of data-oriented, feature-oriented, model-oriented, and application-oriented. The recall, or
the proportion of tagged fake articles that are expected to be misleading, was used to gauge
the study’s sensitivity. The authors of [30] conjoined findings based on previous studies
and outcomes to establish a scheme and functionality layout for the detection platform, but
this method has no clear cut methodology to follow or the approach to follow in building
the said tool.

The authors of [31] analyzed numerous neural network-based strategies in the con-
text of DeepFakes categorization in high compression instances and illustrated that a
recommended metric learning-based strategy can be very competent in fulfilling such a
characterization. The metric learning method using a triplet network architecture proved
beneficial when fewer frames per video were used to assess its realism, but a significant
constraint of the approach is its generalizability across different datasets. It lacks an unsu-
pervised feature modification to acclimate the feature space from the source dataset to the
target dataset, which would make the model more robust and label self-sufficient.

According to the authors of [32], experiments revealed that social framework and
distribution are crucial elements allowing highly accurate discovery of news at an early
stage, after only a few hours of transmission (92.7% ROC AUC), and detection of misin-
formation but the study did not explore further beyond fake news detection. The model’s
applications in social network data processing include journalistic subject categorization
and virility prognostication.

However, the authors of [22] obtained temporal data; a time-distributed FaceNet
previously trained on VGGFace2 was followed by a unidirectional LSTM layer. They
constructed their own Facenet LSTM model, which aims at temporal inconsistencies in
the videos but did not check whether the tool can detect new variations of fake videos
in addition to the ones it has been trained on. A model was developed by the authors
of [5] which was based on artificial intelligence and error level analysis (ELA) detection;
it is related to entropy and information theory, such as the cross-entropy loss function in
the final softmax layer, constrained mutual information in data preprocessing, and some
information theory-based encoder applications. This model must be evaluated to improve
the overall effectiveness of video compression detection methods.

The authors of [4] used an X2Face method and a first-order motion model for image
animation) and achieved DeepFake video deconstruction using a SIFT (scale invariant
feature transform)-based technique The limitation is aimed at obtaining a more compre-
hensive dataset for testing from both historical and animated personalities, as well as an
explication of other potential techniques and methodologies for DeepFake video detection.

A model was designed and implemented by the authors of [33]: a deep-fake identifi-
cation technique with mouth features (DFT-MF), employing a machine learning approach
for detecting DeepFake videos through reclusion, analysis, and confirmation of lip/mouth
motion. However, this method only focuses on just the mouth and not the entire face and
body movements.

The authors of [34] looked into intelligent amplified CNN state-of-the-art innovation
used for real-time reconstruction of DeepFake visual elements utilizing components such
as video cameras and surveillance cameras. The study mixed easily with an augmented
DeepFake arrangement with partition while expanding accuracy to 95.77% but the contrast
in the calculated expenditure of the actualized technique is low. The study was proposed
to solve facial forgery identification by determining if a photograph or video has been
tampered with by DeepFake; this uses the ensemble technique for identifying DeepFake
videos or images using image partitioning and separable convolutional neural network
(CNN) [35]. While it proved productive, it was suggested that future works could be
tailored towards extending image forgery detection to parts of a human body besides the
face, along with trying to improve the prediction performance of the classifier.
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The authors of [36] proposed using adversarial apprehension to improve DeepFake
images and trick common DeepFake identifiers. This method uses the fast gradient sign
method (FGSM) and the Carlini and Wagner L2 norm attack in both its Blackbox and
Whitebox settings, while this method’s limitation came about as a result of the excessive
overhead required to process a single image and further experimentations are needed to
project the achievement on adversarial attacks into other domains.

The authors of [37] produced a study that focuses on identifying the existing DeepFake
detection framework’s limitations and shortcomings. The theoretical and empirical analysis
of their ideal conventional systems and datasets reveals that the use of Face-Cutout can
contribute to the overall data variation and mitigate the problem of clustering while
attaining a decrement in LogLoss of 15.2 percent to 35.3 percent on various datasets, the
future aim will be to delve into the use of this augmentation principle on more DeepFake
datasets. The authors of [38] proposed a DeepFake identification strategy that makes use
of a 3D-attentional inception network, this technique encapsulates both temporal and
spatial information concurrently with the 3D kernels to improve detection capabilities. The
conducted experiments demonstrated that the method obtains parallel cross-functional
dataset performance using cutting-edge techniques and, in the future, the model can be
geared towards other aspects that use DeepFake such as audio and texts.

Similarly, the authors of [7] proposed a convolutional vision transformer for detecting
and identifying DeepFakes which is a generalization technique for DeepFake video detec-
tion using CNNs, convolutional neural network (CNN) and Vision Transformer are the
two components of the Convolutional Vision Transformer (ViT). The CNN obtains trainable
characteristics, whereas the ViT takes the acquired parameters and summarizes them with
the help of an attention mechanism but the model can be improved by newer datasets
developed in the nearest future.

