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Abstract: This paper presents an image fusion network based on a special residual network and 

attention mechanism. Compared with the traditional fusion network, the image fusion network has 

the advantages of an end-to-end network and integrates the feature extraction advantages of the 

attention mechanism residual network. It overcomes the shortcomings of the traditional network 

that need complex design rules and manual operation. In this method, hierarchical feature fusion is 

used to achieve effective fusion. A combined loss function is designed to optimize training results 

and improve image fusion quality. This paper uses many qualitative and quantitative experimental 

analyses on different data sets. The results show that, compared with the comparison algorithm, the 

method in this paper has a stronger retention ability of infrared and visible light information and 

better indexes. 72% of eleven indexes compared with some images in the public TNO data set are 

optimal or sub-optimal, and 80% are optimal or suboptimal in the RoadScene data set, which is 

much higher than other algorithms. The overall fusion effect is more in line with human visual per-

ception. 
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1. Introduction 

Images taken directly can only present the information content of part of the band, 

considering the limitations of imaging equipment. With the image fusion of multi-band 

key information, a new image containing more information can be reconstructed. High-

quality fused infrared and visible images can provide strong complementary information 

and have high-value applications in many fields, such as target detection, target tracking, 

automatic driving, and video surveillance. In recent years, image fusion algorithms have 

gradually developed into two categories: traditional methods and methods based on deep 

learning. The most typical case based on conventional methods is image fusion methods 

based on multi-scale transformation, including discrete wavelet transform [1,2], non-

small downsampling shear wave transform [3], and so on. Representation-based learning 

methods are also widely used in this field, such as sparse representation [4] and joint 

sparse representation [5]. Subspace-based, saliency-based, and chaotic model-based 

methods are applied to image fusion. Nevertheless, traditional methods are not ideal due 

to problems such as complex design rules and weak generalization ability of scenes. 

In the field of image fusion, the rapid development of deep learning is also reflected. 

The mainstream methods include the convolution network-based method, the codec net-

work-based method, and so on. Deep learning includes mainly three elements: deep fea-

ture extraction, fusion strategy, and end-to-end training mode. Specifically, depth feature 

extraction usually consists of a convolution layer [6,7], a designed residual structure [8], 

a special feature extraction module [9], etc. However, the current network’s ability to 
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extract tiny features still needs to be improved. Most networks only transmit the final 

convolution results to the fusion module, which makes the information of the middle 

layer lost. Fusion strategies are used to fuse the extracted feature information. Some net-

works use manual methods to design fusion strategies [10,11], while others use deep 

learning methods to design fusion strategies [12,13]. Unlike manually designed fusion 

strategies, deep learning-based strategies have stronger generalization ability in different 

scenarios because they can learn from the training data. However, there are still problems 

such as poor details preservation after fusion and training difficulty for learnable fusion 

structures. 

This paper proposes a new end-to-end fusion framework to address the above prob-

lems. A fusion strategy based on convolutional layers is designed, which can follow the 

network for training. As a result, the depth extraction features can be more effectively 

utilized, reducing the training difficulty. In addition, in the feature extraction part of the 

network, a gradient operator feature extractor based on Laplace is designed to replace the 

work of many convolution layers. An efficient channel attention network (ECANet) is 

used as the last step of depth feature extraction to reduce the number of network layers 

and shorten the fusion time. Moreover, aiming at the problem of information loss in the 

middle layer of feature extraction, this paper adopts the method of feature extraction and 

feature reconstruction in the network so that different levels of information can be re-

tained in the fused image. 

In the aspect of loss function design, this paper designs a combined loss function, 

which includes strength loss, texture loss, and structure loss. It restricts the retention of 

pixel intensity features of infrared images, the retention of texture details of visible images 

by texture loss, and the retention of edge structure features of source images by structure 

loss. 

Finally, the network is verified by comparative experiments on several public infra-

red and visible fusion data sets, and the corresponding subjective and objective analysis 

is made. Compared with the comparison algorithm, the fusion results obtained by the 

proposed method have a better visual effect, and the target definition and background 

details are more perfect. 

2. Related Work 

The application of deep learning methods in image fusion is mainly based on convo-

lutional neural networks (CNN), which can be divided into end-to-end networks and non-

end-to-end networks according to network types. This section mainly introduces the re-

search results and related work in the field of image fusion, including traditional infrared 

and visible light fusion methods, coding and decoding models, typical deep learning im-

age processing methods, etc. 

