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Abstract: Video coding standards, such as high-efficiency video coding (HEVC), versatile video
coding (VVC), and AOMedia video 2 (AV2), achieve an optimal encoding performance by traversing
all possible combinations of coding unit (CU) partition and selecting the combination with the
minimum coding cost. It is still necessary to further reduce the encoding time of HEVC, because
HEVC is one of the most widely used coding standards. In HEVC, the process of searching for
the best performance is the source of most of the encoding complexity. To reduce the complexity
of the coding block partition in HEVC, a new end-to-end fast algorithm is presented to aid the
partition structure decisions of the coding tree unit (CTU) in intra coding. In the proposed method,
the partition structure decision problem of a CTU is solved by a novel two-stage strategy. In the first
stage, a bagged tree model is employed to predict the splitting of a CTU. In the second stage, the
partition problem of a 32 × 32-sized CU is modeled as a 17-output classification task for the first
time, so that it can be solved by a single prediction. To achieve a high prediction accuracy, a residual
network (ResNet) with 34 layers is employed. Jointly using bagged tree and ResNet, the proposed
fast CTU partition algorithm is able to generate the partition quad-tree structure of a CTU through an
end-to-end prediction process, which abandons the traditional scheme of making multiple decisions
at various depth levels. In addition, several datasets are used in this paper to lay the foundation
for high prediction accuracy. Compared with the original HM16.7 encoder, the experimental results
show that the proposed algorithm can reduce the encoding time by 60.29% on average, while the
Bjøntegaard delta rate (BD-rate) loss is as low as 2.03%, which outperforms the results of most of the
state-of-the-art approaches in the field of fast intra CU partition.

Keywords: video coding; fast coding unit (CU) partition; residual network (ResNet); high-efficiency
video coding (HEVC); intra coding

1. Introduction

Video coding standards have been continuously developed and updated for decades to
meet the increasing demand of the video market for videos with higher definition. In recent
years, various coding standards have been invented and replaced, such as advanced video
coding (AVC), high-efficiency video coding (HEVC), versatile video coding (VVC), audio-
video coding standard (AVS), and AOMedia video 1 (AV1). All of these methods have
considerable coding benefits; for example, developed by the Joint Collaborative Team on
Video Coding (JCT-VC), VVC and HEVC are both able to achieve a 50% lower bit rate
than their predecessors while maintaining the same video quality [1]. However, with
the repeated transition of the video compression rate, the complexity of various video
coding standards has increased dramatically due to the introduction of many efficient but
complicated coding tools.
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Block-based coding is one of the most important coding techniques and is commonly
used in many popular video coding standards. Taking HEVC and VVC as an example,
HEVC uses a quad-tree structure to partition a coding unit (CU). There are two options
for a CU of size 16 × 16 (i.e., nonsplit or split into four sub-CUs of size 8 × 8). However,
the options for a CU of size 32 × 32 increase to 17 (1 + 24), and for a coding tree unit
(CTU), the options are as many as 83,522 (1 + 174). Specifically, a CTU in VVC can be
as large as 128 × 128. VVC uses a quad-tree plus binary-tree (QTBT) structure to finish
block partitioning [2]. This supports the use of horizontal and vertical binary-tree (BT)
and ternary-tree (TT) structures to further expand the partition structure. The intra-coding
complexity of VVC is, on average, 18 times higher than that of HEVC [3]. In block-based
video coding standards, each CU can then be iteratively split into sub-CUs according to a
specific partition structure. A flexible CU partition rule results in various size combinations
for a CU. With many CU sizes and modes to be selected, rate-distortion optimization (RDO)
is adopted to select the optimal CU partition structure for a CTU, along with prediction
modes. During the encoding process, many video coding standards traverse all possible
CU sizes and prediction modes, and then RDO is used to select the best combination with
the minimum cost. As a result, RDO results in the greatest encoding complexity burden by
exhaustive calculations in the CU size decision process, and it restricts the application of
video coding standards in many real-time scenarios. Thus, it is necessary to design a fast
CU partition algorithm for existing video coding standards.

Although the encoding complexity of VVC is far greater than that of HEVC, HEVC
is used much more widely than VVC in industrial applications [4]. Considering the high
complexity of HEVC and VVC, algorithms reducing their encoding time are urgently
needed. However, the partition structure of a CTU in HEVC is simpler than that of
VVC, although HEVC has a similar block-based coding structure to VVC, while there
are differences in some partition cases. Furthermore, acceleration algorithms based on
deep learning usually need the support of a graphics processing unit (GPU), and GPUs
supporting HEVC hardware encoding–decoding are far more mature and popular than
those of VVC. To validate the effectiveness of our approach, the implementation of HEVC is
easier than that of VVC, and is also highly practical for industrial applications. Intra coding
is frequently used in sequence encoding, in terms of the intra profile and the encoding
of key reference frames in other profiles. One of the properties of intra coding is that the
splitting decision is only related to the information in the current frame, which allows
classifiers to predict the partition structure from pixels directly. In comparison, inter coding
involves not only information regarding the current frame, but also factors from the time
domain. This makes the splitting decision of inter CU another focus-of-research point, as
intra coding is the basis of inter coding. As a result, we focus on the partition problem of
HEVC intra coding in this paper.

In the past several years, many approaches have been proposed to reduce the massive
encoding complexity of various standards, such as HEVC and VVC. Works focusing on
fast 3D-HEVC encoding have been developed [5–8]. Some researchers proposed fast video
coding methods from the perspective of hardware design. Zhang et al. [9] presented four
algorithm adaptations and a fully parallel hardware architecture for an H.265/HEVC
intra encoder, the first of its kind. In addition, Zhang et al. [10] also presented high-
performance algorithm adaptations and a high-throughput hardware architecture for the
HEVC intra encoders. Cai et al. [11] proposed an efficient intra mode decision algorithm
for the parallel hardware architecture of the AVS3 intra encoder by processing CUs in
parallel, including intra prediction and estimating the rate-distortion cost for mode decision.
Sjövall et al. [12] introduced the first complete high-level synthesis (HLS) implementation
for an HEVC intra encoder on FPGA, and designed a proof-of-concept system for hardware-
accelerated HEVC encoding. Zummach et al. [13] proposed a hardware design for the
AV1-constrained directional enhancement filter, targeting the real-time processing of 4K
ultra-high-definition videos.



Electronics 2022, 11, 1264 3 of 27

Heuristic-based CU depth decision approaches have been proposed and widely stud-
ied [14–20]. For example, Liu et al. [15] proposed a fast CU depth decision algorithm based
on statistical analysis. They used a three-stage method to make the splitting result decision
according to prior information. Shen et al. [21] proposed an early determination and a bypass
strategy for CU size decisions by using the texture property of the current CU and coding
information from neighboring CUs. In some approaches, the CU depth range was shorted, and
some CU depth levels were skipped according to statistical information [22,23].

Although the heuristic-based fast methods have achieved many acceptable results,
they cannot properly consider the partition property of various video sequences. In other
words, there are too many factors to influence the partition result. Furthermore, these
factors may change with different sequences, such that people do not usually know which
combination of these factors has the best performance upon implementation. Generally, we
only consider several key factors closely correlated with CU partition, and a small number
of the considered factors may lead to a poor result.

The technique of classical machine learning algorithms is introduced in order to
overcome the drawbacks of statistical-information-based methods. Support vector machine
(SVM) models with three outputs are used to achieve a trade-off between bit distortion
and encoding complexity [24,25]. In addition, to further improve the prediction accuracy,
two or more SVM models are employed in each CU depth. Zhang et al. [26] employed
two SVMs at each depth to make the decisions regarding early CU split and early CU
termination. Zhu et al. [27] used the cascaded SVM and defined a misclassification cost
and a risk area to jointly make a CU partition decision. Meanwhile, Grellert et al. [28] and
Zhang et al. [29] also proposed SVM-based approaches which focused on features analysis.
In addition, decision tree or data mining methods were also used to reduce the encoding
complexity [30–34]. Furthermore, Fisher’s linear discriminant analysis and the k-nearest
neighbors classifier were employed in order to quickly decide on a CU partition [35], and
Kim et al. [36] proposed a joint online and offline Bayesian decision rule-based fast CU
partition algorithm. Moreover, Yang et al. [37] proposed an efficient low-complexity intra
coding algorithm for VVC by using learning-based classifiers.

Although the classical machine learning model-based methods outperform the heuristic-
based methods due to their advantages when dealing with high-dimensional problems, their
inputs (i.e., features) play a very important role in the encoding results. In addition, the
features’ design is entirely manual and requires much experience. Additionally, there are
many key features which are commonly used in existing works. Hence, in order to significantly
improve the encoding performance, researchers should find more efficient features, which
is usually quite difficult. Furthermore, one or more classifiers are generally needed for
each depth, which requires much work and a long training time. Algorithms using the
convolutional neural network (CNN) were proposed to address these problems [38–40].
Due to the properties of CNN when it comes to automatic region feature extraction, these
algorithms have enormous advantages in image processing. CNN-based algorithms have also
achieved many good encoding results.

