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Abstract: Fifth-generation (5G) technology will play a vital role in future wireless networks. The
breakthrough 5G technology will unleash a massive Internet of Everything (IoE), where billions
of connected devices, people, and processes will be simultaneously served. The services provided
by 5G include several use cases enabled by the enhanced mobile broadband, massive machine-
type communications, and ultra-reliable low-latency communication. Fifth-generation networks
potentially merge multiple networks on a single platform, providing a landscape for seamless
connectivity, particularly for high-mobility devices. With their enhanced speed, 5G networks are
prone to various research challenges. In this context, we provide a comprehensive survey on 5G
technologies that emphasize machine learning-based solutions to cope with existing and future
challenges. First, we discuss 5G network architecture and outline the key performance indicators
compared to the previous and upcoming network generations. Second, we discuss next-generation
wireless networks and their characteristics, applications, and use cases for fast connectivity to billions
of devices. Then, we confer physical layer services, functions, and issues that decrease the signal
quality. We also present studies on 5G network technologies, 5G propelling trends, and architectures
that help to achieve the goals of 5G. Moreover, we discuss signaling techniques for 5G massive
multiple-input and multiple-output and beam-forming techniques to enhance data rates with efficient
spectrum sharing. Further, we review security and privacy concerns in 5G and standard bodies’
actionable recommendations for policy makers. Finally, we also discuss emerging challenges and
future directions.

Keywords: 5G; B5G; wireless networks; machine learning; MIMO; physical layer; IoT

1. Introduction

Over recent years, the quantity of communicating devices and their consumers has
been enormously growing, forcing cellular companies to expand their bandwidth to ac-
quire higher data rates for wireless media [1]. In this regard, the advancement in mobile
phone generations from 1G to 4G-LTE has brought about an improvement and numerous
challenges [2]. Nowadays, internet speed is an eminent concern for both users and service
providers; hence, cellular companies are in a battle for fifth-generation (5G) internet imple-
mentation so that they can provide a super fast and reliable connection to their users [3].
Fifth-generation networks are supposed to revamp the cellular industry from top to bottom
by 2022, as their primitive focus is to enhance the transmission speed, capacity, and reli-
ability of wireless channels. This task can be accomplished by using low power and low
latency for the tactile internet, the Internet of Things (IoT), massive multiple-input and
multiple-output (MIMO), robotics, autonomous vehicles, and industry [4]. Due to its super
fast nature, it brings a latency rate of 1 ms, allowing problems to be solved instantaneously,
which is essential for real-time applications and seamless connectivity [5].

5G technology has enabled multiple networks to interact with each other irrespective
of their distinct characteristics to establish a heterogeneous wireless network (HetNet).
Although this is a standard of 4G-LTE, the primary infrastructure does not support it [6].
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Fifth-generation devices consume low power, and Tx/Rx transmits signals at a data rate of
10 Gbps (gigabits-per-second). This technology provides an environment for the connection
of millions of IoT devices. The combination of 5G and IoT can be used to execute the smart
city concept. Smart devices are capable of exchanging data over millions of devices at a high
transmission rate with low latency and low cost [7]. Increased system capacity, high spectral
efficiency (SE), and energy efficiency are other advantages that can improve user experience
and satisfaction. The primary goal of 5G is to connect living beings and intelligent devices
(machines, robotics) at any instant to provide complete services [8]. The roadmap of 5G
provides boundless possibilities from economic and societal perspectives. The lower site
density in the sub-6 GHz region is crucial for high-definition video streaming and massive
machine-type communications (mMTC) applications with ultra-reliable low latency com-
munication (uRLLC). Fifth-generation technologies will surely help to tackle applications
that consume high data rates and require massive bandwidth and low latency [9,10].

In Figure 1, the heterogeneous network architecture of 5G new radio (NR) is presented,
in which everything is connected with 5G internet. Artificial Intelligence (AI), machine
learning (ML), and deep learning (DL) techniques are envisioned to be the best techniques
to make the 5G vision a reality. Considering novel use cases such as critical delay-sensitive
applications, drone mobility, autonomous vehicles, mixed reality, and industrial automa-
tion [11]. From virtual personal assistants to social media services, ML is expected to
solve many challenges in numerous applications. The ML-based solutions are effective for
intrusion detection and prevention, video surveillance, email spam, and predictions, while
reducing online commuting. ML has become mature enough to enhance the performance
of the network and its services by learning from the wireless network traffic behaviors [12].
ML-based 5G wireless communication is possible using various modern networking stan-
dards; i.e., big data analysis [13], mobile edge caching [14], mobile edge computing [15],
and context-aware networking [16]. The existing heuristic radio resource management
(RRM) algorithms cannot confront the fundamental demands of 5G due to their complex
procedure [17]. However, ML works incredibly well for traditional approaches to complex
problems that require a great deal of human intervention.
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Figure 1. 5G network architecture.
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In addition, ML-based algorithms learn from existing or run-time data, perform
automatic feature extraction, and replace the stereotypically long instructions to tackle novel
problems [18]. Substantially, an ML-based algorithm can help in the fields of education,
patient sickness predictions, image recognition, self-driving cars, military surveillance,
transportation, stock market, and recommendation engines. Complications in wireless
networks are due to the exponential growth of heterogeneous networks, the immense
numbers of end-user devices, and time-sensitive applications. For this reason, emerging
use cases and services demand an automated network procedure [19]. However, the current
state-of-the-art deployment of wireless networks has taken a sporadic approach based on
the fix-and-patch mentality. ML principles are often drawn from established technologies
of machine vision and robotics. Such borrowed regulations address the specific situation
but negligently create new research challenges. These challenges include the inept usage of
network resources, weak processing, memory sufficiency, and attack vectors [20]. Therefore,
to enhance the wireless network capability, elementary units and all layers of a wireless
system will integrate ML-based approaches [21]. In Table 1, we compare the capabilities of
5G in contrast with 4G and 6G technology.

Table 1. Comparison of 4G, 5G, and 6G communication systems.

Key Performance Indicator (KPIs) 4G-LTE 5G 6G

Deployment year 2000 2020 Yet to be implemented
Core architecture Internet Internet Internet
Core networking Internet Internet Internet
Multiplexing bandwidth OFDMA/SC-FDMA BDMA/FBMC OMA/NOMA

(1.4 Mhz–20 Mhz) (60 GHz) (up to 3 THz)
Per device peak data rate 1 Gbps 10 Gbps 1 Tbps
Switching Packet switching Packet switching Packet switching
Forward error correction Turbo codes LDPC codes LDPC codes
E2E latency 100 ms 10 ms 1 ms
Maximum spectral efficiency 15 bps/Hz 30 bps/Hz 100 bps/Hz
Mobility support Up to 350 km/h Up to 500 km/h Up to 1000 km/h
Satellite integration No No Fully supported
AI supported No Partially supported Fully supported
Autonomous vehicle supported No Partially supported Fully supported
XR supported No Partially supported Fully supported
Haptic communication No Partially supported Fully supported
Visible light communication (VLC) No No Yes
Maximum frequency 6 GHz 90 GHz 10 THz
Architecture MIMO Massive MIMO Intelligent surface
Service Level Video AR,VR Tactile
Connectivity density 105 Devices/km2 106 Devices/km2 107 Devices/km2

Area traffic capacity 0.1 Mb/s/m2 10 Mb/s/m2 1 Gb/s/m2

Network energy efficiency 1× 10–100× of 4G 10–100× of 5G
Spectrum efficiency 1× 3× of 4G 5–10× of 5G
Reliability 99.99 99.999 99.99999

Contribution

This study presents a 5G network architecture and next-generation wireless networks
(NGWN) communication architecture model. Besides this, we also present 3GPP-based
physical layer services and functions, 5G massive MIMO and beam-forming techniques
to enhance data rates with efficient spectrum sharing, 5G crosstalk issues and solutions,
5G-supporting signaling techniques, and security and privacy in 5G. This survey aims to
understand and emphasize the emerging methods of ML for upcoming 5G use cases. In ad-
dition, the article discusses how forthcoming 5G technologies will meet their demanded
goals using shared information and ML-based techniques and expected future challenges
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due to the combined architecture models. At the end, we also discuss emerging challenges
and future directions.

2. 5G Technology

Wireless technology is frequently growing and expanding to entertain the higher state-
of-the-art requirements of users with versatile applications. In the future, the above traits of
5G will assist in upcoming big data applications such as diagnosing critical-life situations
in hospitals, fast money transfer in a stealthy way, handling inventory in warehouses,
and much more [22]. Moreover, the latest applications that demand heavy traffic with
quality of service (QoS) and quality of experience (QoE) cannot be maintained by 4G and
its previous generations. Since 5G can offer 20 Gbps peak data rates, which are 100× faster
than 4G, broadcasting rates are also in Gbps, and the average data rate is 100+ Megabits-
per-second (Mbps) [23]. Therefore in upcoming years, we will be able to download videos
and movies in a few seconds without waiting for streaming [24].

2.1. 5G Network Architecture

The architectural model of 5G has four layers: a network layer, controller layer,
management and orchestration layer, and service layer. Radio link control (RLC) and
packet data convergence protocol (PDCP) layers are the sub-layers of the 5G protocol
stack. The network architecture of 5G contains adaptable, virtual, and flexible radio
access networks (RAN) points instead of base stations (BS) and a complex distributed
design. These virtual RANs include new interfaces, elements, and compositions to create
numerous data access points [25]. In 5G architecture design, the RANs can support WiFi,
WI-Max, CDMA-One, UMTS, LTE, LTE-adv, EV-DO, GSM, GPRS, IS-95, and different RANs
connected through a single aggregate network using a software-defined network (SDN)
controller to route the traffic to a gateway. The hyper-critical aspects of the IP-network, such
as the cost of the entire architecture, are significantly cut down by reducing the network
elements. The nano-core network (CN) is yet another essential component that has three
further categories: (1) nanotechnology (nano-tech), which is essential for the protection of
daily life devices; (2) cloud computing, which determines the availability of remote services
over the internet; (3) the all IP network (AIPN), which is essential for cellular growth [26].

Third-generation partnership project (3GPP) enhancements also allow a more distributed
architecture, which facilitates the usage of AI to assist network optimization through central-
ized data gathering and by processing the required intelligence. The current NR architecture
has already introduced new functions in the core and the management domains—i.e., network
data analytics function (NWDAF) and the management data analytics function (MDAF)—
which can either run analytics on collected data or can enhance already supported network
functions with statistics collection and prediction capabilities. This capability of 5G architec-
ture either analyzes collected information or supports the existing procedure for analytics. ML
will play a role in increasingly complex 5G networks; i.e., making adequately energy-efficient
and economic policies for optimized network operations. Given the increased complexity
of 5G networks, further leveraging 5G network data and ML will be necessary to derive
optimum network-wide energy-efficient operation policies [27].

