i}% electronics

Article

Dynamic Offloading Method for Mobile Edge Computing
of Internet of Vehicles Based on Multi-Vehicle Users
and Multi-MEC Servers

Xiaochao Dang >*, Lin Su !, Zhanjun Hao '? and Xu Shang!

Citation: Dang, X.; Su, L.; Hao, Z.;
Shang, X. Dynamic Offloading
Method for Mobile Edge Computing
of Internet of Vehicles Based on
Multi-Vehicle Users and Multi-MEC
Servers. Electronics 2022, 11, 2326.
https://doi.org/10.3390/
electronics11152326

Academic Editor: Claus Pahl

Received: 27 June 2022
Accepted: 22 July 2022
Published: 26 July 2022

Publisher’s Note: MDPI stays neu-
tral with regard to jurisdictional
claims in published maps and institu-

tional affiliations.

Copyright: © 2022 by the authors. Li-
censee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and con-
ditions of the Creative Commons At-
tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

1 College of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China;
2020211966@nwnu.edu.cn (L.S.); haozhj@nwnu.edu.cn (Z.H.); 2018211723@nwnu.edu.cn (X.S.)

2 Gansu Province Internet of Things Engineering Research Center, Lanzhou 730070, China

* Correspondence: dangxc@nwnu.edu.cn

Abstract: With the continuous development of intelligent transportation system technology, vehicle
users have higher and higher requirements for low latency and high service quality of task compu-
ting. The computing offloading technology of mobile edge computing (MEC) has received extensive
attention in the Internet of Vehicles (IoV) architecture. However, due to the limited resources of the
MEC server, it cannot meet the task requests from multiple vehicle users simultaneously. For this
reason, making correct and fast offloading decisions to provide users with a service with low la-
tency, low energy consumption, and low cost is still a considerable challenge. Regarding the issue
above, in the IoV environment where vehicle users race, this paper designs a three-layer system task
offloading overhead model based on the Edge-Cloud collaboration of multiple vehicle users and
multiple MEC servers. To solve the problem of minimizing the total cost of the system performing
tasks, an Edge-Cloud collaborative, dynamic computation offloading method (ECDDPG) based on
a deep deterministic policy gradient is designed. This method is deployed at the edge service layer
to make fast offloading decisions for tasks generated by vehicle users. The simulation results show
that the performance is better than the Deep Q-network (DQN) method and the Actor-Critic method
regarding reward value and convergence. In the face of the change in wireless channel bandwidth
and the number of vehicle users, compared with the basic method strategy, the proposed method
has better performance in reducing the total computational cost, computing delay, and energy con-
sumption. At the same time, the computational complexity of the system execution tasks is signifi-
cantly reduced.

Keywords: internet of vehicles; mobile edge computing; edge-cloud collaboration; deep determin-
istic policy gradient networks; computational offloading

1. Introduction

In recent years, the rapid development of Internet of Things (IoT) technology, artifi-
cial intelligence, and big data has made people’s requirements for travel services more
complex and diverse [1,2]. According to statistics, the number of people using all types of
vehicles is expected to reach 2 billion by 2035 [3]. In response to this environment, tech-
nologies such as intelligent mobility, autonomous driving, and the Internet of Vehicles
(IoV) have emerged [4,5]. Autonomous vehicle technology allows multiple intelligent ap-
plications to be run, enabling vehicles to be driven more safely and efficiently [6]. Ad-
vanced communication and information technology are integrated into the IoV, which
helps solve various traffic and driving problems, thus improving service quality needs
such as passenger safety. Vehicular communication, in-vehicle communication, and ve-
hicular mobile internet are the three main communication components of IoV [7]. Any
latency in processing, analyzing, and collecting data in real-time is intolerable for IoV.

Electronics 2022, 11, 2326. https://doi.org/10.3390/electronics11152326

www.mdpi.com/journal/electronics

Electronics 2022, 11, 2326

2 of 20

Cloud computing, fog computing, and Mobile Edge Computing (MEC) are a few intelli-
gent computing platforms for big data analytics that can speed up data processing and
effectively reduce latency [8-13].

Even some vehicles do not have the storage and computing capacity due to the limi-
tations of the vehicle terminals [14]. In order to handle the huge amount of data collected
through IoV, cloud computing is one of the ways to process this data efficiently [15]. The
user in IoV is offloading the task requirements to the cloud computing center, which
passes the processed results back to the user side. However, the distance between the
cloud computing center and the users is long, and multiple users releasing service re-
quests to the cloud computing center at the same time can cause a large delay, making it
impossible for the users to receive the results of the cloud computing center promptly.
Moreover, the vehicle is mostly on the move, which places higher demands on latency.
Once the response latency exceeds the minimum requirement for a service request, it will
likely cause safety problems and increase the risk of road accidents [16]. As a result, the
bandwidth and latency of cloud computing are not suitable for processing real-time tasks
in vehicles. Mobile edge computing is more promising than cloud computing as it solves
the problem of insufficient computing power at vehicle terminals and allows for real-time
data processing. Deploying MEC servers to a Road Side Unit (RSU), bringing computing
resources closer to the side of the connected car user and sinking them to the MEC server,
thus reducing latency to meet the changing needs of the vehicle user [17,18].

Recently, researchers have started using emerging techniques to solve computational
offloading and resource optimization problems, such as artificial intelligence, machine
learning, and reinforcement learning [19,20]. A great deal of research has shown that deep
reinforcement learning-based approaches are widely used in many research areas and are
more stable and efficient in solving dynamic computational offloading and resource opti-
mization.

On the Internet of Vehicles mobile edge computing environment, the network envi-
ronment, the needs of mobile vehicle users, and system computing resources are all
changing. In a resource-constrained environment, using the distributed features of mobile
edge computing can provide users with services with low latency and low energy con-
sumption more stably and reduce the system’s total cost. The current IoV mobile edge
computing service offloads a significant challenge. Most of the existing research content
is the research on computing task offloading based on the combination of edge and end.
For this reason, this paper proposes a computing offloading method for the Internet of
Vehicles based on Edge-Cloud collaboration. The contributions of this paper are as fol-
lows:

(1) In order to solve the problem of limited MEC resources, a task offloading over-
head model based on Edge-Cloud collaboration based on multiple mobile vehicle users
and MEC servers is designed. The model mainly has a three-layer architecture: the cloud
service layer, the edge service layer, and the terminal layer. The method deployed on the
MEC server is used to make real-time offloading decisions, and the service offloading
method is partially optimized. The cloud center is responsible for coordinating the re-
sources of the entire link.

(2) Within the system model, we formulate reducing the total cost of processing tasks
by the system as an optimization problem, transforming the task offloading and resource
optimization problem into an optimization problem based on deep reinforcement learn-
ing. Drawing on the idea of deep reinforcement learning, combined with the experience
replay of DON and the characteristics of the target network, an Edge-Cloud collaborative,
dynamic computing unloading method (ECDDPG) based on a deep deterministic policy
network is proposed.

(3) The simulation results show that the ECDDPG method can effectively reduce the
computational complexity of system execution tasks. Even when the number of users
reaches 35, compared to the baseline method, it can save 7.9-46.8% of the total cost.