Jamali et al. [41] used deep reinforcement learning to reduce the encoding complexity
of HEVC intra coding. Amna et al. [42] proposed a LeNet5-based approach for fast intra
coding. Liu et al. [43] devised a convolutional neural network (CNN)-based fast algorithm
to prune no less than two partition modes for RDO processing on each CTU. However, its
CNN structure is too shallow to fully learn the relationship between the image data and
the partition structure. In addition, considering all available partition modes for a CU, only
a minimum of two CU partition modes are pruned, which is not enough. In addition, the
algorithm proposed by Kim et al. [44] used image data and an encoding-information-based
vector data to train a CNN for the prediction of the CTU depth. However, in this algorithm,
not only image data but also vector data need to be collected before the prediction phase,
which requires more pre-encoding time. In addition, three kinds of CNN structures should
be constructed, with each being designed for a CU of a certain depth. Therefore, at least
three CNNs are needed for one video sequence. Furthermore, Xu et al. [45] proposed an
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approach using a CNN and a long short-term memory (LSTM) network. Specifically, the
CNN was used to predict the CU partition of intra coding, and the LSTM network was
used to predict the CU partition for inter coding. In their algorithm, the CNN, especially
the LSTM part, is highly complex, and requires time to be trained and refined.

As we can see, these CNN-based methods still complete the CU partition prediction at
various depth levels, with one or more CNN models being needed for each CU depth. This
means that at least three deep learning models are needed for a single video sequence. In
other words, existing works still model the CU partition as a binary classification problem,
which is a great waste of the CNN’s abilities. An end-to-end approach is needed. A CTU
in HEVC has 83,522 possible partition structures in total, which makes it hard for a deep
learning classifier fed with CTU pixels to correctly choose the right partition structure
through a single prediction. However, the number of possible partition structures of a
32 × 32 CU is 17, and the partition structure of a 32 × 32 CU is much easier for a deep
learning classifier to predict than that of a CTU. Thus, we take a two-stage strategy to
complete the CTU partitioning.

Although the name “two-stage” was mentioned by [24,46], the meaning of “two-stage”
in our paper is quite different to theirs. Specifically, they both solve the estimation problem
in a traditional way, by which the splitting decision of a CU is made depth by depth.
In [24,46], “two-stage” means that an additional binary classification will be performed for
each depth for CUs left undetermined in the first stage. In our manuscript, the two-stage
strategy means we only need to perform a binary classification for a CTU, then the partition
structure can be directly determined by a single prediction.

The first stage is the task of splitting decisions from the CTU to 32 × 32 CUs, which
can be handled by a simple learning-based method. In this paper, we use a bagged tree
at the CTU level due to its simple structure and fast prediction speed. Among traditional
machine learning methods, prediction efficiency, time complexity, and implementation
difficulty vary a great deal. However, compared with other models, the tree model has its
unique advantages. First, it aligns with people’s common sense when it comes to some
classification problems. Thus, it can achieve quite a high accuracy among some particular
problems through proper training. Second, it is much easier to train and takes less time
to finish predictions, which results in negligible overhead times. Third, it is also easier
to be implemented into existing works due to the simple “if. . . else. . . ” structure-based
prediction process. A deep learning network can also be used, but it contains far more
parameters and is designed for difficult tasks. It would be a waste of ability if we also
employed a deep learning network at the CTU level.

The second stage is the decision of the partition structure for a 32 × 32 CU. A
32 × 32 CU can be partitioned 17 ways, such that the decision can be predicted by deep
learning techniques as a multi-classification task. Because the differences among these
17 classes are very small, partition structures are similar to each other, which makes it
hard for a sample network to solve the end-to-end CU partition problem. More layers
usually means a higher accuracy; ResNet can contain many layers while maintaining a
good convergence performance. We chose a ResNet with 34 layers as the classifier to
achieve a high prediction accuracy, which is suitable for our prediction task.

In this paper, we construct a deep structure to explore the learning capacity of ResNet.
Meanwhile, we propose an end-to-end solution for the CTU partition, which models the CU
partition as an unprecedented multi-classification problem. To verify the effectiveness of
our proposed method, we implement it into HEVC intra coding. First, bagged tree models
are employed to classify a CTU to sharply shorten the classification categories. Then, an
end-to-end ResNet is trained to predict the final partition structure of a 32 × 32 CU instead
of predicting the splitting decision of a CU at a certain depth.
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The main contributions of this paper are presented as follows:

1. Adopting a two-stage prediction strategy with a combination of bagged tree and
ResNet, the proposed algorithm can achieve more accurate prediction results. It re-
duces the CU partition categories sharply and effectively, and abandons the traditional
scheme of making multiple decisions at various depth levels;

2. For the first time, the partition task of a 32 × 32 CU is modeled as a 17-class problem,
for there are 17 ways in total to partition a 32 × 32 CU. The partition structure can be
decided by an end-to-end ResNet model through a single prediction;

3. A general solution to CU partitioning in video intra coding is proposed, and is verified
on HEVC. In a similar way, it can be implemented on other block-based video coding
standards and reduce encoding times.

This paper is organized as follows. Section 2 introduces the quad-tree-based partition
structure and gives a brief review of bagged tree and ResNet. Section 3 describes the
proposed bagged tree and ResNet-based end-to-end joint fast CTU partition algorithm.
Section 4 reports the experimental results. The conclusions are summarized in Section 5.

2. Background

In this section, we first describe the CU partition technique in HEVC. Then, we
give a brief review of the bagged tree method, followed by a short introduction of the
ResNet model.

2.1. CU Partition of HEVC

To encode a video sequence, each frame among a sequence is divided into multiple
non-overlapping squares of size 64 × 64. As the largest CU, a CU of size 64 × 64 is
also called a CTU. As is known, a larger CU can save more semantic information, while
smaller CUs can achieve more precise pixel prediction values. Thus, HEVC employs a
recursive splitting process to traverse all the possible partition results of a CU. Figure 1
shows the recursive splitting process of a CTU, and this process terminates when it reaches
the smallest CU, the size of which is usually configured before encoding, and defaults to
8 × 8. Therefore, there are, in total, four kinds of CUs, all of which have different sizes, i.e.,
64 × 64, 32 × 32, 16 × 16, and 8 × 8, shown as squares of different colors in Figure 1.

According to a quad-tree structure, HEVC employs RDO to make the optimal partition
decision for a CTU. The left part of Figure 2 shows a partition example of a CTU, and the
right part of Figure 2 is the corresponding quad-tree structure.

Figure 1. Recursive partition process of a CTU in the HEVC intra coding.
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Figure 2. A partition example of a CTU and the corresponding quad-tree splitting structure in the
HEVC intra coding.

2.2. Bagged Tree

Traditional machine learning methods have shown great advantages in classification
tasks. As one of the most famous classical machine learning models, the decision tree is
widely used in various application scenarios, such as image recognition and data mining.
As its name suggests, the decision tree employs a tree structure to make a classification
decision. For a classification task, each leaf node in a decision tree model represents a target
class, and each parent node contains an attribute along with a threshold. In this way, the
decision-making process becomes deeper, and the predicted labels are generated.

However, the decision tree is likely to overfit the training set. The bagging technique
is introduced to address this problem. As a result, the bagged tree model is generated [47]
as an ensemble of many decision tree classifiers, each of which is trained with a random
subset of the training dataset. After training, the final prediction of a bagged tree model
for an instance is made by taking the majority vote of the predictions from all individual
decision trees of the input sample. Figure 3 shows the structure of a bagged tree model
consisting of n decision trees, and also illustrates how the bagged tree generates the final
prediction for an instance. Since the bagging technique decreases the variance of the model
without increasing the bias, the performance of the bagged tree model is better than that of
a single decision tree model. Therefore, in the proposed joint fast CU partition algorithm,
the bagged tree is used in the first phase to predict the splitting result of a CTU.

Figure 3. The structure of a bagged tree model. An illustration of how the final prediction for a
sample input is generated by such a model, which is composed of multiple decision trees, each
trained on a random subset of data.

One of the most important features of the bagged tree model is that the importance of
features can be evaluated during the training process without having to repeatedly train
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models with different feature combinations, as is required by most other feature-selection
techniques. Caruana et al. [48] proposed a feature importance measurement technique,
referred to as multiple counting, for a bagged tree model. In multiple counting, the
importance value for every feature of a single decision tree model is calculated according to
the number of data samples decided by this feature in all decision tree nodes. To compute
the importance value of a feature for the bagged tree model, the importance values of a
feature on the individual decision trees are summed and normalized by the feature entropy
to ensure the comparability of features with different numbers of values. More details
about the feature importance measurement technique are available in [48].

2.3. Residual Network

In recent years, the CNN has been a hot topic due to its excellent performance in
solving image problems, such as image recognition and object detection. Compared with
traditional machine learning methods, the CNN extracts effective features by using filters
of various sizes instead of hand-crafted ones. Using the convolution, the CNN also reduces
the massive parameters required in a neural network. However, when deeper networks
start converging, previous research found that with the increment in network depth, the
training error became higher, and the accuracy degraded rapidly [49].