The core features of nanotechnology are a flexible structure, transparency, and en-
vironment sensor. Notably, molecular nanotechnology (MNT) uses the nanoscale range
(0.1 to 100 nm) to control daily-life gadgets. This is essential for sensing, ensuring secu-
rity, and cleaning the mobile phone from the unprotected environment. While the cloud
computing layer is concerned with all internet services dealing with remote and real-time
applications, the consumers can access their confidential data through private accounts.
Flat AIPN is the advanced concept enabled by 3GPP to meet future demands of cellular
technology. This eases the access of real-time applications by ensuring enhanced edge
computing technology and provides features including a lower latency rate, seamless
connectivity, system efficiency, and cost-effectiveness. The 5G NR improvement allows the
aptitude of ML to endorse network optimization for an expanded distributed or centralized
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architecture [28]. In Table 2, we summarize the key attributes of 5G that allow the expected
5G performance to be achieved. AI, ML, and DL have been attracting increased attention in
the past few years, and researchers are continuously developing applications using these
techniques. These technologies deployed together improve QoE, reduce operational costs,
and bring new paradigms for future needs. However, 4G did not take advantage of the
potential of these approaches; therefore, 5G must involve AL, DL, and ML-based learning
characteristics in its architecture.

Table 2. Summary of studies on 5G network technologies.

5G Network
Technologies Key Aspect References

1. RAN as a Service (RAAS) capabilities.
2. Boosts the network performance and highly favorable in low
latency.

Centralized
architecture

C-RAN
(Cloud-RAN)

3. Offers to reuse infrastructure, pool resources, support multiple
technologies, decrease energy usage, create a heterogeneous and
self-organizing structure, and reduce the costs associated with
CAPEX and OPEX.

[29–36],

4. Also allows other network operations in a data
center environment.

1. Support for ultra-low latency, interoperability,

Multi-access edge
computing (MEC)

virtualization, high bandwidth, augmented reality,
strengthens security and compliance. [37–45]
2. Optimized local content distribution and
data caching.

1. Supports longer life cycles for network hardware.
Network function 2. Reduced space needed for network hardware,

virtualization
(NFV)

power consumption, maintenance, and hardware costs. [46–54]

3. Ease in network upgrades.

1. Improve performance.
2. Protecting sensitive data.
3. CAPEX and OPEX can also be reduced.

Network Slicing
(NS)

4. Offers various services based on the requirements. [55–61]
5. Effective and efficient utilization of resources
6. Improves operational efficiency.
7. Overcomes all the drawbacks of DiffServ.

1. Improves the spectral efficiency.

Beamforming (BF)
2. Boosts cell range and capacity.
3. mmWave offers a large bandwidth. [62–69]

4. Support for higher path loss and blockage scenarios.

1. Supports carrier aggregation, downlink CoMP,
MIMO, uplink L1 Comp.
2. Reduces jitter and latency for high priority traffic.

Enhanced Common
Public Radio

Interface (eCPRI)

3. Ease in troubleshooting at the lower layers.
4. Reduced bandwidth is required. [70–77]

5. Software upgradable interfaces.
6. Ethernet can carry eCPRI traffic.
7. Saves electricity.
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Table 2. Cont.

5G Network
Technologies Key Aspect References

1. Multiple frequency ranges.
2. Supports higher frequencies, wide-area, outside-in
coverage, deep indoor coverage, reliability, spectral

5G Spectrum
and Frequency

efficiency, and the M2M type of communication.
3. Supports very high throughput services for eMBB, [78–85]
and industrial IoT.
4. Provides a balance between throughput, coverage,
quality, and latency.

Traits such as the extreme complexity, enhanced problem-solving solutions, and the
heterogeneous nature of 5G can only be achieved by using these approaches. In other words,
the existence of these characteristics transforms the 6G infrastructure into an innovative
and intelligent network [86–88]. Both AI and ML are somehow correlated with each other,
where AI is the program of study that includes intelligent machines, such as robotics, along
with the perception of human intelligence, and ML involves the study of creating computer
programs [89]. It is stated that AL is generally about finding solutions, facts, logical
reasons, and intellectual learning, but ML is about learning from existing experiments
and examples. On the other side, DL, a part of the ML family, is based on ANNs and
enables computing models to perceive, learn, and represent data by following human
brain stimulation. The model has multiple processing layers and contains interconnected
artificial neurons such as the human body’s nervous system [90]. As 4G did not provide the
required platform for all these learning methods and technologies, 5G must consider the
importance of these categories and prepare its internal infrastructure for experiencing smart
and intelligent designs. Real-time intelligent edge-distributed AI and intelligent radio must
be a part of 5G design to acquire autonomous services, intelligent calculation, accurate
decision planning, and a real-time approach [91]. According to [92], the 5G framework
demands intelligent radio (IR) instead of deploying the PHY model as it has specific
hardware and transceiver algorithm traits. In contrast, DAI outperforms other approaches
with regard to the security and privacy of data.In Table 3, we discuss architectures that
support 5G network technologies to deliver expected services.

Before moving forward, it is important to understand the trends and services of 5G.
Some of the key trends provided by 5G are as follows:

1. Increased spectrum, bits, and reliability:
For proper working and operation, the sub-6 GHz spectrum must deliver increased
bits, a large spectrum, and increased reliability [93]. Fifth-generation networks are
a standalone approach to provide services for the latest technological applications,
such as wireless brain–computer interactions, abbreviated as BCI [94,95]; extended
reality services, abbreviated as XR [96]; connected robotics and autonomous systems,
abbreviated as CRAS [97]; distributed ledger technologies, abbreviated as DLT [98];
and much more. This is possible only by exploring more spectrum resources and
achieving higher reliability ratios at high-frequency bands.

2. Using volumetric spectral efficiency and metamaterials:
5G demands the use of volumetric spectrum efficiency and energy efficiency, abbre-
viated as SEE, with bps/Hz/m3/Joules units. Along similar lines, 6G requires the
support of XR, CRAS, DLT, BCI devices, and flying vehicles, which would not be
possible without aerial bandwidths. Furthermore, the 3D evolutionary architecture of
6G requires active surfaces, smart, or intelligent coverings to transmit signals instead
of deploying a conventional base system [99].

3. Moving from a centralized to distributed data approach:
Due to the continuous transformation of data from large, big, and centralized to a
small and distributed approach, 5G must furnish its infrastructure to provide services



Electronics 2022, 11, 121 7 of 44

for current centralized and future distributed data. This is one of the most crucial
trends of 5G required for ML, and small data analytics [100].

4. Implementing wearable devices:
5G creates a space for smart body implementation, wearable devices, and integrated
handsets. All these devices operate through human sensory inputs [101].

5. Focusing self-sustaining networks:
The technologies upheld by 5G and beyond demand intuitive networks instead of
self-organizing networks, supported by previous cellular generations. These self-
sustaining networks bring instantaneous sources, network operations, and optimiza-
tion traits. Furthermore, the network can perform and explore dynamic environmental
conditions, states, and key performance indicators [102]. Thus, beyond 5G networks
(B5G) create artificial learning, quantum computing (QC), and quantum machine
learning (QML) skill sets [103].

6. Enhancing communication premises:
From 1G to 4G, the primary purpose of these generations is to serve wireless com-
munication, but 5G has slightly different premises. 3CLS stands for communication,
computing, control, localization, and sense, which is potentially given by 6G, al-
lowing it to become a multi-purpose generation. The design of 5G must evolve in
a way to achieve all the 3CLS services and bring something valuable for real-time
applications [104].

Table 3. Summary of studies on 5G network architectures.

5G Network
Architecture Key Aspect References

1. Supports industrial IoT (IIoT), smart energy, wearables,
IIoT MEC

based
Architecture

environment monitoring, gaming, AR/VR,
autonomous vehicles, healthcare and remote surgery, [105–112]
smart city/home.

1. Providing unified cloud and fog resources for
deploying NFV, MEC, and IoT services.TelcoFog

Architecture 2. Distributed and programmable fog technologies. [113–120]
3. Supports HVAC service.
4. Secure, highly distributed.

1. Supports nano-chip, millimeter wave,
heterogeneous networks, device-to-device

5G IoT
communication, 5G-IoT, machine-type communication,

Architecture
wireless network function virtualization, wireless software [121–128]
defined networks, advanced spectrum sharing and
interference management, mobile edge computing, mobile
cloud computing, data analytics and big data.

1. Cost-effective, scalable, secure, and handles various
vehicular network issues in a smart city.
2. Provides ledger and smart contract (chaincode)
services to applications.

Blockchain-Based
3. Provides a decentralized and distributed network.

Architecture
4. Provides protection for the entire data life cycle. [129–136]
5. Prevents internal and privacy attacks.
6. Distributed, reliable, and efficient authentication and
traceability.
7. Empowered data-driven networks.
8. Supports several use cases; i.e., smart healthcare, smart
city, smart transportation, smart grid, and UAVs.



Electronics 2022, 11, 121 8 of 44

The existing TCP/IP layered model cannot provide constraints for all futuristic appli-
cations, forcing researchers to build more powerful components in the stack architecture.
The designer of the application recommends including meta-data and commands in the
current model. They play the role of identifiers to make the communication process easy,
analyze the application’s essentials, and acquire information about flow states. After ob-
serving these benefits, in [137], the authors presented the concept of cross-layer, which
can combine conventional network requirements with the transport layer to generate a
combined layer. In addition to flow multiplexing capability, it efficiently reduces congestion
and overall complexity and determines the network’s requirements to boost state.

2.2. Next-Generation Wireless Networks (NGWN)

Regarding 5G and beyond, NGWN introduces various hypercritical challenges in the
area of ultra-dense deployment heterogeneous networks (HetNets). Due to this factor,
the upcoming wireless networks will be highly dynamic and complex [138]. Access points
and low-cost end-user devices are growing drastically, and high mobility in this scenario
results in a complicated and hectic communication process [139]. The propagation behavior
of radio signals being broadcasted with exploded communication introduces spoofing and
man-in-the-middle attacks. Nowadays, wireless data formation and utilization are progres-
sively distributed, so the current paradigm is converging from people-centric to machine-
oriented communications. To handle the future complex wireless operations, knowledge
discovery, improved context-awareness, efficient data acquisition, and distributed com-
putational resources using the adoption of AI principles and ML-based techniques are
extremely important [140].

5G technology is considered evolutionary, service-oriented, or revolutionary. As men-
tioned, the systems of 5G will be designed so that they can bear the worldwide wireless web
(WWWW), commonly known as real-world wireless. This will provide seamless broadband
connectivity and permit the support of flexible ad-hoc networks—i.e., dynamic ad hoc
wireless networks (DAWN)—which would be a rich ecosystem of mobile applications and
cloud-based services [141]. Fifth-generation networks use enhanced modulation schemes
(OFDM uplink and downlink) for higher SE, and the subcarrier modulation may vary from
QPSK, 16QAM, and 64QAM to 256QAM, while the subcarrier spacing also varies from
15 kHz, 30 kHz, 60 kHz, 120 kHz, and 240 kHz to 480 kHz; that is, depending upon 5 g
numerology (µ 0–4), carriers vary up to 3300. The massive intuitive antennas are critical fac-
tors in producing a high data rate and are committed to boosting 5G’s capability for the new
world [142]. Moreover, OFDM and its variants (COFDM, Flash OFDM, OFDMA, VOFDM,
Vector OFDM, WOFDM), MC-CDMA, LAS-CDMA, Network-LMDS, UWB, and IPv6 play
a significant role in supporting 5G networks [143].