Electronics 2022, 11, 2326

3 of 20

The remaining chapters of this paper are organized as follows. The second section
mainly summarizes the related work of this paper. The third section introduces the system
model, communication model, related computing models, etc. The fourth section intro-
duces the MEC offloading method on the Internet of Vehicles environment relatively thor-
oughly. Section 5 carries out the simulation experiment design and result from the analy-
sis of the method in this paper. Section 6 concludes with a comprehensive summary of
this paper.

2. Related Work

Nowadays, smart transportation is constantly evolving, and the scope of the Internet
of Things is becoming more and more widespread, which continues to drive the growth
of users’ demand for computing [21]. With the advent of the MEC technique, the issue of
efficiency and latency in data processing has again received increasing attention, with the
problem of computational offloading of the MEC being widely followed by scholars.

In order to reduce the energy consumption of the MEC system to perform tasks, in
[22], a heterogeneous two-layer computing offloading framework has been proposed,
which can formulate joint offloading and multi-user association problems for multi-user
MEC systems and effectively reduce the energy consumption of system processing tasks.
Reference [23] proposes a new adaptive offloading algorithm, considering that a large
number of resources of mobile devices are underutilized, as well as the spatiotemporal
dynamics of devices, the uncertainty of service request volume, and the changes in the
communication environment within the MEC system. Reference [24] builds a multi-user
MEC system model under channel interference for continuous task execution and data
partition-oriented applications. On this basis, the author proposes and solves the corre-
sponding energy consumption minimization problem.

Recently, some scholars have studied the optimization of the MEC calculation of-
floading problem in the MEC system with the goal of reducing the system execution de-
lay. The literature [25] considers the problems of offloading decisions, collaborative relay
selection, and resource allocation among multiple users. It proposes a joint iterative algo-
rithm based on Lagrangian Dual Analysis, monotonic optimization algorithms, to mini-
mize the execution delay of all tasks [26]. In the device-to-device MEC scenario, the com-
puting tasks generated by the device can be offloaded to the edge server for computing or
offloaded to nearby devices. In order to effectively reduce the system delay, consider the
energy consumption and partial offloading required to perform tasks, and resource allo-
cation constraints, a new scheme based on joint partial offloading and resource allocation
is proposed.

The above research work only considers the energy consumption or execution delay
of the system executing tasks. Reference [27] studies the safe offloading framework of the
mobile edge under Unmanned Aerial Vehicle (UAV) in a MEC network, describes it as a
multi-objective optimization problem, and proposes a multi-objective optimization strat-
egy based on the DQN algorithm, which can better reduce delay and reduce energy con-
sumption. Reference [28] studies a distributed machine learning method based on a multi-
user MEC network in a cognitive eavesdropping environment, proposes three optimiza-
tion criteria, and uses a federated learning method to solve combinatorial optimization
problems. Reference [29] proposes an adaptive task offloading and resource allocation
method in the MEC environment, using deep reinforcement learning to select appropriate
task computing nodes for mobile users, which can optimize the average response delay
of the task and the total energy consumption of the system.

In the IoV environment, MEC can meet the low-latency and diverse requirements of
mobile vehicle users. In recent years, some researchers have received extensive attention
and research on applying MEC in IoV. Reference [30] designs a model framework com-
bining MEC and IoV, where all vehicle users and MEC servers within the model can act
as offloading nodes. A task offloading method with task classification and mobile offload-
ing nodes is proposed. In the literature [31], in the IoV environment, a layered architecture

Electronics 2022, 11, 2326

4 of 20

is constructed to minimize the system’s total time delay, a hybrid nonlinear programming
optimization problem is established, and an online multi-decision optimization is estab-
lished algorithm based on Lyapunov is proposed [32] to solve the service request problem
in in-vehicle networks by jointly optimizing task offloading decisions and resource opti-
mization problems, proposing a cloud-edge coordinated computational offloading
scheme, designing a distributed optimization method based on this scheme, and finally
obtaining the optimal solution.

In addition, regarding the challenges of computing offloading and resource optimi-
zation of in-vehicle edge computing, some researchers use deep reinforcement learning to
solve the MEC computational offloading problem. The literature [33] models task offload-
ing and propose a mobility-oriented computing offloading retrieval protocol for in-vehi-
cle edge multiple access to improve service quality. The literature [34] proposes a deep
reinforcement learning-based offloading method in a multi-cell vehicle network scenario,
which is used to optimize communication and computational resources and reduce the
energy consumption and latency of the system in performing computational tasks. Refer-
ence [35] considers a system model with multiple mobile users and multiple MEC servers
in vehicular networking, combines deep reinforcement learning methods and improves
the traditional Q-learning approach, and demonstrates through simulation experiments
that the approach can achieve reduced energy consumption at different wireless band-
widths.

The above research has done related work in reducing energy consumption and sys-
tem execution delay in the MEC environment of IoV. The current research work considers
a single problem. The problem of limited MEC resources will be exposed in the scenario
of multiple vehicle users. It cannot meet the task requests from multiple vehicle users sim-
ultaneously. Therefore, providing a reliable service for multi-vehicle users still faces sig-
nificant challenges in the IoV mobile edge computing environment.

Regarding the issue above, in the IoV environment where vehicle users race, this pa-
per designs a three-layer system task offloading overhead model based on the Edge-
Cloud collaboration of multiple vehicle users and multiple MEC servers. Using the mighty
computing power of cloud services to coordinate the calculation of the full link can effec-
tively alleviate the problem of limited computing resources of the MEC server. Based on
the consideration of different devices, computing devices at different levels undertook
task calculations with different computing power requirements. Combined with the idea
of deep reinforcement learning, an Edge-Cloud collaborative, dynamic computing of-
floading method (ECDDPG) based on a deep deterministic policy network is proposed.
The method can make quick offloading decisions for task requests and effectively meet
the user’s real-time requirements for task processing. The simulation results show that
this method can achieve the expected goals well.

3. System Model

In the IoV environment, this section establishes a collaborative Edge-Cloud task of-
floading overhead model based on multiple mobile vehicle users and multiple edge serv-
ers, with a system model consisting of a cloud computing center and multiple edge server
roadside units, and individual mobile vehicle users. On this basis, the communication
model of the system is first established by mathematical modeling to ensure the reliability
of data transmission within the system. Then, the computational offloading Model is in-
troduced in terms of local computing, MEC server computing, and cloud server compu-
ting. The task offloading problem for vehicle user computing on Internet of Vehicles mo-
bile edge computing is abstracted as a complex optimization problem. The task offloading
overhead model for Edge-Cloud collaboration is shown in Figure 1.

Electronics 2022, 11, 2326

5 of 20

Figure 1. System Model.

3.1. Edge-Cloud Collaborative Mobile Edge Computing System Model

We consider a system model with multiple mobile users and MEC servers, where the
locations of the cloud computing center and the MEC computing nodes are fixed, and
each mobile vehicle user is arbitrarily mobile. At the same time, each mobile vehicle user
has access to each MEC computing node, and each mobile vehicle user is relatively inde-
pendent. The system model is mainly divided into three layers: the cloud service layer,
edge service layer, and terminal layer. The cloud service layer makes use of the powerful
computing and storage capabilities possessed by the cloud computing center, coordinates
the computational power and intelligent resources on the entire link, gives full play to the
advantages between different devices, and sends transmission instructions to the edge
server when necessary, comprehensively providing services for end-vehicle users. The
edge service layer consists mainly of MEC servers, which may consist of base stations,
wireless access points or lightweight servers, and roadside units responsible for collecting
information from vehicle users. There are multiple MEC nodes within the system MEC
server, and the most appropriate node is selected to provide computing services to the
vehicle users based on their request location. The terminal layer mainly consists of mobile
vehicle users generating task requests or performing a limited number of task calcula-
tions. Considering the uncertainty of the wireless channel and the competition for server
resources, minimizing the total system cost also requires solving the problem of system
communication and the rational allocation of server computing resources.