To address this problem, He et al. [49] proposed ResNet using a deep residual learning
framework. Figure 4a shows the structure of a basic building block in ResNet. With the
introduction of a shortcut in Figure 4a, a deep network, constructed by many building
blocks, can converge easily, and the degradation problem is solved. A ResNet is constructed
by a stack of numbers of building blocks, as shown in Figure 4a, and He et al. [49] provided
two kinds of such building blocks (Figure 4b,c), by which a well-performed ResNet of
expected depth can be generated. The building block in Figure 4b is used to build a
relative deep network (ResNet-34). The building block in Figure 4c, called “bottleneck”,
is used to stack ResNet-50/101/152, which represents ResNets containing 50, 101, and
152 layers, respectively.

Figure 4. Structure of a building block in ResNet and two examples of a basic block for ResNet
constructions of different depths [49]. (a) The basic structure with a shortcut for ResNet. (b) An
example of a basic block used to build a shallow ResNet. (c) The “bottleneck” used to construct a
deep ResNet by stacking.

3. The Proposed Bagged Tree and ResNet-Based Joint CTU Partition Method

In this section, we describe the proposed fast CTU partition algorithm for HEVC
intra coding. First, we illustrate the overall process, which explains how the bagged tree
model and the ResNet model work jointly. Then, effective features are designed to train the
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bagged tree models. Furthermore, the architecture of the ResNet is designed to achieve a
good prediction performance. Finally, the databases are constructed to train and validate
our bagged tree and ResNet models. Using these databases, we train 20 bagged tree models
(each is used for sequences under the same resolution and quantization parameter (QP)
value). In addition, we also train four ResNet models with the same architecture, and each
model is generated when a certain QP is set at different values, i.e., 22, 27, 32, and 37.

3.1. Flowchart of Our Fast Splitting Method

The flowchart of the proposed two-stage CTU partition algorithm is shown in Figure 5.
As can be seen from Figure 5, there are roughly two phases in the proposed bagged tree
and ResNet-based joint CTU partition algorithm.

Figure 5. Flowchart of the proposed bagged tree and ResNet-based joint fast CTU partition algorithm.

In the first stage, a bagged tree-based classifier is used to predict the splitting status of
a CTU, and the output is either split or nonsplit. Specifically, if a CTU is predicted to be of
the nonsplit class, it goes to the CTU partition structure determination process directly, as
shown in Figure 5, and the final partition is a whole 64 × 64 CTU without any splitting.
On the other hand, if a CTU is predicted to be split by the bagged tree classifier, it will
immediately be split into four sub-CUs with size 32 × 32. Sequentially, each of these four
CUs will be passed to the second stage for further processing.

In the second stage, a 32 × 32-sized CU is fed to the finely trained ResNet classifier.
As a result, of 17 labels, each of which represents a partition structure for a CU with size
32 × 32, one label is the output by ResNet. Similarly, all four sub-CUs of a CTU predicted
to be split in the first stage are classified, and four corresponding predicted labels are
generated. Then, these four labels, as well as the parent CTUs, are processed further.

A CTU partition structure determination process is adopted by following the two above-
mentioned stages. According to the four labels generated by ResNet in stage 2, the partition
structure of the corresponding parent CTU is decided. Figure 6 shows the flowchart of the
proposed algorithm. The predicted label (PL) output by ResNet for a CU of size 32 × 32 is
from 1 to 17. The corresponding partition quad-tree structure is illustrated in Figure 6, where
the PL values of four sub-CUs (numbered 1, 2, 3, and 4) are assumed to be 1, 5, 17, and 2. Once
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a partition of a CTU is generated, an optimal rate-distortion cost can be calculated directly
without many comparisons. Then, an encoding process is executed.

Figure 6. An example of CTU partition structure determination process with the corresponding
partition quad-tree. PL is the predicted label for a 32 × 32 CU output by ResNet. PL is set as an
integer from 1 to 17.

Compared with traditional recursive RDO, the proposed algorithm effectively skips the
unnecessary search for different combinations of CU sizes. In addition, compared with other
existing fast partition methods implemented on a depth level, this paper proposes a novel
end-to-end two-stage CTU partition algorithm by using the bagged tree and ResNet techniques.
In this way, the CTU partition result can be calculated through a well-trained bagged tree
model and a fine-tuned ResNet model. As a result, we not only significantly reduce the time
spent on RDO, but also spend less time on training the required learning models compared
with existing works, which train as many as three or more models on a depth level.

3.2. Features Design for Bagged Tree Model

The traditional machine learning methods rely heavily on handcrafted features. Many
existing works have developed a number of useful attributes for CU splitting label predic-
tion. Based on these existing features, in our previous work [50], we also designed several
novel features which were proven to be effective. As a result, in this paper, we select a total
of 29 feature candidates used in [50], which are listed in Table 1 along with their correspond-
ing meanings. These feature candidates are from four fields: information from neighboring
CTUs, side information during the pre-encoding process, statistical information of CTU
pixels, and information from pixel filtering results. We will give a brief introduction of
these feature candidates in the following paragraphs, and more details are available in our
previous work [50].

The results of [51] suggest that information from neighboring CTUs is useful for the
decision making of current CU in regard to partitions. Thus, the features m_nbCtuAboRd,
m_nbCtuLe f Rd, m_nbCtuAblRd, and m_nbCtuAbrRd are extracted, which represent the
RD cost of the neighboring CTUs located at the the above, left, above-left and above-right
regions of the current CTU, respectively. In addition, for a target CTU, m_nbCtuAboDepth,
m_nbCtuLe f Depth, m_nbCtuAblDepth, and m_nbCtuAbrDepth denote the average depth
values of its above, left, above-left, and above-right neighbored CTUs, respectively.

In addition, some bypass results during the encoding process are also important
and widely used [52]. Hence, we pre-encode the current CTU with PLANAR mode and
use several useful encoding results as key features. As a result, the features totalCost,
totalDistortion, and totalBins represent the total cost, the total distortion, and the number
of bits under PLANAR mode, respectively. Furthermore, m_aveCBF is the coded block
flag (CBF) of the current CTU encoded with PLANAR mode. Moreover, HEVC uses the
Hadamard transformation to quickly estimate the encoding performance, so the encod-
ing cost, the distortion, and the number of bits generated under Hadamard conditions
are extracted as features, which are denoted as m_costHadamard, m_sadHadamard, and
m_bitsHadamard, respectively.
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Table 1. Feature candidates and corresponding descriptions.

Index Feature Candidates Feature Description

1 m_varMeanSub variance of four sub-CUs’ mean
2 m_varVarSub variance of four sub-CUs’ variance
3 m_aveCBF average value of current CU’s coded block flag
4 m_nbCtuAboRd RD cost of current CU’s above CTU
5 m_nbCtuLe f Rd RD cost of current CU’s left CTU
6 m_nbCtuAblRd RD cost of current CU’s above-left CTU
7 m_nbCtuAbrRd RD cost of current CU’s above-right CTU
8 m_nbCtuAboDepth depth of current CU’s above CTU
9 m_nbCtuLe f Depth depth of current CU’s left CTU
10 m_nbCtuAblDepth depth of current CU’s above-left CTU
11 m_nbCtuAbrDepth depth of current CU’s above-right CTU
12 totalCost total cost of current CU encoded with planar
13 totalDistortion total distortion of current CU encoded with planar
14 totalBins total bins of current CU encoded with planar
15 m_costHadamard Hadamard cost of planar mode
16 m_sadHadamard distortion of residual after Hadamard transfer
17 m_bitsHadamard Hadamard bits of planar mode
18 m_edgeSobel edge detection result using Sobel
19 m_nmse mean square error of neighbor pixels
20 m_dcom mean of gradients of four directions
21 m_numInterestPoint number of interesting points of current CU
22 m_haarSumx sum of horizontal value after Haar wavelet transfer
23 m_haarSumy sum of vertical value after Haar wavelet transfer
24 m_haarSumxy sum of diagonal value after Haar wavelet transfer
25 m_haarSumAbsx sum of horizontal absolute value after Haar
26 m_haarSumAbsy sum of vertical absolute value after Haar
27 m_haarSumAbsxy sum of diagonal absolute value after Haar
28 m_meanMain mean of current CU
29 m_varMain variance of current CU

Some classic statistical data, such as mean, variance, and gradient, can reflect the
content complexity of a CU and the difference among the four sub-CUs comprising one
CU. Thus, for a target CTU, we calculate the mean and the variance of all pixel values as
m_meanMain and m_varMain, respectively, which are calculated according to the follow-
ing equations:

m_meanMain =
1
n

n

∑
i=1

pi (1)

m_varMain =
1
n

n

∑
i=1

(pi −m_meanMain)2 (2)

where pi is the luminance value of the ith pixel, and n is the number of pixels in the
current CU.

