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Abstract: A new generation of computing resources is available to customers via IaaS, PaaS, and
SaaS administrations, making cloud computing the most significant innovation in recent history for
the general public. A virtual machine (VM) is configured, started, and maintained across numerous
physical hosts using IaaS. In many cases, cloud providers (CPs) charge utility customers who have
registered their premises with the utility registration authorities. Given the opposing aims of increas-
ing customer demand fulfillment while decreasing costs and optimizing asset efficiency, efficient VM
allocation is generally considered as one of the most difficult tasks for CPs to overcome. This paper
proposes the Enhanced Moth Flame Optimization (EMFO) algorithm to provide a unique strategy for
assigning virtual machines to suit customer requirements. The recommended approach is applied on
Amazon’s EC2 after three distinct experiments are assumed. The utility of the proposed method is
further shown by the use of well-known optimization techniques for effective VM allocation. The
app was created using a Java-based programming language and then run on the Netbeans IDE
12.4 platform.

Keywords: cloud computing; VM allocation; cloud providers; optimization; private cloud; exter-
nal cloud

1. Introduction

Cloud computing is an internet-based platform that supports several tenants and
provides on-demand access to digital services from a variety of cloud service providers, all
of which are constrained by quality of service (QoS) requirements. This service includes
computer hardware for users, an operating system for communication, networks for
resource sharing, resource storage, a database for resource management, and on-demand
user applications. For the most part, cloud computing may be broken down into three major
categories: Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as
a Service (SaaS) [1]. IaaS is used in [2] to provide on-demand access to shared resources
without disclosing the location or hardware details. Images of servers, queueing and other
resources are also made available to users. Finally, IaaS gives people full control over the
server infrastructure, not just applications or containers. It is hard to manage resources [3],
network infrastructure [4], virtualization, and multi-tenancy [5] in cloud systems.

Resources in the form of virtual machines may be rented from IaaS providers such as
Amazon EC2 and IBM Smart Cloud Enterprise [6]. An example of a pay-per-use public
cloud is provided by Amazon EC2, which is described in [7]. Co-locating network I/O Apps
together may result in significant performance gains, according to research [8]. However,
they failed to demonstrate how this method might be used to improve cloud-based decision-
making. The authors of [9] propose some complementary works to be carried out to enhance
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and continue verifying the infrastructure in tenant-based resource allocation paradigm.
A separate platform, such as HPC or situations such as online transactional applications,
should be deployed over the cloud infrastructure. Assuming that processing power and
bandwidth are both provided concurrently for each request and leased out on an hourly
basis, ref. [10] has presented an efficient joint technique for allocating multiple resources.
Each service request has its own set of assigned resources. “Virtual machines” (VMs) of
varying sizes and budgets are used as the primary computational components in [11]. VMs
are dynamically allocated and also distributed, and workloads are scheduled on the most
cost-effective ones. One study [12] has provided a method for allocating data for cloud
computing resource management. A problem is that they do not account for things such as
cloud provider hourly billing rates, VM startup times, and workflow.

It has been suggested in this work that Enhanced Moth Flame Optimization (EMFO)
be implemented in order to address the issues raised in the literature. EMFO allocates
resources in the most efficient manner while taking into account the profit, execution time,
maximum resource usage, and resilience. The following are the key contributions that are
anticipated as a result of the proposed work:

(i) Using suitable cost functions and operational limitations, implemented MFO for
efficient resource allocation in an IaaS cloud environment.

(ii) For improved search capabilities, migration and curvilinear properties are added
into MFO.

(iii) The quantitative performance of the EMFO is examined under a number of various
conditions and settings.

(iv) A comparative performance analysis of the various strategies described in the litera-
ture is also provided.

The rest of this work is organized as follows: Section 2 reviews pertinent literature;
The suggested system model, which incorporates application and execution models, is
discussed in Section 3; Section 4 covers the suggested EMFO search approach; Section 5
analyzes the simulation findings for the test instances examined; Section 6 summarizes the
work and makes a recommendation for further expansion.

