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Abstract: Speech emotion recognition is an emerging research field in the 21st century, which is
of great significance to human–computer interaction. In order to enable various smart devices to
better recognize and understand the emotions contained in human speech, in view of the problems
of gradient disappearance and poor learning ability of the time series information in the current
speech emotion classification model, an AA-CBGRU network model is proposed for speech emotion
recognition. The model first extracts the spectrogram and its first and second order derivative features
of the speech signal, then extracts the spatial features of the inputs through the convolutional neural
network with residual blocks, then uses the BGRU network with an attention layer to mine deep time
series information, and finally uses the full connection layer to achieve the final emotion recognition.
The experimental results on the IEMOCAP sentiment corpus show that the model in this paper
improves both the weighted accuracy (WA) and the unweighted accuracy (UA).

Keywords: speech emotion recognition; attention mechanism; residual block; bidirectional gated
recurrent unit; human–computer interaction

1. Introduction

The human voice contains rich information, and voice interaction is the most direct
and convenient way of communication between people. In the era of artificial intelligence,
the voice is of great significance for human–computer interaction, and people hope to give
machines the same voice interaction capabilities as humans. In the early 21st century, with
the rapid development of voice technology, voice interaction is no longer limited to the text
content that the speaker needs to express. How to make various smart devices understand
and judge the emotional state of the speaker has become a new problem and a research
hotspot. Speech emotion recognition (SER) [1–4] refers to the technology that the computer
infers the emotional state of the speaker by analyzing and processing the speech signal
collected from the sensor. Speech emotion recognition can enable various smart devices to
better understand the user’s intention, so as to better serve people.

In recent years, researchers have mainly studied SER in two aspects: the construction
of a speech emotion database and the extraction of speech emotion features. Among them,
feature extraction methods can be divided into two categories. One is the traditional man-
ual features. The traditional static model obtains the emotional key element features of each
sample through two links: the first link is to accurately collect the most basic descriptive
information in the voice content, such as harmonic-to-noise ratio, fundamental frequency,
zero-crossing rate, etc. In the second link, each piece of basic descriptive information is ex-
pressed as a feature vector by different statistical aggregation functions, which expresses the
temporal variation and contours of different basic descriptive information at the sentence
level, including mean, variance, skewness, kurtosis, linear regression coefficient, quartile,
etc. [5]. However, traditional machine learning methods based on advanced statistical
function features cannot effectively utilize the contextual information of the original speech
signal, resulting in a low recognition rate.
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In recent years, the deep feature extraction methods based on deep learning have
shown outstanding performance in SER tasks [6–8]. Compared with traditional hand-
crafted feature extraction, deep neural networks (DNNs) are able to extract task-specific
hierarchical feature representations from a large number of training samples through
supervised learning. The authors of [9] mentioned that by designing a speech emotion
recognition system that can use the convolutional neural network (CNN) and recurrent
neural network (RNN) technology, and using the sound spectrum as the input of the model,
the final recognition rate on the EMO-DB dataset can reach 88.01%, and the experiment
proves the effectiveness of the CRNN network model in the speech emotion classification
task. Zhong et al. [10] introduced an attention mechanism into the CRNN model, which
improved the weighted accuracy by 7% compared with the original CRNN network. The
experiments proved that the attention mechanism could effectively improve the accuracy of
speech emotion recognition. Li et al. [11] mentioned that in the process of their research, the
one-dimensional convolutional network model was used as the construction carrier of the
speech emotion recognition system, and the Mel spectrogram and the Log-Mel spectrogram
were combined to the input end, and finally the reliability of this method was demonstrated
and affirmed. Zhang et al. [12] proposed a speech emotion recognition method based on a
fully convolutional network and an attention mechanism, which achieved an unweighted
accuracy of 63.9% on the IEMOCAP dataset.

In the process of this research, through a large number of collections and the analysis
of existing research conclusions and research cases, we proposed a model that was based
on the AA-CBGRU network for SER. In the design process of the model in this paper,
we firstly extracted the spectrogram and its first and second order derivatives from the
original speech signal, and then we fed these features into the advanced convolutional
neural network to extract the spatial features. The residual network was introduced to
avoid the gradient disappearance problem caused by the deep network structure. Finally,
the bidirectional gated recurrent unit network (BGRU) with attention mechanism was
designed to strengthen the learning of time series information to improve the classification
performance of the model.