2.1. Traditional Image Fusion Algorithms 

Traditional image fusion algorithms refer to methods that usually perform spatial or 

frequency transformation by manually designing fusion methods and feature extraction 

methods, including the space-based method, wavelet transform method, sparse represen-

tation method, multi-scale transform method, and so on. The fusion algorithm consists of 

feature extraction, fusion, and image reconstruction. Among them, image reconstruction 

is usually the inverse process of feature extraction. Therefore, the key to the algorithm lies 

in the innovation and improvement of the feature extraction and fusion methods. There 

are many space-based methods, including but not limited to independent component 

analysis (ICA), principal component analysis (PCA), and non-negative matrix factoriza-

tion (NMF). In terms of the basic principle of these methods, the high-dimensional source 

image information is first projected and transformed into the low-dimensional space or 

subspace. The source image information is then operated to eliminate the redundant in-

formation in the natural image so that the internal structure of the source image is en-

riched in the low-dimensional subspace. The method based on sparse representation is 
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widely used in image processing [14–16]. With this method, the source image is sparsely 

represented by the linear combination of sparse bases in the dictionary to realize the stable 

representation ability of the image containing information [17]. Sparse representation has 

disadvantages as obvious as advantages. The super-complete dictionary can endow this 

method with good fusion ability in specific fields. Still, the time and difficulty of its con-

struction is a difficult point that cannot be ignored. The method based on the multi-scale 

decomposition framework is firstly based on the principle that the source image can be 

decomposed into components of different sizes. Secondly, the multi-scale images will be 

fused according to the designed fusion rules, and finally, the fused multi-scale images will 

be inverse transformed to get the fused images. The representative methods of multi-scale 

decomposition include discrete wavelet transform (DWT), and non-small down-sampled 

shear wave transform. Other methods applied to the fusion of infrared and visible images 

also provide a lot of research directions and ideas, including but not limited to salient 

features based on the principle of human visual perception [18], total variation (TV) [19], 

entropy [20], fuzzy theory [21] and so on. 

2.2. Image Fusion Method Based on Deep Learning 

Typical deep learning has attracted wide attention due to its application in image 

processing and has gradually shown its unique advantages over traditional methods 

[11,22]. The feature extraction network can obtain richer feature information than the 

hand-designed extraction algorithm, so the deep learning method occupies a place in the 

task of image fusion. In this paper, a method based on a convolutional neural network is 

proposed, which combines different focused images as the input of the CNN network, 

detects the common focus in the network, and outputs the fused image, thus realizing the 

effective fusion of multi-focused images. In addition, the CNN model is used to learn the 

effective focus measurement of image pixels, and the focus map is generated by compar-

ing the high attention areas. 

The self-codec method is a deep learning method based on the CNN method. This 

method usually realizes image feature extraction and feature recovery by training the self-

encoder network, and the feature fusion in the middle is carried out by hand-designed 

rules [23]. In this paper, feature fusion is not carried out, but the infrared image features 

and visible light features are connected and introduced into the feature recovery layer. A 

learnable residual network is used for feature fusion, which achieves good results. This 

paper designs a codec with residual block and uses it to design a new fusion network 

called DenseFuse [23]. 

Squeeze-and-Excitation Networks (SENet) attention mechanism can also be used for 

image processing tasks. SENet introduces a channel attention mechanism to obtain the 

correlation between channels through global average pooling and full connection layer. 

In practice, the attention mechanism is widely used in image fusion because of its high 

efficiency and ease of use. In SESF, SENet is used to improve the encoder’s feature extrac-

tion ability [22]. In this paper, the attention module is used to extract multi-scale features 

in the fusion framework and make the network focus on the discrimination area. In the 

NestFuse network framework [24], cascade spatial attention and channel attention are 

used as the fusion strategy to realize the fusion of infrared and visible light depth features. 

3. Detailed Work 

In this section, the construction and training methods of the fusion network in this 

paper will be introduced in detail. Section 3.1 introduces the main network framework of 

the method, Section 3.2 introduces two feature extraction modules, and Sections 3.3 and 

3.4 introduce the network's training method, the setting of super parameters, and the com-

position of the loss function. 
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3.1. Converged Network Framework 

The method proposed in this paper is an end-to-end network structure, and its com-

position is shown in Figure 1. This learning method touts the advantages of synergy and 

easier global optimal solutions than non-end-to-end networks. The network framework is 

based on the classical codec network, including the encoder, fusion part, and decoder part. 

See Table 1 below for detailed composition. 

 

Figure 1. The overall framework of the proposed method. 

Table 1. Detailed architecture diagram of the method proposed in this paper. 

 Layer 
Kernel 

Size 
Stride 

Input 

Channel 

Output 

Channel 
Activation 

Feature extraction 

module 

Conv (3 * 3) 3 1 1 16 Leaky Relu 

Conv 
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Conv 
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ECANet 1 1 64 64 Leaky Relu 

Feature fusion 
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RNF - - 64 64 - 

Image reconstruc-

tion 

Conv (3 * 3) 3 1 64 64 Leaky Relu 

Conv (3 * 3) 3 1 64 32 Leaky Relu 

Conv (3 * 3) 3 1 32 16 Leaky Relu 

Conv (3 * 3) 3 1 16 1 Leaky Relu 

In this paper, the input infrared image and visible image are defined as  and , 

respectively. In the feature extraction module, the visible light intermediate feature ex-

tracted by the Laplace gradient operator extractor (LGOE) layer is , the infrared fea-

ture is , and  represents the number of feature extraction layers. The fusion result 

of the output network is , and all the source images of the input network have been 

registered. 