2. Related Works

An IaaS cloud’s power usage was reduced by optimizing the mapping between a vir-
tual machine and a physical server in [13]. A hybrid cloud environment is used to develop
an integer programming model for the issue of resource allocation in an infrastructure as a
service (IaaS) cloud [14]. This challenge is addressed via the use of a self-adaptive learning
PSO (SLPSO)-based scheduling technique. A new generation of renewable energy-aware
and thermal-aware virtual machine migration algorithms is described in [15]. These algo-
rithms take into consideration the temperature consequences of mixed cooling systems,
which include both CARC and air economizer. The stochastic search method is used to
identify the best solution for maximizing the consumption of renewable energy in a joint
optimal planning approach.

It is proposed in [16] to conduct an investigation on profit maximization for the
provider by taking advantage of changeable energy costs. To assess the impact of energy
and carbon-aware dynamic VM placement on cloud providers’ costs, ref. [17] examines
and contrasts numerous energy-aware and carbon-aware dynamic resource allocation.
Energy efficiency, including the availability of renewable energy sources and changes in
energy use, has a substantial impact on the reduction of carbon footprint. Mixed Integer
is used to express the reliability-aware server consolidation strategy in [18]. The linear
programming mathematical model considers energy and reliability expenses to lower total
DC expenditures. In more recent years, researchers have looked at the use of random
search algorithms to tackle the resource allocation issue in cloud systems. When it comes to
scheduling activities in datacenters, the authors of [19] employ simulated annealing (SA), a
well-known randomized search method. SA’s lightweight nature, as well as its scalability
and capacity to schedule activities across clusters of hundreds of servers, is one of its most
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often touted advantages. Furthermore, this solution does not permit the reallocation of
virtual machines via migration.

For the challenge of virtual machine placement in datacenters, the authors of [20] use a
genetic algorithm to combine the quick filtering and sorting capabilities of MapReduce with
a genetic algorithm. Content-based VM selection and migration using fixed and dynamic
threshold algorithms are being assessed [21] for server consolidation via VM migration,
with the goal of minimizing the amount of memory data transmitted by utilizing content
similarity. The ABBSH scheduling algorithm, which is mindful of renewable energy and
power costs, is suggested in [22] for scheduling batch jobs. It also takes into account the
work deadline to cope with renewable energy’s intermittent nature while preserving service-
level agreements (SLAs). An energy-aware task-based virtual machine consolidation
approach [23] is recommended to manage jobs with variable resource needs throughout
execution. VMs and their workloads are categorized into four categories based on how
much CPU, memory, I/O, and communication they use, with the goal of minimizing
both the duration of the VMs’ lifespan and the amount of energy they consume. When
compared to other approaches such as FCFS, Round-Robin, and EERACC, the experimental
findings demonstrate that the suggested technique produces superior outcomes. Because
of the reduced availability and dependability of the system, resource consolidation via live
migration is a time-consuming operation that may result in SLA violations.

Ant Colony Optimization is used to optimize VM placement and consolidation for
energy consumption and system dependability in order to establish a healthy balance
between these two competing goals [24]. The resource utilization-aware energy efficient
server consolidation algorithm (RUAEE) is a novel method [25] that aims to limit the
number of live migrations of VMs during the consolidation process, lowering energy
consumption and service-level agreement violations. The authors of [26] illustrate how
group technology may manage resource allocation effectively to increase system efficiency
while limiting investment costs. Resource consolidation is accomplished via the employ-
ment of a discrete cuckoo optimization method based on the Jaccard similarity coefficient
grouping approach. A Multi-objective Ant Colony Optimization (MACO) strategy for
virtual machine placement and consolidation is proposed in [27], which is energy-aware
and QoS-aware. The proposed technique tries to achieve a trade-off between energy ef-
ficiency system performance and SLA compliance while maintaining system reliability.
It is hypothesized in [28] that a prediction-based workflow-scheduling algorithm could
discover the best-fit virtual machine and ensure optimum resource usage while fulfilling the
timeline and budget constraints. The authors of [29] explain how a multi-resource-based
VM placement strategy was built using the nova scheduler to improve CPU usage and
execution performance on a VM. Two consolidation-based energy-efficient solutions were
developed in [30] to reduce energy use and related SLA violations while also improving
on the existing energy-conscious task consolidation (ECTC) and maximum utilization
(MaxUtil) methodologies. Using a dynamic resource management approach for cloud spot
markets, the authors of [31] have come up with a technique that effectively controls unused
cloud resources in order to boost income.