In [15], the authors suggested a temporal-aware network for automatically detecting
DeepFake videos. This system extracts attributes at the frame level using CNN. These
characteristics are learned through recurrent neural networks (RNNs), which learn to
recognize whether or not a video has already been tampered with. This system can produce
a competitive result while using a simple channel architecture. The future direction of
this project is to examine how to improve the robustness of the system against DeepFake
videos using unseen techniques during training. The authors of [39] proposed that to
aggregate multi-frame features to detect DeepFake videos, they solved this problem from
the set outlook and proposed set convolutional neural network, a new design based on a
set (SCNN). As an example, the approach they offered is an amalgamation advancement
of a single-frame digital video analytics network and, meanwhile, it was noticed that a
better forbearance network can produce much-desired results. As a result, the search for
improved network infrastructure will be the next step in the process.

Another perspective was considered by [40] when they presented a study applicable
to convolutional neural networks (CNNs) using transfer learning, which involves initial-
izing pre-learned weights for upper layers of deep CNNs. This gave a better outcome in
shorter training durations than CNN-trained models on nonlinear mapping weights for
the detection of DeepFake films. However, it is still believed that the model’s fitness can be
enhanced by using ConvLstm2D (Tensorflow) layers and providing image sequences to
the network instead of a single image, which would address temporal incompatibilities
in DeepFake movies and (LSTM) along with characteristic distortion. The authors of [41]
proposed distinguishing authentic movies or images from DeepFakes, presenting a new
Patch&Pair convolutional neural network (PPCNN). Instead of learning the entire face in
this method, it isolates the face into smaller frames before sending the face repairs to the
network. However, the PPCNN is efficient when detecting DeepFake videos originating
from the same dataset and the generalization of the model can be improved on a two-branch
learning framework on cross-origin DeepFake videos.

Another perspective was described by [42], which is an artificial intelligence method
for identifying artificial intelligence-generated DeepFake videos from real videos. The
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technique displayed the advertency that the DeepFake algorithm at the time could only
produce images having limited resolutions, in which further warping was needed to reflect
the primary video’s genuine faces. Since it is using a predesigned network scheme for this
task (e.g., resnet or VGG), there is a need to appraise and ameliorate the robustness of the
detection method with several levels of video compression. The authors of [43] pointed out
a developing challenge of partisan face manipulation in DeepFake videos, which simply
gives video-level descriptions and does not manipulate all of the faces in the fake videos.
The study addressed the DeepFake problems by combining instances of faces and input
videos treated as bags and instances in this learning framework. In contrast to classic MIL,
which produces a direct mapping from instance integration to instance projection and then
to bag prediction, a sharp MIL (S-MIL) is presented, which builds a direct mapping from
instance embedding to bag prediction but the constructed FFPMS dataset used is yet to be
subjected to rigorous testing by various platforms and DeepFake detection techniques.

To aggrandize the effectiveness of identifying DeepFake-created face-barter images
from actual ones, a novel imitation attribute extraction technique based on deep learning
and error level analysis (ELA) was developed by the authors of [44]. The ELA different
image encoding ratios can be detected using this method. The CNN extracts the fake
features and determines the genuineness of the images. Though the method proposed is
appropriate under lossy compression, image tampering detection is possible, but not ideal
under poor quality or lossless encoding. The authors of [45] proposed a graph-based model
which uses the factual scheme of a textual document for DeepFake detection. Further
analysis of the model showed that this model can tell the difference between computer-
generated text and human-written content in terms of factual structure but the model can
be rebuilt on a more robust dataset and subjected to rigorous tests on a different source of
electronic printed texts. The authors of [46] introduced a study that demonstrates how the
Wall Street Journal, Washington Post, and Reuters, together with three of the largest Internet-
based firms, Google, Facebook, and Twitter, are coping with the rise of DeepFakes as a new
form of fake news. The study focuses on the techniques for detecting DeepFakes, as well
as the ramifications of DeepFakes on democracy and national security. However, both the
digital platforms study and the media samples revealed a western-oriented cultural drift.
This may make it difficult to extrapolate results to similar organizations in other countries.

The authors of [47] review various works in DeepFake films and photographs while
analyzing how they are made. Furthermore, the study examines the impact of Deep-
Fake on societal structure in terms of security and its application. The study was able to
thoroughly dissect the meaning of DeepFake, the application areas, and also the misuse
of the technology in a comparative manner but this study can be tailored towards the
new methods being used to detect DeepFakes and the methodologies employed can be
evaluated comparatively.

Multiple graph learning neural networks (MGLNNs) are a revolutionary learning
framework put forth by the authors of [48], to classify data using various views of a graph.
The objective of a MGLNN is to simultaneously combine multiple graph learning and
various graph structures to learn an ideal graph structure that best suits GNNs’ learning.
The suggested MGLNN is a generic framework that may be used to handle multiple graphs
using any particular GNN model. The suggested MGLNN model has also been trained
and optimized using a general approach. Results from experiments on various datasets
show that MGLNN performs better on semi-supervised classification tasks than some other
related approaches.