In the encoder part, this paper uses the trained model to multi-level encode the input 

source image to extract different scale features, including a specific layer of 3 * 3 
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convolution extraction for extracting rough features, two layers of LGOE, and one layer 

of the ECA attention module. The encoder network used in this paper has the following 

three advantages. Firstly, the convolution kernel size is 3 * 3, and the step size is 1, which 

makes the size of the input image unlimited. Secondly, the use of LGOE can extract depth 

features and detailed information of images as much as possible to ensure that all salient 

features are transmitted backward. Thirdly, the channel attention (ECA) module will not 

increase many parameters and network complexity under improving network perfor-

mance. The strategy of the above feature extraction module will be introduced in detail 

below. 

In the decoder part, the convolution layer of three 3 * 3 convolution kernels is selected 

as the decoding part, which is used to reconstruct the fused image. Such a simple but 

effective structure can express the extracted information well, keep the network low com-

plexity, and avoid too low a fusion efficiency and long training time. 

The features and advantages of the fusion network in this paper are introduced in 

general, and the feature extraction and fusion modules are introduced in detail below. 

Laplace-based gradient operator extractor 

3.2. Feature Extraction Module 

The encoder is usually used for feature extraction in image processing tasks, and this 

basic feature extraction structure is widely used because of its portability and effective-

ness. The encoder in this paper consists of a convolution layer, two LGOE layers, and an 

ECA attention layer. 

3.2.1. Laplace-Based Gradient Operator Extractor 

The basic convolution layer can realize the selection and backward transmission of 

image features, but some image details will be lost in the transmission process. To enhance 

the network’s ability to extract fine-grained features from the source image, this paper 

designs a gradient operator feature extractor based on Laplace. The structure of LGOE is 

shown in Figure 2. Each LGOE contains three 3 * 3 convolution layers, with the activation 

function of Leaky Rectified Linear Unit (LReLU). The dense connection is used in the 

three-layer convolution to improve the feature extraction ability. 

 

(a) (b) (c) 
 

Figure 2. A schematic of three deep learning architectures, (a) Residual block; (b) Dense block; (c) 

Dense residuals with Laplacian gradient operators. 
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After dense connection, a regular convolution layer with convolution kernel 1 * 1 is 

added to eliminate the difference in the channel number. In the residual part, a special 

convolution layer is designed according to the Laplacian gradient operator to extract the 

fine granularity features of the image. Finally, the extracted depth and fine granularity 

features are fused and output. LGOE is placed in this paper's second and third layers of 

the feature extraction layer. 

Aiming at the advanced semantic features in infrared and visible light, this paper 

proposes a gradient operator feature extractor based on Laplace. Let the image of the input 

LGOE be , and its output  can be expressed as follows: 

 (1) 

where  represents convolution layer,  represents N cascaded 

convolution layers, and  represents the summation of elements in tensor.  is a gra-

dient operator, a special convolution operation, and the convolution kernel is the Lapla-

cian convolution kernel. The network can extract fine-grained features by convolution op-

eration between the input features and the high-frequency convolution kernel. 

3.2.2. ECAnet 

ECAnet [25] is a new lightweight channel attention mechanism type, as shown in 

Figure 3. This structure uses a local cross-channel interaction strategy without dimension-

ality reduction and a method of adaptively selecting the size of the one-dimensional con-

volution kernel. The purpose is to ensure the model's high computational performance 

and low complexity and achieve noticeable performance improvement with a few addi-

tional parameters. 

 

Figure 3. The network structure of ECANet. 

ECANet is improved based on SENet [23]. This network is a new image model pro-

posed in 2017 that can improve network performance by modeling the correlation be-

tween feature channels, called the channel attention mechanism. SENet consists of com-

pression, excitation, and feature recalibration, and the network mechanism is shown in 

Figure 4. Compared with SENet, ECANet uses fewer parameters and avoids the negative 

impact of dimensionality reduction. The structure of ECANet is shown in Figure 3. The 

main difference between ECANet and SENet is that the former omits the step of dimen-

sionality reduction after GAP. Instead, it uses the channel and its adjacent K channels to 

obtain cross-channel communication information. 

iF 1iF +

( ) ( ) ( )1 Conv Conv i i n i iF GRDB F F F+ = =  
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Figure 4. The network structure of SENet, where  is element-wise product. 

Let the dimension of the output of a convolutional layer be , where W, H, 

and C represent the width, height of tensor, and the number of convolution kernels, re-

spectively. The weight of each channel in the SENet network is calculated as follows: 

 (2) 

 (3) 

where  is global average pooling (GAP),  is Sigmoid function.  

has the following relationship with: 

 (4) 

ReLU stands for the rectified linear unit , but this pro-

cessing method destroys the direct relationship between channel and weight. 

