
Citation: Lázaro, J.; Astarloa, A.;

Muguira, L.; Bidarte, U.; Jiménez, J.

Encryption AXI Transaction Core for

Enhanced FPGA Security. Electronics

2022, 11, 3361. https://doi.org/

10.3390/electronics11203361

Academic Editors: George A.

Papakostas and Ahmed Abu-Siada

Received: 10 September 2022

Accepted: 15 October 2022

Published: 18 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Encryption AXI Transaction Core for Enhanced FPGA Security
Jesús Lázaro * , Armando Astarloa , Leire Muguira , Unai Bidarte and Jaime Jiménez

Electronics Technology Department, Faculty of Engineering of Bilbao, University of the Basque Country,
48013 Bilbao, Spain
* Correspondence: jesus.lazaro@ehu.eus

Abstract: The current hot topic in cyber-security is not constrained to software layers. As attacks on
electronic circuits have become more usual and dangerous, hardening digital System-on-Chips has
become crucial. This article presents a novel electronic core to encrypt and decrypt data between two
digital modules through an Advanced eXtensible Interface (AXI) connection. The core is compatible
with AXI and is based on a Trivium stream cipher. Its implementation has been tested on a Zynq
platform. The core prevents unauthorized data extraction by encrypting data on the fly. In addition,
it takes up a small area—242 LUTs—and, as the core’s AXI to AXI path is fully combinational, it
does not interfere with the system’s overall performance, with a maximum AXI clock frequency of
175 MHz.

Keywords: communication system security; data buses; data security; field-programmable gate
arrays; hardware security

1. Introduction

Multiprocessor-System-on-Chip (MPSoC) and related on-chip networking architec-
tures for communicating System-on-Chip (SoC) elements have been extensively investi-
gated in the past [1]; however, their security is seldom mentioned [2]. The accuracy and
security of the hardware, especially the processors, need to be enhanced because they suffer
from attacks, and hardware mending is difficult or even unfeasible [3].

In embedded applications, failing to guarantee security involves economic drawbacks
so trusted computing solutions have gained more and more attention [4]. In order to char-
acterize security, the typical criteria are user authentication, storage and communications
security, and input/output security [5]. A Central Processing Unit (CPU) can access physi-
cal resources in an MPSoC [6], allowing illegitimate processes executing in one or more
CPUs to generate malicious requests. For instance, sensitive information can be extracted,
the operations of MPSoC can be disabled, or system behavior can be modified due to
attacks on MPSoCs [7]. Therefore, safety mechanisms are needed to avoid the insertion of
malevolent data or orders into the system. The design of SoCs maintaining expense levels
with incorporated security features and cost limitations remains a challenge to overcome.
Furthermore, this security must be maintained throughout the life cycle of the embedded
system [8].

MPSoC-based systems involve stringent constraints in real time as well as security
requirements [9]. However, the mechanisms of real-time security demand immediate
reactions and are sometimes too fast to check the protection measures affecting the safety
of MPSoCs. Therefore, security must be considered a design parameter, and balancing
performance with real-time security should be addressed [10]. The performance of MPSoCs
is usually increased by dividing the applications into tasks and disseminating them among
the computing Intellectual Property (IP) cores [7]. In addition, it involves exchanging
sensitive data and IP cores can be exploited to attack the system.

In this complex scenario, the IP cores cannot be trusted; some of them may be malicious,
for example, a “Hardware Trojan” [11]. This drives a very active research field since

Electronics 2022, 11, 3361. https://doi.org/10.3390/electronics11203361 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11203361
https://doi.org/10.3390/electronics11203361
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-7483-3609
https://orcid.org/0000-0002-6330-1922
https://orcid.org/0000-0002-9493-5872
https://orcid.org/0000-0001-8509-8657
https://orcid.org/0000-0002-3804-678X
https://doi.org/10.3390/electronics11203361
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11203361?type=check_update&version=1


Electronics 2022, 11, 3361 2 of 13

these attacks pose significant security risks for the electronics industry [12] or even the
military [13]. Although most of the efforts have focused on detecting such malicious pieces
of hardware [14,15], it is not the only way to deal with them. Apart from Trojan detection
approaches, designs for security and run-time monitoring [12] are also used. Last but
not least, another strategy used to secure systems is by encrypting the memory bus of
microprocessors [16–19], video links [20,21], and peripheral communications [22–24]. This
article introduces the evolution of a secured bus, a ciphered scheme where trusted IPs can
safely communicate and are protected from the present hardware Trojans.

The remainder of the paper is organized as follows. In Section 2, we provide an
overview of the related work on hardware security. Section 3 describes the functionality
and components of the proposed hardware Advanced eXtensible Interface (AXI) encryption
IP, both in the system creation and in the IP internal structure. In Section 4, the obtained
results regarding the area and time resources for a Zynq device are discussed. In Section 5,
we compare the performance of our security approach to other hardware-based security
solutions. Finally, Section 6 summarizes this paper and outlines future work.

2. Related Work
2.1. Security in SoC

When academia or industry addresses modern reconfigurable SoC platform security,
they typically define a security boundary inside the integrated circuit. This “fence” assumes
that the elements located outside it are vulnerable to potential external attackers. However,
the information and subsystems within this perimeter are also vulnerable to run-time
threats. In this case, the attackers may have gained access to the SoC subsystems and the
variety of potential threats is wide [8,25].

The potential threats typically identified for reconfigurable SoCs are the following [26]:

• Reverse engineering attacks: The adversary obtains and analyzes the unencrypted
bitstream to understand how it functions.

• Cloning and overbuilding attacks: The attacker aims to copy the firmware or the
unencrypted Field-Programmable Gate Array (FPGA) bitstream and then use it in an
identical device, selling it as their own.

• Tampering attacks: The adversary modifies or extracts data from the design, gaining
physical access to the device.

• Spoofing: The attacker replaces the firmware or FPGA bitstream with their own.