Currently, 5G is providing advanced services and intelligent technologies such as AI,
virtual reality (VR), augmented reality (AR), mixed reality (MR), and cloud computing
which are being used to cater to the IoE behavior of the network. The 5G revolutionary
view indicates that the existing infrastructure of previous generations (2G/3G/4G) is not
suitable for advanced applications and services. Table 4 shows a comparison of 4G, 5G,
and 6G with respect to network characteristics, applications, and use cases. To achieve
the expected 5G vision, embedded architecture and intelligent designs are required in
addition to emerging technologies; i.e., SDN, network slicing, and NFV located above the
physical layer to support multiple services. NR wireless communication architecture is
excellent for achieving ultra-reliable low latency communication, whereas other benefits
from, i.e., eMBB and mMTC are also considered [144]. Low-density parity-check (LDP)
codes and polar codes (PC) are regarded as the top-tier spectrum coding schemes for
higher data rate networks such as 5G-NR [145]. The international telecommunication
union (ITU) standardization group (ITU-T SG-12) endorsed new updating and defining
recommendations to achieve QoS and QoE in the NGWN [146]. The ITU-T group has
already been settled and named as a focus group on ML for future networks including 5G
to mitigate and overcome the latest challenges of NGWN and to manage its operations [147].
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In Figure 2, NGWN is presented under the consideration of the heterogeneous network
architecture of 5G.

Internet

Figure 2. 5G wireless communication architecture.

Table 4. 4G, 5G, and 6G characteristics, application, and use cases.

4G-LTE 5G 6G

FeMBB, ERLLC,Use cases MBB eMBB,URLLC,mMTC umMTC, LDHMC, ELPC

Telemedicine Autonomous vehicles,Mobile TV/Pay,
high-definition video,
voice, mobile internet

VR/AR/360◦ video, tactile/haptic internet,Applications IoT, V2X, UHD videos, space travel, holography,
wearable devices, smart-city Internet of Bio-Nano-Things

Slicing, cloud, Virtual, software,Network characteristics Flat and all-IP software, virtual intelligent, cloud, slicing

Nonetheless, new methodologies are still required for the deployment of QoS manage-
ment models using ML-based algorithms to identify optimal key performance indicators
(KPIs) and key quality indicators (KQIs) to make efficient and optimized QoS frameworks.
Conventional networking approaches are not competent and have limited capability (space
and time) to assist persuasively future complex networks in terms of procedure and op-
timization costs [148]. A proactive, predictive, optimized, cost-effective, self-adaptive,
and self-aware networking paradigm using ML is required to overcome these incompeten-
cies and mitigate the complexity of future network operations. ML systematically exploits
the big data of networks and provides an innovative and intelligent system with cost-
effective and optimized operation. Next-generation wireless networks are anticipated in
which AI, ML, and advanced data analytics tools will be the main drivers [149,150].

3. Physical Layer in 5G

The physical layer, the bottom layer of 5G, is the only layer that provides a direction
to the top layers. The physical layer’s primary functions include encoding/decoding, error
detection, modulation/demodulation, digital and analog beam-formation, RF processing,
and MIMO handling. These functions are carried out through a wireless environment
surrounded by an electromagnetic field, RF, signal transmission, waves, and antenna prop-
agation [151]. The major role of 5G is to boost the SE. Still, as soon as the bandwidth
increases, the signal suffers from electromagnetic interference, pulses, and radiation, which
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decreases the quality of the signal. These unwanted endowments affect the signal’s at-
tributes and create unnecessary noise (i.e., additive, multiplicative, Poisson, transient,
and phase noise) [152]. Additive noise is further divided into nine categories: white, ad-
ditive white Gaussian, black, Gaussian, pink/flicker, Brownian, contaminated Gaussian,
power-law, and Cauchy noise). Consider a simple example of a current flowing from the
standard circuit to understand this concept. The circuit’s elements (wire, resistor, battery)
are designed to receive zero EM radiations for the current to flow without any disturbance.
However, if the circuit does not follow standard regulations, unlimited reflections will
be received, and the current will not flow easily. On similar lines, the circuit becomes a
mono-pole antenna if the standards are not maintained in the transmission and receiving
process of the wireless medium [153]. Likewise, by enhancing SE, distortion will be gen-
erated, and the signal will suffer a significant number of reflections, interrupted noises,
and reflections in its path. Still, this can be overcome through massive MIMO technology,
as discussed in [154]. Table 5 shows a summary of studies on physical layer functions in
5G wireless networks. Technically, electromagnetic interference is originated either from
radiated or conducted sources. In the electromagnetic field and wireless communication
networks, the communicating path directly links with electromagnetic propagation. Radi-
ated interference transfers the source signal’s reflection, crosstalk, and disruptive noises
using inductive and capacitive coupling devices.

The above description proves that at high frequency or a low wavelength, unwanted
radiations and interference originate from both internal and external means in 5G archi-
tecture. According to Faraday’s law, these radiations may vary in electric and magnetic
fields in both time and space along with alternating flux density. Contrary to this, conduc-
tive interference occurs due to impedance mismatching and the coupling of neighboring
resistive elements (inductors, capacitors, and resistors), and this whole process reduces the
voltage standing wave ratio [155]. Consequently, massive MIMO in the 5G architecture
endures multiple Tx/Rx radiations at high SE by achieving high data rates and ensuring
throughput, reliability, and bandwidth performance to tackle these limitations [156].

Table 5. Summary of the related work on the physical layer in 5G wireless networks.

Domain Key Aspect Related Work

1. Power delay profile.
mmWave channel 2. Doppler effect.
characterization 3. Multi-path and propagation. [157–164]

4. LOS and N-LOS communication.

1. Angle of arrival.
Adaptive beamforming. 2. Antenna training. [165–171]

3. Adaptive beamforming.

1. Overlapping sector.
Switched Beam 2. Cost effective. [172–179]

3. Sectorized antenna model.

1. MIMO small cell combination.
2. Inexpensive low-power component.Massive MIMO systems 3. High number of antennas per BS. [180–186]

4. Coherent superposition of waveforms.

1. Active and passive SI cancellation.
2. Improved spectral efficiency.

Full duplex radio technology 3. Decreased self interference (SI) and pathloss. [187–194]
4. Decreased crosstalk between Tx and Rx.
5. Improved feedback and latency
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In the recent past, the physical layer became an eye-catching topic for time-sensitive
services due to its potential to provide more effective approaches for 5G and beyond
networks [195]. ML-based techniques enhance the properties of the physical layer and
make the process efficient and optimized. For instance, in [196], the authors proposed
a CNN-based solution for intelligent communication in different situations, and [197]
discussed channel estimation and detection using DNN, outperforming the minimum
MSE-based joint approach in OFDM systems. In [198], the authors proposed an ML-based
antenna design method to ensure the security of the IoT communication system, and [199]
proposed a CNN-based technique to classify several key CSI parameters to adjust the
physical layer parameters in noisy environment. In addition, ref. [200] proposed a DL
model (CNN-DMA) to detect malware attacks based on a classifier—the Convolution
Neural Network (CNN)—and [201] proposed a multi-scale convolutional neural network
framework for wireless technique classification to improve the classification accuracy and
obtain a higher convergence speed. Furthermore, in [202], the authors proposed a CNN-
based equivalent channel hybrid precoding approach in mmWave massive MIMO systems
to reduce complexity and improve performance, and [203] proposed a CNN-based multi-
user authentication system to distinguish spoofers/attackers using CSIs and improve the
authentication accuracy of MIMO-OFDM systems. ML-based algorithms can be used to
estimate and predict channel behavior, the outcome of the encoding and decoding process,
and suitable coding schemes accordingly. Based on these features and classifications, ML-
based algorithms, ranging from simple to complex, can obtain the desired output and
estimate the required performance. These efficient techniques can optimize the channel
conditions and system loads, scheduling, transmitting, signal-to-noise ratio, and sub-code
lengths [204].

3.1. Signaling Techniques for 5G

Initially, 5G works in conjunction with 4G infrastructure based on release-15 non-
standalone (NSA) standards. The NSA standard proposes a 5G base station (gNB) that
replaces the LTE infrastructure eNB and an evolved packet core. The network hierarchy
is executed with eNB as the master and gNB as the secondary working node. In a dual
connectivity structure, the user can access both 5G and 4G-LTE [205]. Telecommunication
operators introduce many options, but the main options for 5G execution are 2, 3, 4, 5, and 7.
Currently, option 2 (stand alone-SA) and option 3 (non-standalone-NSA) are standardized,
in which the 5G architecture provides 5G services using LTE architecture [206]. Following
the guidelines in [207], Figure 3 shows 5G deployment options with frequency division and
the supported existing architecture. Signaling techniques are capable of transmitting lower
to higher data rates while considering several issues; i.e., slow beam-forming, lethargic
synchronization consisting of large gaps in time slots, and pitiable channel efficiency as
compared to existing techniques and conventional OFDM [208]. Generalized frequency
division multiplexing (GFDM) improves the SE and weak out-of-band emission compared
to the 4G network. Orthogonal time-frequency-spread (OTFS) is essential in 5G mmWave
to provide less BER, high reliability, and flexibility for pilot design in a noisy environment.
OTFS transforms the fading medium and time-varying characteristics of the wireless
channel into nonfading and time-dependent wireless channels [209,210].

In 5G mmWave, factors affecting the signal’s quality are meteorological conditions,
environmental surface, operational frequency, fading effect, the distance between the
antenna and user, and baseband signals attacked by the signal’s impairments. The presence
of linear and nonlinear compression brings abrupt changes in signal originality. In-phase
and quadrature-phase (IQ) impairments, frequency errors, and phase noise are significant
physical layer challenges that are mandatory to maintain signal quality. The fundamental
reasons are high range frequencies and the wide range of bandwidth usage, the hardware
execution of modulated transmitters, and the fact that receivers turn into the non-ideal
state [211]. Sampling circuit operations near sampling velocity create irregular noises,
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distortion, and nonlinear performance. Similarly, amplifiers, converters, and switches also
distort the signal between the transmitter and receiver [212].