In ECANet, dimension reduction is not required for  after GAP, so 

 (5) 

where  is the parameter matrix of . In ECANet,  it is used to indicate the 

learned channel attention: 

 (6) 
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where  represents the set of k adjacent channels o . Afterward, all channel weight 

information is shared to improve performance: 

 (8) 

To sum up, this method realizes the information interaction between channels 

through one-dimensional convolution with convolution kernel size k: 

 (9) 

where CID represents one-dimensional convolution, which contains k parameter infor-

mation. This ability of cross-channel information interaction ensures the performance and 

efficiency of the network. The value of k is determined in the subsequent experiment. 

3.3. Fusion Structure 

In the fusion network based on deep learning, most authors choose simple manual 

strategies for deep feature fusion [6,26,27], such as elementwise-add, elementwise-mean, 

elementwise-maximum, and elementwise-sum. Moreover, this fusion method only fo-

cuses on deep convolution features, ignoring the importance of shallow features in the 

fusion network. To solve this problem, this paper uses a network structure based on a 

convolution layer to fuse deep features and uses the rule for the highest pixel value to fuse 

shallow features. 

The Central fusion network (CFN) used in this paper is a variant of a simple convo-

lution module used in the fusion of deep image features. Its structure is shown in Figure 

5. In this network, “Conv1”, “Conv2,” and “Conv6” are the first layer of fusion features. 

“Conv1” and “Conv2” are connected in series as the input of “Conv3”, and “Conv6” is 

input as the residual. 

 

Figure 5. The network structure of CFN. 

The structure of CFN is simple and light, so it will not produce too many parameters, 

and the training difficulty is low. It can be seen from the comparative experiments that 

CFN has a better effect than other methods commonly used in fusion. 
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For the fusion of shallow features, the convolution results of the previous part of the 

encoder are fused and transmitted to the decoder to realize the preservation of shallow 

features in the fused image. Since each pixel value of the convolved feature map can rep-

resent a certain area of the original image and has a high information value, this paper 

selects the maximum pixel value. 

3.4. Loss Function 

In the network training stage, we need to train the feature extraction ability of the 

coding layer and the feature reconstruction ability of the decoding layer at the same time. 

Ground truth plays a crucial role in traditional CNN network training, and it is usu-

ally used to test the accuracy of the training set’s classification of supervised learning tech-

niques. However, the result of the image fusion network in this paper is a fusion image 

that includes both infrared target information and visible light details, so there is no 

Ground truth. This paper designs a combined loss function for such a special case to guide 

the network's training. A loss function  is generated by an appropriate combination 

strategy to minimize the loss of network training. 

The loss function in this paper consists of three parts: strength loss, texture loss, and 

structure loss. The total loss is as follows: 

 (10) 

where  represents strength loss, which restricts the pixel performance of the fusion 

result, mainly aiming at the target features of infrared images.  indicates texture loss, 

which restricts the embodiment of the detailed information of the fusion result, mainly 

aiming at the fine-grained background information of visible light images.  and  is 

the weight used to balance the losses. The value of  is set to 10 according to the research 

and  is set to 0.5 after the research in this paper. For the specific analysis experiment, 

see the parameter verification section in the chapter on experimental verification. The for-

mula of  is as follows: 

 (11) 

where  represent the height and width of the image, respectively,  represents 

the L1 norm, and  means that the maximum value is selected pixel by pixel. 

The formula of  is as follows: 

 (12) 

SSIM [28] is a typical image evaluation algorithm representing the structural similar-

ity between the standard image and the image to be evaluated. In this paper, SSIM is used 

to constrain the overall structure of the fused image. If the marked image is , the image 

to be evaluated is , the input infrared image is , and the visible input image is , 

then the formula of  is as follows: 

 (13) 
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 (14) 

Where  indicates the average value of pixels of image  and image ,  

represents the covariance between image  and image ,  are constant, set to 

0.2 based on a previous experiment [29].  are the height and width of the image, 

respectively, and  is used to balance the weights of the respective structural similari-

ties between the infrared and visible images. 

4. Experimental Verification 

4.1. Experimental Environment and Data Preparation 

The experimental environment of this paper is as follows: Intel (R) Core (TM) i9-

9820X processor, NVIDIA GeForce RTX 3090 GPU, win11 operating system, software en-

vironment pytorch 3.6 (Pytorch.org, Warsaw, Poland), network training software plat-

form pycharm, and test algorithm platform matlab2021b (The MathWorks, Inc., Natick, 

MA, USA). 

For the selection of data sets, this paper chooses the RoadScene data set as the train-

ing set and test set of this network model, and the TNO data set and some RoadScene data 

sets as the verification set. One thousand pairs of infrared and visible images in the data 

set are selected for network training, and 360 pairs of infrared and visible images in the 

data set are selected as test sets. All the images in the data set have been registered so that 

this paper can import the data directly into the network. In this paper, the learning rate is 

set to decline with the number of rounds during training, the initial learning rate is 0.001, 

and the learning rate decreases by 25% for each round of training. Adam solver is used to 

optimizing the loss function, and the size of each round is set to 8, and a total of 30 rounds 

are trained. 