To mitigate these threats, academia and industry have developed and built different
silicon features. For example, reverse engineering and spoofing are avoided via firmware
and a bitstream secure boot process [27]. The reconfigurable SoC platforms may include
Advanced Encryption Standard (AES)-256 and Hash-Based Message Authentication Code
(HMAC) crypto-engines to allow encrypted and authenticated firmware and bitstream
storage outside the device. Yang et al. [28] proposed a high-efficiency Data Bus (DBUS) for
AES-encrypted SoCs in order to reduce overheads and dynamic energy and achieve higher
throughput than AXI-based implementations. They implemented and compared AES-
encrypted Direct Memory Access (DMA) using AXI and DBUS interfaces to demonstrate
that the DBUS could be encrypted/decrypted immediately without additional latency and
power costs. These symmetric cryptography mechanisms are usually complemented by
asymmetric cryptography such as Rivest–Shamir–Adleman (RSA)-2048 for boot software
signature. The unique identifiers for each integrated device, such as Deoxyribonucleic
Acid (DNA) or Physical Unclonable Function (PUF), are widely used in these platforms to
enhance the security of the cryptographic protection applied in this context [29]. Firewall
IP cores have been developed to protect the SoC from malicious software [30].

This passive security is achieved by active built-in security measures. Anti-tampering
sensors are complemented by robust zeroization and security lockdown mechanisms [31].
These countermeasures are in charge of erasing sensitive information and blocking access
to the device’s safe zones. Access to the vendor-specific debug and configuration channels,
such as the Joint Test Action Group (JTAG) or emulator, is secure. This active security



Electronics 2022, 11, 3361 3 of 13

strategy is completed by monitoring the on-chip temperature and voltage values to detect
potential abnormal operations relating to an ongoing attack [32].

In addition to the hardware and hardware roots of the trust security mechanisms
used to mitigate external attacks, it is necessary to ensure the security of these platforms at
run-time operation [33]. This protection includes security mechanisms to ensure proper
resource isolation and access, protect the execution of real-time applications, and secure
processes and data. The protection against unwanted access during routine system opera-
tion needs real-time surveillance of hardware security mechanisms combined with security
for memory, registers, peripheral and on-chip bus access, and transactions [34].

The most common security threats identified at run-time operation for SoCs are as
follows: accessing memory regions restricted to other tasks or subsystems, intercepting
the input/output data, DMA attacks accessing physical memory and bypassing Operating
System (OS) security mechanisms, modification of device configuration registers, and mal-
ware insertion. The complex multi-core SoC platforms require intra- and inter-subsystem
security mechanisms to mitigate intra- and inter-subsystem threats between privileged
and non-privileged software, DMA, and bus-master-capable elements targeting memory
caches, contents, and registers [35].

The inter-subsystem countermeasures are typically Memory Management Unit (MMU)
hardware blocks associated with each CPU and Snoop Control Unit (SCU) [36]. These
MMUs, managed by a hypervisor, typically offer a second-stage translation between logical
and physical addresses. This mechanism is complemented by CPU-type secure memory
management mechanisms, such as TrustZone (TZ) by Advanced RISC Machines (ARM) [37],
that separate secure and non-secure memory spaces.

In addition to these MMU blocks, SoCs require inter-subsystem security mechanisms
to block access to peripherals, IP cores, and memory regions used by other CPUs. It
is not strange to include a rich set of security elements such as MMU, System Memory
Management Unit (SMMU), Xilinx Memory Protection Unit (XMPU), Xilinx Peripheral
Protection Unit (XPPU), and TZ in modern SoC platforms such as Xilinx Zynq Ultrascale+
MPSoC from Xilinx [38].

2.2. Security Scenarios

Our IP core (AXICrypt) is capable of encrypting and decrypting AXI traffic in real
time, thus enabling high-security transactions.

The need for security should not always need to be proven. Although security is not
always needed, several simple scenarios demonstrate the usefulness of the presented core.

One such scenario is chip-to-chip AXI communications [39]. In this example, the
AXI was extended beyond the chip, making it vulnerable to outside attacks. In order to
harden the system against eavesdropping, the encryption of the traffic was capitalized [40].
The authors of this article studied the feasibility of encrypted data exchange between
the security software executed in a Trusted Execution Environment (TEE) and the secure
logic part of a heterogeneous SoC. Similar to our case, the experiment was conducted
with a Xilinx Zynq-7010 SoC and two lightweight stream ciphers. Mühlbach et al. [41]
proposed a scalable Tree Parity Machine Rekeying Architecture (TPMRA) IP core designed
and implemented to meet the adaptability, low-cost terms, and varying bus performance
requirements. The proposed system was latency-free and could be implemented in the
Advanced Microcontroller Bus Architecture (AMBA) bus interface bridge to protect the
ARM bus. Contrary to our case, they focused on both Application-Specific Integrated
Circuit (ASIC) and FPGA implementations. He et al. [42] proved the security properties of
SoC bus implementation through a scalable SoC bus verification framework. Unlike our
case, they constructed Finite State Machine (FSM) models from the bus implementation
based on the property set obtained from the bus protocol and potential security threats.
The FSMs were constructed from SoC gate-level netlists; later security properties were
designed by examining Trojans’ feasible attacks in bus protocols and IPs. They tested their
method in an SoC with an AMBA bus.



Electronics 2022, 11, 3361 4 of 13

Another use case is when the system must be hardened against malicious IP cores [43]
or tools [44]. In this scenario, the securitization of communications between the trusted
master and slave is paramount, especially when the designer has no control over the IPs
that can intercept the communication. One such core is the AXI Interconnect (or any other
AXI infrastructure elements) and any other IP present in the system that may have access
to the AXI communications channel. This kind of hardware Trojan presents a security risk
to IP-based FPGA designs [45,46]. Another threat is a malicious IP that can tamper or send
spurious messages to other IPs [47,48].

2.3. Ciphers

Many modern applications demand strong security so private data is encrypted by
ciphers when it has to be saved or forwarded through vulnerable channels. After that, to be
retrieved, a decryption process is needed [49,50]. The resistance against attacks is measured
by cryptanalysis [51]. A cipher’s mathematical strength is mainly studied by algebraic
or statistical analysis. Side-channel attacks of stream ciphers address power, faults, and
timing analysis [52].

Stream ciphers constitute a significant class of encryption algorithms that have gained
acceptance in resource-constrained contexts such as applications under power consumption
and area limitations, among other aspects, because of their minimal influence on existing
resources [51–54]. These ciphers are symmetric, which means that the used encryption and
decryption keys are the same and are only known, theoretically, by reliable entities [50].

A new kind of approach has emerged in the form of quantum computing [44]. In order
to manage keys secretly, the novel approach of [55] is effective. Although very promising,
quantum computing is a long-term solution for security in the Internet of Things (IoT) [56].