2. Speech Emotion Recognition Model Based on AA-CBGRU Network

The specific architecture of speech emotion recognition based on the AA-CBGRU
network designed and constructed in this paper is shown in Figure 1 below. In this model,
it mainly includes four parts: data input, spatial feature collection, time series feature
collection and classification.
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Figure 1. Speech emotion recognition model based on AA-CBGRU network.

The data input part first preprocesses the original speech signal, and then extracts the
spectrogram and its first and second order derivatives as the data input for the advanced
convolutional neural network. The spatial feature extraction part extracts spatial features
through the convolutional neural network with residual structure, and the time series
feature extraction part then inputs the extracted spatial features into the BGRU layer along
the time axis to capture the time series features of the speech signal. The classification part
is responsible for receiving the output of the attention layer and then inputting it to the
fully connected layer, and finally the model realizes sentiment classification through the
SoftMax layer.
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2.1. Feature Selection

Since static features such as the logarithmic Mel-spectrogram cannot reflect the process
of emotional change [13], the consideration of the dynamic features can reflect the changing
process of emotion, retain effective emotional information, and reduce the content, environ-
ment, speaker and other emotionally irrelevant factors. Therefore, the model in this paper
selects the spectrogram and its first and second order derivatives which contain dynamic
features such as the input of the improved convolutional neural network.

For a given speech signal, the power spectrum of each frame is obtained by discrete
Fourier transform, and the output pi is obtained by Mel filter bank. Then the Log-Mel static
feature mi, the first-order difference feature md

i , and the second-order difference feature
mdd

i are calculated as follows:
mi = log(pi) (1)

md
i =

∑N
n=1 n(mi+n −mi−n)

2 ∑N
n=1 n2

(2)

mdd
i =

∑N
n=1 n

(
md

i+n −md
i−n

)
2 ∑N

n=1 n2
(3)

where the i describes the number of frames, N is set to 2, based on the popular experience,
and n is a variable.

After the spectrogram and its first and second order derivatives are calculated, the
3D feature X ∈ Rt× f×c is used as the input of the convolutional neural network, where
t represents the time (frame) length and f represents the number of Mel filter banks, c
represents the number of feature channels.

2.2. Advanced Convolutional Neural Network (Advanced CNN, A-CNN)

In recent years, many researchers have used convolutional neural networks (CNN)
to compute spectrogram features in speech emotion recognition tasks [14–16]. In the deep
neural network model, in general, there are many convolution layers under the front end of
the network system structure, and the collected relevant information is described through
partial or all input features. The deep neural network structure can make the receptive
field wider, so as to obtain better recognition effect. However, practice has proved that a
network structure that is too deep will increase the possibility of gradient disappearance.

In order to extract more effective features and avoid the risk of vanishing gradients,
this paper adds a residual network [17] to the network architecture. As shown in the
feature representation module in Figure 1, a convolutional neural network with residual
blocks is constructed in the feature representation layer. The advanced convolutional neural
network consists of a shallow convolution module and a residual module. Specifically, the
shallow convolution module consists of one convolutional layer, one max-pooling layer,
three convolutional layers, and one max-pooling layer successively. The first convolutional
layer has 128 feature maps, while the remaining convolutional layers have 256 feature
maps, and the filter size of each convolutional layer is 5 × 3. In the two max-pooling layers,
the pooling size is 2 × 2. The shallow convolution module takes the spectrogram and its
first and second order derivatives as inputs, extracting the low-level features of the input
data, and then inputs the obtained low-level features to the residual module. The residual
module includes a total of five identical residual blocks. The residual block structure is
shown in Figure 2.
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Figure 2. Residual block structure.

Residual networks add skipping structures outside the convolutional layers. Let
the input of the network be x, the result of the operation after the convolution layer is
F(x), and the output of the residual network is H(x). If there are x and F(x) dimensions
matching, then

H(x) = f (F(x) + x) (4)

If there is a difference in the dimensions between x and F(x), then some padding
layers and average pooling layers will be added at the jump structure, and the padding
layer will be used to enrich the dimension of the input information, so that the output
dimension will be the same as that of F(x) dimensions match.

