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Abstract: Compared with High Efficiency Video Coding (HEVC), the latest video coding standard
Versatile Video Coding Standard (VVC), due to the introduction of many novel technologies and
the introduction of the Quad-tree with nested Multi-type Tree (QTMT) division scheme in the block
division method, the coding quality has been greatly improved. Due to the introduction of the QTMT
scheme, the encoder needs to perform rate–distortion optimization for each division mode during
Coding Unit (CU) division, so as to select the best division mode, which also leads to an increase
in coding time and coding complexity. Therefore, we propose a VVC intra prediction complexity
reduction algorithm based on statistical theory and the Size-adaptive Convolutional Neural Network
(SAE-CNN). The algorithm combines the establishment of a pre-decision dictionary based on statisti-
cal theory and a Convolutional Neural Network (CNN) model based on adaptively adjusting the size
of the pooling layer to form an adaptive CU size division decision process. The algorithm can make a
decision on whether to divide CUs of different sizes, thereby avoiding unnecessary Rate–distortion
Optimization (RDO) and reducing coding time. Experimental results show that compared with the
original algorithm, our suggested algorithm can save 35.60% of the coding time and only increases
the Bjøntegaard Delta Bit Rate (BD-BR) by 0.91%.

Keywords: VVC; SAE-CNN; complexity reduction; CU division decision

1. Introduction

In the information age, video, as an important carrier of information, is integrated into
people’s lives through computers, TVs, mobile phones and other devices, and has become
an indispensable part of today’s society. However, with the continuous improvement of
video resolution and frame rate, the amount of data occupied by a video is also increasing.
Taking a 40-min high-definition color video as an example, using the mainstream 8-bit
pixel depth and 30 frames per second playback speed to calculate, its data volume is
1920 × 1080 × 3 × 8 × 30 × 60 × 40 = 3,583,180,800,000 bits, which is obviously not con-
ducive to video storage and real-time transmission. In addition, in the process of video
transmission, the reconstructed image will be distorted due to the influence of channel
noise [1,2]. In order to realize the compression processing of the video, to facilitate the
transmission and application, the video coding technology comes into being.

In order to achieve uniformity in video coding technology and enable video transmis-
sion on different platforms, the International Telecommunication Union’s Telecommunica-
tion Standardization Sector (ITU-T) formulated the earliest video coding standard H.261,
followed by H.263 and H.264. The emergence of these standards has greatly promoted
the development and application of video technology. The current mainstream of video
coding standard is the High Efficiency Video Coding (HEVC), which was formulated by
the Video Coding Experts Group (VCEG) and was confirmed as an international standard
in 2013. The key technologies were introduced in HEVC, including the quad-tree structure
of Coding Unit (CU) partition, the expansion of prediction block size, the intra-frame pre-
diction based on up to 33 directions, the multi-frame motion compensation prediction, etc.
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These greatly improve the coding performance [3]. With the rise of new applications such
as Ultra-high Definition (UHD), 4K and 3D video, better visual quality and more realistic
viewing experience can be provided, making them suitable for Image Maximum (IMAX)
movies, video calls, TV broadcasts, high-definition video surveillance and so on, including
applications in medical imaging [4]. However, the existing coding standard HEVC can
no longer meet the increasing needs of users. In 2015, the Joint Video Exploration Team
(JVET) explored the next generation of video coding standards based on HEVC and named
it Versatile Video Coding (VVC) [5]. VVC improves the coding technology on the basis of
HEVC and proposes some novel technologies, such as: the Quad-tree with nested Multi-
type Tree (QTMT) structure of the CU partition, supporting 65 kinds of intra prediction
directions, the Multi-reference Line (MRL) intra prediction, the Adaptive Multiple Core
Transform (AMT) and so on. These new technologies enable the latest version of the VVC
reference software VTM10.0 to increase the coding efficiency by 24% compared with the
HEVC reference software HM16.20, but the coding time has increased by 27 times. The
main reason is that a more flexible QTMT structure of block partition was adopted in VVC;
that is, the horizontal binary-tree, vertical binary-tree, horizontal trinomial-tree and vertical
trinomial-tree structure were added on the basis of the quad-tree structure, as shown in
Figure 1. Due to the characteristics of the QTMT structure, the encoder can make more
flexible divisions for CUs with different texture complexities, thereby improving coding
performance [6].
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Figure 1. Coding Tree Unit (CTU) partitioning in VVC: (a) Take a 64 × 64 CU as an example; (b) VVC split types. 
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64 CU, there are two options: quad-tree split and non-split; next, to divide the 32 ×  32 
CU, there are four options: binary-tree, trinomial-tree, quad-tree split and non-split; and 
so on, until it is divided into a 4 ×  4 CU. It should be noted that the basis used to deter-
mine the division of the CU is the Rate–distortion Optimization (RDO). That is, it traverses 
all possible division modes of the CU, calculates the Rate–distortion (RD) cost and selects 
the division mode with the smallest rate–distortion as the best division mode of the cur-
rent CU [7]. The calculation formula of the RD cost J is as follows: 