In a wireless medium, the error vector magnitude (EVM) is usually required to mea-
sure the RF signal’s performance, and it determines waveform distortion, deformation
errors, linear and nonlinear compression [213]. AI, ML, and DL-based techniques are
anticipated to meet the 5G vision in the real world. The viability of ML-based 5G wireless
communications has already been ensured using mobile edge computing [214,215], mobile
edge caching [216], big data analysis [217], and context-aware networking [218] standards.
Current radio resource management (RRM) algorithms cannot stand up to the primary
expectations of 5G due to obscurity [219]. In this regard, ML-based solutions enable reliable
communication and automated, efficient, and accurate decisions for analyzing and predic-
tion, and 5G security is only as strong as its weakest links. Various techniques enhance
the physical layer performance of 5G; for example, ref. [220] proposed a loss function to
increase the performance of neural networks in a communication system, and [221] pro-
posed a multi-antenna and multi-subcarrier channel state information (CSI)-based novel
channel sounder architecture to achieve an accuracy better than 75 cm for line of sight (LoS)
for indoor user positioning in three dimensions.

Figure 3. 5G NR-LTE options.

In [222], the author proposed an ANN-based novel Adaptive Modulation and Coding
(AMC) scheme to estimate the signal-to-noise power ratio (SNR) to determine the optimal
MCS with a low calculation complexity, and [223] proposed ML-based peak-to-average
power ratio (PAPR) reduction using the optimal hyperparameter function and efficient
approximation for the downlink channel of mMIMO with an OFDM signal. In addition,
ref. [224] proposed a DRL-based channel and latency aware radio resource allocation
scheme to optimize the uplink scheduling for service-oriented multi-user millimeter wave
(mmWave) radio access networks (RAN). Furthermore, ref. [225] proposed a DRL-based
channel prediction approach to reduce the signaling overhead when reporting full downlink
(DL) channel state information (CSI) back to the base station. Orthogonal frequency division
multiplexing (OFDM) is a mature technique in wired and wireless communication systems.
In OFDM, high-order modulation schemes boost the SE of a signal and the power level for
each subcarrier, enhancing the transmission performance, while digital signal processing
complexity is another factor in contrast to single-carrier systems. Table 6 explains the 5G
numerology from 0 to 4 and their corresponding attributes. Fifth-generation networks offer
five options for different scenarios depending on the communication requirements. A high
peak-to-average power (PAPR) offers vulnerability to fiber nonlinear effects, and ML-based
techniques can play the best role here to control the PARP level and optimize the values for
upcoming intervals [226].
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Table 6. 5G numerology.

SCS Supported Supported Cyclic Cyclic OFDM and
µ N Slots

Sub f rames N Symbols
Slot ∆f = 2µ × Data (PDSCH, Sync Blocks Prefix Prefix Useful Symbol

15 kHz (PUSCH) (PSS, PBCH) Type Length (µs) Length (µs)

0 14 1 15 Yes Yes Normal 4.69 71.35/66.67
1 14 2 30 Yes Yes Normal 2.34 35.68/33.33
2 14 4 60 Yes No Normal/Extd 1.17 17.84/16.67
3 14 8 120 Yes Yes Normal 0.57 8.92/8.33
4 14 16 240 No Yes Normal 0.29 4.46/4.17

The existence of a high carrier frequency in the mmWave band generates non-ideal
characteristics in the signal and extends the free space loss propagation. Researchers have
also discussed the performance of radio channels by varying the RF and by analyzing
the impact of propagation factors on 5G architecture, and the results show that if the
wavelength is small, it is easy to build the entire structure on a single IC, but it is hard to cope
with environmental factors. At low wavelengths, the chances of attenuation, shadowing
objects, scattering, reflection, diffraction, and constructive and destructive interference are
high because of delay, path loss, and unnecessary noises [227]. At the same time, multi-path
propagation creates indirect rays to carry various duplicates of transmission side signals to
receiving side signals. The authors first analyzed the performance of the signal at 28 GHz
and then at 38 GHz, proving that, when using high range frequencies the radio channel
behaves differently if the objects surround the environment. In addition, if the user/object
is moving, the amplitude and phase of the traveling signal must be altered, and ultimately
the receiver cannot decode the transmitted signal [228]. Similar efforts were performed by
an authors in [229] to demonstrate the concept of vehicular positioning for 5G mmWave.

Following the guidelines in [150], Figure 4 illustrates the physical layer services of 5G
and functions defined by 3GPP. Multi-path propagation and the simultaneous localization
and mapping (SLAM) technique are used to determine the position of reflectors and users,
respectively. Though multi-path propagation blocks GPS signals, it helps the reflectors to
measure the transmitter signal scattered from objects.

– –

–

–

–

–

–

–

–

–

–

–

Figure 4. 5G physical layer functioning.

Furthermore, the instantaneous localization and mapping algorithm determines the
user’s position and constructs an atmosphere map. The author proposed a joint estimation
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scheme that depicts an automobile’s location and resolves multi-path propagation projec-
tions while calculating their delays and angle deviations [230]. In [231], the author uses
a single-cell multi-user millimeter wave system to achieve SE. The uniform rectangular
array situated at the base station region is used for single consumers, who are present
in large quantities. The authors achieved favorable results, where SE gave a logarithmic
relation depending on the number of antennas using the azimuth and elevation degree
for 3D model design and considered single-path propagation. Results showed that SE
increased by increasing the number of antennas. Moreover, the SE is improved through
the scheduling scheme of users, relying on the response obtained from the users. Table 7
shows the strengths and weaknesses of 5G waveform candidates.

Table 7. Comparison between 5G waveform candidates.

Waveform Filter Time Frequency Spectral uRLLC PAPR ReferenceGranularity Orthogonality Orthogonality Efficiency

UFMC Subband Orthogonal Quasi-orthogonal High Better High [232]
OFDM Whole Band Orthogonal Orthogonal Medium Better High [233]

F-OFDM Subband Non-orthogonal Quasi-orthogonal Medium Better Medium [234]
GFDM Subcarrier Non-orthogonal Non-orthogonal Medium Better Low [235]
FBMC Subcarrier Orthogonal Orthogonal High Bad Medium [236]

In [237], the authors made several efforts to boost the SE of the hybrid architectures
by using discrete Fourier transform (DFT) signal processing and compared them with
digital architecture. Zero-forcing pre-coding is used to perform baseband signaling, while
BS contains the ideal state information. The viable SE for a hybrid architecture can be
enhanced by upgrading SNR and RF chains such as the SE and DFT, which are independent
of the number of antennas used at the BS. Moreover, in multi-core fiber (MCF), two or more
signals carrying the same or partially the same frequency can be transmitted by using the
available number of cores in the same fiber. We can experience more than one dimension
of the fiber core through the MCF environment, but the transmission performance of the
network is reduced [238]. So far, we have discussed crosstalk issues generated by mmWave
frequencies and massive MIMO in 5G. It is essential to overcome these limitations to deploy
5G infrastructure successfully in upcoming years. Although the researchers have already
suggested various proposals to overcome these issues, there are still several open research
challenges [239].

Various efforts have already been shown in this regard; for example, ref. [240] pro-
posed a DL-based hybrid precoding scheme to increase spectral efficiency in MIMO systems.
In addition, ref. [241] proposed a DL-based spectrum situation prediction using RF traces
collected from nine different coexistence scenarios for efficient spectrum prediction. More-
over, ref. [242] proposed an NN-based technique for detecting and decoding the SCMA
codewords to optimize the Euclidean distance between constellation points and to increase
spectral efficiency in enhanced mobile broadband (eMBB) use cases. The combination
of 5G with the latest technologies (AI, ML, SDN, NFV, network slicing, edge computing,
massive MIMO, mmWave, IoE, VR, AR, MR) will transform the data-centric future. These
technologies present numerous opportunities for distributing intelligence from both life
and business perspectives. In other words, 5G acts as a revolutionary tool for these tech-
nologies. The primary goal of these technologies is to connect machines and computers
intuitively. These intelligent approaches provide digital assistance, hazardous investigation,
24/7 availability, reliability, minimum error, and high customer experience [243].

Moreover, with ML and DL-based approaches, we can optimize the performance of
real-time applications and handle repetitive jobs adequately. Therefore, it is necessary to
optimize the existing solutions and reduce the challenges of 5G to reap the benefits of
these technologies [244]. Recent studies have mentioned the requirement of high data rate
(in Gbps) links for the eMBB, uRLLC, and mMTC use cases and service implementation,
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since 4G LTE-A sub-6GHz bands will be highly overcrowded [245]. The mmWave bands
(10–300 GHz) will lead to obstructions in the form of high path loss and penetration
loss. At the same time, the beamforming, directed transmission, and higher distribution
deployment density of base stations are the best countermeasures to tackle these problems.
These state-of-the-art solutions allow mmWave to work with the modernized wireless
technologies and architecture [246].

Nevertheless, this revamp also introduces many new challenges in the system design,
such as accurate beam alignment between the base station and the users, while signals are
prone to blockages (i.e., buildings). Hence, the performance of mmWave may be critically
retarded by selecting an inaccurate beam. ML-based methodologies are well capable of
tackling the dynamic traffic patterns and blockage issues perfectly [247]. After autonomous
exploration and learning the environmental behavior, the ML-based techniques will help
existing solutions to select the beam efficiently while providing a reliable connection so
that performance degradation issues can be handled [248].

3.2. Massive MIMO and Beamforming

MIMO refers to the fact that multiple spatially separated users are handled by the
antenna array simultaneously and frequently in terms of resources. This is different
from the conventional MIMO system that uses the assumed propagation abilities of the
array antenna at the same time and frequency for multiple spatially scattered wireless
connections. Massive MIMO requires numerous antennas at the BS to blow up the available
bandwidth within a given spectrum using diversification, enabling spatial channelization.
The intensive amplification of bandwidth depends on three techniques: beam steering,
increased data capacity, and diversity. When the number of antennas is great, it becomes
easy to select the most favorable or constructive propagation path for performing signal
processing at uplink and downlink [249]. Practically, various factors draw the reader’s
attention to achieving high SE while having a small amount of radiated power. The 5G
network provides a high quality of services by reducing radiation in contrast to 4G through
massive MIMO technology, but hardware implementations have different aspects. Factors
such as network design signal processing techniques, signal modeling, and EMF analysis
constitute a significant obstacle to achieving high efficiency [250].

The quality of transmitted signals can be enhanced by the presence of many antennas in
free spaces. The combined effect of many antennas caters to path loss, fading, and scattering
issues that are different from the individual performance of single-input and single-output
(SISO) and MIMO approaches. MIMO increases the linearity and precision performance
of each amplifier, thus improving the robustness and prevention of system failure [251].
The jamming problem can be overcome by using a massive MIMO approach; for example,
MIMO networks exploit joint path estimation and decoding to obtain channel estimation,
which creates signal cancellation from intended jammers. Moreover, with MIMO, BS
derives less power, which means it will receive low electromagnetic exposure [252].