Furthermore, the variance of the four sub-CU means is calculated and denoted as
m_varMeanSub, and m_varVarSub is the variance of the four sub-CU variances. These
values are calculated through the following equations:

m_varMeanSub =
1
4

4

∑
i=1

(meanSubi −m_meanMain)2 (3)

m_varVarSub =
1
4

4

∑
i=1

(varSubi −meanVarSub)2 (4)

where varSubi represents the variance of luma pixels within the ith CU, and meanVarSub
is the mean of all four sub-CU variances (i.e., varSub1, varSub2, varSub3, and varSub4).
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In addition, we also reuse the feature m_nmse, which was designed and proved to be
efficient in [25]. m_nmse is the mean of squared errors between each pixel and the mean of
its eight neighboring pixels of a CTU. It is calculated as follows:

p̄i,j =
1
8

 pi−1,j−1 + pi−1,j + pi−1,j+1
+pi,j−1 + pi,j+1
+pi+1,j−1 + pi+1,j + pi+1,j+1

 (5)

m_nmse =
1

N2

N

∑
i=1

N

∑
j=1

(
pi,j − p̄i,j

)2 (6)

where pi,j is the luma value of the pixel located at (i, j) in the current CU. N is the side
length of a CU, which is 64 in the case of a CTU.

In addition, we also apply several kinds of filters to the pixels of a CTU and process
these filter results to obtain useful features, which can reflect the pixel change, the content
complexity, and even the edge information of a target CTU. As a result, m_edgeSobel and
m_dcom are features calculated from the responses of Sobel filters, widely used in edge
detection. Figure 7 shows four Sobel filters for detecting edges in different directions. Each
filter is applied with overlap on every 3 × 3 square pixel block within the current CU.
Figure 7a is an example of the 3 × 3 square pixel block. m_edgeSobel and m_dcom are
calculated through the following equations:

gh = −a− 2b− c + g + 2h + i (7)

gv = −a− 2d− g + c + 2 f + i (8)

g45 = 2a + b + d− f − h− 2i (9)

g135 = b + 2c− d + f − 2g− h (10)

m_edgeSobel =
1

(N − 2)2

(N−2)2

∑
k=0

((
gk

h

)2
+
(

gk
v

)2
)1/2

(11)

m_dcom =
1

(N − 2)2

(N−2)2

∑
k=0

(∣∣∣gk
h

∣∣∣+ ∣∣∣gk
v

∣∣∣+ ∣∣∣gk
45

∣∣∣+ ∣∣∣gk
135

∣∣∣) (12)

where N is the pixel number of a CU along a side, which is 64 in the case of a CTU. k denotes
the kth 3 × 3 square pixel block within the current CU.

Figure 7. Sobel filters for different directions. (a) Example of a 3 × 3 square pixel block to be filtered
by Sobel filters. (b) Sobel filter for horizontal direction. (c) Sobel filter for vertical direction. (d,e) Sobel
filters for 45◦ and 135◦, respectively.

As we can see, m_edgeSobel can reflect information about the horizontal and vertical
edges, and m_dcom represents the comprehensive gradient information of the current CU
from four directions. Moreover, Bay et al. [53] systematically analyzed the significant
advantage of the Haar wavelet on the edge changing and scene shading of a picture.
Therefore, we performed three Haar filters of different directions on the pixels in a target
CTU. Figure 8b–d show the Haar filters of horizontal, vertical, and diagonal directions,
respectively. Figure 8a is an example of a 2 × 2 square pixel block on which the Haar filters
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are performed. Specifically, we first split a CTU into 2 × 2 non-overlapped sub-squares.
Then, each sub-square was filtered by the same Haar filter to obtain the corresponding
filter responses of a certain direction. The responses of a certain filter on a sub-square are
calculated according to the following equations:

dx = a + b− c− d (13)

dy = a− b + c− d (14)

dxy = a− b− c + d (15)

where dx, dy, and dxy are the filter responses of horizontal, vertical, and diagonal direc-
tions, respectively.

Figure 8. Haar filters for different directions. (a) Example of a 2 × 2 square pixel block to be filtered
by Haar filters. (b) Haar filter for horizontal direction. (c) Haar filter for vertical direction. (d) Haar
filter for diagonal direction.

Based on these responses, we can sum them to obtain the features m_haarSumx,
m_haarSumy, m_haarSumxy, m_haarSumAbsx, m_haarSumAbsy, and m_haarSumAbsxy,
according to the following equations:

m_haarSumx =
1(

N
2

)2

( N
2 )

2

∑
k=1

dk
x (16)

m_haarSumy =
1(

N
2

)2

( N
2 )

2

∑
k=1

dk
y (17)

m_haarSumxy =
1(

N
2

)2

( N
2 )

2

∑
k=1

dk
xy (18)

m_haarSumAbsx =
1(

N
2

)2

( N
2 )

2

∑
k=1

∣∣∣dk
x

∣∣∣ (19)

m_haarSumAbsy =
1(

N
2

)2

( N
2 )

2

∑
k=1

∣∣∣dk
y

∣∣∣ (20)

m_haarSumAbsxy =
1(

N
2

)2

( N
2 )

2

∑
k=1

∣∣∣dk
xy

∣∣∣ (21)

where N is the number of pixels of the current CU along one side, which is 64 in the case of
a CTU.
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Furthermore, the number of interest-related points within a picture can reflect people’s
visual perception, while its influence on the CU splitting goes unnoticed. So, we extract
the interest-related points of the feature m_numAveInterestPoint for a target CTU by using
a particular filter on a CTU. The feature m_numAveInterestPoint represents the average
number of interest points for each pixel of a CTU. This reflects how much attention people
will pay to a CTU and how many details a CTU contains. Three filters, as shown in
Figure 9, are used on each of the current CTUs, and three corresponding results Dxx, Dyy,
Dxy are obtained as the filter responds in the horizontal, vertical, and diagonal directions,
respectively. We obtain the final value of the feature m_numAveInterestPoint for the current
CTU by using the following equations:

P(i, j) =
∣∣∣DxxDyy −

(
0.9Dxy

)2
∣∣∣ (22)

B(i, j) =
{

0, P(i, j) < t
1, P(i, j) ≥ t

(23)

m_numAveInterestPoint =
1

N2

N−1

∑
i=0

N−1

∑
j=0

B(i, j) (24)

where P(i, j) is the interest value of the pixel located at (i, j), and B(i, j) is the Boolean value
of the decision to create an interest point for pixel (i, j). t is the threshold to judge the
interest point. N, the value of which is 64, represents the size of the current CTU. Because
the original interest point detection method uses more complicated filters to obtain P(i, j),
which is much more time consuming, the relative weight of 0.9 is used to minimize the
error between them.

Figure 9. Three filters used for interest point detection in horizontal, vertical, and diagonal directions.
(a) The filter used in the horizontal direction. (b) The filter used in the vertical direction. (c) The filter
used in the diagonal direction. (a–c) are performed on each pixel of a CTU, and the corresponding
filtering responses are Dxx, Dyy, and Dxy, respectively.

3.3. Features Selection for Bagged Tree Model

These 29 feature candidates, as shown in Table 1, are too numerous to be implemented.
Hence, these candidates are ranked by the feature importance measurement technique
introduced in Section 2.2 during the bagged tree training phase.

According to the ranking results, we find that the importance values are divided
between the 10th and the 11th most-important features. In addition, the importance values
of the 10 most-important features stay at a relatively high level, while the importance
values for the rest of the feature candidates are generally very low. Thus, we pick the
10 most-important features as our final attributes. Hence, each bagged tree model has its
own unique feature set consisting of the 10 most-important features.

Table 2 lists the top-10 features of the classifiers for the 5 resolution classes (i.e., A, B, C,
D and E) and different QP values. The importance values of the corresponding features are
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also shown in Table 2. These top 10 features of classifiers for different QPs and resolution
classes are almost the same, while their rankings change.

Table 2. Ten most-important features selected for different QPs and resolution classes with corre-
sponding importance values.