The authors of [49] have suggested the use of the precise real-time object detection
framework WilDect-YOLO for finding many classes of endangered wildlife species. The in-
tegration of DenseNet, spatial pyramid pooling, and redesigned path aggregation network
has improved the performance of the entire network. The suggested model outperforms
current state-of-the-art models with mAP and F1-score of 96.89% and 97.87%, respectively,
at a detection rate of 59.2 FPS.
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The precise single stage detector is a novel design presented by the authors of [50],
which is a modified version of the single shot multibox detector (SSD) (PSSD). Real-time
performance of the suggested model, PSSD, is impressive. In particular, PSSD outperforms
cutting-edge object detection models by achieving 33.8 mAP at 45 FPS speed on the MS
COCO benchmark and 81.28 mAP at 66 FPS performance on Pascal VOC 2007 using Titan
Xp hardware and 320 pix input size. The suggested approach also performs noticeably well
with bigger input sizes. PSSD can achieve 37.2 mAP with 27 FPS under 512 pixels on MS
COCO and 82.82 mAP with 40 FPS on Pascal VOC 2007. The outcomes of the experiment
demonstrate that the suggested model offers a better balance between speed and accuracy.
Table 1 gives a summary of the related work in the literature.

Table 1. Review of selected related work in DeepFake Detection.

Author(s) Technique(s) Strength Gap

Ðord̄ević et al. (2020) [4]
X2Face method, first-order
motion model, SIFT (scale invariant
feature transform).

It employs rotation invariant
screening, which has the potential
to distinguish original from
DeepFake films.

Future work can be geared
towards obtaining a more
comprehensive dataset for
evaluating historical and fictional
personalities, as well as a study of
other possible traits and
approaches for detecting
DeepFake videos.

Zhang et al. (2019) [5] CNN and error level analysis (ELA)

When compared to the most
up-to-date models, this technique
has few layers, the training time is
shorter, and has higher efficiency.

The reliability of video
compression-detecting methods
needs to be evaluated
and improved.

Sohrawardi et al. (2020) [6]
Qualitative interviews supplemented
engaging concepts or early versions of
the standard option tools.

It built the foundation on which
DeepFake detection tools can
be built.

No clear cut on the methodology
to follow or the approach to
follow in building the said tool.

Wodajo et al. (2021) [7] Convolutional Neural Network
(CNN) and Vision Transformer (ViT).

On the DFDC dataset, the authors
introduced a CNN layer to the
ViT framework and produced a
reasonable result.

This method could be used to
build on previous work by
incorporating more datasets
supplied under the DeepFake
study, making it more broad,
precise, and resilient.

Güera et al. (2018) [15] CNN and RNN
The system achieves a
competitive result while using a
simple pipeline architecture.

The proposed system can explore
how to improve the efficiency of
the system against counterfeiting
videos using unseen techniques
during training.

Korshunov et al. (2018) [26] Pre-trained generative adversarial
network (GAN)

The technique is with an 8.97
percent identical error rate, and
picture quality metrics using an
SVM classifier can recognize HQ
DeepFake films.

In the future, new generic
methods and databases need to be
developed. Subjective evaluations
of human subjects need to be
carried out to study the
vulnerability to DeepFakes.

Girgis et al. (2018) [27]

RNN (recurrent neural network),
LSTM (long short-term memories),
Vanilla, GRU (gated recurrent unit),
CNN (convolutional neural networks)

LAIR dataset is being applied to
prep data to word embedding to
obtain word vectors, which are
subsequently fed into the deep
learning algorithm.

In the future, the system can be
aimed to increase the detection to
get the best results and combine
GRU and CNN’s accuracy.

Montserrat et al. (2020) [28] MTCNN, CNN, AFW (automatic face
weighting), and GRU (gated recurrent unit).

This method combines CNNs,
RNNs, and DFDC Dataset to give
its results, it also uses a single
GPU to process videos quickly
(in less than eight seconds).

This study concentrates on facial
modification recognition and
ignores any audio content
analysis, which could enhance
detection capability significantly
in the future.

Shu et al. (2017) [29] Characterization and detection.

The sensitivity of this study was
determined by the recall, which is
the percentage of marked fake
articles that are anticipated to
be misleading.

The study directions are
data-oriented, feature-oriented,
model-oriented, and
application-oriented.
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Table 1. Cont.

Author(s) Technique(s) Strength Gap

Kumar et al. (2020) [31] Metric learning a network
architecture based on triplets

This approach is useful for social
data compression and is usually
unavoidable on media platforms

It can use an unsupervised
method to make the design
resilient and label independent,
domain adaptation is used to
construct the feature space from
the source dataset to the
target dataset.

Monti et al. (2019) [32] Geometric deep learning

Because it is built mostly on
connectedness and distributing
traits, this approach has the
potential to be language and
geographic-agnostic.

This study intends to look into
other uses for the model in social
network data analysis, such as
identification and features and
capabilities prediction, beyond
just detecting bogus news.

Sohrawardi et al. (2019) [22]
Time-distributed FaceNet
Pre-trained on VGGFace2, and
unidirectional LSTM.

Results displayed on both within
and discordant datasets, near to
an accurate detection
was achieved.

It should be established that the
features can recognize new forms
of false movies in addition to
those on which they have
been trained.