Stream ciphers are different to block ciphers in many aspects [57]. Individual characters
of plaintext are encrypted one after another by a changeable encryption conversion in
stream ciphers. Meanwhile, in block ciphers, groups of characters of plaintext are encrypted
in parallel through a static encryption conversion. Stream ciphers are not required to fill
registers with unnecessary information or wait for data blocks, preventing the loss of time
demanded by block ciphers. So, stream ciphers provide a high-security solution that runs
at high frequencies and requires a small area [49]. They are generally faster than block
ciphers in hardware and have less complex hardware circuitry [53].

There is a broad range of constructions of stream ciphers in the literature. They can
be developed to be highly efficient only on one platform. Hence, technology-specific
requirements need to be fulfilled [57]. Separate groups have made multiple efforts to
develop a generation of novel secure stream ciphers [50,51]. The design of compact and
efficient stream ciphers was boosted by eSTREAM [58], the ECRYPT Stream Cipher Project.
The eSTREAM project comprises two profiles, high-throughput software-based ciphers that
provide a security level of 128 bits or 256 bits and low-resource hardware-based ciphers
that provide a security level of 80 bits [57].

A significant effort has been made to study the strength of the ciphers [52]. In [57], a
comparative study of the 34 stream cipher proposals of eSTREAM was made to view the
stream cipher’s design tendencies. Nowadays, eSTREAM includes seven stream ciphers,
three in the hardware category and four in the software category. Grain v1, MICKEY 2.0, and
Trivium are in the hardware profile, and HC-128, Rabbit, Salsa20/12, and SOSEMANUK
are in the software profile [58]. Both stream and block ciphers are susceptible to fault
attacks. In addition, the literature demonstrates that stream ciphers are extremely sensitive
to fault attacks. Most of the eSTREAM portfolio ciphers are vulnerable to side-channel
attacks. Trivium, Mickey, and Grain from the hardware profile and SOSEMANUK and
Rabbit from the software category have suffered fault attacks [52].

Stream ciphers’ design must guarantee that they can avoid all known attacks. Ref. [51]
analyzed Grain, Mickey, and Trivium and compared their fundamental generating structures.

The purpose of Grain stream ciphers was to design an algorithm that was simply
implementable in hardware and needed a small chip with low power consumption [50,59].



Electronics 2022, 11, 3361 5 of 13

A summary of an attack on the Grain family of ciphers was described in [50], and their
analysis supported that a fault attack is more efficient than others against this cipher family.

There are two Mickey versions, Mickey and Mickey-128, with security levels of 80 bits
and 128 bits, respectively, with the same design strategy, that is, they follow the irregular
clocking of registers [51]. In [52], a fault attack on Mickey was presented, employing an
extensible procedure to simplify or mount fault attacks against other ciphers.

The Trivium stream cipher is a hardware-oriented synchronous engine that, using
an iterative process, obtains the values of 15 state bits used to refresh the 3 state bits and
calculate 1 keystream bit [51]. The weakness of the Trivium cipher’s FPGA implementations
was studied in [54], which developed four Trivium designs in two different FPGA families,
proving their vulnerability to fault attacks. The implementation of hardware-profile stream
ciphers was presented in [49], who used structural (Very-High-Speed Integrated Circuit)
Hardware Design Language (VHDL) on the Altera FPGA. They reported that the best
algorithm for hardware implementation was Trivium, the second was Grain, followed by
Mickey. Ref. [49] demonstrated that Trivium presented the best performance results due
to its size, flexibility, throughput, and speed. Multiple previous works related to VHDL
implementations of Grain, Mickey, and Trivium on Xilinx FPGAs and Cyclone FPGA were
referenced in [49]. In [59], Grain and Trivium stream ciphers were considered for hardware
applications by evaluating their FPGA implementation features. Their results showed that
the Trivium algorithm occupied more chip space than Grain, but it had a higher rate of
keystream production.

Due to the promising results provided by Trivium and present in the literature, it was
selected as the best stream cipher for our hardware applications.

2.4. Trivium

Christophe De Cannière and Bart Preneel developed Trivium as a submission to the
Profile II (hardware) of the eSTREAM competition [58]. Trivium is a stream cipher designed
to provide good speed and gate count in hardware [60]. Due to its virtues, it has been
selected as part of the portfolio for low-area hardware ciphers (Profile 2) by the eSTREAM
project. It is part of the ISO/International Electrotechnical Commission (IEC) 29192-3
lightweight cryptography standard [61].

It generates up to 264 bits of output from an 80-bit key and an 80-bit Initialization
Vector (IV). Its main component is a 288-bit shift register holding the internal state, as
depicted in Figure 1.

A nonlinear combination of taps is used in every shift to obtain the next step, following (1).
Since the first 65 bits of each shift register are unused, a novel state bit is used 65 rounds
after it was generated. This provides the required flexibility to be able to obtain up to 64 bits
in every cycle. This is done by using as many feedback circuits as output bits. In practice,
the powers of two values are used (20 → 26 bit).

ai = ci−66 + ci−111 + ci−110 · ci−109 + ai−69

bi = ai−66 + ai−93 + ai−92 · ai−91 + bi−78

ci = bi−69 + bi−84 + bi−83 · bi−82 + ci−87

ri = ci−66 + ci−111

+ ai−66 + ai−93 + bi−69 + bi−84 (1)

One important aspect is that 1152 steps must be performed to initialize the state before
producing any output.



Electronics 2022, 11, 3361 6 of 13

Figure 1. Structure of the trivium algorithm. The main elements are shift registers, AND gates, and
XOR gates.

3. Hardware Description
3.1. IP Hardware Description

The proposed core can encrypt/decrypt on-the-fly data in an AXI connection. In order
to achieve the required minimal latency and small area footprint, the core uses the Trivium
stream-cipher algorithm.

The system is built around two identical blocks, one for the DATA channel and the other
for the ADDRESS channel. Each one of them is composed of an existing Trivium core [62] and
a handshake block. Although Trivium is a stream cipher, it can be made to provide 32-bit
output data thanks to not having feedback in the first 65 bits of data. A single Trivium core is
capable of encrypting the DATA or ADDRESS buses using this characteristic. This handshake
block manages VALID and READY signals when the cipher core is being initialized. The
initialization is required to fill the 288-bit shift register. Once the initialization ends, the
core goes into the pass-through mode where only the DATA and/or ADDRESS channels are
altered. With this structure, the core is AXI4 compatible. A simplified diagram can be seen
in Figure 2.