Resolution Class A

QP22 QP27 QP32 QP37

Rank Feature Importance Feature Importance Feature Importance Feature Importance

1 m_aveCBF 0.773 m_aveCBF 0.417 m_aveCBF 0.361 var_var_sub 0.255
2 var_var_sub 0.218 var_var_sub 0.292 var_var_sub 0.242 m_aveCBF 0.198
3 meanMain 0.128 varMain 0.078 varMain 0.107 totalBins 0.124
4 varMain 0.085 m_numAveInterestPoint 0.077 m_haarSumxy 0.078 varMain 0.083
5 m_nbCtuAboDepth 0.082 meanMain 0.066 m_numAveInterestPoint 0.066 m_haarSumxy 0.068
6 m_haarSumy 0.070 m_nbCtuAblDepth 0.063 m_nbCtuAblDepth 0.065 m_haarSumx 0.067
7 m_numAveInterestPoint 0.057 m_haarSumx 0.050 m_haarSumAbsxy 0.060 m_numAveInterestPoint 0.058
8 m_haarSumx 0.056 m_nbCtuLefDepth 0.042 m_nbCtuAbrDepth 0.057 m_nbCtuAboDepth 0.054
9 m_haarSumxy 0.055 m_nbCtuAbrRd 0.041 meanMain 0.049 totalCost 0.051
10 m_haarSumAbsxy 0.042 m_haarSumxy 0.039 totalBins 0.047 m_haarSumy 0.051

Resolution Class B

QP22 QP27 QP32 QP37

Rank Feature Importance Feature Importance Feature Importance Feature Importance

1 m_aveCBF 0.738 m_aveCBF 0.565 m_aveCBF 0.384 m_nbCtuLefDepth 0.282
2 m_nbCtuLefDepth 0.288 m_nbCtuLefDepth 0.213 m_nbCtuLefDepth 0.231 m_aveCBF 0.254
3 m_nbCtuAboDepth 0.150 var_var_sub 0.173 var_var_sub 0.208 var_var_sub 0.201
4 var_var_sub 0.078 m_nbCtuAboDepth 0.095 m_nbCtuAboDepth 0.119 m_nbCtuAboDepth 0.097
5 m_nmse 0.071 totalBins 0.076 totalCost 0.088 totalBins 0.084
6 m_haarSumAbsx 0.065 m_haarSumAbsx 0.060 totalBins 0.080 varMain 0.065
7 m_haarSumx 0.053 m_numAveInterestPoint 0.051 m_numAveInterestPoint 0.048 totalDistortion 0.058
8 meanMain 0.045 totalCost 0.049 m_haarSumAbsx 0.047 m_nmse 0.051
9 totalDistortion 0.045 m_nmse 0.045 meanMain 0.044 meanMain 0.048
10 m_numAveInterestPoint 0.042 meanMain 0.041 m_nmse 0.033 m_numAveInterestPoint 0.046

Resolution Class C

QP22 QP27 QP32 QP37

Rank Feature Importance Feature Importance Feature Importance Feature Importance

1 m_aveCBF 0.767 m_aveCBF 0.625 m_aveCBF 0.509 m_aveCBF 0.463
2 var_var_sub 0.164 var_var_sub 0.203 var_var_sub 0.226 var_var_sub 0.162
3 m_nbCtuAboDepth 0.073 m_haarSumAbsy 0.079 m_haarSumAbsy 0.094 totalBins 0.151
4 m_nmse 0.060 m_nmse 0.059 totalBins 0.093 varMain 0.112
5 var_mean_sub 0.039 m_nbCtuAboDepth 0.044 totalCost 0.064 m_haarSumAbsy 0.100
6 meanMain 0.036 m_haarSumy 0.040 m_nmse 0.060 meanMain 0.066
7 varMain 0.032 totalBins 0.031 varMain 0.040 m_nmse 0.060
8 m_numAveInterestPoint 0.023 var_mean_sub 0.030 meanMain 0.036 m_numAveInterestPoint 0.042
9 totalDistortion 0.021 meanMain 0.030 m_numAveInterestPoint 0.033 m_haarSumAbsxy 0.038
10 m_haarSumAbsxy 0.019 varMain 0.026 totalDistortion 0.030 totalCost 0.034

Resolution Class D

QP22 QP27 QP32 QP37

Rank Feature Importance Feature Importance Feature Importance Feature Importance

1 m_aveCBF 0.500 m_aveCBF 0.260 var_var_sub 0.173 m_aveCBF 0.204
2 var_var_sub 0.089 var_var_sub 0.158 varMain 0.067 totalBins 0.122
3 varMain 0.043 varMain 0.063 m_nmse 0.065 var_var_sub 0.115
4 m_nmse 0.016 m_haarSumAbsx 0.047 m_haarSumAbsxy 0.051 totalCost 0.107
5 meanMain 0.007 m_dcom 0.038 m_aveCBF 0.046 meanMain 0.055
6 totalCost 0.007 totalBins 0.035 totalBins 0.044 m_nmse 0.050
7 m_costHadamard 0.005 var_mean_sub 0.027 totalCost 0.027 totalDistortion 0.034
8 m_sadHadamard 0.005 m_nmse 0.024 totalDistortion 0.026 m_haarSumAbsxy 0.026
9 m_numAveInterestPoint 0.005 m_numAveInterestPoint 0.022 m_haarSumAbsx 0.018 var_mean_sub 0.025
10 totalBins 0.004 m_haarSumAbsxy 0.017 m_sadHadamard 0.016 varMain 0.022

Resolution Class E

QP22 QP27 QP32 QP37

Rank Feature Importance Feature Importance Feature Importance Feature Importance

1 m_aveCBF 0.363 var_var_sub 0.401 var_var_sub 0.413 var_var_sub 0.321
2 var_var_sub 0.262 m_nbCtuLefDepth 0.192 m_nbCtuLefDepth 0.220 m_nbCtuLefDepth 0.219
3 m_nbCtuLefDepth 0.104 m_aveCBF 0.188 m_aveCBF 0.201 m_nbCtuAblDepth 0.168
4 meanMain 0.090 m_nbCtuAboDepth 0.164 meanMain 0.099 meanMain 0.137
5 m_bitsHadamard 0.083 m_nbCtuAbrDepth 0.089 totalBins 0.083 m_aveCBF 0.121
6 m_nbCtuAblRd 0.078 meanMain 0.088 m_nbCtuAboDepth 0.060 m_bitsHadamard 0.100
7 m_nbCtuAboRd 0.059 totalBins 0.067 m_nbCtuAblDepth 0.055 varMain 0.079
8 totalBins 0.058 m_numAveInterestPoint 0.063 m_numAveInterestPoint 0.055 m_nmse 0.070
9 m_nbCtuLefRd 0.052 m_nbCtuAbrRd 0.061 varMain 0.052 totalBins 0.065
10 m_haarSumy 0.049 varMain 0.056 totalDistortion 0.048 totalCost 0.063

3.4. ResNet Model Designing and Training

Four ResNets with the same architecture are used, which dedicate video sequences
under different QP values, i.e., 22, 27, 32, and 37, respectively. The ResNets used in this
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work are based on the 34-layer ResNet in [49]. The specific architecture of the ResNet is
shown in Figure 10. Each convolution block in Figure 10 represents a convolution process
followed by a normalization process and a rectified linear unit (ReLU) calculation. The
ResNet used in this work consists of 34 layers, and takes a luma CU of size 32 × 32 as
the input. With a fully connected layer at the very end, the ResNet outputs a vector to
describe the probability of a CU belonging to each class. Using this probability vector and
the ground truth vector of the target CU, the cross entropy loss is calculated according to
the following equation:

L = loss(V1, V2) = − log

 exp(V1 ×V2)
17
∑

i=1
exp(V1 × i)

 (25)

where V1 is the probability vector output by ResNet, which contains the probabilities of
a CU belonging to every class; V2 is the class label ground truth of a CU, in the form of
one-hot encoding; and L is the cross entropy loss between V1 and V2. The cross entropy loss
is used to measure the difference between the predicted label and the ground truth of the
32 × 32 CU. Since it is a convex function, the global minimum can be easily calculated by
taking a partial derivative. Generally, training the ResNet model involves finding suitable
parameters to minimize the cross entropy loss of all the training samples.

Figure 10. Architecture of the ResNet used in this paper. The dotted lines represent the shortcuts
which increase the dimensions.

We use the deep learning framework PyTorch to train the ResNets in this paper. The
Adam optimizer is used with a learning rate of 0.01. Specifically, the models are trained on
40 epochs with a batch size of 32.

3.5. Database Generation for Training and Validation

In this paper, the bagged tree and the ResNet are used jointly to make an end-to-end
decision of the partition structure for a CTU. Specifically, the bagged tree is used to make
the splitting decision for a 64 × 64 CU, while the ResNet is used to determine the partition
structure of a 32 × 32 CU through a single prediction. Thus, two kinds of databases are
needed. One is constructed for the bagged tree model and the other is constructed for the
ResNet model.

Because resolution and QP both have a strong influence on the splitting of a CU, we
cannot train a prediction model without considering them. In this paper, we train one
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bagged tree model for each resolution and each QP value, and train one ResNet model for
each QP value. In practical applications, people can pick specific models according to their
own encoding scenarios. It would be ideal to train a general model for every situation, but
it is difficult to maintain a high encoding performance while achieving generality, and a
much bigger training set is required, including all possible resolutions and QPs. In addition,
the strategy of training a single model for a certain condition can improve the prediction
accuracy in order to achieve a better encoding performance. Moreover, it provides people
with more specific solutions according to their own encoding tasks.

First, five sequences of different resolutions are picked from the standard test se-
quences established by JCT-VC [54] as training sequences: Traffic (2560 × 2600), ParkScene
(1920× 1080), BasketballDrill (832× 480), BQSquare (416× 240), and FourPeople (1280× 720).
Then, these five sequences are encoded by HM16.7 under all intra configurations but four
QPs (22, 27, 32, and 37).

As for the databases used to train bagged tree models, we extract 10 key features
of each CTU among a training sequence under a particular QP and resolution class. In
addition, the splitting label of a CTU is also extracted to form the training database. So,
there are 20 databases in total, each of which is constructed for a QP value and a resolution
class, as shown in Table 3. DBxy represents the database used to train the resolution class x
and QP y bagged tree model. For example, DBA22 is the database constructed to train the
bagged tree model, which is used to make the splitting decision of the CTUs in a sequence
under resolution A and QP 22.