Elhassan et al. (2020) [33] CNN and DFT-MF model

This study demonstrates an
improvement in some other
approaches that were used, and
the results were compared to
demonstrate the
performance improvements.

The experiment of the study
should focus more on the entire
facial movements and not just
the mouth.

Ahmed et al. (2021) [34]

Rationale augmented
convolutional neural network
(CNN) on MATLAB
R2019a platform

This study supports a
progressively DeepFake layout
was completed, with a division
enlarged accuracy of
95.77 percent.

The difference in calculation costs
between the two actualized
strategies is small; the CNN
technique is almost complete.

Yu et al. (2019) [35]
Ensemble model, separable
convolutional neural network
(CNN), and image segmentation.

The ensemble model improves
detection capabilities and the
study results indicate that the
proposed solution performs well.

Future studies will focus on
expanding picture forgery
detection to sections of the human
body besides the face, as well as
increasing the generalization
capacity of the trained model.

Gandhi et al. (2020) [36]

Carlini and Wagner L2 norm
attack in the BlackBox and
Whitebox settings, and Fast
Gradient Sign Method.

This study explores two
advancements to DeepFake
detectors: The first is Lipschitz
regularization, and (the other is
deep image prior (DIP).

In other domains, further
experiments would be needed to
show the success of adversarial
attacks. Another limitation is time
consumption when processing a
single image.

Das et al. (2021) [37] quantitative and
qualitative analysis

When compared to existing
occlusion-based algorithms, our
method found a significant
reduction in LogLoss of 15.2
percent to 35.3 percent on
various datasets.

In the future, the study can be
geared towards examining the
application of this enhanced
policy to a wider range of face
modification and
counterfeit datasets

Lu et al. (2021) [38]
With the 3D kernels, you may get
temporal and spatial information
in real time.

This study improves the detection
capability. Experiments
demonstrated that the method
eloquently on a cross-dataset
evaluation outperforms
the competition.

In the future, the model can be
diverted to be used in other
aspects that use DeepFake such as
audio and texts.

Xu et al. (2021) [39] Set convolutional neural
network (SCNN).

The suggested technique is a
single-frame digital video
analytics system
fusion promotion.

It was noticed that a single-frame
digital video analytics system
fusion promotion approach is
proposed. This will greatly
improve this framework.

Suratkar et al. (2020) [40] Convolutional Neural Networks
(CNNs) with transfer learning.

Initializing weights pre-trained
Deep CNNs with shallow layers
produce better outcomes in
shorter training times than CNN
models with nonlinear
mapping weights.

The system’s robustness can be
increased by using ConvLstm2D
(Tensorflow) layers and sending a
sequence of photos to the network
rather than a single image.
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Table 1. Cont.

Author(s) Technique(s) Strength Gap

El Rai et al. (2020) [41] CNN with transfer learning.
The results obtained showed
relevant accuracy when compared
with other competitive methods.

This method can be used to
analyze all of the movies in
the datasets.

Li et al. (2018) [42] Resnet or VGG and CNN
This strategy keeps costs down
and time while collecting
training data.

There is a need to examine and
adjust the detection robustness
method for multiple video
compression. And it would need
to explore a dedicated network
structure for the detection of
DeepFake videos.

Li, et al. (2020) [43]
Multiple instance learning
framework (MIL) and Sharp
MIL (S-MIL).

S-MIL overcomes the limitations
of performance on single-frame
datasets when used in classic
DeepFake image
recognition applications.

The constructed FFPMS dataset
was not exposed to rigorous
testing by different platforms and
DeepFake detection techniques.

Zhang et al. (2020) [44] CNN, and Error Level
Analysis (ELA).

When compared to conventional
method detection methods, the
strategy effectively extracts the
counterfeit attribute and hence
outperforms them in terms of
simplicity and efficiency.

The presented method used in
this study is effective in detecting
picture alteration when lossy
compression is used, however, it
is not optimal for detecting
tampering when lossless or
low-quality compression is used.

Zhong et al. (2020) [45] Graph neural network.

Concept analysis also reveals that
the system can differentiate
between artificially intelligent
content and human-written text in
terms of factual structure.

In the future, the model can be
built on a more robust dataset and
tested on several sources of
electronic printed texts.

Vizoso et al. (2021) [46] Extensive qualitative analysis

This study applies a
comprehensive method to
examine how significant
communication firms are
attempting to combat the
dissemination of DeepFakes, the
most recent and technologically
based kind of misinformation.

Both the media and internet
platforms analyses revealed a
foreign cultural bias in the
population samples. This could
significantly affect the findings of
similar groups in other countries.

Albahar et al. (2019) [47]

Google’s Image Lookup had been
used to look for source material
on various social networking sites,
and then it replaced data of faces
on its own. Because the algorithm
is built on machine learning, it has
a high success rate.

This study has been able to dissect
the meaning of DeepFake, the
application areas, and also the
downside or misuse of the
technology in a
comparative manner.

Future applications of this study
can be geared towards the new
methods being used to detect
DeepFakes and a comparative
evaluation of the methodologies.