Electronics 2022, 11, 3361 7 of 13

AXICrypt

addr

data

resp

addr

data

write

read

addr

data

resp

addr

data

TriviumTrivium

Figure 2. The designed IP has two separate and optional sections, address encryption and data
encryption. Both parts are built around a 64-bit Trivium core. The IP core also manages VALID and
READY signals when the encryption core is being initialized.

The encryption of the ADDRESS channel leads to problems using the AXI infrastructure.
This makes use of the addresses to route the information. If this is encrypted, they cannot
process it. ADDRESS channel encryption is only valuable for point-to-point connections.
The reason is that the AXI infrastructure requires the plaintext address to correctly route
the data.

This approach has several limitations:

• Each AXICrypt must be paired with another AXICrypt. Both should have the same
key and IV in order to understand each other.

• Extending the system to a multimaster or multislave environment would require
changing the key and IV with the added delay of the initialization period.

• Due to the previous characteristic, the core has been implemented with a fixed key
and IV. This leads to a much-reduced core size.

The fixed key and IV used to initialize the core are not the best option from a security
point of view [63]. The main reasons behind this are:

• The core must be capable of continuous operation.
• The core must be able to encrypt/decrypt data in a single cycle and with zero latency.

These reasons make the initialization period of the core very important. If the key
and IV are changed, the core must be reinitialized, requiring the very long 1152 clock-cycle
initialization period. Furthermore, a key exchange mechanism is required to exchange the
key and IV.

3.2. AXI Infrastructure

A simplified diagram of the secured system is depicted in Figure 3. A master sends
data; at one point, the proposed core—AXICrypt—ciphers it. The ciphertext is transferred
through the AXI infrastructure until it arrives at the destination AXICrypt. The core
deciphers it and sends the plaintext to the destination slave.

AXI

Master

AXI

Crypt

AXI

Crypt

AXI

Slave

plain cypher plain

Figure 3. The proposed system is introduced between a master and slave. Plain text (green) is inserted
into the bus by the master; the designed core encrypts it (red) and passes it to the end designed core,
where it is decrypted and sent to the end slave.



Electronics 2022, 11, 3361 8 of 13

A complex multimaster system can be built. Although the core has limitations to boost
its performance, they can be overcome by using an appropriate AXI infrastructure. An
example is depicted in Figure 4.

ABM

CDM

AXI

Crypt

AX
I


In
te

rc
on

ne
ct

AC

AXI

Crypt

SAX
I


In
te

rc
on

ne
ctA

BD

AXI

Crypt

SAX
I


In
te

rc
on

ne
ctB

A

B

AX
I


In
te

rc
on

ne
ct

AXI

Crypt CAXI


Crypt

DAXI

Crypt

AXI

CryptC

D

AX
I


In
te

rc
on

ne
ct

AXI

Crypt

Figure 4. A multimaster–multislave environment. Any of the masters can access any of the slaves
with a secured channel.

In this complex example, any of the two masters can access any of the two slaves.
Every channel has its key/IV combinations, thus securing all four communication channels
(A, B, C, and D). The system can also include non-secure channels or any other combination
by suitably extending the central AXI interconnect.

4. Results

The use case to verify the design was a single master. This simple example was built
using a single master and a single slave with two AXICrypts in the middle. Figure 5 shows
the evaluation testbed. The master is in charge of performing several reads and writes to
test the different configurations required. In this example, only the DATA are encrypted.

AXICrypt_MS

AXICrypt_v1.0 (Pre-Production)

M00_AXIS00_AXI

AXICrypt_SM

AXICrypt_v1.0 (Pre-Production)

M00_AXIS00_AXI

AXICrypt_SM_axi_periph

AXI Interconnect

S00_AXI M00_AXI

axi_gpio_0

AXI GPIO

S_AXI GPIO

axi_mem_intercon

AXI Interconnect

S00_AXI M00_AXI

axi_traffic_gen_0

AXI Traffic Generator

M_AXI_LITE_CH1

axi_vip_crypt

AXI Verification IP

M_AXIS_AXI

leds_8bits

Figure 5. Block diagram of the example design.

The results can be seen in Figure 6. The data (0x55AA5504, for instance) are transferred
as plaintext—line 1—until they reach the AXICrypt core. Inside the core, they are encrypted
(0x43A96752) and transferred as ciphertext—line 5. On reaching the second AXICrypt core,
the data are deciphered and transmitted as plaintext—line 8. Finally, they arrive at a GPIO
slave that receives the data and changes the value of the LEDs—line 10.



Electronics 2022, 11, 3361 9 of 13

Write Address #1 #2 #1

Write data 0x55aa5504 0x55aa5506 0x55aa5508

Write Response #1 #2 #1

Write Address #1 #2 #1

Write data 0x43a96752 0x5ad3fde1 0x563807ff

Write Response #1 #2 #1

Write Address #1 #2 #1

Write data 0x55aa5504 0x55aa5506 0x55aa5508

Write Response #1 #2 #1

LED 00 04 08

A
X

I 
M

a
s
te

r
C

ry
p

t 
M

a
s
te

r
A

X
I 

S
la

v
e

Figure 6. Write transaction from an AXI master to an LED-controlling GPIO slave. 0x55AA5504 data
are inserted, encrypted (0x43A96752) by the proposed IP, then decrypted by the proposed IP in the
destination, and finally passed to the end slave that finally changes the values of the LEDs from 0x00

to 0x04.

4.1. Area

The approach of the IP core is straightforward to minimize the required resources. In
the usual case of only DATA encryption, the area results are:

• 242 LUts
• 316 FF

The compact nature of the Trivium algorithm, which is very well-suited for FPGA
implementations, helps obtain a minimal footprint. In this case, a single Trivium core
is present.

4.2. Speed

The AXI-to-AXI path in the AXICrypt core is fully combinational. This leads to a
zero-clock cycle delay. In other words, the presence of the core hardly affects the overall
performance of the system.

Although the IP has some sequential sub-blocks, it only introduces a combinational
delay to the AXI-to-AXI path. The delay might reduce the maximum AXI clock frequency;
however, in our experiments, the AXI clock runs at 175 MHz. The same system, without the
IP, was capable of running at 200 MHz. This leads to a 12.50 % decrease in the maximum
clock frequency.