Table 3. Databases for bagged tree models of each QP and resolution class.

Resolution
Class QP22 QP27 QP32 QP37

A
(2560 × 1600) DBA22 DBA27 DBA32 DBA37

B
(1920 × 1080) DBB22 DBB27 DBB32 DBB37

C
(832 × 480) DBC22 DBC27 DBC32 DBC37

D
(416 × 240) DBD22 DBD27 DBD32 DBD37

E
(1280 × 720) DBE22 DBE27 DBE32 DBE37

Specifically, to form the database used to train the bagged tree models, 36,000 CTU
samples are randomly picked from the training sequences encoded by HM16.7. To balance
the database, the ratio between the samples of split and nonsplit labels in each database
is 1. When there are not enough samples in the whole encoded sequence, all of the nonsplit
samples are picked, and the same number of split samples is randomly picked.

As for the databases constructed to train the ResNet, due to the end-to-end prediction
structure, each partition structure of a 32 × 32 CU corresponds to a class label. There are
17 classes in total, and these classes, together with the corresponding partition structures,
are shown in Figure 11. As we can see from Figure 11, these classes cover all the possible
partition results for a CU of size 32 × 32. In this way, a partition structure can be predicted
by ResNet through a single prediction.

In the databases for ResNet, each sample includes the luma values of a 32× 32 CU and
its ground truth label according to the encoding results. To form the database, all 32 × 32
CUs in a training sequence are collected. Different from the 20 bagged tree models, each
ResNet model is designed for the sequences encoded under a certain QP, so four ResNet
models are required in total. Hence, four databases are generated (denoted as DB-22, DB-27,
DB-32, and DB-37), and constructed for the sequences encoded with QP 22, 27, 32, and 37,
respectively. Taking the generation of DB-22, for example, we firstly encode five training
sequences with QP 22. Then, the luma values and class labels of 32 × 32 CUs from these
five sequences are all collected to obtain DB-22. Similarly, DB-27, DB-32, and DB-37 are
generated. It is worth noting that the difference among these four databases lies only in the
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labels. The luma pixel values between different databases are the same, because they are
all from the same training sequences.

Figure 11. Class labels and corresponding partition structures of a 32 × 32 CU for ResNet multi-
classification. Variate label is the class index of different partitions for a CU of size 32 × 32.

After all databases are generated, each is divided into two parts: the training datasets
and validation datasets. The number of samples in the training dataset accounts for 90%
of the total number of samples, and samples in the validation dataset account for 10%. In
this paper, chroma CUs are split in the same manner as luma CUs. Hence, the models and
datasets for chroma are not considered.

4. Experimental Results

In order to verify the performance of the proposed bagged tree and ResNet joint
fast algorithm (BTRNFA), we implemented this algorithm in the HEVC reference encoder
HM16.7. The original software HM16.7 is available online [55]. In addition, the deep
learning framework PyTorch is used to perform the training and the prediction of ResNet
models. Test sequences were selected from the HEVC common test conditions (CTC) [54].

Experiments were conducted on an Aliyun host, which has a Windows 64-bit operating
system. The host has four kernels of Intel(R) Xeon(R) Platinum 8269CY CPU @ 2.50 GHz,
3.10 GHz with a 16 GB memory, and is also equipped with an NVIDIA RTX 2080s GPU.
Coding parameters were set as the default, and all results were generated under the all-intra
main configuration. The number of frames to be encoded was set as the maximal value for
each sequence according to the CTC. When HM16.7 begins to encode a video sequence,
the python code of ResNet starts running on the GPU to predict the partition structures of
all frames in the current video sequence. Due to the computing capability of a GPU, the
ResNet outputs the partition structure of a CTU before the encoder begins to encode it. We
sum the inference time of ResNet and the time spent by the encoder together as the final
encoding time of the proposed algorithm.

There are three versions of the proposed BTRNFA. The first version is denoted as
BTRNFADT, in which only the bagged tree model is active. In this situation, the CUs of
depth 0 are partitioned according to the predicted labels output by a bagged tree model,
and CUs of depth 1 and 2 are processed by RDO. The second version is BTRNFAResNet, in
which only the ResNet model for the CUs of depths 1 and 2 is active. RDO is performed on
CUs of depth 0. The third version is BTRNFAjoint, which is also the most aggressive version.
In the BTRNFAjoint, both the bagged tree model and the ResNet model are activated. As a
result, BTRNFAjoint can achieve the greatest reduction in the encoding time.

First, BTRNFADT, BTRNFAResNet, and BTRNFAjoint were carried out for performance
comparison. We analyzed the contributions of the bagged tree model and the ResNet model
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on the proposed joint algorithm. In addition, we also compared the BTRNFAjoint algorithm
with the CNN-based state-of-the-art CU depth decision algorithms, i.e., the CU partition
mode decision algorithm (PMDA) in [43] and the complexity reduction method (CRM)
in [45]. To measure the rate-distortion performance, the BD-rate was calculated. The fast
algorithm usually leads to an increase in the BD-rate, and the BD-rates of all sequences
are averaged to reflect an overall encoding quality. The greater the increase in BD-rate is,
the worse the encoding quality. Complexity reduction was measured by the savings in
encoding time (denoted as TS), which was calculated according to the following equation:

TS =
timere f − timepro

timere f
× 100% (26)

where timepro is the sequence encoding time of the proposed algorithm, and timere f is the
encoding time spent by the reference encoder. Encoding time is calculated by the function
“clock”, with the standard header “time.h” for C, which measures the time the encoding
process takes from start to finish. The referring time of ResNet is measured in the Python
code by using Python package “time”. timepro equals the sum of the referring time of
ResNet and the encoding time outputted by the encoder.

4.1. Performance of Three Versions of The Proposed Algorithm

In this section, we discuss the BD-rate loss and time-saving performance of three
versions of the proposed BTRNFA (i.e., BTRNFADT, BTRNFAResNet, and BTRNFAjoint). The
experimental results of each version are shown in Table 4.

We can see from Table 4 that BTRNFADT achieves a 0.25% BD-rate loss with an
encoding time reduction of 22.37% on average. Its BD-rate loss is the smallest among the
three versions of the proposed algorithm, as are its encoding time savings. The average
BD-rate loss of 0.25% shows that our bagged tree model is trained well and has a high
prediction accuracy in test sequences. However, the time-savings results are not the
highest, because only the bagged tree model is activated in this version of the proposed
algorithm, and the encoding complexity among the CU partitioning of depths 1 and 2 is
not considered reduced.

On the contrary, the bagged tree model is disabled in BTRNFAResNet, and only the
ResNet model is active. In this case, RDO is performed on each CTU while the partition
structure of CUs with depth 1 is generated by the end-to-end prediction. This version
of the proposed algorithm achieves a BD-rate loss of 1.81% with a time saving of 49.83%
on average, compared with the original algorithm in HM16.7. We can see from Table 4
that, compared with BTRNFADT, the time savings of BTRNFAResNet increase by about
27.46%, with a 1.56% sacrifice in terms of BD-rate. The results given in Table 4 show that
the prediction accuracy of ResNet is not quite so high that further BD-rate loss is caused.
On the other hand, we can also see that more complexity can be saved with CU depths 1
and 2 than that in a CU with depth 0.

BTRNFAjoint is the most aggressive version, in which both the bagged tree model for
CTU and the ResNet model for CU in depth 1 are activated. Its results are shown in the last
two columns of Table 4. BTRNFAjoint achieves a complexity reduction as great as 60.29%,
with a BD-rate loss of only 2.03%. Since it has the best time-savings results of the three
algorithm versions, its BD-rate loss performance is acceptable.

As we can see, the performance of the proposed BTRNFAjoint varies with the sequences
listed in Table 4. To determine the kinds of videos suitable for BTRNFAjoint, such that good
results can be obtained, we use the ratio of time savings versus BD-rate loss to conduct
further analysis. As shown in Table 4, BTRNFAjoint performs better in videos of resolution
class C and D than those of A, B, and E, which means our method has better performance
in low-resolution videos, which may be due to the high prediction accuracy of CTUs in
low-resolution videos. In addition, observing performance differences on sequences of the
same resolution class, we can see that BQTerrace shows better results than BasketballDrive.
Considering BD-rate and time savings jointly, PartyScene and BlowingBubbles outperform
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BQMalll and BasketballPass, respectively. It is easy to find the sequences BasketballDrive,
BQMalll, and BasketballPass, which all contain multiple fast-moving objects in a scene.
Sequences which contain much still or slow-moving content allow our method to achieve
good results easily. Thus, we can conclude that low-resolution videos with less moving
content are suitable for the proposed method.

Table 4. BD-rate loss and time-saving performance of three versions of the proposed BTRNFA.