Li et al. (2020) [51] Patch&Pair Convolutional Neural
Network (PPCNN)

When it comes to describing
DeepFake videos from the
same-origin dataset, PPCNN is
productive, and the multiple
training structure can help the
model generalize to cross-origin
DeepFake videos.

In the future, by combining
forensic technologies, it will
develop more general models to
detect complex DeepFakes with
different compression levels
and resolutions.

3. Materials and Methods

Convolutional neural networks have been exceptionally successful in image analysis.
The term refers to a specific network architecture that has a class in neural networks, the
first stage of each so-called hidden layer is the local convolution result of the recent layer
(the kernel includes trainable weights), and the second phase is the max-pooling stage,
which decreases the number of subunits by maintaining just the maximum response of
many units from the first stage. After multiple concealed layers, the last layer is comprised
of a completely linked layer. It consists of a unit for each category that the system detects,
and each of these units receives input from all preceding layer units.
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It is commonly known that intricate DL-based architectures with many hidden layers,
such as Alexnet and VGG16, can effectively handle a high number of classes. However,
when there are fewer classes, they have a tendency to overfit, which reduces accuracy.
The high storage needs are also a result of the huge number of layers. In this study, a
lightweight DL-based architecture has been suggested due to the dataset’s low number of
DeepFake classes.

3.1. The Proposed Convolutional Neural Network

For DeepFake video identification, several CNN models with a limited number of
layers were used. Several versions with various numbers of filters for each layer were
taken into consideration, even though the number of layers selected was five. The filter size
was maintained at 3 × 3 in each layer, with a 2 × 2 max-pooling layer coming after each
convolution layer. The data were flattened in 2D after being processed using convolution
and maximum pooling. Data were then sent to a dense layer with 128 nodes after flattening.
Figure 2 displays the CNN architecture.
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In a neural network, the CNN is a subset of artificial learning networks that is most
typically employed to assess visual imagery. Matrix computation can be compared to
neural networks, but this is not the circumstance with ConvNet. The special technique
used in this is convolution.

Convolutional neural networks are a collection of artificial neuron layers that function
together. Artificial neurons are mathematical functions that examine the weighted total
of aggregate inputs and then output an activation value, similar to their biological coun-
terparts. When an image is fed into a ConvNet, each layer generates several activation
functions, which are then transferred onto the next layer.

Essential features such as horizontal or diagonal edges are extracted in the first layer.
This information is passed on to the next layer, which is responsible for detecting more
complicated features such as edges and combinational edges.

The layer categorization provides a series of confidence ratings (numbers between 0 and 1)
relying on the activation map of the previous convolution layer, indicating how probable
the image is to conform to a “class.” A nice example is a ConvNet that recognizes cats,
dogs, and horses, with the last layer’s output being the possibility that the input image
features any of those species. Figure 3 shows the classification layers combination for the
proposed model.
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Figure 3. Classification layer combination.

As with the convolutional layer, the pooling layer makes sure that the spatial size of
the convolved feature is minimized. The amount of computing power needed to process the
data is decreased by reducing its size. The two types of pooling are average and maximum.
Max pooling is used to obtain the highest value of a pixel from a portion of the image that
is represented by the core. Max pooling also functions as a noise suppressant. It eliminates
noisy activations while simultaneously performing de-noising and complexity reduction.

The average of all the values from the area of the image covered by the kernel is what is
returned by average pooling, on the other hand. Dimensionality reduction is all that average
pooling does to reduce noise. Therefore, we can conclude that max pooling outperforms
average pooling significantly. Despite their strength and resource sophistication, CNNs
deliver in-depth findings [52]. It all comes down to identifying patterns and traits that are
minute and insignificant enough for the human eye to miss. However, it falls short when it
comes to understanding the substance of digital photographs. The maximum and average
pooling used by CNNs is depicted in Figure 4.
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These limitations are clear when it comes to practical application. For example, social
media content was frequently filtered using CNNs. They were still unable to completely
prevent and erase inappropriate material, despite having been trained on a significant
number of images and videos. For example, a 30,000-year-old sculpture had been labeled
as nudity on Facebook.

3.2. The Proposed CNN Enhanced with ReLU Architecture

The model is based on a well-performing image classification network that switches
the convolutional layers and pooling layer for extraction features and a classification
network [53]. This network will start with a sequence of five successive convolution layers,
batch normalization layer, and pooling layer, because existing image analytics methodology
easily diminishes its capacity to detect DeepFake in movies due to compression, which
often degrades the data. One hidden layer was used to construct a dense network.

For better generality, ReLU activation functions are added to the convolutional layers
to generate a non-linear, batch normalization layer and pooling layer. Robustness is
improved by fully-connected layers using a neural network regularization technique by
discarding a random subset of its units; this technique is called dropout.