There is one cloud center server in the system, K MEC server can be represented as
k = (1,2,..K), each MEC server has computing power, and mobile vehicle users are con-

nected to the MEC server, N mobile vehicle users can be represented as N = (1,2,...,N)
.The system time is defined as ¢ =(1,2,..T) . Define the tasks generated by the mobile ve-
hicleusersn as D; =(c;,d;,T,,,) , Where ¢;indicates the size of the period required to com-
plete the calculation task, d,indicates the amount of data generated by the vehicle user.
T,..x indicates the maximum time delay allowed for system processing tasks.

3.2. Communication Model

In the IoV, each vehicle user generates multiple independent tasks, which are divided
into multiple sub-tasks with data dependencies. Based on the actual needs of the users,
the tasks can either be computed locally, offloaded to the MEC server at the edge service
layer for computation, or offloaded to a cloud server to be processed using a cloud center.
Therefore, the costs under these three different computation methods are to be consid-
ered.

In this paper, the communication between the mobile vehicle user » and the MEC
computing node k adapts to the wireless network. In order to better realize bidirectional

Electronics 2022, 11, 2326

6 of 20

data transmission between users and edge nodes, users and MEC computing nodes adopt
the orthogonal multiple access technology of frequency division multiplexing, and the
bandwidth of each sub-channel is # . In a certain dynamic time-varying ideal channel
state, the communication between each user and the MEC node will not be disturbed.
Then, the maximum data transmission rate between the mobile vehicle user and the cor-
responding MEC node can be expressed as:

v, (n,k) = mtWlog,(1+ Pg, [c?) 1)

where m; indicates the number of wireless sub-channels allocated by the system to the
vehicle usern, o’ represents the background noise power of the Internet of Vehicles en-
vironment, P, represents the vehicle user n transmit signal power. g, represents the chan-

nel gain between the vehicle user » and the MEC node k .

3.3. Computational Offloading Model

For the computing-intensive task request of each vehicle used on the Internet of Ve-
hicles, the task can be selected for local computing, offloaded to MEC server computing,
or offloaded to the cloud server computing center. Therefore, the vehicle user’s choice of
the appropriate offloading strategy plays a crucial role in the system function. The pur-
pose of the offloading strategy is to face the dynamic offloaded of multiple mobile vehicle
users, reduce the delay and energy consumption of computing tasks, improve the com-
puting speed, use resources reasonably, and better meet the needs of users. For the of-
floading decision parameter, we use a 0-1 variable, indicating as« , #, when «; = 0. This
means that the mobile vehicle user selects their CPU to process the generated data. When
a; =1, the tasks generated by the mobile vehicle user need to send an offloading request

to the edge server, making the appropriate decision for the offloading. If 5, = 0, then the
task data is offloaded to the MEC server for calculation; If 8; = 1, then the task data will

be offloaded to the cloud server for computational processing. This is represented as fol-
lows:

(0, Local Computing]
a; = i

0, MEC Server Computing
L, Others

I, Cloud Server Computing @)

The tasks generated by mobile vehicle users can be processed locally and offloaded
to edge servers or cloud servers for processing. Therefore, we discuss the latency, energy
consumption, and total consumption cost arising from local computing, edge server com-
puting, and cloud server computing.

3.3.1. Local Computing

The task data generated by the mobile vehicle user is calculated locally, and the cal-
culation process is only related to the CPU computing capability of the vehicle user. In

loc

our scenario, for tasks performed by local computation, let f;° denote the computing

power of the i-th end vehicle user.

In heterogeneous IoV, there is no transmission delay for local computation. There-
fore, the delay caused by the user of the mobile vehicle performing the task locally can be
expressed as:

7}]06 _ Ci/filoc (3)

3
According to the literature [22], let the energy consumption model be as x; (filoc) ,

then the energy consumption generated by the mobile vehicle user processing computing
tasks at the terminal layer is expressed as follows:

E{oc _— (floc)3 T[oc (4)

Electronics 2022, 11, 2326

7 of 20

where x depends on the chip structure of the terminal device in the system, let x = 107°.
According to Formulas (3) and (4), we can obtain the total cost required to execute the task
data locally:

Q{_oc _ glocz—;_loc +¢locEl_loc (5)

The sum of coefficients £ and ¢ in Formula (5) represents the time weight and en-
ergy consumption weight generated by the user performing the calculation task locally.

3.3.2. MEC Server Computing

For tasks performed by the edge server, the execution of the task generates additional
latency and energy overhead so that vehicle users can wirelessly transmit data to the edge.
The total delay generated by mobile vehicle users performing computing tasks on the
edge server comprises four parts: transmission delay, calculation delay, waiting for the
delay, and result return delay. According to the relevant literature and data results, the
delay caused by the result back to the terminal layer is slight, which is ignored in this
paper. Let £"* denote the computing power of the i-th edge server, according to the For-
mula (1) of the communication model. Therefore, in the heterogeneous IoV, the delay gen-
erated by the sub-tasks generated by different vehicle users in the execution of tasks on
the edge server can be expressed as:

com __ Ci
I = fMEC (6)
Ji

According to Formula (1), the time delay consumed by the task data generated by the
mobile vehicle user transmitted from the terminal layer to the edge server through the
wireless channel is expressed as:

tran __ di

¢ v,(n,k))

Therefore, if the data task request of a mobile vehicle user is uninstalled to the edge
server for computation, the resulting total delay can be expressed as:

edge __ pcom tran wait
L™ =T 7" +I,7 +1, 8)

Among them, 7,**"is the queuing delay for the user to make a task request. The
queuing delay for any user is the time interval from when the user sends a request to the
system to when the task is executed. 7™ denotes the start time of the task request, 7.
denotes the time when the task request starts to be executed.

i end
]—;wazt _ Tg n _Tgsta (9)

When the data task request of the mobile vehicle user is offloaded to the edge server
to perform the calculation, the energy consumption is determined by the data transmis-
sion in the channel, the time the system waits, and the energy generated by the calculation
at the edge server. The total energy consumption is expressed as:

i 3 e
E:dge — BN (Tetran +Tewa1t)+Ki (f;MEC) T;:am (10)

According to the above formula, the total cost of vehicle users performing computing
tasks on the edge server is:

edge _ _edgeedge edge rredge
Qi =™ L™ + 9™ E, 11)

edge edge +

The sum of coefficients £“* and ¢“*‘ in Formula (11) represents the time weight and
energy consumption weight generated by performing the calculation task on the MEC

server.