Following the guidelines in [253], Figure 5 shows a massive MIMO (low complex linear
processing) system for the 5G ultra-dense scenario that enhances spectral and energy efficiency,
reduces power consumption, lessens fading, reduces latency, robustness, and reliability,
and aids in enhanced security. Multiple-user MIMO (MU-MIMO) increases SE and overcomes
the flaws of single-user MIMO. In MU-MIMO, numerous BSs interact to become an effective
antenna. The primary advantage of this process is to carry out received interference and
generate a quality signal from it. This process is known as a coordinated multi-point (CoMP),
which is thoroughly studied by the authors in [254] to improve network performance through
diversity and interference suppression at high frequencies. The CoMP provides optimized
performance in dealing with blockages present in mmWave. The amalgamation of micro
diversity and CoMP techniques is considered as one of the potential solutions to reduce
bottlenecks. Scientists have derived a physically reliable explanation for MIMO transmission
using linear processing and the collective integration of data symbols to generate a transmitted
waveform to provide broadband services to multiple users, such as audio and video. Hence,
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by ignoring the rank constraints and through convex optimization, the capacity of MIMO
can be increased. This entire process creates decoding complexity on the receiving side.
The dirty paper coding (DPC) technique results in significantly improved performance in
terms of understanding the capacity boundary of MU-MIMO, but there are complex problems
encountered and operational issues at TX/RX [255].

Figure 5. 5G massive MIMO system.

Beam-forming technology is used to boost and amplify the SE of wireless media
intensively. This technology deals with the concentration of wireless signals for fast and
reliable communication against particular devices, rather than spreading a signal in a
broadcast manner [256]. Beamforming techniques could be conventional methods: fixed
(switched beamformer) and phased array (adaptive beamformer) [257]. In a phased array,
there are two modes: (1) maximization mode (desired signal) and (2) minimization mode
(interference signal). In analog beamforming, the first step is the conversion of the signal
from digital to analog, with the implication of pre-coding to an analog signal, and then
signal transmission over the air. Contrary to this, the implication of pre-coding to a
digital signal, digital to analog conversion, and RF conversion is performed in series,
and then the signal is transmitted over the air. In contrast, in hybrid beamforming, the pre-
coding step is adapted in both domains (analog and digital) at both frequencies (radio and
baseband), respectively, and so hybrid beamforming can benefit from the advantages of
both analog and digital beamforming. Beam-forming technology enhances and boosts the
SE by delivering an improved signal-to-noise ratio (SNR) [258].

A combination of other 5G antenna technologies—i.e., massive MIMO with
beamforming—increases the coverage area, boosts the power of beams in the desired
direction, and reduces the power of the beam for nearby subscribers to mitigate the inter-
ference issues. Besides this, it increases the carrier-to-noise ratio of the signal, helping in a
noisy and attenuating channel environment and increasing the overall bandwidth capacity.
Hence, the users can be served with higher quality and stronger signals [259]. On the other
hand, hardware complexity (due to a large number of antennas), high processing in terms
of digital signal processing chips and the design of mathematical algorithms, hardware
costs, and increased power are required due to increased resource consumption. Scientists
also present different Tx analyses to perform the multi-casting of the physical layer in the
MISO downlink channel [260]. In Table 8, we summarize the related work for massive
MIMO. Stochastic beamforming and the grouping of transmit beamforming with space-
time diversity—i.e., Alamoudi space-time coding—create a rank two software-defined
radio (SDR) beamforming scheme.

According to the simulation results, the SNR of the SDR-based Alamouti scheme gives
more effective results than conventional SDR (semidefinite relaxation) beamforming. Thus,
a combination with the Alamouti scheme can improve the scale of the multicast rate in
MISO [261]. In [262], researchers achieved full diversity through optimized quantizers
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that are capable of beamforming in a multiple inputs, single output multicast medium.
The considered quantizers for a two RX system, which can approach outage probability,
lies under the complete channel state information. However as the number of receivers
increases, it becomes difficult to achieve the same output and optimized beamforming. In
another research work [263], the authors discussed the issues related to multicast beam-
forming in impaired channel state information (CSI) and their limited feedback results.
The amount of feedback of CSI significantly increased from the receiver to transmitter in
these networks. The authors suggested that lowering the number of cooperative aerials
at the transmission side can improve the outcome through simulations. The authors also
proposed a solution using principal component analysis (PCA), which acts as a reducing
scheme that can compress the dimension matrix of CSI and reduce the amount of feedback.
Furthermore, it is also capable of eradicating the complexity of the codebook search and
achieving a tradeoff between structure performance and feedback overhead [264].

Table 8. Summary of studies on massive MIMO.

Approach Methodology Advantages Future Work Related Work

Approximate message Efficient uplink detection
passing algorithm and trade-off between Large mMIMO [265]

Decreasing bit
error rate

for uplink detection complexity and performance

Training-based
blind channel BER count Complex algorithm [266]
estimation

Direct localization Minimizes execution time Higher
algorithm based on and enhances spectrum computational [267]

Spectrum sensing
source and location accuracy complexity

Match filter pre-coding Enhanced channel
techniques for Improves throughput information is [268]performance analysis and spectral efficiency required for the
of SE and BS antennas pilot signal

Multi-user MIMO Flexibility in Limited to LOS [269]

Receiver design

pre-coding schemes system design environment only

TDD realization based Spectral efficiency Limited for
on zero forcing and improvement and small number

[270]max ratio combining design condition depends of antennas
schemes for uplink upon number of antennas
M-MIMO system and pilot reuse factor

Virtual uniform Better performance Propagation delay
linear array and uniform close to that in i.i.d. should be included
cylindrical array fading rayleigh channels

[271]

Gauss–Markov Rayleigh Aggregate-rate Interference effect
[272]fading channel model in achieved optimum is not considered

Channel modeling

time-selective channels results

Designed mMIMO Achieves better Correlated channels
correlated channel performance by reduce the overall
using MATLAB increasing more performance
for pilot contamination antennas at BS

[273]

Scheduling algorithm Better results in Need to test on
based on the downlink terms of error more realistic

[274]mMIMO system along performance, sum rate, model and for
with zero forcing (ZF) throughput, and fairness multi-antenna users
beamforming approach
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Several efforts have been devoted to reducing the self-interference (SI) in the mas-
sive MU-MIMO system [275]. Zero-forcing (ZF) is assumed at the base station (BS),
and maximum-ratio transmission (MRT) and maximum ratio combining (MRT/MRC)
schemes are used to perform linear processing techniques. The authors proposed a pre-
coded self-interference method by deploying orthogonal sequences and downlink pre-
coding. This helps to convert the SI channel into the signal channel while having lower
dimensions. Furthermore, by knowing the channel estimation, the SI suppression occurs
through the combination of SI removal and the large-scale antenna linear processing (LALP)
technique [276]. In [277], the authors performed pre-coding methods at a remote radio
unit (RRU) to reduce the frequency hopping (FH) capacity. The spatial traffic and queuing
model was used to achieve a relaxation in FH capacity through user traffic and statistical
analysis. A double-layer decoding technique is used in [278] to remove inter-cell coherence
and interference in massive MIMO systems. The algorithm determined the potential of
large-scale fading to reduce the inter-cell interference in MIMO networks over a spatially
correlated Rayleigh fading. Numerous SE expressions are derived from understanding the
effective use of power resources and large-scale fading decoding (LSFD) vectors. Results
show that LSFD can reduce pilot contamination while exploiting less computational com-
plexity and an improved sum of SE vectors for all cells. Two-layer decoding provides better
results than one-layer decoding [279].

The 5G NR specification also decreases the energy loss and greenhouse radiation
of next-generation wireless networks in such a way that it contributes to the envisioned
direction of information and communication technology sustainability. Besides other
features, massive MIMO presents an exceptional obstacle in the ultra-dense scenario and
introduces crucial challenges [280]. Defined CSI is a prerequisite to exploiting the MIMO
system. After training the model for ML-based channel estimation and prediction, the
complexity is extremely low compared to other models (Wiener filtering model/Kalman
filtering-assuming model). Without previous information, ML-based techniques can find
out the implicit characteristics from channel data throughout the training phase [281].
Moreover, a trained ML model predicts the performance and complexity while having
user mobility information that identifies channel fluctuations (fast/low) in information
between the user and gNB. More complex ML-based algorithms require more data to make
decisions precisely in wireless communications.

Following the guidelines in [282], Figure 6 shows resource blocks and resource el-
ements in OFDM symbol time versus the subcarrier domain. Index modulation (IM) is
also a noteworthy approach for enhancing energy and spectral efficiency. Limited power
consumption and transmitter complexities can be achieved in MIMO-OFDM through IM.
Generally, index modulation exploits subcarriers to deliver the available data to a receiver,
whereas in OFDM-MIMO, IM performs a similar function in a perpendicular multiplexing
system [283]. Thus, it acts as an additional resource of information. Nevertheless, the ad-
dition of IM brings detector complexity and an inflated system overhead. In [284], the
authors proposed the concept of non-iterative detector design by using DL knowledge
to tackle these challenges and exploit IM for 5G architecture. In contrast to traditional
MIMO-OFDM, simulations proved that the addition of IM in MIMO-OFDM improves the
BER performance, limits the inter-channel problems, and decreases the prerequisites for
inter-antenna synchronization [285].
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Figure 6. 5G radio resource allocation.

3.3. Physical Layer Issues

Mobile fronthaul indicates the connection of links using a centralized radio access
network (C-RAN) architecture in cellular networks. It acts as a transmission medium
between the remote radio unit (RRU) and baseband unit (BBU) via an optical cable. Still,
it also brings research challenges, including low latency, jitter, transmission rate, and syn-
chronization. These challenges are severe, particularly in the case of massive MIMO, where
transmission faces inevitable consequences [286]. Distortion occurs due to amplitude in-
terference, resulting in the transmission of unwanted signals between the channels, called
crosstalk. The transmitted waveform produces interference or a coupling region in the
neighboring signals, affecting the original signal by uncorrelated data patterns [287]. Elec-
tronic circuit elements (capacitors, inductors, and resistors) are the major sources of this
coupling effect. These sources generate undesirable coupling results in the neighboring
circuits. Crosstalk has two different forms:

• Near end crosstalk (NEXT):
In NEXT, the aggressor signal performs couples with the victim signal in the opposite
direction.

• Far end crosstalk (FEXT):
In FEXT, both the victim and aggressor signal travel in the same direction [288].

At high speed, the crosstalk issue also reduces signal quality, and the entire system is
affected by its associated impairments. To overcome the crosstalk challenge, it is essential
to modify the impedance separation between the victim and the aggressor signal. The trace
impedance has a direct relation with the crosstalk; i.e., by lowering the trace impedance
in which we can decrease the crosstalk effect, as indicated in [289]. Increasing the guard
band size between frame slots and the cyclic prefix (CP) can help to reduce the crosstalk
noise in the communication link. Following the guidelines in [290], Figure 7 shows the
frame, subframe, and subcarrier spacing standards of 5G NR and the numerology effect
on a single frame. In 5G CN, an indirect relation exists between crosstalk noise and the
distance between communication links, and the crosstalk factor reduces while the distance
increases [291]. On the other hand, the presence of a shield among these lines reduces the
undesirable coupling effects generated by crosstalk [292]. An improved version of crosstalk
cancellation digital pre-distortion (CTC-DPD) is presented in [293], exploiting a novel
estimating scheme and introducing a decoupling technique. This is used to compensate for
crosstalk, possible delay, the non-linearity of power amplifiers (PA), and the inconsistency
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of transmitting channels in the MIMO system. The author suggested that the design
estimates the coupling coefficient and the delay at the baseband signal through shared
feedback and extracts this information to improve the digital pre-distortion. Simulation
graphs showed high accuracy and an improvement in crosstalk cancellation compared to
previous CTC-DPC models. Before cancellation, the coupled power is simulated at −20 dB,
whereas the coupled power becomes −50 dB after performing crosstalk cancellation.
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Figure 7. Fifth-generation frame, subframe, and subcarrier spacing.