Consider the neural network’s convolutional layer. Each of these layers consists
of the input image convolutioned with a series of convolutional filters, biases added,
and a nonlinear activation function applied. The incoming image could, for instance, be
multichannel and colored. One convolution filter’s use can be explained as follows:

O(x, y) = ∑c ∑∆x ∑∆y I(c, x + ∆x, y + ∆y)w(c, ∆x, ∆y), (1)

O is the convolution result, c is the channel number, I is the input image, and w is
the filter matrix, where (x, y) is a point on the output image. Due to the fact that it has
different coefficients for the various input image channels, the filter w itself can also be
regarded as multichannel. The output of the convolution is then added to, and a nonlinear
activation function ϕ is applied to:

O′(x, y) = ϕ(O(x, y) + b) (2)

where O’ are the output values of the convolutional layer for the first filter; b is the bias
vector; and ϕ is the activation function, for example, ReLU or a hyperbolic tangent. The
output of the convolutional layer can also be thought of as multichannel since the neuron
network often contains several filters, one channel from each filter. Let us analyze a
convolutional layer’s calculation complexity. Assume that the input image is (N ×M)
pixels in size, the filter size is (K× K), there are C channels, and there are L filters. The
primary complexity of the layer will then consist of O

(
NMLK2C

)
.

The CNN model of a network-in-network (NIN) with ReLU is used to examine the
input distributions on non-linear activation layers. In this design, batch normalization and
dropout are added. Convolutional, batch normalization, and non-linear activation layers
make up each “Conv” layer, save the last one (i.e., ReLU). The convolutional layer alone
makes for the final “Conv” layer (conv5-5). The following is a definition of ReLU:

yi =

{
xi, i f xi > 0,
0, i f xi ≤ 0,

(3)

where the ith channel’s ReLU’s input and output, respectively, are xi and yi. ReLU’s output
is active and equal to the input if the input is greater than 0. ReLU’s output is deactivated
and equal to zero if its input value is less than 0. So, the hard threshold zero is what makes
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ReLU nonlinear. Assuming that the basic input x0
i and the jitter (or noise) ni make up the

input xi of ReLU. Thus, xi = x0
i + ni ReLU can then be rewritten as follows:

yi =

{
x0

i + ni, i f x0
i + ni > 0,

0, i f x0
i + ni ≤ 0,

(4)

In actuality, the jitter or noise ni is negligible. The jitter (or noise) ni may result in
being mistakenly triggered or deactivated when x0

i is close to zero. For example, when
x0

i = 0.5, it should be activated. The small jitter ni will, however, unintentionally not be
engaged if it is less than −0.5. Similarly to that, it should not be activated when x0

i = −0.5.
The small jitter ni will, however, unintentionally activate if it is more than 0.5.

Since the majority of the reported inputs to ReLU are concentrated close to zero, hence,
the majority of ReLU outputs are sensitive to a tiny jitter. Therefore, the learned CNN with
ReLU is probably susceptible to jitter or noise.

The essential need for a dropout and maximum pooling layer in this technique is to
ensure that unnecessary random subsets are eliminated from the unit and the algorithm
can focus on only the important aspect to generate an optimal solution, this normally
would generate a major concern due to the elimination of some data but this has been taken
care of by the convolutional layer which is only focusing on the part that matters in the
detection, that is, the face. The convolution blocks will have the size and the number of
filters to be used in the convolution, these filters will identify the existence and location of
image features present in the video frames. By standardizing the inputs to each layer of the
network, the batch normalization layer increases the speed, performance, and stability of
the neural network, reducing the interdependence of the parameter of one layer in the input
distribution of the next layer. The internal covariant shift is the term for this dependency,
which has a disruptive influence on the learning process.

To address this compression issue, in the output layer, the activation function is
sigmoid, the convolution layer employs leaky ReLU, and the loss function is mean square
error. This study also utilizes extensive secondary data to fill the dataset, these data are
videos produced from several DeepFake algorithms and other videos which are not altered.
Figure 5 shows the architectural structure of the proposed system.

3.3. The Dataset Description

This study employed three datasets to train and test the method on various objects. The
system shows a high capability of delineating videos having higher resolution compared to
the experiments.

DeepFake Dataset
This dataset was created by the authors in [9], and it was used for developing their

DeepFake detection system called MesoNet. This was accomplished by teaching autoen-
coders to perform the task; for a realistic result, several days of practice using processors
were required, and it could only be accomplished for two faces at a time. The study chose
to download video profusions available to the public online, to have enough variety of
faces. Therefore, the study collected 175 forged videos across different platforms.

The video’s minimum standard resolution is 854× 480 pixels, and its lengths range
from two seconds to three minutes. All the videos were compressed in different compres-
sion levels using H.264 codec. A trained neural network for facial landmark detection was
used to organize the faces after they had been extracted using a Viola–Jones detector. On
average, about 50 faces were extracted from each scenario. In conclusion, this dataset was
reviewed manually to eliminate misalignment and wrong face detection, while to avoid
having the same distribution of image resolutions either good or poor, both classes were
used to avoid bias in the classification task.
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Face2Face dataset
To ensure that the proposed method would be able to detect other face forgeries, the

Face2Face dataset has several hundred ranging to thousands of forged videos. This dataset
has already been divided into a testing, training, and validation set. One major advantage
of the Face2Face set is that it provides lossless, already compressed videos; this enables the
study to test the system’s robustness with different levels of compression. In the training,
only about 300 videos were used. The model was assessed using the 150 fabricated videos
and their originals from the testing set.