Class Sequence

BTRNFADT BTRNFAResNet BTRNFAjoint

BD-Rate
(%)

TS
(%)

BD-Rate
(%)

TS
(%)

BD-Rate
(%)

TS
(%)

A
PeopleOnStreet 0.16 17.21 2.19 51.85 2.28 62.21

Average 0.16 17.21 2.19 51.85 2.28 62.21

B

Kimono 1.12 55.06 1.66 68.65 2.50 79.95
Cactus 0.34 21.91 2.39 56.13 2.66 66.62

BasketballDrive 0.98 32.31 3.12 62.14 3.83 73.16
BQTerrace 0.11 20.24 1.68 52.62 1.77 62.89
Average 0.64 32.38 2.21 59.88 2.69 70.66

C

BQMall 0.04 14.52 1.73 45.14 1.83 55.16
PartyScene 0.00 10.79 0.61 33.08 0.62 42.80
RaceHorses 0.08 18.65 1.38 49.70 1.51 60.50

Average 0.04 14.65 1.24 42.64 1.32 52.82

D

BasketballPass 0.01 10.17 1.19 38.84 1.23 46.82
BlowingBubbles 0.00 8.90 0.50 27.16 0.50 34.59

RaceHorses 0.01 10.50 0.90 36.06 0.92 44.17
Average 0.01 9.86 0.86 34.02 0.88 41.86

E
Johnny 0.24 39.92 3.24 64.64 3.54 75.59

KristenAndSara 0.19 30.62 2.89 61.73 3.07 72.80

Average 0.21 35.27 3.07 63.19 3.30 74.19

F

BasketballDrillText 0.00 11.22 1.42 43.85 1.46 53.99
SlideEditing 0.16 17.47 2.11 57.36 2.37 67.39
SlideShow 0.25 22.18 2.27 55.94 2.45 65.94
Average 0.41 16.96 1.93 52.38 2.09 62.44

Overall Average 0.23 21.35 1.83 50.30 2.03 60.29

As for the performance of our method on other QP settings, on the one hand, we
can use the current models to directly encode videos under other QPs. This does not
affect the RD performance, but only affects the benefit of time savings. On the other
hand, we can train one model for a particular QP. This will obviously result in a better RD
performance and more time savings, since it is targeted to the QP. In short, experiments on
existing QPs have verified the effectiveness of our algorithm. For other QPs, our method
can achieve a better trade-off between RD performance and time savings by training the
corresponding models.

4.2. Prediction Accuracy and Inference Overhead of the Proposed Method

To analyze the performance of the proposed BTRNFAjoint at each stage, we present the
prediction accuracy of the bagged tree and ResNet models, as well as the overhead GPU
inference time.

Firstly, Table 5 shows the prediction accuracy of different bagged tree models for CUs
in depth 0. The average accuracy of these 20 bagged tree models is 89.86% on the splitting
prediction for CUs in depth 0. The prediction accuracy is quite stable, at around 90% for
four QP values, which can be observed from the last row of Table 5. In addition, we find
these four bagged tree models trained for resolution class A all perform below average,
perhaps because the video sequence used for training is not representative.
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Table 5. Prediction accuracy of different bagged tree models.

Resolution
Class QP22 QP27 QP32 QP37

A
(2560 × 1600)

90.66% 94.13% 94.09% 94.79%

B
(1920 × 1080)

79.21% 77.15% 78.25% 78.95%

C
(832 × 480)

95.15% 95.44% 96.42% 96.44%

D
(416 × 240)

98.83% 98.78% 98.12% 96.91%

E
(1280 × 720)

66.11% 83.50% 91.99% 92.26%

Average 85.99% 89.80% 91.78% 91.87%

In addition, from different levels, Table 6 presents the prediction accuracy of four
ResNets. On the overall prediction level, four ResNets show quite stable accuracy per-
formances, which are distributed between 56% and 58%. Although the overall accuracy
is low, their accuracy on different depth levels is quite good. In Table 6, the prediction
level of depth 1 refers to the split flag prediction (i.e., split or non-split) of CUs in depth
1. Furthermore, the prediction level depth 2 refers to the splitting decision prediction for
CUs in depth 2, which is also a binary decision. As we can see from depth level 1 of Table 6,
the highest split flag prediction accuracy for CU in depth 1 is 89.34% of the ResNet trained
for QP 27. Even the lowest split flag prediction accuracy for CU in depth 1 is as high as
86.43%. Furthermore, the accuracy of four ResNets on depth level 2 is similar to that of
depth level 1. It can be observed that, although the overall prediction accuracy of four
ResNet models is not high, the prediction accuracy of the splitting decision at each depth
level is quite high. This is because the difference between classes is not obvious in the
multi-classification task for CU partitioning, and a slight prediction error will not lead to
the splitting decision error at each depth level. The high prediction accuracy of ResNets at
each depth level also verifies the correctness of our algorithm.

Table 6. Prediction accuracy from different levels of four ResNets.

Prediction Level QP22 QP27 QP32 QP37

Overall 57.20% 58.86% 58.12% 56.51%
Depth 1 86.43% 89.34% 88.68% 86.82%
Depth 2 85.36% 86.51% 86.76% 86.64%

This paper aims to reduce the encoding complexity by deciding the partitioning
structure of a CTU early, so the complexity introduced by the ResNet model must be
considered. As a result, an appropriate network structure, as shown in Figure 10, is
designed, and the encoding time of the proposed method includes the corresponding
inference time, which is shown in Table 7. It can be observed from Table 7 that the inference
overhead of four ResNets is about 1% of the original HM encoder. It is worth noting that
the inference process is carried out on a GPU, so the consumption is very low.

Table 7. Inference overhead compared with the original HM16.7 encoding time.

QP22 QP27 QP32 QP37

Percentage 0.85% 1.00% 1.12% 1.24%

4.3. Performance Comparison with CNN-Based State-of-the-Art Algorithms

This section firstly compares the encoding performance between the proposed BTRNFAjoint
and two other CNN-based intra mode fast decision algorithms: PMDA and CRM. These
two algorithms, compared to BTRNFAjoint, are implemented on different versions of refer-
ence software. In order to make a fair comparison, we apply the proposed BTRNFAjoint
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to these reference software versions of the two comparison objects, respectively. The
corresponding results are presented in the following paragraphs.

The PMDA in [43] reduces the hardware complexity of the encoder by decreasing
more than two CTU partition modes for RDO. It achieves a 60.86% complexity reduction
on average, and the BD-rate loss increases by as much as 2.74% on HM12.0. Compared
with their results, the proposed BTRNFAjoint saves about 0.73% in terms of BD-rate loss,
with a negligible encoding time increment of 0.54% on average. The detailed results shown
in Table 8 indicate that BTRNFAjoint exceeds PMDA in BD-rate with a similar time savings.

Table 8. Performance comparison between the proposed BTRNFAjoint and PMDA under HM12.0; all
intra coding.

Class Sequence
PMDA BTRNFAjoint

BD-Rate
(%)

TS
(%)

BD-Rate
(%)

TS
(%)

A
2560 × 1600

PeopleOnStreet 2.27 61.80 2.29 63.30
Average 2.27 61.80 2.29 63.30

B
1920 × 1080

Kimono 2.47 62.60 2.51 79.68
Cactus 2.59 60.40 2.65 66.73

BasketballDrive 3.49 70.90 3.84 72.23
BQTerrace 2.26 62.40 1.77 61.83
Average 2.70 64.08 2.69 70.12

C
832 × 480

BQMalll 2.93 57.80 1.82 56.26
PartyScene 2.19 51.10 0.61 44.59
RaceHorses 2.08 56.20 1.50 61.09

Average 2.40 55.03 1.31 53.98

BasketballPass 2.89 59.30 1.20 48.24
D

416 × 240
BlowingBubbles 2.54 53.60 0.49 36.27

RaceHorses 2.43 53.60 0.89 45.26
Average 2.62 55.50 0.86 43.26

E
1280 × 720

Johnny 4.42 72.20 3.55 75.40
KristenAndSara 3.12 69.30 3.06 73.25

Average 3.77 70.75 3.30 74.33

Overall Average 2.74 60.86 2.01 60.32

As for the encoding complexity-reducing approach, CRM, in [45], an early terminated
hierarchical CNN is proposed to decide the CU partitioning. The encoding complexity
of the HEVC intra mode decision is dramatically reduced by replacing the RDO with the
predicted partitioning result. On average, 61.91% of the encoding complexity is saved with
2.24% of the BD-rate loss increment, compared with the original HM16.5. Comparison
results are shown in Table 9. Compared with CRM, the proposed BTRNFAjoint achieves
0.22% less BD-rate loss, at 2.02%, with only 2.60% more encoding time. In addition, only
one ResNet model is required in the BTRNFAjoint, while the number of CNN models used
in CRM is as many as three, which means that the proposed algorithm has advantages no
matter the model training or encoder implementation.

Generally speaking, the proposed BTRNFAjoint outperforms two CNN-based state-of-the-
art algorithms. On average, an additional 0.73% and 0.22% in the BD-rate is saved, compared
with PMDA and CRM, respectively. Although the time savings of BTRNFAjoint are very
similar, our approach shows an advance in terms of the model number required in encoding
by introducing an end-to-end partitioning solution. Thus, the complexity of model training
and implementation is quite low and is competitive for the proposed BTRNFAjoint.