The Resource Intensity Aware Load Balancing (RIAL) technique described in [32] has
used to transfer VMs from congested physical machines (PMs). It is one of a kind since it
weighs resources based on their resource intensity. The more time-consuming a resource is,
the more important it is in a project management system. Because it utilizes the weights
when deciding which VMs to migrate and which destination PMs to use, RIAL speeds up
the process of getting to a load-balanced state and does so at a cheaper cost. One study [33]
proposes a sophisticated scheduling method in combination with a load balancing strategy
based on binary JAYA to improve resource utilization while simultaneously lowering
the degree of energy consumption and makepan. According to [34], a fair and efficient
online auction is developed for dynamic resource scaling and pricing, in which cloud
users continually bid for resources in the future with increasing amounts, in accordance
with their preferences for scaling up or out. For social welfare maximization, they looked
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at server energy cost reduction and discovered a crucial characteristic of the objective
function, submodularity. A unique competitive analytic approach was used to handle
the problem of submodular function optimization with non-linear constraints. With a
variety of constraints on multiprocessor computing systems in mind, a quantum-inspired
binary chaotic salp swarm method (QBCSSA) has been developed [35] to deal with the
scheduling issue. In [36], a flower pollination strategy is employed to tackle the IaaS cloud
VM allocation problem. Private cloud and external cloud cost characteristics are taken into
account for an efficient VM allocation in the proposed study. It has been discovered that
many of the optimization techniques offered to solve the VM allocation issue suffer from
algorithm specific parameters, fail to provide global optimum solutions, demand extra
execution time, and lag in their consistency in offering solutions and scalability.

The suggested work aims to enhance the performance of the algorithms described
in the literature by offering maximum profit, optimum run time, resilience with better
scalability, and improved convergence characteristics. Enhanced Moth Flame Optimization
(EMFO) is presented in this work to address the issue of optimal resource allocation in
IaaS administration. MFO [37] has a simple structure and a good selection capability for
the given VM allocation problem compared to other algorithms such as SLPSO, SPSO-SA,
CPLEX, and ACO. As described in the EMFO model, the classical MFO is combined with
migrating [38] and descending curvilinear [39] qualities in order to increase the pace of
searching and guarantee the global optimum solution is found.

3. System Model
3.1. Application Model

Many of the competing aims discussed in the introduction suggest that efficient VM
allocation is a complex problem. In addition, the goals of the challenge change depending
on how the system model’s architecture behaves. This research investigates problem-
solving from the perspective of IaaS providers to maximize profit. Figure 1 depicts the
diagrammatic form of the suggested system model.
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Many service providers in the public cloud allow consumers to choose the cloud
provider that most suits their needs. Individual public cloud service providers are referred
to as “private clouds” in [15]. In each private cloud, consumers are given a price tag for the
various services they may get from the cloud. On-demand resource allocation is possible in
the private cloud thanks to an optimized scheduler. Customers’ needs may be unmet if the
private cloud’s infrastructure is not up to snuff. A lack of infrastructure on the part of the
service provider might result in the loss of clients. With the agreed rate, additional private
clouds may be hired to provide resources in the public cloud. When it comes to hiring
resources, optimum scheduler once again chooses the most suited private cloud inside the
public cloud environment. When adopted to optimize resources in both private and public
clouds, the optimum scheduler assumes all the duty. Both users and service providers gain
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from this, and no requests go unmet. The EMFO method used in this study provides the
most efficient scheduler for the resources.

This work aims to find the best way to allocate resources for a pool of independent jobs
on batch workloads. Data processing, memory, simulation packages, etc. are all examples
of tasks. The issue statement is based on the premise that the cloud environment’s resource
parameters, and requests are made accessible to the developer. Tables 1 and 2 provide
definitions for terminology relating to resources and workloads that are evaluated over the
course of this research. The resource parameters shown in Table 1 include private clouds
(PC), virtual machines (VM), price (p), cost (c), CPU, and RAM. The workloads and their
associated expressions are detailed in Table 2. In terms of workloads, each application has
a strict deadline for fulfilling all of the prerequisites before it can be filed. Each program is
constrained by a stringent deadline (Dl) and runtime (rl), as well as a collection of tasks (Tl,p).
The suggested work aims to maximize PC1′s profit while allocating the ‘l’ applications to
PCn (n = 1, 2, . . . , l). Tasks linked with an associated application should be completed in
a sequential manner to ensure that no task is interrupted. Each task must be assigned to
one PCn. The process running on PC1 should not use more resources than the machine has
available for a particular time period; also, PCn (n = {2, 3, . . . , l}) has infinite resources.