In 5G, millimeter wavelengths (mmWave 30 GHz to 300 GHz) are used to increase
the wireless capacity and achieve a higher data rate speed, as frequency has an inverse
relationship with wavelength, and at low wavelengths, the user may suffer attenuation,
reflection, and scattering. Precise system models and architecture designs are essential
for air interfaces. Fifth-generation network applications such as the tactile internet, tele-
hospitals, M2M communication, and vehicle to everything (V2X) communication require
an exceptionally low latency rate, which cannot be achieved easily due to the presence of
this propagation challenges [294]. In [295], the authors analyzed the receiver sensitivity
prerequisites in a wireless 5G NR environment related to the single-to-noise ratio (SNR)
constraints at BS to achieve maximum results for throughput. NR primarily has two fre-
quency ranges: (1) 450–6000 MHz is defined for FR1, and (2) 24,250–52,600 MHz is defined
for FR2. Physical impairments have bad effects on signal propagation. To implement the
solution, an estimation of transmission quality for the light path is required. Trained ML
and DL play a vital role in optimizing the existing algorithms for the estimation process.
ML and DL-based algorithms constantly rely on input features that link occupation, length
of the path, modulation format, source and destination nodes, etc. More features assist
in precise estimation, while the bit error rate of a light path remains under the quality of
transmission. Hence, the signal propagation remains less affected [296].

The traffic metrics and light-path requests are used to predict the future demand,
and the selected path will be cost-efficient. Furthermore, the estimation can cause errors;
for example, the light path may be impractical if the bit error rate (BER) does not go beyond
the threshold, and its complexity will be increased by increasing the size of networks.
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The increasing space dimension in resources enhances the crosstalk factor and affects service
transmission quality (QoS). During the interval, multi-dimensional resource utilization
declines, and the complexity of resource fragmentation increases, so the link quality may
degrade [297]. Delay-sensitive applications may suffer from service provisioning where
at first crosstalk is calculated, and then resource fragmentation is estimated. The whole
process introduces more time; therefore, the delay in connection establishment increases,
and the quality of service decreases [298]. Some other hybrid solutions involve saving the
shortest paths throughout the routing process while considering the number of hops in
the path and modulation format. ML-based approaches optimize transmission quality,
and resource allocation has been implemented in [299]. Several ML-based algorithms can
learn the distribution of input samples, which depends upon data types and availability,
and classify the topology of the input vector.

4. Security and Privacy in 5G

In 5G, multi-user and broadband services are provided by the service providers lying
above the physical layer. The 3GPP standardized cellular network is pervasive and capable of
handling big data such that all critical and delay-sensitive applications require a latency of less
than 1 ms. To provide different types of services—i.e., eMBBS, uRLLC, mMTC 5G—particular
technologies will be used to cope with the user requirements [300]. Nonetheless, NGWN
security and privacy will be the primary concerns in the future. For instance, a simple
distributed denial of service (DDoS) attack may halt the services for a time and could result
in disaster, particularly in delay-sensitive use cases; i.e., tele-hospital [301]. The crypto-
graphic technique is a conventional technique for providing security for 5G and beyond
networks [302]. A secret key is distributed between two parties in this scheme and acts
as an essential primitive. However, due to high complexity in these heterogeneous net-
works, this technique becomes inefficient and creates bottlenecks in the IoT approach [303].
Cryptography is one of the encryption techniques used by these providers to grant security.
Still, it has several loopholes: RSA, one cryptographic type, cannot fight insider attacks.
An eavesdropper can break the cryptography technique with enough time and computa-
tional power. In distributed and ad-hoc networks, it is not easy to exchange the private
keys, which are the base of the RSA algorithm [304]. These constraints indicate that security
in the physical layer is a significant concern in 5G networks. Though these conventional
cryptographic techniques provide reliable security methods for existing wireless systems,
they could not facilitate an optimized IoT scenario platform due to the existence of point-
to-point transmission, low latency rate, and heterogeneous infrastructure. Table 9 shows
the standard bodies working in the security and privacy domain.

In [305], the authors described channel reciprocity-based key generation (CRKG),
which overcomes the limitation of the cryptographic technique. It shows potential in
the wireless domain to establish secure keys among devices. The authors investigated
the technique by deploying 5G with three transmission modes: duplex modes, mmWave
transmission, and MIMO systems. The key generation scheme includes four important
steps: channel probing is the first step, quantization is the second, information reconciliation
is the third, and privacy amplification is the last and final step. When two parties alternately
probe in the wireless medium, they acquire correlated measurements that produce channel
randomness. Preprocessing techniques are added between the channel sounding and
quantization to reduce correlation and boost the reciprocal channel features (time, frequency,
or spatial domains). In the third stage of this process, error detection codes and protocols are
implemented to share the same keys between two ends. Lastly, privacy amplification evades
eavesdropping activities. Due to independent quantization keys for every party, CRKG
represents a promising solution for limiting holistic security measures. In [306], OFDM
basics are used to generate secret keys to enhance security between two parties. In [307], the
authors simplified the extraction procedure by selecting one party to probe the channel and
perform quantization measurement instead of choosing two parties. The preliminary key
access through this scheme is further covered by the channel phase, followed by mapping,
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and before the equalization method key is distributed to the other party. The final version
of the shared key is then used at the physical layer to perform authentication schemes. Both
random signals and masked keys are exchanged between two parties at the physical layer.
This approach is also invulnerable to passive and active attacks, in contrast to conventional
authentication schemes. Following the guidelines in [308], Figure 8 explains the 5G security
and privacy architecture system.

Table 9. Standard bodies working in the security and privacy domain.

Standard Body Work Groups Focused Area Breakthrough

Security architecture, security aspects, TS 33.102,TR 33.899,
fraud information gathering system, TS 22.031,TS 23.031,
cryptographic algorithm requirements, TS 33.105,TR 33.901,

3GPP TSG SA WG3 lawful interception requirements, TS 33.106, TS 33.126,
security assurance specification, TS 33.511,TS 33.326,
generic authentication architecture, TS 33.220,TR 33.918,
network domain security. TS 33.210,TR 33.810.
Security requirements and risks, Report 1.4,Report 1.5,
security architecture and enablers, Report 2.1,Report 2.3,

5GPPP Security WG access control, slicing and MEC security, Report 3.1,Report 3.2,
privacy and trust in 5G, Report 5.2,Report 5.3,
security architecture and solutions, Report 6.2,Report 6.3,
policy management and orchestration. Report 6.4.

i2nsf Network security function, RFC8192,RFC8329,
ipsecme IPsec, RFC9061,RFC8983,

sacm automation and continuous monitoring, RFC8598,RFC8784,
IETF secdispatch security dispatch, RFC7632,RFC8248,RFC8412,

secevent security events, RFC8936,RFC8935,RFC8417,
tls transport layer security, RFC8996,RFC8744,RFC8773,

opsec operational security. RFC9099,RFC8704,RFC7707.
Security consideration for 5G, White paper V-1.0,

NGMN alliances sustainable trust, White paper V-1.0,
NGMN 5G end-to-end architecture framework, White paper V-4.31,

NGMN 5G security group 5G security recommendations, White paper V-1.0,
5G security network slicing. White paper V-1.0.
Authentication mechanisms, ETSI TR 103 692,
quantum cryptography, ETSI TR 103 823,
Internet of Things, ETSI TS 103 701,

ETSI Cyber security security threats analysis, ETSI TR 103 743,
access control, ETSI TS 103 532,
infrastructure cybersecurity. ETSI TR 103 741.
Security assurance, Recommendation X.1404,
security threats, Recommendation X.1408.
security framework and requirements, Recommendation X.1145,

ITU SG-17 secure protection guidelines, Recommendation X.1146,
risk identification, Recommendation X.1451,
guidelines for security services. Recommendation X.1452.

In [309], the authors also followed the same approach in which a low pass filter
(LPF) achieved high authentication, improved channel reciprocity, suppressed channel
fluctuations, and reduced fundamental disagreement in the OFDM subcarrier’s channel.
The authors conducted another work to enhance channel reciprocity and CSI [310]. In this
paper, the authors first demonstrated the interference and vulnerable noises present in the
systems due to channel variations, synchronization offset, fingerprint issues, and nonre-
ciprocity in frequency division duplex systems. Then, they adopted the loopback approach
by exploiting frequency bands in different time slots known as LB-TDD. Through theo-
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retical analyses, this scheme outperformed other approaches and brought tremendous
results in terms of eradicating both eavesdropping (passive attack) and man in the middle
(active attack) attacks compared to the classical TDD scheme while considering the key
generation rate and disagreement rate factors. Furthermore, the authors designed a secret
key generation protocol and proved it to be viable for mitigating interference in TDD
systems through experimental and simulation results. In [311], the authors generated
the secret key in an in-band full-duplex communication system (IBFD); both half-duplex
and full-duplex modes were simulated. A simple framework model for generating the
secret key in full-duplex mode is presented by considering the nonreciprocity embedded
in the channel dimension. The simulation results illustrated that the key rate following
the full-duplex approach was higher than the half-duplex approach while considering
different correlation coefficients. Several efforts have been performed for reducing channel
correlation, and preprocessing techniques are implemented to achieve the desired results.

Wireless technologies such as full-duplex communication that provide enhanced
spectral efficiency can be utilized for 5G infrastructure because they have the potential
to increase efficiency up to n-squared times, especially when a structure has a point-
to-point link [312]. If deployed correctly, FD can also be used to reduce crosstalk and
interference issues. On the other hand, it can become a factor in reducing potential gains
in case of poor deployment. Thus, to reap the benefits of FD, it is essential to limit the
crosstalk issue that lies between the receiver and transmitter. Furthermore, improved
designs of TX and RX are significant to fully utilize the FD stack [313]. In [314], the authors
tried to achieve high agreement uncorrelated keys by following preprocessing component
analysis. To obtain this, they studied signal processing algorithms with an independent
eavesdropper. In the beginning, they performed principal component analysis (PCA) and
then a discrete cosines transform (DCT), and at the end, wavelet transforms (WT) were
used. Among theses, principal component analysis outperformed the other approaches
regarding overall key considerations, mathematical expenses, security leakage, and key
conformity. The numerical results proved that the presence of PCA with a common
eigenvector algorithm among two legal communicators creates an optimized secret key and
has a limited key error rate and high key generation rate while reducing computational cost
and information leakage in contrast to PCA with a private eigenvector algorithm. Physical
layer security offers confidentiality and authentication by benefiting from the channel
randomness of the wireless medium. It is a secure way to develop protected transmission
compared to the conventional cryptographic method because it does not require any extra
security controls, complex algorithms, and schemes to perform security functions on the
high layers. Table 10 shows the security and privacy threats related to 5G technologies.
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Table 10. Summary of studies on 5G security and privacy threats.