2.3. Bidirectional Gated Recurrent Unit (BGRU)

GRU [18] (gated recurrent unit) is a variant of the LSTM [19] network that works well.
Three gate functions are introduced in LSTM: input gate, forget gate and output gate. The
GRU only includes two gate functions: update gate and reset gate. The purpose of the
former is to continue the valid information of the content of the last moment, and to control
the input of candidate information. The purpose of the latter is to control whether the
calculation of the candidate state depends on the state of the previous moment. GRU has
fewer tensor operations, so it is faster to train than LSTM. The network structure is shown
in Figure 3.
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At time t, let the current input be xt, the hidden state output of GRU is ht, and the
hidden state at the previous time is ht−1. The calculation method is as follows:

zt = σ(Wz · [ht−1, xt]) (5)

rt = σ(Wr[ht−1, xt]) (6)

h̃t = tan h(W · [r∗t ht−1, xt]) (7)

ht = (1− zt)× ht−1 + zt × h̃t (8)

Among them, zt is the update gate, rt is the reset gate, W is the weight matrix connect-
ing the two layers, and σ and tanh are the activation functions.

However, the standard GRU can only transfer data in one direction in time when
dealing with sequence problems, that is, data can only flow from the past to the present,
without considering the influence of the later data on the previous data. The BRNN
(bidirectional recurrent neural network) model improves the unidirectional recurrent neural
network, and processes the input sequence from both positive and negative directions
at the same time. The bidirectional gated recurrent unit (BGRU) can be regarded as the
parallel connection of two unidirectional GRUs in opposite directions through the output
layer, that is, a unidirectional GRU that processes sequence data from front to back and
a unidirectional GRU that processes sequence data from back to front. Unidirectional
GRU is connected to the same output layer [20]. The BGRU structure can pay attention
to the context information at the same time to make more accurate judgments. In this
article, we use one BGRU layer to collect the temporal information, and each direction
contains 128 cells, then we can obtain a sequence of 256-dimensional high-level feature
representations. The network structure is shown in Figure 4.
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For a given n-dimensional input (x1, x2, · · · , xn), at time t, the hidden layer of BGRU
outputs ht, and the calculation method is as follows:

→
h t = σ

(
W

x
→
h

xt + W→
h
→
h

→
h t−1 + b→

h

)
(9)

←
h t = σ

(
W

x
←
h

xt + W←
h
←
h

←
h t−1 + b←

h

)
(10)

where b is the bias vector, and
→
h t and

←
h t are the outputs of the forward and reverse

GRUs, respectively.
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2.4. Attention Mechanism

When humans process information, they selectively focus on some of the most im-
portant information, while ignoring other visible information to a certain extent. This
mechanism is called the attention mechanism. In the speech emotion recognition task, not
all speech features in a speech play an important role in the judgment of emotional state.
In this paper, the attention mechanism is applied to the features extracted from emotional
speech, so that the model can give different features to the output of the BGRU network of
attention. The specific implementation method is as follows:

ei = uTtan h(Wai + b) (11)

αi = (exp(λei))/

(
L

∑
k=1

exp(λei)

)
(12)

k =
L

∑
i=1

αiai (13)

The new representation ei of the input sequence ai is obtained by using Equation (11)
through the multilayer perceptron layer (MLP) with tanh as the nonlinear activation
function. Equation (12) normalizes the attention score ei to an attention weight αi between
0 and 1 through the SoftMax function. Formula (13) uses the obtained attention weight αi to
weight the feature vector ai in the input L frame features, and finally obtains the weighted
feature representation k.