5. Comparison
5.1. Area

Table 1 compares the area of AXICrypt with that discussed in Section 2. As can be seen,
AXICrypt overcame the proposal of Benhani et al. Our approach required substantially
lower resources compared to the approach by Mühlbach. Nevertheless, if one uses the
traditional 6 NAND2 gates per lookup table (LUT), AXICrypt also performed favorably
(22717 NAND2→ 3700 LUT)

Table 1. Comparison of area and timing results. The results for AXICrypt are for an xc7z020clg484.
Due to the combinational nature of the AXICrypt encryption, it does not have any latency. The
sequential part of the core is capable of reaching 175 MHz.

Author LUT FF Slice Latency
(Clk Cycles)

Clk Frequency
(MHz)

This paper’s
data only

242 316 75 0 175

This paper’s
data and address

493 640 150 0 175

Benhani et al. [40] 237 358 — 36 200
Mühlbach et al. [41] — — 2000 0 172



Electronics 2022, 11, 3361 10 of 13

5.2. Time

Table 1 compares the performance of AXICrypt with that discussed in Section 2. In
this respect, all the proposals are similar, although AXICrypt outperformed Mühlbach’s
proposal in terms of speed. Benhani’s proposal was slightly faster but at the cost of much
higher latency. In any case, a frequency comparison is of limited value due to the different
technologies used.

5.3. Capabilities

Table 2 compares the capabilities of AXICrypt. All three approaches are very sim-
ilar, targeting the ARM family of buses. The encryption algorithms are equally similar;
Benhani et al. [40] provided configurability in the selection of the algorithm, whereas in
AXICrypt and Mühlbach et al. [41], the algorithm was hard-coded.

Benhani et al. [40] required extensive software configuration to define the different TZ
configuration registers and Xilinx Isolation Design Flow. The author stated that encryp-
tion/decryption was used only to protect sensitive data processed by the secure world.
Most of the time, applications are run in the normal world with no encryption/decryption.
This is the reason for much higher latency. Our proposal is focused on continuous data flow.

Mühlbach et al. [41] provided two data paths, one for encrypted and the other one for
unencrypted data, whereas the others only provided one path. The approach presented in
this paper is the only one with address encryption capabilities.

Table 2. Comparison of capabilities.

Algorithm BUS Capabilities

AXICrypt Trivium AXI Data/Address
Benhani et al. [40] Trivium/Grain AXI Data

Mühlbach et al. [41] TPMRA Amba Data × 2

6. Conclusions

Electronic attacks on MPSoCs have raised interest in security concerns and memory
protection requests. MPSoCs can be protected against data modification, data extraction,
and denial of service attacks by encrypting the on-chip communications. Otherwise, the
embedded system could be in peril because its modules can be misconfigured and unknown
IPs inserted.

A proposal to enhance security in an SoC based on a Trivium stream cipher is presented
in this work. AXI transaction encryption cores are distributed to secure system memories
and requests between AXI master and slaves on the fly. So, our IP protects the system
against data extraction.

This secure architectural solution ensures a correct and adequate separation between
program code and data among reliable and unreliable applications without compromising
performance—with a maximum AXI clock frequency of 175 MHz—since it is combinational.
Several use cases were completed on a Zynq platform and the effectiveness of the proposed
IP has been proven. It uses a straightforward approach in order to decrease the required
area resources, that is, 242 LUTs.

Author Contributions: Conceptualization, J.L.; Methodology, J.J., A.A.; Validation, U.B., L.M.; Formal
analysis, A.A.; Investigation, J.L., A.A.; Writing—Original Draft, J.L., J.J.; Writing—Review & Editing,
J.L., J.J., U.B.; Supervision, J.L.; Project administration, J.L.; Funding acquisition, J.L. All authors have
read and agreed to the published version of the manuscript.



Electronics 2022, 11, 3361 11 of 13

Funding: This work has been supported within the fund for research groups of the Basque univer-
sity system IT1440-22 by the Department of Education and within the PILAR ZE-2020/00022 and
COMMUTE ZE-2021/00931 projects by the Hazitek program, both of the Basque Government, the
latter also by the Ministerio de Ciencia e Innovación of Spain through the Centro para el Desarrollo
Tecnológico Industrial (CDTI) within the project IDI-20201264 and IDI-20220543 and through the
Fondo Europeo de Desarrollo Regional 2014–2020 (FEDER funds).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fiorin, L.; Lukovic, S.; Palermo, G.; di Milano, P. Implementation of a reconfigurable data protection module for NoC-based

MPSoCs. In Proceedings of the 2008 IEEE International Symposium on Parallel and Distributed Processing, Miami, FL, USA,
14–18 April 2008. [CrossRef]

2. Azad, S.P.; Niazmand, B.; Jervan, G.; Sepulveda, J. Enabling Secure MPSoC Dynamic Operation through Protected Communication.
In Proceedings of the 2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Bordeaux, France,
9–12 December 2018. [CrossRef]

3. Ancajas, D.M.; Chakraborty, K.; Roy, S. Fort-NoCs: Mitigating the Threat of a Compromised NoC. In Proceedings of the The 51st
Annual Design Automation Conference on Design Automation Conference—DAC’14, San Francisco, CA, USA, 1–5 June 2004;
ACM Press: New York, NY, USA, 2014. [CrossRef]

4. Fiorin, L.; Silvano, C.; Sami, M. Security Aspects in Networks-on-Chips: Overview and Proposals for Secure Implementations. In
Proceedings of the 10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007), Lubeck,
Germany, 29–31 August 2007. [CrossRef]

5. Cotret, P.; Gogniat, G.; Sepúlveda Flórez, M.J. Protection of heterogeneous architectures on FPGAs: An approach based on
hardware firewalls. Microprocess. Microsyst. 2016, 42, 127–141. [CrossRef]

6. Wolf, W.; Jerraya, A.; Martin, G. Multiprocessor System-on-Chip (MPSoC) Technology. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 2008, 27, 1701–1713. [CrossRef]

7. Sepulveda, J.; Flórez, D.; Immler, V.; Gogniat, G.; Sigl, G. Efficient security zones implementation through hierarchical group key
management at NoC-based MPSoCs. Microprocess. Microsyst. 2017, 50, 164–174. [CrossRef]

8. Ray, S.; Peeters, E.; Tehranipoor, M.M.; Bhunia, S. System-on-Chip Platform Security Assurance: Architecture and Validation.
Proc. IEEE 2018, 106, 21–37. [CrossRef]

