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Abstract: For direction of arrival (DoA) estimation, the data-driven deep-learning method has
an advantage over the model-based methods since it is more robust against model imperfections.
Conventionally, networks are based singly on regression or classification and may lead to unstable
training and limited resolution. Alternatively, this paper proposes a two-branch neural network
(TB-Net) that combines classification and regression in parallel. The grid-based classification branch
is optimized by binary cross-entropy (BCE) loss and provides a mask that indicates the existence of
the DoAs at predefined grids. The regression branch refines the DoA estimates by predicting the
deviations from the grids. At the output layer, the outputs of the two branches are combined to
obtain final DoA estimates. To achieve a lightweight model, only convolutional layers are used in the
proposed TB-Net. The simulation results demonstrated that compared with the model-based and
existing deep-learning methods, the proposed method can achieve higher DoA estimation accuracy
in the presence of model imperfections and only has a size of 1.8 MB.

Keywords: classification; regression; deep neural network (DNN); direction of arrival (DoA);
array imperfections

1. Introduction

Direction of arrival (DoA) estimation has been widely studied in the fields of acoustics,
radar, sonar, and wireless communication in the past few decades [1–17]. Traditional DoA
estimation methods such as multiple signal classification (MUSIC) [1] and estimation of
signal parameters via rotational invariance techniques (ESPIRIT) [2] rely on accurate signal
models, and their DoA estimation accuracy may degrade significantly in the presence of
model imperfections.

Recently, with the rapid development of deep learning, neural-network-based algo-
rithms have been proposed for DoA estimation. Thanks to the data-driven characteristics,
these methods can be robust against model imperfections [6]. Generally, these methods can
be divided into those based on regression networks or classification networks.

Under regression networks, different structures have been proposed to estimate the
DoA values. Specifically, an end-to-end algorithm was proposed in [7], and a deep convo-
lutional network was used to recover the spatial spectrum in [8]. However, the network
structure depends heavily on the number of sources, which makes it difficult to extend
to the scenarios where the number changes. With a small number of snapshots, a neural
network was utilized in [9] for signal denoising, and a deep neural network (DNN) was
utilized in [10,11] to reconstruct the covariance matrix. In [12,13], bi-directional gated re-
current units (GRUs) and bidirectional long short-term memory (BiLSTM) were introduced
to learn the dependencies of signals, and the DoAs were estimated by the regression layer.
In [14], a DNN was proposed to map the received signals to those of a larger dimension,
which can be equivalently considered as adopting an antenna array of a larger size such
that the DoA resolution is improved.
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For classification networks, the most common architecture is the grid-based model,
which divides the angular domain into several sectors, and then, for each sector, it is
determined whether there exists an incoming signal [15]. In [6], an autoencoder with
multilayer classifiers was proposed to build the spatial spectrum. In [16], two frameworks
were proposed to separate coherent signals. In [17], a deep convolutional neural network
(CNN) with 2D convolutional layers was proposed to improve the DoA estimation accuracy
under a low signal-to-noise ratio (SNR). The grid-based model can improve the training
stability, and the structure is universal in scenarios where the source number changes, but
it is difficult to achieve a high resolution due to the limited number of grids.

In this paper, we propose a grid-based two-branch neural network (TB-Net). In partic-
ular, the proposed classification branch (C-Branch) and regression branch (R-Branch) work
in parallel and share a feature extraction network. The C-Branch provides a grid-based
mask to coarsely determine the DoAs, and the R-Branch provides a refinement of the DoA
estimates. At the output layer, the DoA estimates are obtained by combining the masks
and the corresponding deviations. The sharing of the feature extraction network leads to a
lightweight network. Besides, to further reduce the weight scale and computational com-
plexity, the proposed TB-Net only consists of convolutional layers. The simulation results
showed that compared with conventional classification networks, the proposed TB-Net can
achieve higher DoA estimation accuracy at the small cost of the computational overhead.
Additionally, compared with the model-based and existing deep-learning methods, TB-Net
is more robust against model imperfections and requires less calculation.

The rest of this paper is organized as follows. In Section 2, the signal model and neural
network are introduced. The proposed TB-Net is described in Section 3. Section 4 shows
the simulation results. Section 5 concludes this paper.

2. Preliminaries

In this section, we first describe the signal model and then give a brief introduction
about CNNs.

2.1. Signal Model

In this work, the narrow band signal was used for the training and testing. In addition,
we took into account three kinds of model imperfections that can possibly degrade the DoA
estimation performance.