3.3.3. Cloud Server Computing

Electronics 2022, 11, 2326

8 of 20

The MEC server cannot process the data tasks generated by the mobile vehicle users
faster and is offloaded to the cloud server for processing through the wireless network in
the channel. At this time, the total delay generated by the cloud server processing compu-
ting task is mainly composed of the transmission delay generated by the user passing the
task to the cloud server layer, the delay generated by the cloud server processing compu-
ting task, the waiting delay of the mobile vehicle user and the delay generated by the task
result back to the mobile vehicle user. The delay caused by the return of the cloud pro-
cessing task results to the terminal layer is small and can be ignored. The overall latency
generated by cloud server computing can be expressed as:

cloud tran com wait
77 =17+ + 1, (12)

The transmission delay is expressed as:
d

tran __ i
S (13)

The delay of data tasks generated by mobile vehicle users in cloud server computing
is expressed as:

C;

1 =i (14)

1

When the data task request of mobile vehicle users is offloaded to the cloud server
for computing, the energy consumption is generated by data transmission in the channel,
system waiting time and computing in the cloud server. Thus, the total energy consump-
tion incurred in processing task data at the cloud server is expressed as:

i ’ 3.
E;’laud _ EN (Tctran +Tcwa1t) +Ki (f;LlOMd) cham (15)

From the above formula, the overall cost of vehicle users performing computing tasks
on the cloud server can be expressed as:

qunud — 8clnuchclnud

1

+ wcloudEfloud (16)

cloud 3

and ¢ in Formula (16) represents the time weight and

cloud

The sum of coefficients &

energy consumption weight generated by performing the calculation task on the cloud
server.

3.4. Problem Formulation

The purpose of the offloading decision is to reduce the system’s total cost to complete
the mobile vehicle user task request as much as possible. If the task requests of all mobile
vehicle users are executed locally, the MEC server and the cloud server are idle; if the task
requests are offloaded to the MEC server, the computing resources of the vehicle users
and the cloud server are in an idle state.

According to the above analysis, the minimum cost problem of the system can be
expressed as:

Min: Q7 = @, Q1" + (- (BQ™ +(1- Q™)
S.t.:

3a:T. <T,

max

3b: T/ < T, 17)
3c:a+f=1a; 0,15 [0,1]

3d:et+o=1

3e: Formula (5) (11) (16)

Electronics 2022, 11, 2326

9 of 20

Among them, the constraints 3a and 3b are that the delay generated by the local task
execution and the MEC server execution task cannot be higher than the maximum delay
of the system. Therefore, 3c indicates the relationship between the decision parameters of
the system offloading, 3d indicates the relationship between the two weight coefficients,
and 3e is determined according to the calculation model of the system. The total cost is
incurred by the system to perform a computing task.

Since wireless channels and vehicle users are dynamically changing and moving, tra-
ditional optimization problems cannot solve the resource optimization problem better.
Resource allocation decisions and unloading decisions are related to the current system
utility and affect the state of subsequent system processing tasks. To this end, we combine
the methods of deep reinforcement learning to solve the above problems. See the next
chapter for details.

4. Dynamic Computing Offloading Method Based on Edge-Cloud Collaboration

Section 3 derives the total cost of executing a system’s task requests under different
computational offloading models, and this section considers a collaborative Edge-Cloud-
based offloading approach. For the offloading problem of multiple edge servers and mul-
tiple mobile vehicle users in IoV, the information obtained by the RSU, such as the size of
the service requested by the vehicle user, the transmit power of the user, the channel gain,
etc., in order to minimize the total cost of the system to handle the task. Combined with a
deep reinforcement learning method for offloading decisions, an Edge-Cloud collabora-
tive, dynamic computing offloading method (ECDDPG) based on Deep Deterministic Pol-
icy (DDPG) is proposed. The method can perform independent learning at each MEC
server and select an optimal action for each vehicle user according to the interaction be-
tween the agent and the environment, i.e., the best choice for the system’s task execution.

4.1. Introduction to the DRL

Some definition standards of DRL mainly refer to traditional RL methods, including
an agent, a set of environmental state spaces S, and a set of action spaces A . The agent
makes corresponding action decisions through continuous interaction with the environ-
ment in discrete time s . At each time¢, the agent observes the current state S, of the sys-
tem from the state space §, and chooses an appropriate action from the action space 4
according to a random policy =, i.e. 7:S — P(4), Then, the agent gets an instant reward
r, =(s;,a,) , transition to the next state S,,, according to the transition probability
P(s,,,|s,,a,) of the environment, each action performed will receive a reward from the
environment. In order to find the optimal strategy, when the long-term cumulative return
benefit reaches the maximum, it is the optimal strategy in the current state. The environ-
ment in which the system is located is defined according to the sum of discount rewards
in a particular state is:

T -

R=2 7 rsa) (18)
where T is the total time step of the system, y e (0,1) represents the discount factor. The
main goal of RL is to find a strategy in the initial distribution state to maximize the reward
R with discount accumulation, the formula is expressed as:

J= Esi~E,ai~7z[Ri] (19)

Electronics 2022, 11, 2326

10 of 20

Algorithm 1 ECDDPG-based Dynamic computational offloading algorithm
Input: Sets of vehicular users, MEC services K, task D, ,

Output: Maximum Reward R and Action 4;

1: Initialize weights of actor and critic online networks, 6 and 02;

2: Initialize weights of actor and critic target networks, 8 "and 6¢';

3: Initialize experience replay buffer # to be empty;
4: For each episode = 1,2,---& do
5: Reset simulation parameters for the Internet of Vehicles environment;
6: Randomly generate an initial states, € S ;
7: For each time slot= ¢=1,2,---7,,, do
8

Select an action a, = u(s, | 6")+ N, ,Decide whether vehicle user tasks are to be

performed locally or computation offloading offload according to the current
policy and noise;

9: Execute the action g, ,receive an award r, € R ,transition to the next state s,,, ;
10: Store transition (s,, a,,7,,s,,;) into experience replay buffer 7 ;
11: Sample a random mini-batch of Y transitions(s;,q;,7,s;,;) from the
buffer 7 ;
12: Update the parameters of critic network by minimizing the loss function based
on equation (24);
13: Update the parameters of actor network by using the policy gradient based on
equation (26);
14: Update the target network: @ . € ¢ based on equation (27) and (28);
15: end for
16: end for

4.2. Dynamic Offloading Decision Method Based on DDPG
4.2.1. Problem Transformation

In the IoV environment, the vehicle user is in a state of high-speed movement; this
will make the channel gain, wireless channel state, vehicle user MEC server, and cloud
server state in this system model dynamic and variable. The system needs to make corre-
sponding unloading decisions at different time nodes, allocate system resources more rea-
sonably, and achieve the goal of reducing the total cost. We know that traditional dynamic
programming algorithms are effective in solving such problems. However, we cannot ig-
nore that dynamic programming algorithms require a significant computational cost to
perform the task, which requires a list of all possible resource allocation scenarios and
unloading strategies before choosing an optimal offloading strategy. Therefore, it is not
easy to make real-time decisions for vehicle users using a dynamic programming algo-
rithm, and the reinforcement learning method can make real-time decisions according to
different states of users.