9. El Salloum, C.; Elshuber, M.; Höftberger, O.; Isakovic, H.; Wasicek, A. The ACROSS MPSoC—A new generation of multi-core
processors designed for safety–critical embedded systems. Microprocess. Microsyst. 2013, 37, 1020–1032. [CrossRef]

10. Hagan, M.; Siddiqui, F.; Sezer, S.; Kang, B.; McLaughlin, K. Enforcing Policy-Based Security Models for Embedded SoCs within
the Internet of Things. In Proceedings of the 2018 IEEE Conference on Dependable and Secure Computing (DSC), Kaohsiung,
Taiwan, 10–13 December 2018. [CrossRef]

11. Xiao, K.; Forte, D.; Jin, Y.; Karri, R.; Bhunia, S.; Tehranipoor, M. Hardware Trojans: Lessons Learned after One Decade of Research.
ACM Trans. Des. Autom. Electron. Syst. 2017, 22, 1–23. [CrossRef]

12. Bhunia, S.; Hsiao, M.S.; Banga, M.; Narasimhan, S. Hardware Trojan Attacks: Threat Analysis and Countermeasures. Proc. IEEE
2014, 102, 1229–1247. [CrossRef]

13. Lv, Y.Q.; Zhou, Q.; Cai, Y.C.; Qu, G. Trusted Integrated Circuits: The Problem and Challenges. J. Comput. Sci. Technol. 2014,
29, 918–928. [CrossRef]

14. Saad, W.; Sanjab, A.; Wang, Y.; Kamhoua, C.A.; Kwiat, K.A. Hardware Trojan Detection Game: A Prospect-Theoretic Approach.
IEEE Trans. Veh. Technol. 2017, 66, 7697–7710. [CrossRef]

15. Li, B.; Liu, M.; Lin, D. FPGA implementations of Grain v1, Mickey 2.0, Trivium, Lizard and Plantlet. Microprocess. Microsyst. 2020,
78, 103210. [CrossRef]

16. Elbaz, R.; Torres, L.; Sassatelli, G.; Guillemin, P.; Anguille, C.; Bardouillet, M.; Buatois, C.; Rigaud, J. Hardware Engines for Bus
Encryption: A Survey of Existing Techniques. In Proceedings of the Design, Automation and Test in Europe, Munich, Germany,
7–11 March 2005; pp. 40–45. [CrossRef]

17. Hiscock, T.; Savry, O.; Goubin, L. Lightweight instruction-level encryption for embedded processors using stream ciphers.
Microprocess. Microsyst. 2019, 64, 43–52. [CrossRef]

18. Hou, F.; He, H.; Xiao, N.; Liu, F.; Zhong, G. Efficient Encryption-Authentication of Shared Bus-Memory in SMP System. In
Proceedings of the 2010 10th IEEE International Conference on Computer and Information Technology, Washington, DC, USA,
29 June–1 July 2010. [CrossRef]

19. Chen, X.; Dick, R.P.; Choudhary, A. Operating System Controlled Processor-Memory Bus Encryption. In Proceedings of the 2008
Design, Automation and Test in Europe, Munich, Germany, 10–14 March 2008. [CrossRef]

20. Asghar, M.N.; Kousar, R.; Majid, H.; Fleury, M. Transparent encryption with scalable video communication: Lower-latency,
CABAC-based schemes. J. Vis. Commun. Image Represent. 2017, 45, 122–136. [CrossRef]

http://doi.org/10.1109/ipdps.2008.4536514
http://dx.doi.org/10.1109/icecs.2018.8617940
http://dx.doi.org/10.1145/2593069.2593144
http://dx.doi.org/10.1109/dsd.2007.4341520
http://dx.doi.org/10.1016/j.micpro.2016.01.013
http://dx.doi.org/10.1109/TCAD.2008.923415
http://dx.doi.org/10.1016/j.micpro.2017.03.002
http://dx.doi.org/10.1109/JPROC.2017.2714641
http://dx.doi.org/10.1016/j.micpro.2013.08.002
http://dx.doi.org/10.1109/desec.2018.8625140
http://dx.doi.org/10.1145/2906147
http://dx.doi.org/10.1109/JPROC.2014.2334493
http://dx.doi.org/10.1007/s11390-014-1479-9
http://dx.doi.org/10.1109/TVT.2017.2686853
http://dx.doi.org/10.1016/j.micpro.2020.103210
http://dx.doi.org/10.1109/date.2005.170
http://dx.doi.org/10.1016/j.micpro.2018.10.001
http://dx.doi.org/10.1109/cit.2010.163
http://dx.doi.org/10.1109/date.2008.4484834
http://dx.doi.org/10.1016/j.jvcir.2017.02.017


Electronics 2022, 11, 3361 12 of 13

21. Xu, H.; Tong, X.; Meng, X. An efficient chaos pseudo-random number generator applied to video encryption. Optik 2016,
127, 9305–9319. [CrossRef]

22. Farag, W.A. CANTrack: Enhancing automotive CAN bus security using intuitive encryption algorithms. In Proceedings of
the 2017 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO), Sharjah, United Arab
Emirates, 4–6 April 2017. [CrossRef]

23. Lázaro, J.; Astarloa, A.; Zuloaga, A.; Bidarte, U.; Jiménez, J. I2CSec: A secure serial Chip-to-Chip communication protocol. J. Syst.
Architect. 2011, 57, 206–213. [CrossRef]

24. Li, Y.; Shi, L. Design and Implementation of Encryption Filter Driver for USB Storage Devices. In Proceedings of the 2011 Fourth
International Symposium on Computational Intelligence and Design, Hangzhou, China, 28–30 October 2011. [CrossRef]

25. Farahmandi, F.; Huang, Y.; Mishra, P. System-on-Chip Security; Springer International Publishing: Berlin/Heidelberg, Germany,
2020. [CrossRef]

26. Bhunia, S.; Tehranipoor, M. Chapter 10—Physical Attacks and Countermeasures. In Hardware Security; Elsevier: Amsterdam, The
Netherlands, 2019; pp. 245–290. [CrossRef]

27. Lebedev, I.; Hogan, K.; Devadas, S. Invited Paper: Secure Boot and Remote Attestation in the Sanctum Processor. In Proceedings
of the 2018 IEEE 31st Computer Security Foundations Symposium (CSF), Oxford, UK, 9–12 July 2018. [CrossRef]

28. Yang, X.; Wen, W. Design of a pre-scheduled data bus for advanced encryption standard encrypted system-on-chips. In
Proceedings of the 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC), Chiba, Japan, 16–19 January
2017. [CrossRef]