First-Order Motion Dataset
The first-order motion model was trained and set up on four different datasets that

are the VoxCeleb dataset, which is a dataset for faces and has 22,496 videos. These videos
were extracted from YouTube. The third dataset included was the BAIR robot pushing
dataset, which features films taken by a Sawyer robotic arm pushing various things across
a table. The UvA-Nemo dataset is a facial analysis dataset with 1240 videos. It includes
42,880 training videos and 128 exam films. Another collection of 280 tai-chi films was
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gathered from YouTube, with 252 being utilized for training and 28 being used for testing.
The first-order motion was used to create several DeepFake videos to serve as data used
for testing the method as external data outside the development environment.

3.4. Setup of Classification

In this proposed system, an image dimension of 256× 256 and weight optimization
using ADAM with default parameters were accomplished using three color channels, red,
green, and blue (β = 0.9 and β2 = 0.999). The Keras 3.7.2 module was used to implement
the system in Python 3.9. It uses the learning rate of 0.001 and uses mean square error to
calculate the loss.

L =
1
N

+ ∑N
i=1 yi.log(pi) + (1− yi) . log(1− (pi)) (5)

As a result, the goal for N movies in an input batch is to reduce data loss as much
as feasible, where pi is the label and x is the prediction of the i-th video. The predictive
algorithm and trainable parameters, respectively, are F and W. In Table 2, it is worth noting
that for both datasets, 15% of the training set was utilized during model validation tuning.

Table 2. The cardinality of each class in the studied datasets.

Set Real Class Forged Class

DeepFake training 7250 5111
DeepFake testing 4259 2889

Face2Face training 4500 4500
Face2Face testing 3000 3000

Assuming that X is the input set and Y is the output set in this study, the random vari-
able pair (X, Y) will take the values in X×Y. Using f as the classifier’s prediction function
for values in X to the action set A; with 1(a, y) = 1/2(a, y)2, the chosen classification job is
to minimize the error E( f ) = E[ f (X), Y].

3.5. Performance Evaluation

The proposed model was evaluated using various performance metrics such as ac-
curacy, sensitivity, specificity, and error rate, which were calculated using the confusion
matrix in the following Equations (6)–(11).

Recall =
TN

TP + FN
(6)

Speci f icity =
TN

TN + FP
(7)

Precision =
TP

TP + FP
(8)

Error =
FP + FN

TP + TN + FN + FP
(9)

Accuracy =
TP + TN

TP + TN + FN + FP
(10)

F1− Score =
2× Precision× Recall

Precision + Recall
(11)

where True Positive (TP) is the number of records classified as true positive, True Negatives
(TN) is the number of records classified as true negative, False Positives (FP) is the number
of records classified as false positive, and False Negatives (FN) is the number of records
classified as a false negative. The values of TP, TN, FN, and FP are obtained from the
confusion matrix of the model.
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4. Results and Discussion

To prepare the image data to accept external videos other than the one used in training
the model, the study adopted a rescaling pixel value (between 1 and 255) to a range between
0 and 1. Therefore, we created a separate list for correctly classified and misclassified
images using the following labels; correct real prediction, correct DeepFake prediction,
misclassified real prediction and misclassified DeepFake prediction, as shown in the images
below. A list is created to keep track of which video frame falls into which category. A
for loop is also implemented to sort the classification into one of these four categories as
shown in Figures 6–9.
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Compression, which results in significant information loss is a drawback of video
analysis, particularly for online recordings. On the other hand, having a series of frames
of the same face allows for the multiplication of perspectives and could lead to a more
accurate evaluation of the film as a whole [9]. To accomplish this naturally, average the
network prediction over the video. The frames of the same movie have a high correlation
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with one another, thus therefore there is no rationale for a rise in scores or a confidence
interval indication. In reality, the majority of filmed faces feature stable, clear frames for
the comfort of the spectator [9]. Therefore, given a sample of video frames picked from
the recording, the preponderance of accurate predictions can offset the effects of random
misprediction, facial occlusion, and punctual movement blur. Results from the experiment are
shown in Table 3. Both detection rates were greatly increased by the image combination. With
the proposed network on the DeepFake dataset, it even reached a record-breaking 86%.

Table 3. Performance evaluation of our system.

Accuracy Precision Recall F1-Measure Error Specificity

0.8632 0.8572 0.8768 0.8669 0.1368 0.8492

Evaluation Results

The classification results were obtained from a data split of 70% for training the dataset,
15% for validation, and the final 15% for evaluating the dataset. The DeepFake classifier
receives the training set and uses it to create an optimum knowledge management pattern
from the dataset. From the DeepFake dataset, the ROC is utilized to illustrate the classifier
and pick the categorization threshold.