The agent in the RL method continuously interacts with the Internet of Vehicles en-
vironment to obtain corresponding rewards, optimizes the strategy according to the re-
ward value, and finally finds an optimal resource allocation strategy. Therefore, we trans-
form the problem in Equation (17) into an optimization problem for DRL. The traditional
DQN method mainly deals with discrete, discontinuous actions, which is unsuitable for
this paper’s scene. Compared with the DQN method, DDPG is more suitable for solving
continuous action problems. For computational offloading and resource optimization
problems, the agent, state space S, action space 4, and reward function R are respectively
defined as follows:

Agent: In our method, the agent chooses an action by interacting with the environ-
ment and receives a corresponding reward, which continuously transitions to the next

Electronics 2022, 11, 2326

11 of 20

state over time until the end of training. If the agent can satisfy the constraints (3a) ~ (3e),
the system model will give a positive reward; otherwise, it will be punished accordingly
and receive a negative reward.

State space: According to the objective of minimizing the total cost of the system ex-
ecution task, the total cost of the delay and energy consumption generated by the execu-
tion task data is regarded as a state, which represents the system state space set. The state
indicates the total cost of the task in local computing, MEC server computing, and cloud
server computing. The state-space can be defined as:

s, = [Qﬁoc’(@fdge’@lc'loud} eS (20)

Action Space: This paper considers the problem of task offloading and resource op-
timization in the MEC environment of the Internet of Vehicles. The offloading decision
will judge whether the task requested by the mobile vehicle user is to be offloaded, and
the offloading decision is regarded as an action selection. In this system model, the mobile
vehicle user, the MEC server, and the cloud center have computing resources to perform
calculations, which can be used as the object of action selection. Therefore, the action space
can be expressed as follows:

a, = [anJ(t),...,aw-(t),ak,1 @), ...ak’i(t),cloud} €A (21)

Obviously, the action set 4, is an explicit policy related to the vehicle user » , which is

all possible actions that the vehicle user can select in time, and it is a continuous action
problem. When the action space chooses to assign 1 to the action value at the MEC server,
the rest of the computing nodes are all 0. Assuming that the task is computed on the MEC
server, the action can be expressed as follows:

a, =[0,...,0,1,...1,0] (22)

Reward function: In the current state, an action is selected as the best offloading de-
cision action. If the task request needs to be offloaded to the MEC server or cloud center
for computing; otherwise, the task is executed on the mobile vehicle. In order to better
improve the performance of the network, the agent interacts with the environment to ob-
tain corresponding rewards. Our goal in this paper is to minimize the total cost of the
system, where / is the coefficient factor, and the reward function is expressed as follows:

(s a,) = Q7" (23)

4.2.2. Dynamic Offloading Decision Method

The Deep Deterministic Policy Gradient Networks (DDPG) [36] method is different
from the traditional DQN method [37], which can only deal with low-dimensional and
relatively discrete action spaces. For some action sets, it may be a continuous action value
or a very high-dimensional discrete value. The DQN network relies on finding the optimal
solution of the action-value function in each iteration. For continuous sets of action spaces,
the DQN networks lack processing power, and their trained models cannot cope with
random strategies. Policy-based RL methods can better meet this challenge, but these
methods can deal with continuous action space aspects based on learning deterministic or
stochastic policies. However, these methods still show the problem of too slow conver-
gence speed, based on the deterministic policy gradient (DPG) method [38] to approxi-
mate the action value gradient with the action value (Q) function. DDPG is relatively sim-
ple in that it combines the features of policy-based and value-based methods to deal with
the continuous action space without outputting the probabilities of the actions and di-
rectly outputting the magnitude of the values of each dimension corresponding to the
actions. To this end, we propose an Edge-Cloud collaborative dynamic offloading method
(ECDDPG) based on DDPG. Figure 2 shows the ECDDPG method architecture. ECDDPG
inherits the advantages of traditional DQN methods, such as experience replay and the

Electronics 2022, 11, 2326

12 of 20

target network. The structure of the Actor and Critic network uses DNN, which contains
two networks, namely Actor online network, Actor target network, Critic online network,
and Critic target network.

/

\
I
I
I
I
I
I
I
I
I
I

{
|
|
|
|
|
|
|
|
| —= =0 59)
| Update © “pojicy Y05, G

|

[
|
|
|
|
|
|
|
|
|
|

_____ ~
| | at (Online Policy Network) iritliglt) <;7 /Online Q Network\‘
| Environment (+————) ‘
[N T Parameter: 94 , | = t | parameter:62 | | | | Soft Update
St ———T = | | R, /L
17 | | (A==
[Soft Update : | 0Gs.a BQ) | Loss function |
| | L AL - —_
—————— | p—_—T e
I (Target Policy Network) : I | Target Q Network | Lo
o I
\ | __ Parameter: g4, : } ‘\ Parameter: g J 0(s..a 169)
\ (T a4 LU
N I / e
__________________________ —_—— -
Update

Store Reply
L memory) (72 G317 5141)
" Random

samples

Figure 2. ECDDPG Method Structure Diagram.

The specific steps are shown in Algorithm 1. We take the number of vehicle users,
the number of MEC servers, and the tasks requested by the users as input, and take the
maximum reward and optimal offloading policy as the output. First, steps 1-3 initialize
the various parameters 6*,0*,02,0 of Actor and Critic network, as well as the replay
buffer & . Step 4 starts training the intelligence in the environment we have designed for
& iteration, and the MEC server can learn the determined service policy independently
after £ iteration. Second, we perform parameter simulation for the Internet of Vehicles
environment in steps 5 and 6, and randomly generate a states, € §, which is set as the
initial state. Steps 7~11 start training within a time period. For the training period, the
current strategy network 6 and noise N, are executed. Select an actiona, = u(s, | 6*)+ N,
in step 8 to decide where to offload. As the number and location of users change, to reduce
the cost of method retraining and the computational complexity, adopt an order-preserv-
ing quantification approach within the ECDDPG method. Step 10 stores the transfor-
mation tuple (s, a,,r,,s,,,) in the buffer. When the buffer memory is full, the Critic network
uses the experience replay technology. In the time slot, replaying the records
(s;.a,,1,8,,1) ~ & stored in the tuple requires random sampling of a small batch of data in
the tuple for training and updating. Step 12 updates the parameters of the Critic network
by minimizing the loss function. The minimum loss function in the judging process can
be expressed as:

Qo 1 0 2
107 =— 2] ©Gs.a 16%)=3,)] (24)
t=1

Among them, the Q value of the target network is calculated by the Critic network;
that is, it can be expressed as:

Yy =14+ 70 (5o 1 (51 1641 69) (25)

Electronics 2022, 11, 2326 13 of 20

In the DPG approach, parameterize 2 (5, | 19”') is used to formulate the current strat-
egy. Step 13 updates the parameters of the Actor network by using the policy gradient,
which is expressed as:

1 & v
o z;Zan (5,01 6°) |yeg, V gussls, | 0%) (26)
=1
Using soft update method to update the target network parameters:
0" 10" +(1-7)0" (27)
0?2 70 +(1-7)62 (28)

5. Simulation Design and Result Analysis

This chapter first introduces the simulation experiment environment, then briefly in-
troduces the relevant parameter settings of the experiment, and finally proves the
method’s feasibility in this paper by designing experiments.