3. Experimental Results and Analysis
3.1. Sentiment Corpus and Network Parameter Settings

This paper used the IEMOCAP emotional speech database recorded by the Univer-
sity of Southern California for experiments. The corpus contains approximately 12 h of
audiovisual data. It consists of five sessions, and each session is displayed by a man and
a woman. The two professional actors performed scripted and improvised scenarios that
elicit expressions of specific emotions. The IEMOCAP database is annotated into categorical
labels by multiple annotators and contains a total of nine sentiment categories. According
to previous work [21], this paper selected four types of emotional data that researchers
are generally concerned about and the most representative, with a total of 2280 sentences,
including 289 angry sentences, 284 happy sentences, 608 sad sentences, and 1099 neutral
sentences. We implemented a five-fold cross validation. In each fold, the data from four
sessions was used for model training, and the data from the remaining session was split:
one actor for validation and the other one as the testing set.

The model in this paper used the PyTorch deep learning framework, and the parame-
ters were set as follows: the learning rate was 0.0001, the batch size was 40, and the number
of iterations (epoch) was 300. Adam was used as the network optimizer.

3.2. Evaluation Indicators

This paper used the evaluation indicators commonly used in the field of speech
emotion recognition: the value of weighted accuracy (WA) and unweighted accuracy (UA)
was used to achieve an effective interpretation of performance, and among them, WA
represents the overall accuracy of the sample information, and UA stands for the mean of
sentiment accuracy.

3.3. Experimental Results and Analysis

In order to verify the effectiveness of the model proposed in this paper, experiments
were carried out on the IEMOCAP emotion corpus, and we provide a comparison of the
accuracy of existing research and our model in Table 1, all of the experiments in the table
used the improvised part of IEMOCAP as data set.
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Table 1. Comparison of proposed model with existing model.

Model WA UA

Siddique et al. [22] - 60.23
Etienne et al. [23] 64.50 61.70
Zhang et al. [12] 70.40 63.90

Ma et al. [24] 71.45 64.22
Our Method 72.83 67.75

As can be seen from Table 1, compared with the research methods in the above
literature, our proposed model is state-of-the-art and improved on both WA and UA on
IEMOCAP dataset.

To verify the effectiveness of each module in the proposed model, we conducted
ablation experiments, and the experimental results are shown in Table 2.

Table 2. Ablation experiments.

Model WA UA

CNN + BGRU + attention 69.90 64.29
CNN + residual block + BGRU 69.37 64.72

CNN + residual block + GRU + attention 71.18 66.58
CNN + residual block + BGRU + attention 72.83 67.75

The experiment ablated the residual block, attention and bidirectional network struc-
ture in the model, respectively. After comparing the experimental results with the model in
this paper, it can be seen that when the residual block, attention and bidirectional network
structure were not used, both WA and UA of the model had different degrees of decline.
Among them, the ablation of residual block and attention had the most obvious impact on
the classification performance of the model. The experimental results verified the effective-
ness of the proposed model and the importance of each component to the classification
performance of the model.

Through the above demonstration, in order to better realize the in-depth research and
analysis of the recognition model, the confusion matrix of the model in this paper under
the IEMOCAP data set is given, as shown in Figure 5.
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Figure 5. The confusion matrix of our model.

It can be seen from the confusion matrix in Figure 5 that the three types of emotions,
anger, sadness and neutral, have obtained high recognition accuracy rates of 82, 75 and 71%,
respectively, while the recognition rate of happy is only 43%; 41% of the happy samples
were wrongly classified as neutral. There are two possible reasons for the low recognition
rate of happiness in the IEMOCAP dataset: (1) from the dimension space of emotion, the
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activation level of happiness is higher, while neutral is at the center of the activation valence
space. (2) The IEMOCAP dataset has the problem of sample imbalance, while happy is
less in the number of samples. Subsequently, the number of samples can be balanced by
overlapping methods.

4. Conclusions

This paper designs a reasonable and feasible speech emotion recognition system with
the help of an advanced convolutional neural network and BGRU with attention mecha-
nism. The model uses the spectrogram and its first and second order derivatives as the
input of the advanced convolutional neural network, and uses the advanced convolutional
neural network to extract the spatial features of the inputs. The participation of the residual
network not only helps to improve the depth of the network architecture, but also can
avoid unnecessary gradient vanishing risks. The experimental results on the IEMOCAP
dataset showed that the proposed method had more advantages than similar models in
terms of recognition accuracy. In future research, we will continue to explore deep neu-
ral network models with different structures to further improve the accuracy of speech
emotion recognition.
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