Table 1. Definitions of resources.

Parameters Definitions Expressions Details

Private Clouds PC {PC1, PC2, . . . , PCn} Cloud environment with ‘n’
private clouds

Virtual Machines VM {VM1, VM2, . . . ,
VMm}

Each physical machine has ‘m’
virtual machines

Price p pn Price of nth private cloud

Cost c cn,m
Cost of mth virtual machine in
nth private cloud

CPU cpu
cpun,m

Number of CPU of mth virtual
machine in nth private cloud

cputotal,n
Total number of CPUs in nth
private cloud

Memory mry
mryn,m

Memory size of mth virtual
machine in nth private cloud

mrytotal,n
Total memory size of nth
private cloud

Table 2. Definitions of batch of workloads.

Parameters Definitions Expressions Details

Applications A {A1, A2, . . . , Al}
For any instance ‘l’ requested
applications

Tasks T {Tl,1, Tl,2, . . . , Tl,p} Application ‘l’ has ‘p’ number
of tasks

Deadline D {D1, D2, . . . , Dl}
Deadline of applications {1, 2,
. . . ., l}

Runtime r {r1, r2, . . . , rl}
Runtime of each task of
applications {1, 2, . . . , l}

Deadline Threshold S Maximum Deadline

3.2. Execution Model

The proposed approach is focused on batch workloads, namely a collection of dis-
crete activities, each of them may be large-scale data processing, scientific simulation, or
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image/video rendering. This sort of bag-of-tasks is often used in corporate applications
such as consumer behavior mining or sensor data analysis of forecasting machine fail-
ures in IT infrastructure. Strongly connected activities, complicated processes, and online
transaction processing are examples of workloads that are not addressed by this approach.
Each submitted application consists of a number of embarrassingly simultaneous and
independent tasks, all of which must be completed by a specified deadline. Each job must
be completed in a single VM instance type. The fundamental purpose of VM allocation is
to optimize private cloud profit (PCprofit) and to guarantee that no request goes unsatisfied
at any point in time. Profitability is determined by a good accounting of the private cloud
provider’s revenue (PCrevenue) and the entire cost of supplying the customer’s applications
(PCcost). The mathematical equation for calculating the profit margin on private clouds is
provided below.

Maximize
PCpro f it = PCrevenue − PCcost (1)

where
PCrevenue = ∑l

i=1 ∑m
j=1 Tixijri pj (2)

PCcost = ∑l
i=1 ∑Ti

l=1 ∑m
j=1 ∑n

k=1 yilkxijckjri (3)

Subject to

∑n
k=1 yipk = 1, ∀i ∈ {1, 2, . . . . . . , l}, p ∈ { 1, 2, . . . ., Tk} (4)

∑di
s=1 wips = yip1ri,∀i ∈ {1, 2, . . . . . . , l}, p ∈ { 1, 2, . . . ., Ti} (5)

stsip ≥ 1,∀i ∈ {1, 2, . . . . . . , l}, p ∈ { 1, 2, . . . ., Ti} (6)

stsip ≤ di − ri + 1, ∀i ∈ {1, 2, . . . . . . , l}, p ∈ { 1, 2, . . . ., Ti}(
s ≤ stsip − 1

)
∨ (s ≥ di − ri) ∨

((
s ≥ stsip

)
∧
(
s ≤ stsip + ri − 1

)
∧
(
wips = yip1

)) (7)

∀s ∈ {1, 2, . . . di}, i ∈ {1, 2, . . . . . . , l}, p ∈ { 1, 2, . . . ., Ti} (8)

∑l
i=1 ∑Ti

p=1 ∑m
j=1 wipsxijcpuj ≤ totalcpu, ∀s ∈ {1, 2, . . . S} (9)

∑l
i=1 ∑Ti

p=1 ∑m
j=1 wipsxijmemj ≤ total_mem , ∀s ∈ {1, 2, . . . S} (10)

yipk ∈ {0, 1}, ∀i ∈ {1, 2, . . . . . . , l}, p ∈ { 1, 2, . . . ., Ti}, k ∈ {1, 2, . . . . . . , n} (11)

zips ∈ {0, 1}, ∀i ∈ {1, 2, . . . . . . , l}, p ∈ { 1, 2, . . . ., Ti}, s ∈ {1, 2, . . . . . . , S} (12)

stsip ∈ {1, 2, . . . ., S},∀i ∈ {1, 2, . . . . . . , l}, p ∈ { 1, 2, . . . ., Ti} (13)