Figure 1. Coding Tree Unit (CTU) partitioning in VVC: (a) Take a 64 × 64 CU as an example; (b) VVC split types.

The division process is as follows: For a 128 × 128 Coding Tree Unit (CTU), firstly, the
CTU is divided into a quad-tree to obtain four 64 × 64 CUs; secondly, for the 64 × 64 CU,
there are two options: quad-tree split and non-split; next, to divide the 32 × 32 CU, there
are four options: binary-tree, trinomial-tree, quad-tree split and non-split; and so on, until it
is divided into a 4 × 4 CU. It should be noted that the basis used to determine the division
of the CU is the Rate–distortion Optimization (RDO). That is, it traverses all possible
division modes of the CU, calculates the Rate–distortion (RD) cost and selects the division
mode with the smallest rate–distortion as the best division mode of the current CU [7]. The
calculation formula of the RD cost J is as follows:

Jmode = D + (λ × Rmode), (1)
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D = SSEluma + (Wchroma × SSEchroma), (2)

where Rmode represents the encoding bit in the homologous mode; SSEchroma indicates
the sum of chromaticity squares of the initial picture and the re-established picture; Simi-
larly, SSEluma represents the sum of luminance squares; λ and Wchroma are the Lagrange
multiplier and chromaticity distortion weights, respectively.

As shown in Figure 2, we use the VTM.10.0 version of the test software to encode the
50-frame (Quantization Parameter, QP = 22) Basketballdrilltext sequence under the All Intra
(AI) configuration and count the proportion of encoding time occupied by each crucial
technique of VVC. Among them, the CTU division time accounts for 96.78% of the overall
coding time, and the summation of the time used by remaining technologies just accounts
for 3.22%. It can be seen that facile CU division makes a significant contribution to the
improvement of VVC encoding performance, but this technology also occupies the largest
computational complexity of VVC.
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Through the previous analysis of the VVC technology and the experiments on the
coding time it took, we found that a fast CU partitioning method that reduces the un-
necessary RDO for some CUs is of great significance for reducing the coding time and
complexity of VVC. Therefore, this paper proposes a VVC intra prediction complexity re-
duction algorithm based on statistics and the Size-adaptive Convolutional Neural Network
(SAE-CNN).

The remaining chapters are arranged as follows: Section 2 will introduce some prepa-
rations for the paper, including an analysis of the algorithms proposed by the predecessors
and the motivation of the algorithm. Section 3 will introduce the proposed algorithm,
including the overall process of the proposed algorithm, CU partition pre-decision algo-
rithm, the framework of SAE-CNN proposed in this paper, the establishment of the data
set and the training program. Section 4 will exhibit the experimental outcomes of the
algorithm proposed in this paper and compare and analyze the original algorithm and
other algorithms. Lastly, Section 5 will give the conclusion of the whole article.

2. Related Works

In modern years, artificial intelligence algorithms have developed rapidly and are
gradually applied to various fields [8–10], including video coding. In the past, many
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artificial intelligence-related methods have been suggested to speed up the CU division
process in video coding.