Denoting sk(t) as the k-th incoming signal and θk as the DoA, the received signal can
be expressed as:

x(t) =
K

∑
k=1

a(θk)sk(t) + n(t), (1)

where n(t) ∼ CN(0, σ2) is the Gaussian noise, K is the number of sources, and a(θk) is the
array response vector. In this paper, we assumed that the uniform linear array (ULA) is
adopted. Hence, we have:

a(θk) = [1, ej2π d
λ sin(θk), · · · , ej2π

(M−1)d
λ sin(θk)], (2)

where M denotes the number of antennas in the ULA, d denotes the spacing between
adjacent antennas, and λ denotes the wavelength.

Similar to [6], we considered three kinds of model imperfections, i.e., gain and phase
inconsistency (eg, epha), inter-sensor mutual coupling (em), and the deviation of the antenna
position (epos). Hence, the i-th (i = 1, . . . , M) element in a(θk) can be rewritten as:

âi(θk) = (1 + em)(1 + eg)ejepha ej2π
epos+(i−1)d

λ sin(θk). (3)



Electronics 2022, 11, 220 3 of 10

2.2. Neural Network Model

The covariance matrix of x(t) can be approximated as:

R =
1
N

N

∑
t=1

(x(t)× x(t)∗), (4)

where N denotes the number of snapshots. Then, the input to the proposed neural network
is given by:

u = [Vec(Real(Triu(R))), Vec(Imag(Triu(R))))], (5)

where Triu(·) represents the upper triangular area of the matrix and Vec(·) reformulates
the matrix as a vector.

The convolutional layer has been widely used in neural networks, and the output of
the i-th layer can be expressed as:

yi = f

Wi × ui + bi︸ ︷︷ ︸
vi

, (6)

where ui is the input feature, Wi is the convolution kernel, and bi is the bias. In (6), the non-
linear function f (·) (e.g., ReLU, Sigmoid, Tanh, etc.) is used for space mapping. To train
the neural network, Wi is updated via backpropagation under a certain loss function [18].

To reduce the internal covariate shift and accelerate the convergence rate, batch nor-
malization (BN) can be performed before activation [19], for which yi can be rewritten as:

yi = f

(
vi − E[vi]√
Var[vi] + ε

)
. (7)

3. Proposed TB-Net

Figure 1 shows the architecture of the proposed TB-Net, which can be divided into two
parts: feature extraction network and parallel prediction network. The details of these two
networks are represented in Sections 3.1 and 3.2. The parallel prediction network consists of
the C-Branch, the R-Branch, and an output layer, which are described in Sections 3.2.1–3.2.3.

The detailed parameters of TB-Net are listed in Table 1, where C_IN denotes the
number of input channels, C_OUT denotes the number of output channels, H denotes the
kernel height, and W denotes the kernel width.

Table 1. Parameters of the proposed TB-Net.

Network
Convolution Kernel

(C_IN, C_OUT, H, W) Stride Activation and BN

Feature
extraction
network

(2, 8, 1, 5) 2 BN + ReLU

(8, 32, 1, 5) 2 BN + ReLU

(32, 64, 1, 5) 2 BN + ReLU

(64, 128, 1, 5) 2 BN + ReLU

(128, 128, 1, 3) 2 BN + ReLU

C-Branch (128, 121, 1, 1) 1 Sigmoid

R-Branch (128, 121, 1, 1) 1 Tanh
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Figure 1. Architecture of the proposed TB-Net.

3.1. Feature Extraction Network

The feature extraction network extracts features from the covariance matrix and
outputs them to the C-Branch and R-Branch, which realizes feature reuse and reduces the
computational complexity.

The parameters of the network were determined by experiments. The results showed
that the network consisting of five convolutional layers had the best mean absolute error
(MAE) performance, and the parameters of the convolution kernel in each layer are listed
in Table 1. Additionally, BN was utilized to accelerate the convergence. The experiments
showed that adopting BN in the first five layers led to the best training stability and the
highest MAE accuracy.

3.2. Parallel Prediction Network

The prediction network consists of the C-Branch and the R-Branch, and these two
networks work in parallel. Denoting G as the number of grids, the output of the C-
Branch is a mask vector m = [m1, m2, . . . , mG], whose i-th element indicates the possibility
that the DoA is around the i-th grid. The output of the R-Branch is a deviation vector
d = [d1, d2, . . . , dG], where di represents the DoA’s deviation, or estimation refinement, with
respect to the i-th grid.

For model optimization, the total loss was set as:

L = 0.1× lc + lr, (8)

where lc is the loss of the C-Branch and lr is the loss of the R-Branch.