In accordance with constraint (4), each job will be precisely assigned to one cloud
service provider. Constraint (5) guarantees that each activity is completed before the
deadline set out for it. Because of constraints (6)–(8), it is guaranteed that each job is
non-preemptable, which means that a task is completed without interruption. Constraints
(9) and (10) are applied to private cloud in order to guarantee that it does not consume more
CPUs and memory than it has available in any one slot. Lastly, (11)–(13) provide definitions
for the choice factors. We can see from the phrasing that the issue is one of work allocation.
Using a mathematical programming technique to solve such issues requires a significant
amount of processing time for a large-scale challenge. This characteristic precludes the
use of mathematical programming in this case, where tasks must be planned in real time.
Table 3 contains the definitions of the decision variables that were examined.
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Table 3. Decision variables.

Variables Definitions

xij xij=1, if the ith application uses jth VM type, otherwise ‘0’

stsip Start time slot of task tip

yipk yipk = 1, if the task tip is allocated to kth PC, otherwise ‘0’

wips wips = 1, if the task tip is allocated to time slot ‘s’ of PC1, otherwise ‘0’

4. Proposed Search Strategy
4.1. Standard MFO (SMFO)

The moth–flame optimization (MFO) technique, invented by Seyedali Mirjalili, was
initially unveiled in 2015, and it is a revolutionary nature-inspired population-based strat-
egy based on evolutionary computing ideas. Moths and flames are two fundamental
components of the MFO approach, with moths indicating fitness values calculated by using
randomly generated variables for each population of each iteration and flames reflecting
the best solutions at the finish of each iteration.

Moths regarded of as a matrix, which can be represented in the following way:

M =


M1,1 M1,2
M2,1 M2,2

· · · M1,d
· · · M2,d

...
...

Mn,1 Mn,2

· · ·
...

· · · Mn,d

 (14)

where ‘n’ and ‘d’ represent the number of moths and control variables of the problem,
respectively. Accordingly, the fitness values of the individual moths form an array which
can be described as follows:

OM =


OM1
OM2

...
OMn

 (15)

In the above equation, OMn holds the fitness value of the nth moth. Similarly, the
flames have the same structure as the moths and can be described as follows:

F =


F1,1 F1,2
F2,1 F2,2

· · · F1,d
· · · F2,d

...
...

Fn,1 Fn,2

· · ·
...

· · · Fn,d

 (16)

The corresponding fitness values of the flames are stored in an array such as moths:

OF =


OF1
OF2

...
OFn

 (17)

In the above equation, OFn holds the fitness value of the nth flame. The MFO algo-
rithm’s convergence is achieved through its unique three-dimensional approach of solving
the non-linear problem, which is represented as:

MFO = (I, P, T) (18)
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In Equation (18), the random moths and their respective fitness levels are stored in the
function ‘I.’ A moth’s last known location in a search region is stored in function ‘P’. When
the halting criteria are met, function ‘T’ closes off the solution process.

When updating the progress of moths, this method makes use of a logarithmic spiral.(
Mi, Fj

)
= Diebtcos(2πt) + Fj (19)

Di =
∣∣Fj −Mi

∣∣ (20)

where Di represents the distance of ith moth with respect to jth flame, ‘b’ is a co-efficient of
the logarithmic spiral and t ∈ [−1,−2].

During the iterations, the number of flames decreases to better identification of the
perfect solution:

f lameno = round
(

n− l
n− 1

T

)
(21)

where ‘l’ and ‘T’ represents the current and maximum iterations, respectively.
All occupations in MFO are represented as moths that fly about in search space,

always updating their position based on their own and the flames’ experiences. Each
moth’s priorities are used to allocate work to a private cloud or an ECs, as stated. By
using a moth (a collection of priorities), MFO hopes to optimize the distribution of cloud
resources. The suggested approach’s search capacity is increased by both the logarithmic
spiral adaptation’s frequent updating of the number of participating flames and the progress
updating of the moths’ positions.