2.1. Methods for Former Standards

Before VVC, the mainstream of video coding standards included HEVC, AVS2 and
VP9. Among them, HEVC has become an internationally recognized coding standard and
has been extensively studied. To speed up the block partitioning process and reduce coding
complexity, some artificial intelligence algorithms, such as deep learning, machine learning
and reinforcement learning, are widely used in video coding. Heindel et al. [11] proposed
SVM-based fast block split decisions for HEVC inter coding based on Zhang et al. [12],
using the Support Vector Machine (SVM) classifier to select skip flag, coded unit flag, RD
cost, initial bits and average neighboring depth as features. The CU is directly partitioned
and decided without calculating the RD cost. In the case that SVM cannot make accurate
decisions, RDO is used as a backup plan. Xu et al. [13] recommended a fast CTU depth
selection algorithm based on machine learning. First, the CTU is initially divided into
depth prediction based on QP and texture complexity, and then rate and distortion are used
as feature input, and the NN classifier is used to convert the block partition problem as
modeled into a two-class classification problem. The depth of the CU is selected, and the RD
cost calculation process of the depth prediction of some coding units is skipped, which saves
coding time. Jamali et al. [14] suggested a block partition decision algorithm based on deep
reinforcement learning (RL). The CU size decision was regarded as a sequence decision
problem and expressed through reinforcement learning, using A to find the best coding
strategy for CU size decision in an intra coding environment. Kim et al. [15] recommended
a fast-coding unit depth decision algorithm based on the Convolutional Neural Network
(CNN), which uses a CNN to predict CTU depth instead of an exhaustive search to calculate
the RD cost. For each depth judgment, a different CNN model is used to make predictions.
The proposed CNN model is suitable for both intra- and inter-prediction, and vector data
is added to the fully connected layer to improve the prediction accuracy. Zhang et al. [16]
recommended a CNN-based CU partition decision algorithm. A 64 × 64 CU was input to
CNN, and 21 partition flags were obtained, and the CU was partitioned directly according
to the flag information. Guo et al. [17] suggested a lightweight CNN-based intra-coding
complexity reduction algorithm. The output layer of CNN is composed of three branches,
which represent the division of CUs with dimensions of 64 × 64, 32 × 32, and 16 × 16.
Through this CNN, it is possible to predict the overall division result of a 64 × 64 CTU
with one attempt. The above artificial intelligence algorithms for HEVC fast block division
show good performances in reducing coding time. However, since VVC has a significant
difference in the division structure compared with HEVC, the above algorithms cannot be
well applied to VVC.