5.1. Simulation Environment and Parameter Settings

The ECDDPG method proposed in this paper is simulated and verified using Py-
thon3.7 and TensorFlow1.14 on a PC with Intel(R) Core (TM) i5-7400 3.0GHZ CPU pro-
cessor and 8GB memory. The relevant vehicle network model parameters are set accord-
ing to the IEEE 802.11p standard and 3GPP TR36.885. Five MEC servers and one cloud
center server are selected, and an RSU with a MEC server is placed at regular intervals,
each RSU covers 100 x 200 m2, and the cloud center covers the entire road.

Asin reference [31], vehicle user transmit signal poweris P=100mW . We set the task
data size and request content size to [0.15-0.8] GB. The channel gain between vehicle users
and MEC nodes is L[dB]= 128.1 + 37.5 log10(d[m]) .The soft update parameter is 0.01. The
complete system simulation parameters are shown in Table 1.

Table 1. Simulation parameters.

Parameter Value Parameter Value
channel bandwidth [5-30] Vehicle computing power 106
Number of vehicle users [5-35] Number of RSUs 5
MEC server computing power 3 x108 Number of MEC servers 5
vehicle speed 50, 60 km/h Number of main lanes 5
Actor network learning rate 0.005 Critic network learning rate 0.005
Channel noise power 10-10 Number of iterations 1000

5.2. Analysis of Simulation Results

In this section, the method in this paper is mainly compared with the following bench-
mark schemes: (1) ALL-Loc strategy, which calculates all tasks locally; (2) ALL-MEC policy,
where all tasks are offloaded to the MEC server for execution; (3) Random offloading strategy,
the task data generated by the moving vehicle is randomly offloaded to the MEC server or
cloud server for calculation. The simulation experiment design mainly considers the influence
of different methods of reward size, wireless channel bandwidth, and the number of vehicle
users on the delay, energy consumption, and total cost of executing tasks.

5.2.1. Performance Evaluation of Different methods

In order to verify the superiority of the performance of our proposed method, in the same
IoV mobile edge computing environment, the maximum number of iterations is 1000. The size
and convergence of the reward values of the proposed, DQN, and Actor-Critic methods are
compared. As shown in Figure 3, the proposed method ECDDPG keeps the maximum reward

Electronics 2022, 11, 2326

14 of 20

value as the number of iterations increases. When the number of iterations is less than 300, the
reward value of the method proposed in this paper is slightly higher than that of the DQN
method. However, the convergence of this paper is better, while the convergence of the Actor-
Critic method is always unstable. When the number of iterations is greater than 300, the re-
ward value of the method proposed in this paper is much higher than the other two methods,
gradually converging to the optimum. In the face of continuous action space sets, the short-
comings of the DQN method are magnified. As the number of iterations increases, the reward
value gradually becomes smaller and smaller. Therefore, it can be reflected that the ECDDPG
method in this paper is superior to the DQN method and the Actor-Critic method in terms of
convergence and reward value.

-50

-100 - mﬂnm*t;m

125 | ..J“" w lw]

2
S 150t
[0}
x
=175
-200 -
—— ECDDPG
=225 + Actor-Critic
—— DQN
_250 1 1 1 Il 1 1
0 200 400 600 800 1000

Episode

Figure 3. Reward and Convergence of Different Methods.

5.2.2. Influence of Wireless Bandwidth Change on System Performance

In Figure 4, when the number of users is 20, we consider the influence of the wireless
channel bandwidth in the system on the time delay of each method in the execution of
computing tasks. We know that when the task is decided to be executed locally, there is
no need to transfer any task to the MEC server or cloud service to perform the calculation,
and there is no transfer delay. Therefore, the delay caused by the ALL-Loc policy execu-
tion task is not affected by bandwidth changes. Since the task data generated by the vehi-
cle user needs to be transmitted to each RSU through the wireless channel and then cal-
culated by the MEC server, the delay generated by the ALL-MEC strategy is greatly af-
fected by the bandwidth. The effect of the random offloading strategy is between our
method and the ALL-MEC strategy. In general, no matter how the bandwidth changes,
the method proposed in this paper can adapt well, and the delay generated by the task
execution is lower than other methods.

Electronics 2022, 11, 2326

15 of 20

1200

[ECODPG
1000 [] Random Officading
- B ALL-MEC
. [JALL-Loc
2 soo}
=
g
[
QO e00
5]
o
o
2 400
Z
200
0 i
5 10 15 20 25 30

Channel Bandwidth

Figure 4. Influence of the Bandwidth Change on Time Delay.

In Figure 5, we verify what kind of change law the change of wireless bandwidth will
bring to the system’s energy consumption to perform tasks. According to the formula, we
can see that the energy consumption generated by the system is proportional to the time.
The energy consumption generated by the ALL-Loc strategy is unaffected by changes in
wireless bandwidth, as is the time delay, and remains constant over a defined period. The
ALL-MEC strategy is still the most affected by changes in wireless bandwidth. The ran-
dom offloading strategy randomly offloads tasks to the MEC server or cloud server to
perform computation. Therefore, the energy consumption change generated by it is less
affected by the system bandwidth than the ALL-MEC and ALL-Loc strategies. However,
the method in this paper is minimally affected by the change in wireless bandwidth,
which further highlights the method’s superiority in reducing energy consumption.

300 | —=— ECDDPG
= ~e— Random Offloading
g —+—ALL-MEC
B 250 b ALL-Loc
£
3
[0}
f=
8 200 -
P
2
2
5 150
(]
D
o
2 100
P=3
50 1 1 1 1 1 1
5 10 15 20 25 30

Channel Bandwidth

Figure 5. Influence of Bandwidth Change on Energy Consumption.

In Figure 6, we analyze the impact of changes in wireless bandwidth on the total
system cost. The total cost in this paper is the weighted sum of energy consumption and
delay. The total cost of ALL-Loc strategy execution is still not affected by the change of
wireless bandwidth, while the total cost generated by the ALL-MEC strategy is still the
largest. The variation of the machine offloading strategy lies between our method and the
ALL-MEC strategy. Through continuous training and optimization, the method in this
paper can better adapt to changes in bandwidth and output the optimal offloading strat-
egy and the maximum reward value. Therefore, the method in this paper still shows great
advantages in reducing the system’s total cost.

Electronics 2022, 11, 2326

16 of 20

Total Cost
T

3 |-|[—=—ECDDPG
—o— Random Offloading
2 f—a—ALL-MEC

ALL-Loc

5 10 15 20 25 30
Channel Bandwidth

Figure 6. Influence of Bandwidth Change on Total Cost.

5.2.3. The Effect of the Number of Vehicle Users on Method Performance

In order to further verify that the algorithm in this paper can effectively reduce the
delay caused by executing tasks, the channel bandwidth is set to 15MHz, and we consider
the impact of changes in the number of vehicle users on the system processing task delay,
energy consumption, and total system cost. Set the number of vehicle users to 10, 15, 20,
25, 30, and 35.