4.2. Enhanced MFO (EMFO)

Scientific and technical areas have avoided classical MFO because of its incapacity to
deal with a broad variety of challenges. Additionally, it is easy to become stuck in local
optimums for certain difficult jobs. The optimal solution to the VM allocation problem is
not easy to find. As a result, a more powerful and resilient MFO is needed to handle this
problem effectively. It is possible to avoid local optimization by increasing the diversity of
moths and flames. When searching for flames and moths, MFO is paired with migrating
and descent curvilinear to keep track of their position.

4.2.1. Migration Principle

This is used to alleviate the strain of selecting the best moth from a limited population
by regenerating a fresh population of individuals with a broad range of moths. On the
basis of the best individual Mi,b, a new generation of moths is created. In this case, the dth
individual’s ith moth is transformed into the following:

Mi,d =

{
Mi,b + αi,d(Md,min −Mi,b) i f ai,d <

Mi,b−Md,min
Md,max−Mi,b

Mi,b + αi,d(Mh,max −Mi,b) otherwise
(22)

where both αi,d and ai,d refer to uniformly distributed random numbers. This heterogeneous
population is then used as initial choice parameters to avoid the local optimum places. The
equation for carrying out the migration is presented in expression (23), which is carried out
only if the moth population density (ρ) is smaller than the tolerance of the moth population
diversity (ε1).

ρ =

∑n
i = 1
i 6= b

∑d
h=1 ηz

d(n− 1)
< ε1 (23)

where

ηz =

{
1 i f

∣∣∣Mi,d−Mi,b
Mi,b

∣∣∣
0 otherwise

> ε2 (24)
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The parameter ε2 denotes the moth diversity relative to the best individual, while
ηz denotes the scale index. The cycle is repeated until there is no progress in the best
individual. In Equation (23), ‘b’ is an integer variable which refers the location of best moth,
‘h’ and ‘d’ are the integer variables which refers the hth and dth generation of moths, and ‘n’
is an integer variable which refers the total number of moths.

4.2.2. Descending Curvilinear Principle

This idea has been tweaked to make it easier to find the best solution faster. Because of
the high number of random states in moth swarm behavior, it must be checked repeatedly,
which results in an algorithm that is very time-consuming. Improved convergence of the
adaptive flame number and the algorithm’s convergence speed are achieved by changing
the update process from linear (21) to curved descent. The following is the new formula for
the number of adaptive flames.

f lameno = round

 T

l +
(

T
n

)
 (25)

The pseudocode of the proposed EMFO algorithm is detailed below.

Input: Maximal iteration number (MAXIT),
Number of Control variables (d)

Number of Moths (n), iterCount = 0
Output: OptimalSolution
//Execute the following steps if (iterCount< MAXIT)
{
//Preparation phase of Moths

M(n,d) = random() // Prepare the matrix for moths [M](n*d) (14)
Obj(M(n)) // Find the fitness value for moths [OM](n*1) (15)

//Preparation phase of Flames
F(n,d) = random() // Prepare the matrix for flames [F](n*d) (16)
Obj(F(n)) // Find fitness value for flames [OF](n*1) (17)

// interaction phase of Moths and flames
D = f(F,M) //Find distance of moths (20)

// updation phase of Moths
S = f(F,M) // Find logarithmic spiral for moths (19)
M = f(S) //Update position of moths
finalM = best(M) //Collect best Moths

// Migration operation
M = f(finalM) // Diverse moths using (22),(23) and (24)

// limiting the flow of flames for further iterations
F = f(n,l,T) // Curvilinear reduction of flames (25)
iterCount = iterCount + 1 //Increment the generation count

}
Display finalM

5. Results and Discussions
5.1. Technical Specifications of the Study

A private cloud and ECs are being built, with three distinct kinds of VMs used for
testing the effectiveness of the proposed algorithm on the actual infrastructure. In this
work, two types of resources, namely CPU and RAM, have been chosen since they are the
most often used configuration factors when selecting a VM instance in the cloud. Table 4
shows the amount of CPUs and accessible RAM for the different VM instance types, as
well as the cost and price of private cloud and ECs for each kind [15]. Additional versatility
is provided by three kinds of virtual machines (ECs) based on the three VM instance types,
which allow for a greater variety of ECs and VMs.
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Table 4. Details of the resources.