2.2. Approaches for VVC

Because VVC is in the process of continuous improvement, only a small group of
people have proposed some artificial intelligence algorithms to apply VVC fast block divi-
sion methods, most of which are based on neural networks or based on machine learning
algorithms instead of RDO to directly divide CU operations or make partitioning decisions
to reduce coding complexity. Fu et al. [18] proposed a fast CU division method based on
Bayesian decision rules. The algorithm takes the partition type and intra prediction mode of
the coding unit as the feature input, makes full use of the binary partition information and
designs an early termination algorithm to avoid unnecessary RDO exploration for some
CUs. Cui et al. [19] suggested a block partitioning decision algorithm based on directional
gradients. By analyzing the division characteristics and direction gradients of CU, the
corresponding CU partitioning rules were found to replace the traditional RDO and reduce
the complexity. Wu et al. [20] recommended a fast block partitioning method based on
SVM, which predicts the type of coding unit partitioning through texture information and
designs different classifiers for CUs of different sizes to improve the prediction accuracy.
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Tissier et al. [21] suggested a CNN-based intra-encoder complexity reduction algorithm
on the basis of Galpin et al. [22], designed a classic Residual Network (ResNet) CNN,
input a 64 × 64 CU and output 480 probabilities. For the composed probability vector,
each probability corresponds to whether each 4 × 4 boundary is divided, and then each
predicted probability is compared with the artificially set threshold. If it is greater than the
threshold, it will be divided, otherwise it will not be divided. Li et al. [23] designed a CNN
with an early exit mechanism. The CTU division process is divided into multiple stages.
Each stage is composed of a conditional convolutional neural network and sub-networks,
and then the threshold and the division of the CNN output probability are compared to
determine the current CU division mode. Wang et al. [24] designed a fast CNN-based on
Quad-Tree Binary-Tree (QTBT) partitioning decision algorithm for inter coding through
the statistical analysis of QTBT to guide the design of the CNN architecture. In addition,
to achieve very good performance, a motion-compensated residual block was used as the
input and the correlation between the reference frame and the current frame was consid-
ered. Tang et al. [25] designed a block partitioning decision-making scheme based on the
multi-variable pooling layer CNN. For a residual block, the Soble operator is first used to
calculate the average gradient value of the CU, then sets the threshold condition to filter
out the CUs for which the division decision is difficult to judge, and finally uses CNN to
make the division decision on the CU. However, the CNN proposed in this algorithm is too
simple to fully extract the feature information of the CU, resulting in unsatisfactory final
prediction results. In this article, we borrow this idea to rebuild the CNN model to make
up for this deficiency, which will be discussed in detail in the following section. Hang
et al. [26] proposed an intra-frame coding acceleration algorithm based on ResNet and a
random forest classifier. For a 32 × 32 brightness block, the algorithm is first processed
by CNN to obtain the range of division depth, and then a Random Forest Classifier (RFC)
is used to obtain the division type of the CU. Fu et al. [27] suggested a block division
decision-making scheme based on multi-branch CNN, which is divided into two stages. In
the first stage, a 32 × 32 CU is sent to the CNN as an input, and the output result includes
the type of CU, the depth of Quad-Tree (QT) division and whether to use TT division. In
the second stage, the RDO depth range exploration table is built, and according to the
output results of CNN, obtaining the depth and classification exploration range of RDO
is carried out, so as to reduce the computational complexity. The above methods are all
designed to decrease the computational complexity of the VVC, which greatly shortens the
encoding time, but also causes a substantial increase in the bit rate and does not balance
the relationship between the encoding complexity and the encoding quality well.

2.3. Motivation

The original block can embody the characteristics of the block to a certain degree,
so the current method carried out for VVC using CNN for fast block partition is to send
the original block as an input to the CNN for processing. Compared with the original
block, the residual block more closely reflects the texture details of the image and the CU
division trend. Therefore, if the residual block of a coding unit is sent to the CNN as an
input to make a division decision, a more accurate prediction effect will be obtained, and
the prediction accuracy will be improved. Therefore, this paper proposes replacing the
original block with the residual block as the input of CNN to further improve the accuracy
of the division decision.

At the same time, this paper proposes a pre-decision-making scheme for CU partition.
According to the correlation among texture complexity, quantization parameters and CU
division, a pre-decision dictionary is constructed, and some CUs with obvious division
trends are selected, so that they can directly proceed to the subsequent division mode
selection without using CNN; in the same way, some CUs with obvious non-division trends
can be selected, and there is no need to make division decisions for them, and the entire
division process is ended in advance, thereby reducing the coding time to a certain extent.
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In addition, because the QTMT division structure is quoted in VVC, CTU can choose
a variety of division methods, as the CU size obtained after division is no longer only
square as in HEVC, but rectangles of different sizes, such as 32 × 16, 16 × 8, 8 × 4 and
so on. If different CNN models are designed for different sizes of coding units, they will
not only bring a lot of unnecessary work, but also reduce the utilization rate of the neural
network and cause a waste of resources. Therefore, this paper proposes a SAE-CNN,
which adaptively adjusts the size of the pooling layer according to the size of the input
CU residual block, so that CNN can make decisions on whether to divide CUs of different
sizes. Additionally, it replaces part of RDO, which is of great significance for improving
the utilization of neural networks and reducing coding complexity.