The study compares the result obtained from the experiment with those from other.
DeepFake detection models show the classification score for the trained network for

Meso-4, MesoInception, and our system for the DeepFake dataset as shown in Table 3.
When each frame is considered separately, the networks have attained a relatively identical
score of around 90%. Due to the very low resolutions from some facial images extracted, a
higher score is not expected. Table 4 illustrates the classification scores of multiple channels
on the DeepFake dataset, taken separately for each frame. The table considers the Meso-4,
MesoInception-4, and the proposed system.

Table 4. DeepFake Dataset classification scores.

Model DeepFake Classification Score

Class Forged Real Total
Meso-4 0.882 0.901 0.891

MesoInception-4 0.934 0.900 0.917
Our System 0.896 0.907 0.902

The findings for the three approaches of Face2Face forgery recognition are provided
in Table 5. While the Meso-4 was able to obtain a 94.6% at the 0 levels of compression,
MesoInception was able to obtain a 96.8% while our system achieved 98.6%. A visible
degradation of scores is noticeable at the low video compression stage. However, the
proposed method managed to fine-tune the classification and was able to obtain an 86.4%
score at the compression level of 40. These comparisons are represented on the ROC curve
in Figures 10 and 11.

Table 5. Face2face classification scores evaluation.

Model Face2 Face Classification S Core

Compression level 0 23 (low) 40 (high)
Meso-4 0.946 0.924 0.832

MesoInception-4 0.968 0.934 0.813
Our System 0.983 0.920 0.864
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The result of the experiment shown in Table 6 indicates that image aggregation im-
proves the detection rates significantly. MesoInception-4 recorded an aggregate higher than
98% and so our system network uses the DeepFake dataset. However, the same score was
reached on the Face2Face dataset but left a different aggregate for misclassified videos.

Table 6. Video classification scores using image aggregation, with the DeepFake and Face2Face
dataset compressed at rate 23.

Model Aggregation Score

Dataset DeepFake Face2Face (23)
Meso-4 0.969 0.953

MesoInception-4 0.984 0.953
Our System 0.986 0.953

To demonstrate the effect of compression on DeepFake detection, image aggregation
was also conducted on the intra-frame video compression, this was done to understand if
compression rates affect the classification score. This displayed a slightly negative effect on
the classification as shown in Table 7. The confusion matrix is displayed in Figure 12.
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Table 7. I-frames classification score variation on the DeepFake dataset.

Model I-Aggregation Score Difference

Meso-4 0.932 −0.037
MesoInception-4 0.959 −0.025

Our System 0.961 −0.023
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The comparison of the proposed model with other cutting-edge state-of-the-art models
were presented in Table 8 and Figure 13. The proposed model outperforms other models in
terms of accuracy and F1-Measure with 0.8632 and 0.8669, respectively. The authors of [9]
have a better performance in terms of recall metric with 0.9723, while the authors of [54]
have a higher performance in terms of precision with 0.8724. Overall, the proposed model
performs better when compared with other baseline models. This shows that the proposed
CNN + ReLU model can be used to classify a DeepFake video with better accuracy.

Table 8. Performance evaluation in contrast to other cutting-edge techniques in DeepFake detection.

Authors Model Accuracy Precision Recall F1-Measure

Afchar et al. (2018) [9] Meso4 0.4315 0.3580 0.9723 0.5991
Afchar et al. (2018) [9] MesoInception4 0.7788 0.7972 0.8143 0.8056

Chollet (2017) [54] Xception 0.7306 0.7973 0.6993 0.7451
Tan and Le (2019) [55] EfficientNet-B0 0.5964 0.7310 0.4483 0.5558

Sanderson and Lovell (2009) [56] VGG16 0.8103 0.8724 0.7750 0.8208
Our system CNN + ReLU 0.8632 0.8572 0.8768 0.8669

Since the majority of the inputs are close to zero, the trained CNN is probably suscep-
tible to jitter. A better and more reliable randomly translational non-linear activation for
deep CNN can be proposed to address this issue. The use of a hyper-parameter will also
enhance the CNN model to be able to select the most appropriate parameter.
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5. Conclusions and Future Work

Nowadays, the downside of facial manipulation in videos is widely becoming a
general concern. This study has extensively analyzed some of the outstanding literature in
this field to understand the problem better to propose a network architecture that makes
sure such manipulations can be detected using five convolutional neural networks and a
recurrent neural network effectively while having a low computational cost. An innovative
technique for identifying DeepFakes is presented in this study. The CNN face detector is
used in this approach to extract face regions from video frames. The discriminant spatial
features of these faces are extracted using ReLU with CNN, assisting in the identification
of visual artifacts present in the video frames. Under real-world internet propagation
scenarios, this study’s technology has an average detection rate of 98% for DeepFake movies
and 95% for Face2Face videos, according to the findings. This has greatly shown that the
CNN can be enhanced by adding a convolutional layer and other defined parameters.
This method also takes into consideration the compression factor which hinders a lot of
DeepFake detection mechanisms. More algorithms are expected to develop in the future
that will focus more on these aspects while also leveraging updated datasets. The scope of
this study has been limited to identifying DeepFakes in still images and videos, but we also
believe this method can be extended to detecting DeepFakes in audio and texts and serve
as a means to curbing misinformation in this digital age, and these would be investigated
in our future work.
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