29. Haj-Yahya, J.; Wong, M.M.; Pudi, V.; Bhasin, S.; Chattopadhyay, A. Lightweight Secure-Boot Architecture for RISC-V System-on-
Chip. In Proceedings of the 20th International Symposium on Quality Electronic Design (ISQED), Santa Clara, CA, USA, 6–7
March 2019. [CrossRef]

30. Lázaro, J.; Bidarte, U.; Muguira, L.; Astarloa, A.; Jiménez, J. Embedded firewall for on-chip bus transactions. Comput. Electr. Eng.
2022, 98, 107707. [CrossRef]

31. Xilinx Corp. Developing Tamper-Resistant Designs with Zynq UltraScale+ Devices. 2018. Available online: https://docs.xilinx.
com/v/u/en-US/xapp1323-zynq-usp-tamper-resistant-designs (accessed on 17 October 2022)

32. Hasan Anik, M.T.; Ebrahimabadi, M.; Pirsiavash, H.; Danger, J.L.; Guilley, S.; Karimi, N. On-Chip Voltage and Temperature Digital
Sensor for Security, Reliability, and Portability. In Proceedings of the 2020 IEEE 38th International Conference on Computer
Design (ICCD), Hartford, CT, USA, 18–21 October 2020. [CrossRef]

33. Bloom, G.; Narahari, B.; Simha, R.; Namazi, A.; Levy, R. FPGA SoC architecture and runtime to prevent hardware Trojans from
leaking secrets. In Proceedings of the 2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST),
Washington, DC, USA, 5–7 May 2015. [CrossRef]

34. Guha, K.; Saha, D.; Chakrabarti, A. Self Aware SoC Security to Counteract Delay Inducing Hardware Trojans at Runtime. In
Proceedings of the 2017 30th International Conference on VLSI Design and 2017 16th International Conference on Embedded
Systems (VLSID), Hyderabad, India, 7–11 January 2017. [CrossRef]

35. Chaudhuri, S. A security vulnerability analysis of SoCFPGA architectures. In Proceedings of the 55th Annual Design Automation
Conference, San Francisco, CA, USA, 24–29 June 2018. [CrossRef]

36. Gilmont, T.; Legat, J.D.; Quisquater, J.J. Enhancing security in the memory management unit. In Proceedings of the 25th
EUROMICRO Conference, Informatics: Theory and Practice for the New Millennium, Milan, Italy, 8–10 September 1999.
[CrossRef]

37. ARM Inc.. Arm TrustZone Technology. 2021. Available online: https://developer.arm.com/Processors/TrustZone%20for%20
Cortex-A (accessed on 17 October 2022).

38. Xilinx Corp. Isolation Methods in Zynq UltraScale+ MPSoCs. 2020. Available online: https://docs.xilinx.com/v/u/en-US/
xapp1320-isolation-methods (accessed on 17 October 2022).

39. Xilinx Corp.. AXI Chip2Chip v5.0. 2020. Available online: https://www.xilinx.com/content/dam/xilinx/support/documents/
ip_documentation/axi_chip2chip/v5_0/pg067-axi-chip2chip.pdf (accessed on 17 October 2022)

40. Benhani, E.M.; Lopez, C.M.; Bossuet, L. Secure Internal Communication of a Trustzone-Enabled Heterogeneous Soc Lightweight
Encryption. In Proceedings of the 2019 International Conference on Field-Programmable Technology (ICFPT), Tianjin, China,
9–13 December 2019. [CrossRef]

41. Mühlbach, S.; Wallner, S. Secure communication in microcomputer bus systems for embedded devices. J. Syst. Architect. 2008,
54, 1065–1076. [CrossRef]

42. He, J.; Guo, X.; Meade, T.; Dutta, R.G.; Zhao, Y.; Jin, Y. SoC interconnection protection through formal verification. Integration
2019, 64, 143–151. [CrossRef]

43. Narasimhan, S.; Du, D.; Chakraborty, R.S.; Paul, S.; Wolff, F.G.; Papachristou, C.A.; Roy, K.; Bhunia, S. Hardware Trojan Detection
by Multiple-Parameter Side-Channel Analysis. IEEE Trans. Comput. 2013, 62, 2183–2195. [CrossRef]

44. Zhang, Z.; Njilla, L.; Kamhoua, C.A.; Yu, Q. Thwarting Security Threats From Malicious FPGA Tools With Novel FPGA-Oriented
Moving Target Defense. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2019, 27, 665–678. [CrossRef]

45. Moein, S.; Gulliver, T.A.; Gebali, F.; Alkandari, A. A New Characterization of Hardware Trojans. IEEE Access 2016, 4, 2721–2731.
[CrossRef]

http://dx.doi.org/10.1016/j.ijleo.2016.07.024
http://dx.doi.org/10.1109/icmsao.2017.7934878
http://dx.doi.org/10.1016/j.sysarc.2010.12.001
http://dx.doi.org/10.1109/iscid.2011.96
http://dx.doi.org/10.1007/978-3-030-30596-3
http://dx.doi.org/10.1016/b978-0-12-812477-2.00015-0
http://dx.doi.org/10.1109/csf.2018.00011
http://dx.doi.org/10.1109/aspdac.2017.7858373
http://dx.doi.org/10.1109/isqed.2019.8697657
http://dx.doi.org/10.1016/j.compeleceng.2022.107707
https://docs.xilinx.com/v/u/en-US/xapp1323-zynq-usp-tamper-resistant-designs
https://docs.xilinx.com/v/u/en-US/xapp1323-zynq-usp-tamper-resistant-designs
http://dx.doi.org/10.1109/iccd50377.2020.00091
http://dx.doi.org/10.1109/hst.2015.7140235
http://dx.doi.org/10.1109/vlsid.2017.48
http://dx.doi.org/10.1145/3195970.3195979
http://dx.doi.org/10.1109/eurmic.1999.794507
https://developer.arm.com/Processors/TrustZone%20for%20Cortex-A
https://developer.arm.com/Processors/TrustZone%20for%20Cortex-A
https://docs.xilinx.com/v/u/en-US/xapp1320-isolation-methods
https://docs.xilinx.com/v/u/en-US/xapp1320-isolation-methods
https://www.xilinx.com/content/dam/xilinx/support/documents/ip_documentation/axi_chip2chip/v5_0/pg067-axi-chip2chip.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/ip_documentation/axi_chip2chip/v5_0/pg067-axi-chip2chip.pdf
http://dx.doi.org/10.1109/icfpt47387.2019.00037
http://dx.doi.org/10.1016/j.sysarc.2008.04.003
http://dx.doi.org/10.1016/j.vlsi.2018.09.007
http://dx.doi.org/10.1109/TC.2012.200
http://dx.doi.org/10.1109/TVLSI.2018.2879878
http://dx.doi.org/10.1109/ACCESS.2016.2575039