In addition, we also compare our work with two other machine-learning-based methods,
RDNet and TCA, in terms of encoding performance. RDNet was proposed by Yao et al. [56]
using a CNN network named RDNet. TCA was also a CNN-based CU partition approach,
proposed by Zhang et al. [57]. RDNet and TCA both employ deep learning as their key
techniques, which is necessary to carry out the comparisons. The encoding results of each
algorithm are shown in Table 10. The proposed algorithm BTRNFAjoint outperforms RDNet, in
terms of encoding time savings, by 5.29%, while the BD-rate of our approach slightly increases,
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to about 0.19% more than that of RDNet. Our algorithm may not defeat RDNet thoroughly,
but it is competitive. Compared with TCA, BTRNFAjoint performs well. Their encoding
performances are quite close. Considering the overall average, TCA causes as little as 0.1%
less BD-rate loss compared with our method, and displays 2.14% more time savings. As for
performances on the sequence in class A, the differences between TCA and BTRNFAjoint are
negligible. In addition, BTRNFAjoint causes less BD-rate loss on class D and TCA causes less
BD-rate loss on class B. They both have resolution categories that they excel in. It is worth
noting that BTRNFAjoint has an advantage in terms of the number of models when encoding
a video sequence. TCA uses a three-stage strategy, such that it has to employ three CNN
models while encoding a video sequence. BTRNFAjoint only needs one bagged tree model and
a ResNet model due to the two-stage strategy.

Table 9. Performance comparison between the proposed BTRNFAjoint and CRM under HM16.5; all
intra coding.

Class Sequence
CRM BTRNFAjoint

BD-Rate
(%)

TS
(%)

BD-Rate
(%)

TS
(%)

A
2560 × 1600

PeopleOnStreet 2.37 61.00 2.28 62.08
Average 2.37 61.00 2.28 62.08

B
1920 × 1080

Kimono 2.59 83.54 2.53 79.78
Cactus 2.27 60.96 2.65 65.98

BasketballDrive 4.27 76.32 3.84 71.71
BQTerrace 1.84 64.72 1.77 60.73
Average 2.74 71.39 2.69 69.55

C
832 × 480

BQMalll 2.09 58.42 1.82 54.80
PartyScene 0.66 44.50 0.61 42.48
RaceHorses 1.97 57.12 1.50 60.21

Average 1.57 53.35 1.31 52.50

BasketballPass 1.84 56.42 1.25 46.79
D

416 × 240
BlowingBubbles 0.62 40.54 0.50 34.43

RaceHorses 1.32 55.76 0.93 44.11
Average 1.26 50.91 0.89 41.78

E
1280 × 720

Johnny 3.82 70.68 3.55 75.15
KristenAndSara 3.46 74.86 3.05 72.74

Average 3.64 72.77 3.30 73.95

Overall Average 2.24 61.91 2.02 59.31

Table 10. Encoding performance comparison with RDNet and TCA.

Class Sequence
RDNet TCA BTRNFAjoint

BD-Rate
(%)

TS
(%)

BD-Rate
(%)

TS
(%)

BD-Rate
(%)

TS
(%)

A
2560 × 1600

PeopleOnStreet 2.20 57.53 2.29 63.12 2.28 62.21
Average 2.20 57.53 2.29 63.12 2.28 62.21

B
1920 × 1080

Kimono 1.40 83.53 1.93 69.17 2.50 79.95
Cactus 1.95 52.72 2.18 59.40 2.66 66.62

BasketballDrive 3.94 74.29 3.58 65.08 3.83 73.16
BQTerrace 1.19 47.96 1.48 63.26 1.77 62.89
Average 2.12 64.63 2.29 64.23 2.69 70.66

C
832 × 480

BQMall 1.33 33.08 1.15 55.02 1.83 55.16
PartyScene 0.36 33.66 1.07 57.15 0.62 42.80
RaceHorses 1.66 36.28 1.43 61.02 1.51 60.50

Average 1.12 34.34 1.22 57.73 1.32 52.82

D
416 × 240

BasketballPass 1.85 57.06 1.79 59.08 1.23 46.82
BlowingBubbles 0.85 37.87 0.58 58.01 0.50 34.59

RaceHorses 0.98 42.99 1.15 59.04 0.92 44.17
Average 1.23 45.97 1.17 58.71 0.88 41.86

E
1280 × 720

Johnny 3.42 77.55 3.42 66.32 3.54 75.59
KristenAndSara 2.66 74.00 2.91 69.45 3.07 72.80

Average 3.04 75.78 3.17 67.89 3.30 74.19

Overall Average 1.83 54.50 1.92 61.93 2.02 59.79
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4.4. Comparisons of CU Partition Results

To compare the differences in the CU partition results between the original algorithm
in HM16.7 and the proposed BTRNFAjoint algorithm, we encode the 180th frame of the
sequence RaceHorses (416 × 240) with QP 22 by using these two algorithms. Figure 12
presents the CU partition results of the original HM16.7. In Figure 12, the black line
represents the CU boundaries. Figure 13 shows the CU partition results of the proposed
BTRNFAjoint. In Figure 13, we use the gold and red lines to represent the differences of the
CU boundaries between the original HM16.7 and the BTRNFAjoint.

Figure 12. Partition results of the 180th frame in the sequence RaceHorses (416 × 240), which is
encoded by the original HM 16.7 with QP 22. The black line represents the splitting boundaries
between CUs.

Figure 13. Partition results of the 180th frame in the sequence RaceHorses (416 × 240), which is
encoded by the third version BTRNFAjoint of the proposed algorithm with QP 22. The black line
represents the same partition results as those of the original HM16.7. The gold line represents the
boundaries of CUs, which are split by the original HM16.7 but are not split by the BTRNFAjoint. The
boundaries of CUs, which are non-split by the original HM16.7 but are split by the BTRNFAjoint, are
shown with a red line.
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It can be observed from Figure 13 that the same CU partition results take up a quite
large portion. Setting the results in Figure 12 as the baseline, we observe that almost all the
partition results upon the background and plain areas stay the same as those in Figure 13.
This observation indicates that our bagged tree model and ResNet model achieve a high
accuracy on CUs with flat contents. In addition, as we can see, the differences between
Figures 12 and 13 mainly exist among the edge areas. This means that our algorithm should
be improved, in terms of the prediction of some particular CUs which cross the boundaries
of objects. In addition, we also count the bits of this frame encoded by the original HM16.7
and the proposed algorithm, respectively. The frame encoded by the proposed approach
takes 145,352 bits, which outnumbers the 144,552 bits of the original. This means that our
approach loses 800 bits on this frame. The increase of 800 bits is reasonable since there are
some partition errors which result in a decrease in compression ratio.

In general, compared with the optimal CU partition results generated by the original
HM16.7, as shown in Figure 12, there are not many differences in the CU partition results
generated by the proposed BTRNFAjoint. Our BTRNFAjoint algorithm performs well, and
its CU partition results are satisfactory.

5. Conclusions

In this paper, we propose a bagged tree and ResNet-based joint end-to-end CTU
partition structure prediction algorithm for HEVC intra coding. First, we construct effective
datasets for our models. Then, the bagged tree model is designed to predict the splitting
flag of a CTU. In addition, a ResNet-based model is designed and used on each CU of size
32 × 32, so that the partition structure can be determined through a single prediction. In
this way, the traditional brute-force RDO is replaced, so that much encoding complexity
is saved. Compared with the original HM16.7, the proposed algorithm saves as much as
60.29% encoding time, with only 2.03% BD-rate loss on average. Furthermore, our approach
defeats four CNN-based state-of-the-art fast algorithms when making intra mode decisions,
which shows the great application prospects of our approach. However, the ResNet used in
our approach is on a large scale, which introduces huge complexity in terms of training and
prediction. To reduce the number of trainable parameters, we will use pruning techniques
to prune the ResNet. Transfer learning techniques will also be considered to increase the
generalization ability of our ResNet in future work.
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Abbreviations
The following abbreviations are used in this manuscript:

HEVC High-efficiency video coding
VVC Versatile video voding
AVC Advanced video coding
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AV1 AOMedia video 1
AV2 AOMedia video 2
AVS Audio-video standards
JCT-VC Joint collaborative team on video coding
CTU Coding tree unit
CU Coding unit
QTBT Quad-tree plus binary tree
RDO Rate-distortion optimization
SVM Support vector machine
ResNet Residual network
CNN Convolutional neural network
LSTM Long short-term memory network
QP Quantization parameter
CBF Coded block flag
CTC Common test conditions
BD-rate Bit-distortion rate
BTRNFA Bagged tree and ResNet joint fast algorithm
BTRNFADT BTRNFA version in which only bagged tree is active
BTRNFAResNet BTRNFA version in which only ResNet is active
BTRNFAjoint BTRNFA version in which bagged tree and ResNet are both active
PMDA The algorithm proposed by [43]
CRM The algorithm proposed by [45]
RDNet The algorithm proposed by [56]
TCA The algorithm proposed by [57]
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