3.2.1. Classification Network

In this paper, a source in the sector [θ − 0.5◦, θ + 0.5◦] (θ = −60◦,−59◦, . . . , 60◦) was
approximated by the grid θ, and the result of the C-Branch is a vector with 121 elements,
whose values belong to {0, 1}. A coarse DoA estimation was obtained by the indexes of
non-zero elements.
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In the C-Branch, we used the Sigmoid function as the activation function of the output
layer, which maps the result to [0, 1]. We used binary cross-entropy (BCE) as the loss
function to optimize the neural network, i.e.,

lc =
G

∑
i=1
−(milog(m̂i) + (1−mi)log(1− m̂i)), (9)

where mi is the label and m̂i is the output of the network.

3.2.2. Regression Branch

The proposed R-Branch consists of a convolutional layer containing 121 output chan-
nels, which is consistent with the C-Branch. For the i-th channel, the output is the deviation
on the i-th grid in the C-Branch. Note that such a deviation is valid only when mi = 1.

Since the grid size in the C-Branch is ∆θ, the deviation is restricted within [−0.5∆θ, 0.5∆θ].
Hence, the weighted Tanh function was used as the activation function, i.e.,

di = 0.5∆θ × Tanh(vi). (10)

For training, we adopted l2 as the loss function to optimize the neural network, i.e.,

lr =
1
G

G

∑
i=1

mi × (di − d̂i)
2, (11)

where di denotes the actual deviation and d̂i denotes the output of the R-Branch.
Most importantly, because the R-Branch is parallel with the C-Branch, there is no data

dependency between the two networks, which implies that TB-Net can estimate the DoAs
in one evaluation.

3.2.3. Output Layer

The output layer combines m and d and obtains the DoA estimates. It first finds K
(the number of sources) peak indexes p = [p1, · · · , pk] in m̂ and obtains the coarse DoA
estimation by multiplying the grid size. Then, a final DoA estimate is obtained by adding
the deviations selected in d according to p. The process is shown as:

θ̂k = ∆θ × pk + dk, (12)

where θ̂k denotes the DoA estimates and ∆θ denotes the grid size.

4. Experimental Results and Discussion

A 16-element ULA with a half-wavelength inter-element spacing was used to generate
the dataset. Two sources with equal power were randomly generated within [−60◦, 60◦].
The scale of the dataset for training, validation, and testing was 100,000, 20,000, and 20,000,
respectively.

We implemented TB-Net in Pytorch. In the training process, we set the initial learning
rate to 0.001 and adjusted the learning rate every 30 epochs to 0.9-times the previous one.
We used the Adam [20] optimizer to update the network parameters during training. The
total training epoch was set to 300, and the candidate achieving the highest DoA estimation
accuracy was selected as the final model.

We used MAE to measure the performance of the algorithms, i.e.,

MAE =
1

NT

N

∑
i=1

(
|(θ1 − θ̂1)|+ |(θ2 − θ̂2)|

)
, (13)

where NT denotes the number of testing samples.



Electronics 2022, 11, 220 6 of 10

4.1. Experiments on TB-Net
4.1.1. Classification Network

As shown in Figure 2, the output of the C-Branch indicates the possibility of the
source’s existence on the grids. In cases of (a), (b), and (c), the two grids corresponding to
the peaks are considered as the DoA estimates. In the case of (d), the direction of 56.47◦

causes closely located peaks on two grids, from which the one with the higher peak is taken
as the DoA estimate (e.g., Point 3 in Figure 2d).
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Figure 2. The results of the C-Branch. The true directions of (a–d) are (−16.15◦, 17.27◦), (−59.92◦,
21.92◦), (40.29◦, 40.56◦), and (29.15◦, 56.47◦), respectively.

We compared the C-Branches that were optimized by l2 and lBCE separately, and the
results are shown in Figure 3. It can be seen that the network optimized by lBCE had a
better accuracy than the one optimized by l2. Under SNR = 10 dB, the improvement of the
accuracy was about 44.7%.

4.1.2. TB-Net

Figure 4 shows the impact of the introduction of the R-Branch. It can be seen that the
DoA estimation accuracy improved with SNR. When the SNR was low, the coarse estimates
of the C-Branch were far from the DoA values and thus degraded the MAE significantly.
With the increase of the SNR, the deviation given by the R-Branch gradually dominated the
estimation accuracy, since the coarse DoA estimates obtained by the C-Branch almost had
no error. This phenomenon was obvious when SNR > 2 dB. Compared with the C-Branch,
TB-Net had an improvement of about 36.4% in accuracy under SNR = 10 dB.
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Figure 3. MAE comparison of the classification branch optimized by lBCE and by l2.
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Figure 4. MAE comparison of TB-Net and the C-Branch-based classification network.