3. Proposed Method

In recent years, CNN has been applied in many fields as an emerging artificial intelli-
gence algorithm, including video coding. In this section, we design SAE-CNN to determine
whether the CU is divided in intra-frame prediction and build a division decision plan that
can adapt to the size of the CU. The entire algorithm flow is shown in Figure 3. The method
designed in this article is aimed at the luminance CU. First, based on statistical analysis,
we establish a pre-decision dictionary. For a CU, first the pre-decision judgments based
on the pre-decision dictionary are made based on whether it is square or rectangular. For
a CU, whether it is square or rectangular, first make pre-decision judgments based on
the pre-decision dictionary. There are three situations (split, not split and uncertain). The
CU residual block is only sent to SAE-CNN when the result is uncertain, and it is judged
whether a division operation on the CU should be performed according to the output
result. If the result is ‘split’, then the subsequent division mode selection is performed to
select a suitable division mode, and the division process is ended; if the result is ‘not split’,
the division process is directly ended. The following mainly introduces the pre-decision
process, SAE-CNN construction and training process.

3.1. Pre-Decision Algorithm

Generally, the decision as to whether a CU will be divided is inseparable from the
content and texture it contains. In detail, a CU with a more complex texture is more
likely to be divided, and a simpler CU is less likely to be divided. In the same way, the
QP selected in the encoding process also affects the judgment of CU division. Therefore,
this paper constructs a pre-decision dictionary based on the texture complexity and the
correlation between QP and the CU division and uses the dictionary to enact pre-division
and judge the CU. The CUs with obvious division trends and obvious non-division trends
are selected, and the division operation is directly performed, or the division process of
the CU is terminated, thereby avoiding unnecessary RD cost calculation and the CNN
prediction process. The construction process of the pre-decision dictionary is as follows:

Select VVC standard test sequences (Bqterrac, Basketballdrill, Bqsquare, Fourpeople) with
different texture complexity, different scenes and different resolutions. After VTM-10.0 uses
different QPs for encoding, it counts the division results of CUs of various sizes. Taking
QP as the X axis (QP range is 0~51, and it is quantified in 1 units) and the entropy value of
CU residual block as the Y axis (The entropy value in the test sequence ranges from 0.5 to
7.5, and it is quantified in 0.1 units), the pre-decision dictionary is established as shown in
Figure 4. Among them, “×” indicates that under the current QP and entropy conditions,
the number of CUs divided is much greater than the number of CUs not divided, and it is
marked as “split”. “×” indicates that under the current QP and entropy conditions, the
number of CUs divided is much smaller than the number of CUs not divided, and it is
marked as “not split”. “×” indicates that under the current QP and entropy conditions, the
number of CUs divided is not much different from the number of CUs not divided, and it
is marked as “uncertain”.
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Pre-decision division process: For a CU, the entropy value of the CU residual block
is calculated, and the corresponding marking result can be found in the pre-decision
dictionary according to the entropy value and the QP value of the current encoder. If it is
marked as “split”, the CU division mode selection is directly performed without SAE-CNN
prediction, and the algorithm directly selects the division mode for the CU to complete
the division process; if it is marked as “not split”, the current CU division process can be



Electronics 2021, 10, 3112 8 of 14

terminated early; if it is marked as “uncertain”, then send the CU to SAE-CNN for division
prediction; the above is the pre-decision process proposed in this article.

The pre-decision algorithm can avoid unnecessary SAE-CNN prediction and RD cost
calculations for some CUs, determine their division results in advance and reduce coding
time to a certain extent. In addition, the algorithm can filter out some CUs in the training
samples that do not need to use SAE-CNN when SAE-CNN is training, thereby improving
the prediction accuracy of the neural network.

3.2. SAE-CNN Architecture

Since the QTMT division structure is adopted in the VVC, the size of the CU generated
by the partition varies. If different CNN models of different sizes are designed to predict,
not only will this result in a lot of unnecessary work, but it will also reduce the utilization
of the model, resulting in a waste of resources. Therefore, it is necessary to design a CNN
model that can predict CUs of different sizes. The pooling layer is well-known and an
important part of the CNN architecture, and the pooling layer has no parameters that
need to be learned, so the size of the pooling layer can be artificially defined. Due to this
characteristic of the pooling layer, we propose a coding unit shape-adaptive CNN model.
By adaptively adjusting the size of the pooling layer, CUs of different dimensions can be
predicted using a CNN.