For the selection of evaluation indicators, this paper selects a group of commonly 

used performance evaluation indicators of Fusion I. The index system is mainly divided 

into four categories, which are evaluation indicators based on information theory, includ-

ing EN (entropy) [30], MI (mutual information) [31], and PSNR (peak signal to noise ratio) 

[32]. MSE (mean-square error) based on structural similarity, SF (spatial frequency) [33], 

SD (standard deviation) [34], AG (Average Gradient) [35] based on image features, Eval-

uation index VIF (Visual fidelity) [36] based on human visual perception, and evaluation 

index based on source image and generated image, mainly including CC (Correlation Co-

efficient) [37], SCD (Difference Correlation) [38] and Qabf (Gradient-based Fusion Perfor-

mance) [39]. To ensure the accuracy and consistency of objective evaluation, all compara-

tive experiments are used in this paper. 

4.2. Comparative Experiment 

4.2.1. Comparison of Loss Function Parameters 

There are two self-defined parameters  in the loss function, and the parame-

ters in the loss function control the proportion of different parts of the combined loss func-

tion. In this paper, the parameter  is set to 10, according to the paper [40]. To evaluate 

the optimal value of , the value of  (of this paper is verified by experiments with 

control variables. Other factors being the same, assign  values to 0, 0.1, 0.5, 1, 10, and 

100, and conduct network training and testing, respectively. The test uses image pairs in 

the TNO data set, as shown in Figure 6. 
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(a) (b) 

Figure 6. The loss function compares the experimental source data, (a) Visible image, (b) Infrared 

image. 

Figure 7 shows the output results of images with different  values. Intuitively, as 

the value increases, the result's overall brightness is gradually improved. When 

, it can be seen from the “glass door” part of the picture that visible light information is 

reflected more, while the “glass door” part of the picture only reflects infrared features 

when . It can be preliminarily considered that with the increase of the  

value, the fusion results will gradually eliminate the visible light features and retain more 

infrared features. When , the infrared features in the red box disappeared, the vis-

ible light information of the upper body of the infrared target figure in the picture was 

erased, so the fusion effect was poor. Table 2 shows the comparison of objective indicators 

of experimental results, Objectively speaking, the optimal values of evaluation indexes 

are scattered, but when , more indexes reach the highest or second highest point. 

Based on intuitive and objective comparisons, this paper sets  as the value of the 

loss function. 

 

(a) (b) (c) 

 

(d) (e) (f) 

Figure 7. Experimental results of different loss function parameters, (a) ; (b) ; (c)

; (d) ; (e) ; (f) . 

  


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Table 2. The following is the fusion result of different loss function parameters, red is optimal, and 

blue is suboptimal. 

LGOE EN SF SD PSNR MSE MI VIF AG CC SCD Qabf 

0.1 7.3250 0.0414 8.8758 62.1439 0.0397 3.9588 1.0213 4.1167 0.5500 1.7407 0.5516 

0.5 7.3841 0.0415 8.9677 62.2285 0.0398 4.1862 1.0439 4.2497 0.5517 1.7396 0.5851 

1 7.3785 0.0416 8.8833 62.0650 0.0404 4.2851 1.0557 4.1819 0.5550 1.7465 0.5704 

10 7.3515 0.0394 8.8256 61.9424 0.0416 5.7972 1.1401 4.0409 0.5493 1.7159 0.5790 

100 7.3701 0.0405 8.8921 61.7965 0.0430 5.7946 1.1516 4.1248 0.5499 1.7152 0.5738 

1000 7.3588 0.0395 8.8863 61.9661 0.0413 5.8156 1.1421 4.0274 0.5489 1.7116 0.5740 

4.2.2. Comparison of Convergence Strategies 

This paper designs a fusion module based on a convolution layer. To verify the su-

periority of this module over other fusion modules, several commonly used fusion rules 

are selected, including four methods: maximum selection, tensor dimension superposi-

tion, tensor value superposition, weighted average, and a comparative experiment is car-

ried out. In the experiment, an image in the RoadScene dataset is selected as the compar-

ison object, as shown in Figure 8. 

 

(a) (b) 

Figure 8. The fusion strategy compares the source image of the experiment, (a) Visible image, (b) 

Infrared image. 

Figure 9 shows the fusion results of replaci ng different fusion modules while keep-

ing other parts consistent. The contrast of the maximum selection method is lower than 

that of this method, and the overall fusion result has higher brightness and lower contrast. 

Compared with the method proposed in this paper, numerical addition and tensor di-

mension superposition erase more infrared details, and the method of tensor dimension 

superposition looks smoother in the image. The black strip features of the wall with the 

green box are entirely lost in the results of this method. The results of the weighted aver-

age method have some disadvantages, such as low contrast and unclear infrared features. 

 

(a) Max (b) Add (c) Tensor superposition 
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(d) Average (e) CFN 

Figure 9. Experimental results of different fusion modules, (a) Max, (b) Add;(c) Tensor superposi-

tion;(d) Average;(e) CFN. 

From the comparison of indexes, several methods can get the best among different 

indexes, but the method in this paper can get more optimal values, as shown in Table 3. 