Security Threat/Attacks Targeted Network Elements SDN NFV Cloud Links Privacy References

Boundary attacks Subscriber location 5 5 5 5 [315]
Configuration attacks Virtual switches and routers 5 5 5 [316]
DoS attack Centralized elements 5 5 [317]
Hijacking attacks SDN controller and hypervisor 5 5 5 [318]
IMSI catching attacks Subscriber Identity 5 5 5 [319]
MITM attack SDN communication 5 5 [320]
Penetration attacks Virtual resources and clouds 5 5 5 [321]
IP spoofing Control channels 5 5 5 5 [322]
Resource attacks Shared cloud resources 5 5 5 [323]
Saturation attacks SDN controller and switches 5 5 5 5 [324]
Scanning attacks Open air interfaces 5 5 5 [325]
Encryption keys attack Unencrypted channels 5 5 5 5 [326]
Semantic-info attacks Subscriber location 5 5 5 [327]
Signaling storms attack 5G core network elements 5 5 5 [328]
TCP level attacks SDN communication 5 5 5 [329]
Timing attacks Subscriber location 5 5 5 [330]
User identity attack User information databases 5 5 5 [331]
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Figure 8. Fifth-generation network security architecture system.

A survey given in [332] mentioned that physical layer security carries multiple ways
to enrich the security of wireless transmission media via the properties of wireless channels
such as fading, reflection, noise, and interference. Multiple antennas were used in this
paper to amplify the quality of the received signal and its power with legitimate transmis-
sion and an eavesdropper concurrently. Multiple antenna techniques were analyzed for
the multi-user, dual-hop, heterogeneous, and point-to-point schemes. A physical layer
authentication method is presented in [333] which calculates the distance of surrounding
noise sources with the communicating parties. The author considers a maximum likelihood
approach to compute the associated positions of these sources by adopting received signal
strength (RSS) and angle of arrival (AOA) methods. Simulation results are obtained by
considering both active and passive attacks. Results showed that the proposed design
is suitable for dynamic conditions. The above existing papers highlight the importance
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of physical layer security but could not illustrate the case of multi-casting and broad-
casting services. For this purpose, the concept of physical layer service integration was
proposed [334]. Physical layer service integration (PHY-SI) provides two types of services:
confidential services and public services. As the name indicates, confidential services are
paid, whereas public services are free to support broadcast applications. Depending on
their preferences, multiple users subscribe to these services and use them according to
their demands. The public information is distributed to all users, and private data are kept
confidential so that only limited users can access them. This shows that PHY-SI has a more
secure and encrypted transmission than the physical layer. Both have their characteristics
and points of divergence [335], as listed below.

• Shared information:
For each message in the physical layer, security has a confidential shield—unauthorized
users cannot share and access information. However, in the case of PHY-SI, the medium
is served to transfer both public and private information at once. Public and confiden-
tial information waveforms are superimposed at the transmitting antenna and follow
the channel path.

• Secrecy rate:
In physical-layer security, only a single secrecy rate is used to perform the protection
of signals, and the design of the system is maintained to maximize this rate. However,
in PHY-SI, a Pareto transmit scheme is used to optimize the capacity of the secrecy
rate, and each service has a different transmitting rate. These transmitting rates then
combine to form a secrecy platform.

• Security issues:
PHY-SI suffers more interference as compared to physical layer security. Any unau-
thorized users can view public messages, and it is easy for them to create security
breaches. Therefore, both confidential and public messages are accessed by insiders.
To avoid such issues, encoding techniques should be restructured and modified. In this
way, the superimposition of both messages results in their transmission without facing
any interference issue.

• Coding schemes:
PHY-SI performs a superposition coding technique at the transmission side; on the
other end, the receiving side performs interference cancellation to obtain desired
outcomes. Depending on the service type, PHY-SI uses different codebook formats for
transmitting waveforms.

Different PHY-SI models are presented in [336] to attain a high capacity region. Ar-
tificial noise (AN) and eigen transmission were also discussed to reduce the interference
in the MIMO system. In the AN scheme, simulated noise is sent by the transmitter to
create interference for the eavesdropper. Thus, this helps to protect the entire network from
unauthorized access, crosstalk, noise, reflections, and jitter responses. Besides calculating
the number and availability of eavesdroppers, it is also located after statistical analysis,
and it optimizes the channel by transmitting AN noise through it. It generates a balance
between the intervention provided to both authorized and unauthorized customers [337].
The authors analyzed a multi-core fiber (MCF) in the paper to investigate the impairments
and detriments of inter-core crosstalk. The attack-aware routing and core assignments are
taken into consideration to evade vulnerable threats to the bottom layer, and efforts were
devoted to overcoming these effects. The integer linear programming model (ILP) increases
the channel efficiency and simultaneously reduces inter-core crosstalk levels. For static
network planning, a heuristic algorithm is proposed to analyze the issue and improve
network efficiency in terms of time.

Similarly, for dynamic provision networks, the same algorithm was proposed to adjust
the tradeoff between blocking probability and the impact of crosstalk [338]. Another
paper [339] discussed the vulnerabilities caused by crosstalk in elastic optical networks
(EON). The author proposed differentiating RSA schemes for inter and intra-domain
requests while considering security measures. The author viewed the vulnerabilities created
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by both trusted and untrusted sources to achieve differentiation. Different RSA schemes
were examined according to various physical layer attacks. The ILP model resolved the
crosstalk issue, and simulation analyses were performed to determine the benefits of the
heuristic algorithm. Crosstalk issues for EON (elastic optical networks) were discussed,
and corresponding solutions were proposed in [340]. The crosstalk-aware routing spectrum
and core assignment (CA-RSCA) algorithms for space-division multiplexing (SDM-EONs)
were presented in [341].

The author investigated the RSCA issue and evaluated the band status in these net-
works by designing the CA spectrum compactness metric. First-fit (FF) and random-fit (RF),
which are the two essential classifications of crosstalk-aware spectrum defragmentation
(CASD) algorithms, were proposed to obtain high performance in contrast to baseline
algorithms while considering PB (blocking probability) and frequency utilization [342].
In [343], the author determined the performance of the CASD algorithm with multiple
spectrum compactness (SC) thresholds, and the improved results were generated at the SC
threshold. By following the same approach, researchers investigated RSCA issues in SDM-
EON from the network point of view. The number of cores present in the multi-core fiber
(MCF) is larger than in the single-core fiber (SCF), but the presence of additional modes
also increases the cost of MCF [344]. Currently, 5G and Beyond-5G (B5G) wireless network
architectures have been revolutionized due to IoT applications, and the number of user
devices and amount of data created by these devices is increasing exponentially [345,346].
This wireless interconnection model of numerous devices is observed and controlled using
the internet. Besides other constraints, security and privacy are critical, considering data
access controls at different levels in diverse applications [347].

Furthermore, devices and applications have very hypersensitive information for which
security and privacy assurance are of absolute importance [348]. In such an environment,
AI/ML/DL is a successful solution to recognize patterns, explore, analyze, handle, and pro-
vide intelligent and optimized real-time decision making. ML-based techniques that rely on
a centralized framework may also lead to security breaches; e.g., data tempering and relia-
bility, false authentication, a loophole in the algorithm, and privacy preservation. Existing
centralized ML-based models are subordinate to trusted third parties (e.g., cloud service
provider—TTP), raising privacy concerns [349]. In addition, an ML-based decentralized
framework is required to deal with preceding and upcoming challenges. The integration of
ML and 5G may be within the realm of possibility and lead to security threats. High-rated
weaknesses could be larger attack surfaces, the authentication of many devices, insufficient
perimeter defenses, automated network changes, dynamic network scaling, and multi-
access edge computing, and many threats are still unknown. Combining the behavior of
the latest technologies will also introduce missing characteristics of these technologies and
applications of 5G networks [350].

5. Challenges and Future Directions

Fifth-generation networks require robust architectures and ML-based solutions on ac-
count of the heterogenous behavior of communication networks [351]. Hence, we mention
the crucial security and privacy challenges and their potential solutions for 5G networks.
Possible technologies—i.e., mmWave and terahertz band, RAN, NFV, network slicing, wire-
less SDN, MEC, and fog/cloud computing—are paving the way to revamp the upcoming
5G network architecture [352]. Besides this revolution, various challenges to complete 5G
implementation lie ahead. In the following, we discuss the leading challenges and future
research directions enabled by emerging technologies that demand to be addressed for the
success of 5G.

1. Business model and economic challenges for 5G network:
Before 5G technology, telecommunication operators were providing services using
integrated services (IntServ) and differentiated services (DiffServ) models, while 5G
technology introduces eMBB, URLLC, and mMTC. Therefore, 5G is expected to meet
the requirements (bandwidth and latency) of various vertical applications and services
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accordingly. Hence, the future network should be capable of new business models
based on heterogeneously oriented services and provide the services in all use case
scenarios. Business models for the network could be business to business (B2B),
business to consumers (B2C), and business to business to consumer (B2B2C) [353].
Furthermore, we need to conduct detailed and comprehensive research to find out the
real-time problems for all 5G use cases and embedded ML-based optimized solutions
for the upcoming era.

2. Collaboration of OTT and ISP for 5G service management:
The quality of experience in vertical heterogeneous networks is one of the significant
challenges. This can be achieved using QoE monitoring and QoE management the-
ories. A collaboration between over-the-top providers (OTT) and internet service
providers (ISP) needs to be established for QoE/QoS monitoring and measurement
factors. Researchers have already proposed monitoring probes (passive) with OTT
applications at UE to exchange information for desired QoS [354]. We need to find
ML-based standardized interfaces, ML-based optimized level frequency, and ML-
based tradeoffs between QoE and latency in network operations. This will have a
high impact, and optimized ML-based algorithms can enhance network performance.
Besides these issues, the scalability and effectiveness of QoE also need to be addressed.

3. RAN virtualization in 5G network:
RAN slicing, an integral part of virtualized 5G systems, is yet to be addressed because
it is in the nascent phase. Docker and VM-based solutions do not address radio
resource problems to an acceptable degree in terms of shared and multiple RATs in
5G networks. Hence, another challenge for RAN virtualization is RAN as a service
(RaaS), where beyond physical infrastructure, radio resource sharing is crucial [355].
Furthermore, ML-based solutions are greatly needed for mobility management and
the scheduling of radio resources as virtualized control functions to be implemented.
The optimized RaaS will improve network performance and cost-effectiveness for the
complex environment. At the same time, ML is needed to address system integration,
achieving widespread adoption, technology support difficulties, and security risks.