VM Instance Types Private Clouds ECs Price (p)

Name CPU
(cpu)

Memory in GB
(mry) Cost (c) Price (p) TypeA TypeB TypeC

VM_type1 1 1.7 0.03 0.08 0.085 0.07 0.10

VM_type2 4 7.5 0.12 0.32 0.34 0.36 0.40

VM_type3 8 15 0.24 0.64 0.68 0.70 0.72

The task model is constructed with three different problem instances. Table 5 details
factors such as the tasks, VM type, and deadline for each application for the instances,
as well as the required amount of needed resources of applications. The characteristics
of the applications are chosen at random within the given range based on the instance
type; for example, for type 1, the number of tasks for each application is chosen between 1
and 5. The suffix ‘U’ indicates that the value chosen from the supplied range must be an
integer amount. The search space is decreased by reducing each application’s deadline to a
maximum of 5 h. In addition, each task of the application may choose one of the three VM
instance kinds. To guarantee that the deadline of each program is longer than its runtime,
the runtime of each application is maintained below the deadline for the instance types. For
instance types 1, 2, and 3, the number of applications is set to 8, 5, and 10, correspondingly.
Furthermore, the required number of CPUs and memory for type 1 is restricted to 20 units
and 40 GB, respectively. The other two instance types, on the other hand, are restricted to
512 units and 1024 GB.

Table 5. Details of the applications.

Instance Type 1 Instance Type 2 and 3

Parameters Values Resources Number Values Resources Number

Tasks U [1, 5] CPU (cpu) 20 U [1, 50] CPU (cpu) 512

VM type U [1, 3] Memory
(mry) 40 GB U [1, 3] Memory(mry) 1024 GB

Deadline
(hrs.) U [1, 5] U [1, 168]

5.2. Performance Evaluation

When it comes to scheduling work for each of the three issue scenarios, the sug-
gested EMFO is used to arrange them in the most efficient manner possible, given the
resources available in each case. A comparison is made between the performance of EMFO
and the performance of other suggested algorithms such as CPLEX [15], SLPSO-SA [15],
CEDWS [29], and IFPA [33] when the task and resource settings are the same. Literature
references are used to determine the algorithm-specific parameters of the various algo-
rithms. A PC equipped with a 64-bit Intel Core i5 CPU working at 2.93 GHz and 8 GB
of RAM, running Windows 10, has been utilized to assess the strategies. The algorithms
are developed in MATLAB R2017a and validated on this computer, which serves as a
simulation platform for the techniques.

5.2.1. Instance Type 1

The proposed EMFO is executed for 10 runs for the optimal task scheduling of instance
type 1 by properly picking the random integer values for the tasks, VM type, deadline, and
runtime. The average runtime and average profit during each run are recorded, which
are shown in Table 6. It is evident from the table that during every new execution, the
proposed algorithm brings the optimal solution with minimum runtime. Additionally, the
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proposed algorithm produces a maximum profit of 4.9767 and minimum profit of 4.88 with
execution times of 12.55 s and 15.79 s, respectively.

Table 6. Profit and runtime during different executions for instance type 1.

Runs 1 2 3 4 5 6 7 8 9 10

Profit (PCprofit) 4.9157 4.9030 4.8837 4.9196 4.8794 4.8800 4.9767 4.9553 4.9233 4.9115

Runtime (s) 12.20 11.35 11.80 15.20 10.71 15.79 12.55 11.18 11.34 9.71

The obtained results are compared with the results of the literature, which is shown in
Table 7. Parameters such as average profit, average runtime, standard error, and standard
deviation [15] are considered for the effective comparison of the algorithms. In terms of
average profit, it is evident from Table 7 that the EMFO algorithm introduced outperforms
all other existing algorithms. While SLPSO-SA and CPLEX make profits of 4.9080 and
4.9100, respectively, EMFO achieves an average profit of 4.9148. There is a clear difference in
dependability between the three methods based on their standard deviation and standard
error. Additionally, the solution technique’s average runtime is faster than both SLPSO-SA
and CEDWS. IFPA and CPLEX take up the least processing time on average compared to
the other algorithms. This work also compares the algorithm convergence characteristics
to show that the suggested EMFO is effective. SLPSO-SA, IFPA, CEDWS, and EMFO
algorithms are used for the comparison. Figure 2 shows the simulation results for each
method. Convergence is better with the EMFO approach than any other optimization
method shown in Figure 2. Both SLPSO-SA and EMFO have essentially identical linear
features; however, the algorithms CEDWS and IFPA have different characteristics and
generate profits that are less than 4.85 and 4.825 percent, respectively, compared to SLPSO-
SA and EMFO.