4.2. Complexity Analyses

The computational complexity comparison among DNN-based algorithms is listed in
Table 2, where the weight denotes the model size and the calculation amount denotes the
multiplication and addition operation number. We chose the networks proposed in [6,17]
for comparison, which are briefly named DNN_SF_SS and 2D-CNN. The results implied
that the CNN-based TB-Net had the minimum model size and computational complexity.

Table 2. Computational complexity analyses.

Algorithm DNN_SF_SS [6] 2D-CNN [17] Proposed TB-Net

Weight (MB) 3.6 338.3 1.8

Calculation amount (×106) 0.92 2.34 0.78

4.3. Experiments with Model Imperfections

The imperfections considered in this paper were modeled as:

eg = 0.1× ρ× [0, 0.2, · · · , 0.2︸ ︷︷ ︸
8

,−0.2, · · · ,−0.2︸ ︷︷ ︸
7

], (14)

epha = 0.1× ρ× [0,−30, · · · ,−30︸ ︷︷ ︸
8

, 30, · · · , 30︸ ︷︷ ︸
7

], (15)

em = 0.1× ρ× [0, γ1, γ2, · · · , γ15], γ = 0.3ej60◦ , (16)

epos = 0.1× ρ× [0,−1, · · · ,−1︸ ︷︷ ︸
8

, 1, · · · , 1︸ ︷︷ ︸
7

], (17)
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where the parameter ρ with value [0.1, 0.2, . . . , 0.9] was used to control the strength of
imperfections. For experiments, the data were generated under SNR = 10 dB, and the
number of snapshots was set to N = 40.

We compared TB-Net with MUSIC [1], ESPIRIT [2], and DNN-based models. For
MUSIC, the searching step was set to 0.1◦. In order to make a fair comparison, the epochs
of the training for TB-Net were set to 300. For the 2D-CNN and the DNN_SF_SS, the
parameters used for the training were set according to [6,17].

Figure 5 shows that TB-Net performed well in all situations except the mutual coupling
where MUSIC had the best performance. The prediction results of TB-Net did not fluctuate
much with the increase of ρ, and the error was around 0.19◦. In contrast, the performances
of MUSIC and ESPIRIT deteriorated significantly with the increase of ρ, especially in the
case of the gain and phase inconsistency and the deviation of the antenna position.
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Figure 5. MAE comparison of the algorithms in the presence of different array imperfections:
(a) combined imperfections, (b) mutual coupling, (c) deviation of antenna position, and (d) gain and
phase inconsistency.

The error of the deep-learning-based algorithms did not deteriorate with the increase
of ρ. However, the DNN_SF_SC [6] did not work well in all conditions, especially in inter-
sensor mutual coupling. The MAE of the 2D-CNN [17] fluctuated around 0.6◦, which was
limited to the resolution of the grid-based classification network. In comparison, TB-Net
constantly achieved high DoA estimation accuracy under various model imperfections.

5. Conclusions

In this paper, TB-Net, which combines classification and regression in parallel, was
proposed to address DOA estimation. The DoA estimates were first coarsely obtained by
the C-Branch and then further refined by the R-Branch. The experiments demonstrated
that TB-Net had a higher DoA estimation accuracy in the presence of model imperfections.
Besides, the C-Branch and the R-Branch shared a feature extraction network to reduce the
model size. The convolutional layers were also adopted to implement a lightweight neural
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network. Hence, the proposed TB-Net had a model size of 1.8 MB and a calculation amount
of 0.78 million, which is the minimum value to our knowledge. The proposed TB-Net has
the limitation that the source number is assumed to be fixed and known. Therefore, the
DoA estimation for an arbitrary source number is a potential direction for future research.
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Abbreviations
The following abbreviations are used in this manuscript:

TB-Net Two-branch neural network
DoA Direction of arrival
DNN Deep neural network
CNN Convolutional neural network
MUSIC Multiple signal classification
ESPIRIT Estimation of signal parameters via rotational invariance techniques
GRU Gated recurrent units
BiLSTM Bidirectional long short-term memory
SNR Signal-to-noise ratio
R-Branch Regression branch
C-Branch Classification branch
ULA Uniform linear array
BN Batch normalization
BCE Binary cross-entropy
MAE Mean absolute error
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