Combining subjective and objective results, the CFN fusion module proposed in this pa-

per is superior to the contrast method, the fusion results have high contrast, and the in-

frared and visible features are well reflected. 

Table 3. The following are the fusion results of different fusion modules. Red marks are optimal 

and blue marks are suboptimal. 

Fusion mod-

ules 
EN SF SD PSNR MSE MI VIF AG CC SCD Qabf 

Max 6.5023 0.0326 8.1126 67.1221 0.0126 4.5716 1.1937 2.8334 0.6514 1.8795 0.6084 

Tensor super-

position 
6.4707 0.0317 8.0400 67.2473 0.0123 5.0429 1.1723 2.6576 0.6511 1.8832 0.5888 

Add 6.4867 0.0324 8.0433 67.2571 0.0122 4.8275 1.1853 2.7842 0.6493 1.8711 0.5118 

Average 6.4839 0.0326 8.1292 67.2960 0.0121 4.6653 1.1945 2.8082 0.6486 1.8666 0.5949 

CFN 6.5078 0.0331 8.0590 67.2213 0.0124 4.6765 1.2026 2.8490 0.6489 1.8811 0.6160 

4.2.3. Comparison of LGOE Cascade 

This paper uses a two-layer LGOE feature extractor in the encoder for deep feature 

extraction. To verify whether the number of cascaded layers is optimal, a comparative 

verification experiment of the LGOE cascade is designed. Under the same other factors, 

the number of cascaded layers is set to 1, 2, 3, and 4. In the experiment of the 4-level cas-

cade, because the network depth is too deep, it can’t converge at the initial stage of train-

ing, and the gradient disappears, so it is possible to exclude 4-level and above as the opti-

mal one. Select an image in the experimental RoadScene data set as the contrast object, as 

shown in Figure 10. 

 

Figure 10. Source image of LGOE cascade comparison experiment. 

Figure 11 shows the fusion results of a different number of feature extractors. Intui-

tively, with the number of cascades increasing, the brightness of the fusion results 
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gradually decreases. That is, the proportion of infrared images in the fusion results grad-

ually increases; The brightness of the picture is high, but the contrast is low; The bright-

ness of the image is dark, and the infrared target features are not prominent; The overall 

effect of the picture is good, the clarity and brightness are balanced, the infrared target is 

prominent, and the visible light details are clear. 

 

(a) (b) (c) 

Figure 11. Experimental results of a different number of couplets, (a)1, (b)2;(c)3. 

From the comparison of objective indicators in Table 4, when the number of cascades 

is 2, the evaluation indicators of the fusion effect have obtained the optimal values of most 

indicators. Compared with other cascades, the fusion results have better performance in 

objective indicators and intuitive performance. Therefore, two LGOE feature extractors 

are selected in this paper. 

Table 4. The following is the fusion result of the number of cascades. Red is optimal and blue is 

suboptimal. 

LGOE EN SF SD PSNR MSE MI VIF AG CC SCD Qabf 

1 6.951 0.049 9.213 63.041 0.045 4.371 0.955 4.535 0.576 1.690 6.951 

2 6.933 0.050 9.178 63.171 0.043 3.816 1.012 4.774 0.581 1.704 6.963 

3 6.550 0.048 8.203 63.205 0.038 2.529 0.658 4.398 0.540 1.352 6.550 

4.3. Fusion Effect Comparison 

To prove the effectiveness and superiority of the network architecture proposed in 

this paper, six fusion algorithms are selected for comparative experiments, namely, Cross 

Bilateral Filter (CBF) [41], convolutional neural network (CNN) [42], Proportional Mainte-

nance of Gradient and Intensity (PMGI) [43], FusionGAN [12], IFCNN [29], U2Fuison [44]. 

CBF is an image fusion algorithm based on cross bilateral filter, which is a classical 

algorithm of traditional image fusion; PMGI is a general image fusion algorithm based on 

gradient and intensity ratio, which is the same end-to-end deep learning algorithm as this 

paper, but the main extracted information is pixel gradient and intensity; CNN method 

uses the same method of convolution to extract features as this paper, but mainly for 

multi-focused FusionGAN is a fusion algorithm based on GAN algorithm, the basic prin-

ciple is to generate the image with infrared features and multi-layer visible gradient by 

generator, and force the fused image to have more visible texture by discriminator, which 

is the same end-to-end fusion method as this paper, but is a derivative of GAN algorithm; 

IFCNN is a convolutional neural network based IFCNN is a general image fusion algo-

rithm based on convolutional neural network, which is a more basic fusion method, only 

extracting the features of the source image through two convolutional layers and passing 

them into the fusion layer (including three optional methods of element maximum, ele-

ment minimum or element average) for fusion, which extracts fewer features compared 

with this paper; U2Fuison is an unsupervised image fusion algorithm, using pre-trained 

VGG-16 as the feature extractor, and the other parts are based on DenceNet. 