Table 7. Comparison of simulation results of instance type 1.

Algorithms Average Profit Average Runtime Standard Error Standard Deviation

SLPSO-SA 4.9080 29.55 0.0020 0.0060

CPLEX 4.9100 0.98 0.0003 0.0008

IFPA 4.8240 0.86 0.0014 0.0372

CEDWS 4.8500 14.6 0.0025 0.0091

EMFO 4.9148 12.18 0.0009 0.0038
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5.2.2. Instance Type 2 and 3

The algorithms under consideration in this work are run for instance types 2 and 3 in
the same way as they were for the prior instance, with the exception of the CPLEX. Table 8
shows the average profit, the execution time, the standard deviation, and the standard
error that are acquired. It can be seen from the table that the suggested algorithm generates
a higher profit than previous algorithms, with an average profit of 3587.182 for instance
type 2 and 4327.64 for instance type 3 recorded. The algorithms used by SLPSO-SA, IFPA,
and CEDWS result in profit reductions of 2.08%, 8.52%, and 6.48% for type 2, and 4.11%,
5.97%, and 5.15% for type 3, according to the results of the comparison. Furthermore, the
suggested technique has a much shorter runtime than previous algorithms, with a recorded
value of 2368.49 s for type 2 compared to other algorithms. In contrast, when it comes to
type 3, the SLPSO-SA algorithm has taken the shortest amount of time when compared
to EMFO. The CEDWS algorithm is more profitable than the IFPA method. However, the
IFPA solution process beats CEDWS due to its unique nature, which takes the least amount
of runtime to produce the best solution. Standard error and standard deviation are used
to evaluate the trustworthiness of all algorithms, and these values are calculated from a
large number of executions. The EMFO algorithm has emerged as the most trustworthy
algorithm, followed by the IFPA, SLPSO-SA, and CEDWS algorithms.

Table 8. Comparison of simulation results of instance type 2 and 3.

Instance Type 2 Instance Type 3

Algorithms Average
Profit

Average
Runtime

Standard
Error

Standard
Deviation

Average
Profit

Average
Runtime

Standard
Error

Standard
Deviation

SLPSO-SA 3512.48 2874.27 0.0491 0.0620 2814.78 4265.80 0.0280 0.0513

IFPA 3281.25 4772.86 0.0352 0.0551 2760.17 6923.77 0.0215 0.0420

CEDWS 3354.62 3964.14 0.0567 0.0784 2784.30 7264.91 0.0530 0.0691

EMFO 3587.182 2368.49 0.0245 0.0537 2935.56 4327.64 0.0086 0.0347

Using the same working circumstances and a set number of iterations, the algorithms’
convergence properties are evaluated. Figures 3 and 4 show the convergence characteristics
of the algorithms for type 2 and type 3, respectively. According to Figures 3 and 4, the
SLPSO-SA algorithm obtains a greater convergence rate than the EMFO technique while
having a lower profit margin than the EMFO method. Furthermore, for type 2, SLPSO-SA
obtains the optimal solution before half of the total number of iterations; however, for type
3, SLPSO-SA finds the optimal solution after a large number of iterations. A further point
to note is that for both instance types, the IFPA and CEDWS algorithms exhibit the same
convergence characteristics, but with lower profits than the EMFO approach.
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6. Conclusions and Future Work

This research attempts to build an improved moth–flame optimization technique for
VM allocation in an IaaS context with the goal of increasing cloud providers’ revenues.
It has been put to the test on three separate tasks of varying difficulty to see how well
it handles a range of circumstances. To validate the effectiveness, the acquired results
of several algorithms were compared. Based on the comparison, it is evident that the
suggested algorithm produces superior outcomes in a variety of situations. The algorithm’s
dependability is further tested using the standard deviation and standard error of profit for
a certain number of runs. The notions of migration and descending curvilinear has been
nicely incorporated into the standard MFO, resulting in a considerable reduction in runtime.
The inclusion of high-level SLA to the proposed work will provide the highest levels of
service security and dependability. Additionally, the current work may be incorporated to
handle concerns such as energy management and fault tolerance.
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