From Figure 7, we can see that with the increasing number of vehicle users, the delay
in executing tasks will also increase. However, it is not difficult to see that the method in
this paper is always optimal. Specifically, due to the limitation of MEC server resources,
when the number of vehicle users reaches more than 20, the ALL-MEC strategy cannot
process task data instantly, and the queuing time of task execution will increase sharply.
Therefore, this strategy’s total delay growth rate becomes faster and faster. The computing
power of the local vehicle is much smaller than that of the MEC server, but the execution
of the ALL-Loc strategy does not generate latency. Therefore, when the number of vehicle
users is small, the delay caused by the ALL-MEC strategy is not apparent. The random
unloading strategy can fully use cloud center resources, MEC servers, and local compu-
ting resources, and its delay is less than the above two methods. The increase in the num-
ber of vehicle users will not affect it much, but the delay is still higher than the method
proposed in this paper. According to the change in the number of users and the number
of tasks, the method in this paper can make the optimal unloading decision more quickly
by interacting with the environment and constantly adapting to the external environment.
Therefore, the superiority of the method proposed in this paper in reducing the delay can
be effectively verified.

Electronics 2022, 11, 2326

17 of 20

1200 | [~ ECDDPG
—e— Random Offloading
—&— ALL-MEC

ALL-Loc

1000 -

Average delay(ms)
o]
8
T

D

(=}

o
T

400 |- //

I I I 1 1 1
10 15 20 25 30 35

Number of Vehicle Users

Figure 7. Influence of the Vehicle User Number on Time Delay.

Figure 8 shows the effect of changes in the number of vehicle users on energy con-
sumption. As energy consumption and latency are proportional, changes in the number
of vehicle users at a given time have the same effect on energy consumption as latency,
both becoming more frequent as the number of vehicle users increases. In the case of our
proposed method, the generated energy consumption is always the lowest, the method in
this paper mainly considers the optimal offloading strategy, and one of the goals is to
minimize the energy consumption. The energy consumption generated under the ALL-
MEC strategy is relatively large. The more vehicle users, the more tasks are generated.
The resources of the MEC server are limited, and all offloading to the MEC server will
generate more energy consumption.

500

I ECDDPG

= [Random Offloading

Zaoof (EEMALL-MEC

2 []ALL-Loc

E

=]

2 300 |

[

O

>

=

@ 200 |-

w

]

()]

o

@ 100

>

<

0 L

10 15 20 25 30 35

Number of vehicle users

Figure 8. Influence of the Number of Vehicle Users on Computing Energy Consumption.

The effect of the change in the number of vehicle users on the system’s total cost is
illustrated in Figure 9. Increasing the number of users inevitably requires more time and
energy consumption, increasing the corresponding total system cost. The other three
methods vary more significantly than the method in this paper. The method in this paper
mainly considers the optimal unloading action in a particular state, after optimal training,
to output a more favorable reward, and through the accumulation of time, eventually out-
put an optimal reward, and thus can minimize the total cost of completing the task. When
the number of users is 35, the total cost of the ECDDPG method is reduced by 7.9%~46.8%
compared with the other three methods. The computational complexity is effectively re-
duced, further verifying the method’s superiority in this paper.

Electronics 2022, 11, 2326

18 of 20

References

[ECDDPG
12+ | Random Offloading
Il ALL-MEC
10 b ALL-Loc
2 sl
o
I
o 6
'_
4 F
2 H
0 L
10 15 20 25 30 35

Number of Vehicle Users

Figure 9. Influence of the Number of Vehicle Users on the Total Cost.

6. Conclusions

In the environment of mobile edge computing of the Internet of Vehicles, in order to
solve the problem of minimizing the cost of system execution tasks, we designed a task
offloading overhead model for the “Edge-Cloud” collaborative MEC system based on
multiple mobile vehicle users and multiple edge servers, and introduced the communica-
tion model, computational offloading model, and problem modeling. We formulated re-
ducing the total cost of system processing tasks as an optimization problem to minimize
the total cost of vehicle users, MEC servers, cloud center, and the task offloading. The
resource optimization problem is transformed into a combinatorial optimization problem
based on deep reinforcement learning; combined with the idea of deep reinforcement
learning, a dynamic computing offloading method based on Edge-Cloud collaboration
based on a deep deterministic policy network is proposed (ECDDPG). The simulation re-
sults show that this paper’s method effectively reduces the system execution cost.

There are still some shortcomings in the research of this paper, such as the vehicle
resources parked on the roadside not being fully utilized, the task data is not divided into
the result part, and the problem of complete unloading is considered. In the future, we
will study the task offloading problem of the in-vehicle network, divide the task into mul-
tiple parts, and make full and reasonable use of the vehicle resources parked on the road-
side.

Author Contributions: Conceptualization, X.D., L.S. and Z.H.; methodology, X.D and L.S.; soft-
ware, L.S. and X.S.; validation, X.D., L.S. and Z.H.; formal analysis, X.D., L.S. and X.S.; investigation,
Z.H.; resources, X.D. and Z.H.; data curation, X.D., L.S. and X.S.; writing —original draft prepara-
tion, L.S. and X.S.; writing—review and editing, X.D., Z.H. and X.S,; visualization, X.D. and Z.H.;
supervision, X.D.; project administration, X.D. and Z.H.; funding acquisition, X.D. and Z.H. All au-
thors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (Grant
62162056), Industrial Support Foundations of Gansu (Grant No.2021CYZC-06) by X. D. and Z.H.

Conflicts of Interest: The authors declare no conflict of interest.

1. Wu, K,; Laghari, R.A.; Ali, M.; Khan, A.A. A Review and State of Art of Internet of Things (IoT). Arch. Comput. Methods Eng.

2021, 29, 1395-1413.
Huang, I; Lu, Y.H,; Shafig, M.; Ali Laghari, A.; Yadav, R. . A Generative Adversarial Network Model Based on Intelligent Data

Analytics for Music Emotion Recognition under IoT. Mob. Inf. Syst. 2021, 2021, 1-8.

Sharma, S.; Kaushik, B. A survey on internet of vehicles: Applications, security issues & solutions. Veh. Commun. 2019, 20, 100182.

https://doi.org/10.1016/j.vehcom.2019.100182.

Electronics 2022, 11, 2326 19 of 20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Tuyisenge, L.; Ayaida, M.; Tohme, S.; Afilal, L. E. Handover mechanisms in Internet of vehicles (IoV): Survey, trends, challenges,
and issues. Global Advancements in Connected and Intelligent Mobility: Emerging Research and Opportunities. IGI Glob. 2020,
1-64.

Shah, K.; Chadotra, S.; Tanwar, S.; Gupta, R.; Kumar, N. Blockchain for IoV in 6G environment: Review solutions and challenges.
Clust. Comput. 2022, 25, 1927-1955.

Liu, S.; Liu, L.; Yu, B.; Wang, Y.; Shi, W. Edge Computing for Autonomous Driving: Opportunities and Challenges. Proc. [EEE
2019, 107, 1697-1716. https://doi.org/10.1109/jproc.2019.2915983.

Priyan, M.K; Devi, G.U. A survey on internet of vehicles: Applications, technologies, challenges and opportunities. Int. |. Adv.
Intell. Paradig. 2019, 12, 98-119.

Abbas, N.; Zhang, Y.; Taherkordi, A.; Skeie, T.. Mobile edge computing: A survey. IEEE Internet Things J. 2017, 5, 450-465.
Mach, P.; Becvar, Z. Mobile edge computing: A survey on architecture and computation offloading. IEEE Commun. Surv. Tutor.
2017, 19, 1628-1656.