To prove the generalization ability of the algorithm, this paper verifies it on the fol-

lowing two data sets. 
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4.3.1. Comparison of Effects in TNO Data Set 

To avoid the chance of data, 36 images in the TNO data set are selected as the source 

image data of the effect comparison experiment, as shown in the figure. At the same time, 

five images were selected from the used data for display to visually compare the fusion 

results of different algorithms without occupying too much space. Some details or main 

objects in the images were marked and enlarged with green highlighted boxes, and the 

visible and infrared images as input were placed in the first and second rows. The follow-

ing are the fusion results obtained by different methods, as shown in Figure 12. 

From an intuitive qualitative point of view, there are obvious gaps in the fusion re-

sults of the seven methods. It can be seen that the fusion results of different methods have 

different emphases. The fusion result of CBF has a poor visual effect and contains a lot of 

noises that do not exist (for example, the land in the first image, the noise on the right side 

in the fourth image, and the target outline in the fifth image), and the detailed information 

is seriously distorted. The results are similar to those of CNN IFCNN, and the overall 

visual effect is good. However, the contrast of environmental information in the first im-

age is too low, and the fusion effect of the algorithm on low-quality images is poor. The 

brightness of grass in the enlarged part of the second image is too high, but there is no 

infrared feature in the source image. The trench's low brightness feature on the left side 

in the fourth image completely covers the visible light information. 

PMGI U2Fuison has good fusion ability for low-quality source images. The first im-

age has high contrast and full environmental information. In the fifth image, the outline 

in the glass is unclear, the contrast is low, the overall fusion effect is general, and the sky 

is gray, so the fusion effect is general. And the visible light information of PMGI in the 

third image is saved less, which makes fused images less sharp. The overall effect of Fu-

sionGAN is poor, and the details are insufficient. For example, the infrared target in the 

first picture and the infrared target in the fifth picture is not clear in outline, the fusion 

result is gray, and the contrast is insufficient. Compared with the shortcomings of other 

methods mentioned above, this paper can achieve a better balance in different quality im-

ages, keep clear visible light information in all images, and keep the infrared target bright. 

The first image has a good fusion contrast, keeping high contrast information, and the 

second image keeps different brightness for different places, which has a better visual 

effect based on inheriting the source image information. 

The objective evaluation results of indicators are shown in Table 5, with the best re-

sults in red font and the second-best in blue font. From the results, the algorithm proposed 

in this paper has better performance in this data set, and the fusion results can obtain the 

optimal and suboptimal values of most indexes. 

Table 5. The objective experimental results of different fusion methods show that the red font is 

optimal, and the blue font is suboptimal. 

Method EN SF SD 
PSN

R 
MSE MI VIF AG CC SCD Qabf 

CBF 
6.91

4 

0.05

4 
9.098 

62.79

9 
0.045 2.230 0.541 5.487 0.386 1.367 0.406 

CNN 
7.16

1 

0.04

3 
9.610 

62.16

9 
0.052 2.425 0.951 4.165 0.454 1.695 0.538 

PMGI 
6.91

9 

0.03

1 
9.297 

62.52

3 
0.045 2.010 0.829 3.218 0.522 1.785 0.356 

Fu-

sionGA

N 

6.58

3 

0.02

4 
8.751 

60.92

1 
0.060 2.337 0.659 2.327 0.428 1.381 0.232 

IFCNN 
6.73

2 

0.04

5 
9.006 

63.17

5 
0.040 2.398 0.810 4.428 0.487 1.690 0.505 



Electronics 2022, 11, 3140 16 of 21 
 

 

U2Fuiso

n 

6.95

0 

0.04

4 
9.550 

62.81

1 
0.042 1.876 0.810 4.710 0.515 1.781 0.423 

Pro-

posed 

7.09

0 

0.04

7 
9.516 

63.19

7 
0.057 3.645 0.973 4.606 0.450 1.625 0.549 

 

 

 

Figure 12. Experimental results of different fusion methods. 

From an intuitive qualitative point of view, there are obvious gaps in the fusion re-

sults of the seven methods. It can be seen that the fusion results of different methods have 

different emphases. The fusion result of CBF has a poor visual effect and contains a lot of 
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noises that do not exist (for example, the land in the first image, the noise on the right side 

in the fourth image, and the target outline in the fifth image), and the detailed information 

is seriously distorted. The results are similar to those of CNN IFCNN, and the overall 

visual effect is good. However, the contrast of environmental information in the first im-

age is too low, and the fusion effect of the algorithm on low-quality images is poor. The 

brightness of grass in the enlarged part of the second image is too high, but there is no 

infrared feature in the source image. The trench's low brightness feature on the left side 

in the fourth image completely covers the visible light information. 