Electronics 2022, 11, 3361 13 of 13

46. Liu, L.; Wang, T.; Wang, X.; He, T. A method of implanting combinational hardware Trojan based on evolvable hardware. Comput.
Electr. Eng. 2021, 93, 107229. [CrossRef]

47. Huang, Z.; Wang, Q. Enhancing Architecture-level Security of SoC Designs via the Distributed Security IPs Deployment
Methodology. J. Inf. Sci. Eng. 2020, 36, 387–421. [CrossRef]

48. Zhang, Y.; Shen, Y.; Wang, H.; Yong, J.; Jiang, X. On Secure Wireless Communications for IoT Under Eavesdropper Collusion.
IEEE Trans. Autom. Sci. Eng. 2016, 13, 1281–1293. [CrossRef]

49. Marmolejo-Tejada, J.M.; Trujillo-Olaya, V.; Velasco-Medina, J. Hardware implementation of Grain-128, Mickey-128, Decim-128
and Trivium. In Proceedings of the 2010 IEEE ANDESCON, Bogotá, Columbia, 14–17 September 2010. [CrossRef]

50. Hridya, P.R.; Jose, J. Cryptanalysis of the Grain Family of Ciphers: A Review. In Proceedings of the 2019 International Conference on
Communication and Signal Processing (ICCSP), Melmaruvathur, India, 4–6 April 2019. [CrossRef]

51. Afzal, M.; Masood, A. Resistance of Stream Ciphers to Algebraic Recovery of Internal Secret States. In Proceedings of the
2008 Third International Conference on Convergence and Hybrid Information Technology, Busan, Korea, 11–13 November 2008.
[CrossRef]

52. Karmakar, S.; Chowdhury, D.R. Differential Fault Analysis of MICKEY-128 2.0. In Proceedings of the 2013 Workshop on Fault
Diagnosis and Tolerance in Cryptography, Los Alamitos, CA, USA, 20 August 2013. [CrossRef]

53. Menezes, A.J.; van Oorschot, P.C.; Vanstone, S.A. Handbook of Applied Cryptography; CRC Press: Boca Raton, FL, USA, 2018.
[CrossRef]

54. Potestad-Ordonez, F.E.; Jimenez-Fernandez, C.J.; Valencia-Barrero, M. Vulnerability Analysis of Trivium FPGA Implementations.
IEEE Trans. Very Large Scale Integr. VLSI Syst. 2017, 25, 3380–3389. [CrossRef]

55. Wang, Y.; Lou, X.; Fan, Z.; Wang, S.; Huang, G. Verifiable Multi-Dimensional (t,n) Threshold Quantum Secret Sharing Based on
Quantum Walk. Int J Theor Phys 2022, 61, 24. [CrossRef]

56. Fernandez-Carames, T.M. From Pre-Quantum to Post-Quantum IoT Security: A Survey on Quantum-Resistant Cryptosystems
for the Internet of Things. IEEE Internet Things J. 2020, 7, 6457–6480. [CrossRef]

57. Afzal, M.; Kausar, F.; Masood, A. Comparative Analysis of the Structures of eSTREAM Submitted Stream Ciphers. In Proceedings
of the 2006 International Conference on Emerging Technologies, Washington, DC, USA, 24–26 October 2006. [CrossRef]

58. Ecrypt. ECRYPT Stream Cipher Project. In Encyclopedia of Cryptography and Security; Springer: Boston, MA, USA, 2011; pp. 380–380.
[CrossRef]

59. Jafarpour, A.; Mahdlo, A.; Akbari, A.; Kianfar, K. Grain and Trivium ciphers implementation algorithm in FPGA chip and AVR
micro controller. In Proceedings of the 2011 IEEE International Conference on Computer Applications and Industrial Electronics
(ICCAIE), Penang, Malaysia, 4–7 December 2011. [CrossRef]

60. De Cannière, C.; Preneel, B. Trivium. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2008;
pp. 244–266. [CrossRef]

61. ISO/IEC 29192-3:2012; Information Technology—Security Techniques—Lightweight Cryptography—Part 3: Stream Ciphers.
International Organization for Standardization: Geneva, Switzerland, 2012.

62. Mccullough, B. Random Number Generators. 2006. Available online: https://github.com/jorisvr/vhdl_prng (accessed on 17
October 2022).

63. Gupta, A.; Mishra, S.P.; Suri, B.M. Differential Power Attack on Trivium Implemented on FPGA. In Advances in Intelligent Systems
and Computing; Springer: Singapore, 2016; pp. 541–554. [CrossRef]

http://dx.doi.org/10.1016/j.compeleceng.2021.107229
http://dx.doi.org/10.6688/JISE.202003_36(2).0016
http://dx.doi.org/10.1109/TASE.2015.2497663
http://dx.doi.org/10.1109/andescon.2010.5632901
http://dx.doi.org/10.1109/iccsp.2019.8697972
http://dx.doi.org/10.1109/iccit.2008.160
http://dx.doi.org/10.1109/fdtc.2013.8
http://dx.doi.org/10.1201/9781439821916
http://dx.doi.org/10.1109/TVLSI.2017.2751151
http://dx.doi.org/10.1007/s10773-022-05009-w
http://dx.doi.org/10.1109/JIOT.2019.2958788
http://dx.doi.org/10.1109/icet.2006.335958
http://dx.doi.org/10.1007/978-1-4419-5906-5_1106
http://dx.doi.org/10.1109/iccaie.2011.6162215
http://dx.doi.org/10.1007/978-3-540-68351-3_18
https://github.com/jorisvr/vhdl_prng
http://dx.doi.org/10.1007/978-981-10-0451-3_49

	Introduction
	Related Work
	Security in SoC
	Security Scenarios
	Ciphers
	Trivium

	Hardware Description
	IP Hardware Description
	AXI Infrastructure

	Results
	Area
	Speed

	Comparison
	Area
	Time
	Capabilities

	Conclusions
	References