Spinelli, F.; Mancuso, V. Toward enabled industrial verticals in 5G: A survey on MEC-based approaches to provisioning and
flexibility. IEEE Commun. Surv. Tutor. 2020, 23, 596-630.

Mao, B.; Tang, F.; Kawamoto, Y.; Kato, N. Optimizing computation offloading in satellite-UAV-served 6G IoT: A deep learning
approach. IEEE Network. 2021, 35(4), 102-108.

Kavyashree, S.; Chaya Kumari, H.A. Survey on Computation Offloading Strategies in Cellular Networks with Mobile Edge
Computing. In Data Intelligence and Cognitive Informatics; Springer: Singapore, 2022; pp. 567-575.

Darwish, T.S.; Bakar, K.A. Fog based intelligent transportation big data analytics in the internet of vehicles environment: Moti-
vations, architecture, challenges, and critical issues. IEEE Access 2018, 6, 15679-15701.

Song, H.M.; Kim, H.R.; Kim, H.K. Intrusion detection system based on the analysis of time intervals of CAN messages for in-
vehicle network. In Proceedings of the 2016 International Conference on Information Networking (ICOIN), Kota Kinabalu,
Malaysia, 13-15 January 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 63-68.

Lopez, H.D,; Siller, M.; Huerta, I. Internet of vehicles: Cloud and fog computing approaches. In Proceedings of the 2017 IEEE
International Conference on Service Operations and Logistics, and Informatics (SOLI), Bari, Italy, 1820 September 2017; IEEE:
Piscataway, NJ, USA, 2017; pp. 211-216.

Gupta, N.; Prakash, A.; Tripathi, R. Medium access control protocols for safety applications in Vehicular Ad-Hoc Network: A
classification and comprehensive survey. Veh. Commun. 2015, 2, 223-237.

Lin, K; Li, C; Li, Y.; Savaglio, C.; Fortino, G. Distributed learning for vehicle routing decision in software defined Internet of
vehicles. IEEE Trans. Intell. Transp. Syst. 2020, 22, 3730-3741.

LiWang, M.; Hu, T.,; Tang,Y.,&Huang,L.. Delay-Constraint Offloading and Joint Resource Allocation in MEC Based Vehicular
Network. J. Internet Technol. 2017, 18, 1615-1625.

Zhang, K.; Zhu, Y.; Leng, S.; He, Y., Maharjan; S.; Zhang, Y. Deep learning empowered task offloading for mobile edge compu-
ting in urban informatics. IEEE Internet Things J. 2019, 6, 7635-7647.

Shakarami, A.; Shahidinejad, A.; Ghobaei-Arani, M. An autonomous computation offloading strategy in Mobile Edge Compu-
ting: A deep learning-based hybrid approach. J. Netw. Comput. Appl. 2021, 178, 102974.

Taleb, T.; Samdanis, K.; Mada, B.; Flinck, H., Dutta, S.; Sabella, D. On multi-access edge computing: A survey of the emerging
5G network edge cloud architecture and orchestration. IEEE Commun. Surv. Tutor. 2017, 19, 1657-1681.

Dai, Y.; Xu, D.; Maharjan, S.; Zhang, Y. Joint computation offloading and user association in multi-task mobile edge computing.
IEEE Trans. Veh. Technol. 2018, 67, 12313-12325.

Huang, P.; Deng, M.; Kang, Z.; Liu, Q.; Xu, L.. Self-Adaptive Learning of Task Offloading in Mobile Edge Computing Systems.
Entropy 2021, 23, 1146.

Chen, X,; Cai, Y.; Li, L.; Zhao, M.; Champagne, B.; Hanzo, L.Energy-efficient resource allocation for latency-sensitive mobile
edge computing. IEEE Trans. Veh. Technol. 2019, 69, 2246-2262.

Kuang, Z.; Ma, Z; Li, Z.; Deng, X. Cooperative computation offloading and resource allocation for delay minimization in
mobile edge computing.]. Syst. Archit. 2021, 118, 102167.

Saleem, U,; Liu, Y.; Jangsher, S.; Tao, X.; Li, Y.. Latency minimization for D2D-enabled partial computation offloading in mobile
edge computing. IEEE Trans. Veh. Technol. 2020, 69, 4472-4486.

Lai, S.; Zhao, R.; Tang, S.; Xia, J., Zhou, F.; Fan, L.. Intelligent secure mobile edge computing for beyond 5G wireless networks.
Phys. Commun. 2021, 45, 101283.

Guo, Y.; Zhao, R; Lai, S.; Fan, L.; Lei, X.; Karagiannidis, G. K.. Distributed machine learning for multiuser mobile edge compu-
ting systems. IEEE]. Sel. Top. Signal Processing 2022, 3, 460-473.

Sodhro, A.H.; Luo, Z.; Sangaiah, A.K.; Baik, S. W.. Mobile edge computing based QoS optimization in medical healthcare ap-
plications. Int. J. Inf. Manag. 2019, 45, 308-318.

Zhang, R.; Wu, L,; Cao, S.; Hu, X,; Xue, S.; Wu, D.; Li, Q.. Task Offloading with Task Classification and Offloading Nodes
Selection for MEC-Enabled IoV. ACM Trans. Internet Technol. (TOIT) 2021, 22, 1-24.

Ning, Z.; Zhang, K.; Wang, X.; Hu, X., Xue, S.;; Wu, D.; Li, Q. Intelligent edge computing in internet of vehicles: A joint com-
putation offloading and caching solution. IEEE Trans. Intell. Transp. Syst. 2020, 22, 2212-2225.

Li, Q.; Gong, Y.; Zhang, K. Computation offloading and resource allocation for cloud assisted mobile edge computing in vehic-
ular networks. IEEE Trans. Veh. Technol. 2019, 68, 7944-7956.

Electronics 2022, 11, 2326 20 of 20

33.

34.

35.

36.

37.

38.

Boukerche, A.; Soto, V. An efficient mobility-oriented retrieval protocol for computation offloading in vehicular edge multi-
access network. IEEE Trans. Intell. Transp. Syst. 2020, 21, 2675-2688.

Zhang, H.; Liu, X,; Bian, X.; Cheng, Y.; Xiang, S.. A Resource Allocation Scheme for Real-Time Energy-Aware Offloading in
Vehicular Networks with MEC. Wirel. Commun. Mob. Comput. 2022, 2022, 1-17.

Zhang, D.; Cao, L.; Zhu, H.; Zhang, T.; Du, J.; Jiang, K.. Task offloading method of edge computing in internet of vehicles based
on deep reinforcement learning. Clust. Comput. 2022, 25(2): 1175-1187..

Lillicrap, T.P.; Hunt, J. J.; Pritzel, A.; Heess, N., Erez, T.; Tassa, Y.;Silver,D.; Wierstra, D. Continuous control with deep reinforce-
ment learning. arXiv 2015, arXiv:1509.02971.

Mnih, V.; Kavukcuoglu, K; Silver, D.; Rusu, A. A.; Veness,].; Bellemare, M. G.;Graves,A.; Riedmiller,M.; Fidjeland,.A.K,; Os-
trovski,G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529-533.

Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M. Deterministic policy gradient algorithms. In Proceedings
of the International Conference on Machine Learning; ICML 2014, Beijing, China, Jun.: 2014; 32(1), pp. 387-395.