And PMGI U2Fuison has good fusion ability for low-quality source images. The first 

image has high contrast and full environmental information. In the fifth image, the outline 

in the glass is unclear, the contrast is low, the overall fusion effect is general, and the sky 

is gray, so the fusion effect is general. And the visible light information of PMGI in the 

third image is saved less, which makes fused images less sharp. The overall effect of Fu-

sionGAN is poor, and the details are insufficient. For example, the infrared target in the 

first picture and the infrared target in the fifth picture is not clear in the outline, the fusion 

result is gray, and the contrast is insufficient. Compared with the shortcomings of other 

methods mentioned above, this paper can achieve a better balance in different quality im-

ages, keep clear visible light information in all images, and keep the infrared target bright. 

The first image has a good fusion contrast, keeping high contrast information, and the 

second image keeps different brightness for different places, which has a better visual 

effect based on inheriting the source image information. 

The objective evaluation results of indicators are shown in Table 5, with the best re-

sults in red font and the second-best in blue font. From the results, the algorithm proposed 

in this paper has better performance in this data set, and the fusion results can obtain the 

optimal and suboptimal values of most indexes. 

Specifically, the fusion results of this algorithm have relatively good information en-

tropy, spatial frequency, standard deviation, mean square error, good gradient character-

istics in peak signal-to-noise ratio, mutual information, and visual fidelity. Experimental 

results show that the proposed algorithm has better fidelity, lower distortion, and artifacts 

in the TNO data set than the comparison algorithm and has a better fusion effect in gen-

eral. 

4.3.2. Comparison of Effects in RoadScene Data Set 

This section tests six comparison algorithms and our algorithm on the RoadScene 

dataset. The test set is 50 pairs of visible and infrared images selected from the RoadScene 

data set. Five typical scenes are selected from the results shown in Figure 13, with local 

details selected by red boxes and enlarged. 

In the figure, the infrared image mainly includes the highlighted thermal radiation 

infrared information, including pedestrians, vehicles, some buildings, etc. The visible im-

age contains a lot of detailed environmental information. From an intuitive point of view, 

this method is more prominent in infrared target information retention, and the brightness 

of people’s vehicles is significantly higher than that of the environment, which is conven-

ient for human eye recognition and subsequent programmed processing. In terms of vis-

ible light detail information retention, the overall result details and textures are more 

clear, and the brightness intensity distribution is appropriate. 
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Figure 13. Experimental results of different fusion methods. 

Objective Contrast In this paper, 11 evaluation indexes, such as EN, SF, SD, etc., used 

above are used. After fusing 50 images in the test set, each image is evaluated separately, 

and the average value is obtained. The best image is marked with red and the second-best 

is marked with blue. The results are shown in Table 6. In this paper, the algorithm achieves 

the best value in spatial frequency, standard deviation, mean square error, average gradi-

ent, and difference correlation index, and the second-best value in mutual information, 

visual fidelity, and gradient-based fusion performance. 

Table 6. The objective experimental results of different fusion methods show that red font is opti-

mal and blue font is suboptimal. 

Method EN  SF  SD  PSNR  MSE  MI  VIF  AG  CC  SCD  Qabf  

CBF 7.532 0.064 10.670 60.651 0.063 3.520 0.595 6.465 0.368 1.148 0.479 

CNN 7.244 0.059 10.360 61.403 0.052 2.614 0.828 5.643 0.502 1.583 0.578 

PMGI 7.134 0.047 9.761 60.390 0.063 3.115 0.743 4.599 0.558 1.851 0.473 

Fu-

sionGAN 
7.175 0.034 10.305 59.207 0.062 2.962 0.583 3.347 0.442 1.375 0.272 

IFCNN 6.973 0.059 10.357 61.535 0.050 3.008 0.720 5.624 0.532 1.589 0.512 

U2Fuison 7.197 0.062 9.827 61.404 0.050 2.868 0.700 6.313 0.529 1.769 0.479 

Proposed 7.247 0.073 10.840 60.067 0.071 3.200 0.802 6.962 0.471 1.882 0.559 

Overall, in the test results on the RoadScene data set, compared with other methods, 

this paper has better information retention ability and better visual effect. 

          
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5. Conclusions 

This paper presents an image fusion network based on a special residual network 

and attention mechanism. A Laplacian-based gradient operator feature extractor in the 

network is designed to extract fine-grained features from the network images. Secondly, 

the ECA attention mechanism is introduced to guide the extraction of deep features. In 

the fusion part, a convolution-layer-based fusion module is designed to fuse deep fea-

tures. A multi-layer feature fusion method is used to fuse shallow features into the de-

coder using the maximum pixel value rule. Finally, an appropriate combined loss function 

is used for network training. Experiments on different types of public data sets show that, 

compared with the traditional comparison algorithm and the comparison algorithm based 

on deep learning, the fusion results obtained by the proposed method have better visual 

effects and better retention effects for visible light information based on prominent infra-

red information. Objectively speaking, the algorithm in this paper can obtain the optimal 

or suboptimal value in most evaluation indexes. The eleven categories of metrics for par-

tial image comparison in the public TNO dataset are 72% optimal or suboptimal and 80% 

optimal or suboptimal in the RoadScene dataset, which is much higher than other algo-

rithms. Overall, the results show that this method is superior to the current advanced in-

frared image and visible image algorithms. 
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