4. End-to-end slice orchestration and management:
With the introduction of SDN and NFV in 5G networks, it is necessary to change the
deployment, operation, and management of networks and find intelligent methods
for how resources are to be orchestrated [356]. Recently, many projects have shown
promise in this context; i.e., AT&T’s ECOMP project, OSM project, ETSI MANO
framework, and ONAP project implementation. However, several challenges remain
with these advancements, such as moving towards a concrete network slice from a
high-level service description. Scalability and resilience are core services supporting
multi-vendor case scenarios and entertaining upcoming 5G network elements. We
need to find a way to manage all underlying slices and the E2E orchestration of all
available resources while keeping the fact in view that all network slices must meet
their service; e.g., services and experience level agreements (ELAs/SLAs).

5. Mobility management in 5G networks:
Fifth-generation networks will face mobility management issues due to the numbers
of smart devices increasing exponentially, heterogeneous networks, ultra-dense small
cell networks, fast-moving vehicles, and concerns about the truthfulness of informa-
tion in vehicle-to-vehicle communications [357]. While due to the fixed position of
devices in an industrial area, there is no need for mobility management, as they do
not need to relocate, a number of researchers have proposed frameworks/solutions
to handle mobility management in 5G networks. Automated driving services have
different criteria than mobile broadband management; i.e., high-speed trains (e.g.,
600 km/h) may trigger multiple handovers for railway communication [358]. Main-
taining high priority for real-time services and seamless mobility support is crucial, so
the requirements for automated driving services are different. Therefore, ML-based
optimized and efficient methodologies are required that depend upon use cases, main-
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tain service-aware QoE/QoS control in 5G systems, and enable users to maneuver
between all SDN controllers in a 5G heterogeneous environment.

6. Network sharing and slicing in 5G:
Software-based platforms have the potential to make support for multi-tenancy more
accessible using SDN/NFV based infrastructure in 5G systems. Therefore, multiple
services and applications may be entertained successfully. This network sharing
paradigm allows many virtual network functions to be set up on a similar 5G NFV
platform and introduces various management challenges [359]. Vast amounts of
research are required correlated to the isolation between slices, inter-domain services
slicing, network functions placement within a slice, dynamic slice creation, and un-
derstanding the slicing concept’s performance in 5G networks. Besides other issues,
QoS/QoE performance must also be ensured on every slice, neglecting network
congestion and other slices’ performance levels.

7. Security and privacy challenges in 5G networks:
Providing various services, multiple network slices, and resource sharing for differ-
ent verticals can introduce different levels of security concerns and privacy policy
requirements in 5G networks [360]. Hence, complicated research challenges are raised
and addressed considering the impact of one slice on another, efficient coordination
mechanisms, and the impact of entire network systems, particularly in multi-domain
infrastructures. Intelligent ML-based algorithms can meet these challenges and ensure
network performance.

8. Network reconstruction:
Fifth-generation technology is envisioned to increase capacity, the density of con-
nections, and energy efficiency with reliability while decreasing latency. At the
network edge, 5G can also transmit touch-perception-type real-time communication;
i.e., robotics and haptics equipment. In this respect, wide-ranging changes are re-
quired in network architecture, including the core and radio access network (RAN).
Fifth-generation heterogeneous wireless networks are required to reconstruct RAN
and CN architecture to support E2E to achieve an end-to-end latency of 1 ms in net-
work slicing with the help of optimized ML-based methodologies. The cooperation of
multiple RATs and macrocells with ultra-dense small cells in complex heterogeneous
networks may confront these slicing demands [361].

9. Fifth-generation technologies collaboration:
Future 5G architecture demands the coexistence and cooperation of all conventional
and recent technologies—i.e., broadband transmission, LTE/LTE-A systems, C-RAN,
mmWave, massive MIMO, SDN, NFV, network slicing, and mobile cloud engineering
(MCE)—to support all use cases of 5G [362]. On the other hand, ML will partici-
pate alone with one on one technology or manage the whole system intelligently.
Besides combining the benefits of emerging technologies, there are still many crucial
challenges to achieving the desired collaborative performance. Low-cost internet and
the maximum digital transmission capacity of a channel are concerns for broadband
transmission. Virtualization, BBU cooperation and clustering, and high fronthaul
capacities are needed in C-RAN. In mmWave, the higher path loss due to higher
carrier frequency and mMIMO, reciprocity error, signal-to-interference ratio (SIR),
and channel coherence time requires an optimized solution. With ML, it is also neces-
sary to choose the SDN solution; inter-operability, budget constraints, and security
are primary concerns. The key challenges that need to be addressed using advanced
ML-based algorithms are orchestration and integration in hybrid networks, slice
isolation mechanism, security, and privacy.

10. Backhaul 5G wireless network architecture design:
It is a pivotal challenge to deploy a new backhaul network architecture design and
security-aware protocols for heterogeneous ultra-dense small cell network use cases.
The massive wireless network traffic caused congestion and later collapsed the back-
haul network [363]. Motivations behind the backhaul wireless network architecture
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design are ML-based mobility within small cell networks and the optimization of
the cell load distribution. Besides this, ML-based admission and congestion control
algorithms are also required for quality of service and experience, mainly focused on
the backhaul network.

Challenges in 5G with regard to next-generation mobile networks (NGMN) are dis-
cussed and highlighted as follows [364]:

11. Flash network traffic:
The potential of large-scale events causing significant changes in network traffic
patterns, either accidentally or maliciously, increases as the network capacity and
the number of UEs grows. While maintaining an acceptable level of performance,
the 5G system must prevent significant fluctuations in traffic utilization and be adapt-
able to them when they do occur. ML-based algorithms are capable of learning the
environments and suggesting optimized outputs in these situations.

12. Security of radio interfaces:
In existing internet generations, keys for radio interface encryption are obtained in
the home core network and then sent to the visiting radio network using signaling
channels such as SS7 or Diameter. When sent between network nodes, the exposed
cipher key is an example of a GSM network. The connection between operators’
signaling systems should be adequately secured using ML so that the radio interface
session keys can be transferred via SS7 and Diameter, and such exposure is prevented.

13. User plane integrity:
There was no explicit user data plane or cryptographic integrity protection until
the second-generation internet; in addition, the third and fourth generation have
protection, but still not for user plane data. The transport layer, application layer,
or bearer layer integrity with encryption is used if data integrity is required. There
is also a risk of a man-in-the-middle attack, and session hijacking is also possible. In
addition, the 5G network will not add integrity protection to user plane data but at
the transport or application layer with the help of ML-based algorithms.

14. Mandated security in the network:
There are service-driven restrictions in the security architecture, and generally, there
are measures in place to minimize the effects of these restrictions, and these measures
are often not mandatory in current cellular specifications. Reducing the security
dependency on the access network and on the security provided on intranet interfaces
is possible, but this dependency is unlikely to be eliminated entirely. The security
measures using ML must be embedded in architectural design, and otherwise, the
system will not work at all—this approach is the best solution to implement mandatory
security.

15. Roaming security:
While roaming from one network to another, updates on the security parameters of the
user are greatly required, particularly in the 5G densification scenario. Ingress/egress
firewall security policies, subscriber-level security, and personal firewalls are used
to protect from security and privacy attacks, but the challenge is to provide these
services to different subscribers in multiple locations. Hence, ML also provides an
intelligent information-sharing mechanism for roaming security using network slices
to address these challenges.

16. Signaling storms:
Low-cost M2M devices have several limitations such as computational capabilities,
energy support, and memory capabilities. At the same time, these low-cost devices can
be compromised and allow DoS and DDoS attacks against the radio access network.
Unexpected non-malicious events may also cause the devices to behave abnormally
and produce “flash crowd” situations, leading to the exhaustion of radio resources.
Hence, ML is required to provide an overload control (currently relying on MME)
mechanism to prevent all devices from attempting to access the network, as well as
to initiate the “START” and “STOP” and select UEs to target the overload procedures.
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17. DoS and DDoS attacks:
Fifth-generation networks are expected to support a number of network devices,
while DOS and DDOS attacks will become a real threat designed to exhaust the
physical and logical resources of the target. In this regard, network infrastructure
and devices DOS attacks are common categories. Using these attacks, the attackers
drain the network, logical, and physical resources of 5G users and devices accordingly.
These challenges can be minimized by introducing ML-based approaches. Intelligent
ML-based approaches can predict an attack using ongoing traffic and offer optimized
network management. Network control elements can be hidden and revamp the
unencrypted control channels.

6. Conclusions

Nowadays, 5G is a leading sophisticated technology for cellular connectivity. This
superfast generation brings flexible, reliable, and unsurpassed control for smartphones,
machines, and vehicles. It represents a new path to improving lifestyle through low
latency, fast access, and instant communication. However, at high frequency, 5G networks
introduce several challenges; i.e., distortion and multi-path propagation, air-interfaces
such as crosstalk, reflection, fading, EVM, cell-interference, jamming, etc. This paper
discussed these challenges, their existing solutions, and the required machine learning
techniques. To augment the spectral efficiency of the channel, multiple novel technologies
were introduced. Benefits of CRKG techniques, the IPL model, the heuristic algorithm,
PCA, and CASC schemes were discussed to reduce crosstalk issues in the physical layer.
We also explained PHY-SI and the several potentials of PHY-SI to avoid unauthorized
access and protect the channel from an eavesdropper. This study also drew the reader’s
attention to challenges related to eMBB, uRLLC, and mMTC use cases and 5G supporting
technologies that leverage AI, machine, and deep-learning tools.
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BS Base stations
CN Core network
CoMP Coordinated multipoint
CRKG Channel reciprocity-based key generation
CSI Channel state information
DDoS Distributed denial of service
DPC Dirty paper coding
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ELAs/SLAs Services and experience level agreements
EON Elastic optical networks
GFDM Generalized frequency division multiplexing
HetNet Heterogeneous network
IntServ Integrated services
IoT Internet of Things
ISP Internet service providers
KPIs Key performance indicators
KQIs Key quality indicators
LALP Large-scale antenna linear processing
LDP Low-density parity-check codes
LPF Low pass filter
LSFD Large-scale fading decoding
MCF Multi-core fiber
MDAF Management data analytic function
MIMO Multiple-input and multiple-output
ML Machine learning
MMTC Machine-type communications
MRT Maximum-ratio transmission
MRC Maximum-ratio combining
NGMN Next-generation mobile networks
NR New radio
NSA Non-standalone
NWDAF Network data analytics function
OTFS Orthogonal time–frequency spread
OTT Over-the-top providers
PAPR Peak-to-average power
PC Polar codes
PCA Principal component analysis
PHY-SI Physical layer service integration
QoE Quality of experience
QoS Quality of service
RaaS RAN as a service
RAN Radio access networks
RLC Radio link control
RRM Radio resource management
RRU Remote radio unit
RSS Received signal strength
SDR Software-defined radio
SE Spectral efficiency
SNR Signal-to-noise ratio
uRLLC Ultra-reliable low latency communication
V2X Vehicle to everything
WWWW Worldwide Wireless Web
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