The SAE-CNN we propose includes an input layer, four convolutional layers, three
pooling layers, a fully connected layer and an output layer. Specifically, the input is the
residual block, and its size is recorded. Convolutional layers 1 and 2 (Conv1,2) contain
64 convolution kernels with a size of 5 × 5. In order to maintain the dimensions of the
feature map, one-step convolution is performed on the input CU, and the obtained fea-
ture map is filled. Pooling layers 1 and 2 (Shape-adaptive Pool1,2) adopt the maximum
pooling method, and their size is adaptively adjusted according to the size of the input
CU. Convolutional layers 3 and 4 (Conv3,4) contain 64 3 × 3 convolution kernels, which
are similar to Conv1 and Conv2, with a stride of 1 and fill the feature maps. Pooling layer
3 (Pool3) adopts a maximum pooling with a size of 2 × 2. A fully connected layer (FC)
contains 64 neurons, and the size of the input CU residual block and the corresponding
quantization parameters are also joined as neurons in FC to improve the prediction ac-
curacy; the output layer (SoftMax) uses the SoftMax function, which is composed of two
neurons and outputs the probability of division and non-division, respectively, which is
utilized to judge whether the input residual block is divided, thereby completing the entire
decision-making process. In addition, the Rectified Linear Unit (Relu) is selected as the
activation function of entire Conv. The biggest highlight of SAE-CNN is that regardless
of the size of the input CU, the size of the feature map remains 4 × 4 before being sent to
the FC, so that the SAE-CNN model can complete the division decision of CUs of different
sizes. Figure 5 and Table 1 show the process and specific details of SAE-CNN mentioned in
this article, respectively.
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Table 1. Details of the proposed shape-adaptive CNN (SAE-CNN) structure.

Type Structure

Input Residual Block: Wide × Height × 1
Conv1 Filter: 5 × 5 × 64, Stride:1, Pad:2, ReLU

Shape-adaptive Pool1 Max, Size X = (Wide ≥ 32) + 1, Size Y = (Height ≥ 32) + 1
Conv2 Filter: 5 × 5 × 64, Stride:1, Pad:2, ReLU

Shape-adaptive Pool2 Max, Size X = (Wide ≥ 32) + 1, Size Y = (Height ≥ 32) + 1
Conv3 Filter: 3 × 3 × 64, Stride:1, Pad:1, ReLU
Conv4 Filter: 3 × 3 × 64, Stride:1, Pad:1, ReLU
Pool3 Max, Size X = 2, Size Y = 2

FC 64, include: QP, Wide, Height; ReLU
SoftMax 2

As shown in Figure 6, taking the input CU size of 32 × 16 × 1 as an example, a
32 × 16 × 64 feature map is obtained after the Conv1. Then, according to W = 32 and
H = 16, the shape-adaptive Pool1 becomes the largest pooling with a size of 2 × 1, and
after this layer, a 16 × 16 × 64 feature map is obtained. After passing through the Conv2,
the feature map size remains unchanged. In the same way, the shape-adaptive Pool2
becomes the maximum pooling with a size of 2 × 2, and the feature map size becomes
8 × 8 × 64 after this layer. Then, the feature maps obtained through the Conv3 and Conv4
are spliced together to obtain an 8 × 8 × 128 feature map. Finally, after the Pool3, the
feature map size becomes 4 × 4 × 128. This also achieves the aforementioned highlights of
the SAE-CNN we designed.
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3.3. SAE-CNN Training

The VVC standard test sequences selected to form the data set are shown in Table 2.
These selected video sequences cover different textures, resolutions and scenes to ensure
that the trained model has good universality. Each video randomly selects 25 frames and
encodes them under different QPs. Among them, the first 20 frames form a train dataset to
train the model; the last five frames form a test dataset to test the performance of SAE-CNN.
After encoding, we extract CU residual blocks of different sizes and mark them according
to the division of the CU. If the CU is divided, it is marked “1,0”; if it is not divided, it is
marked “0,1”. Since SAE-CNN can adapt to CUs of different sizes, if CUs of all sizes are
formed by dataset according to the traditional training method, it is obvious that SAE-CNN
cannot achieve a good training effect. Therefore, whether it is in the training dataset or
test dataset, it must be divided into multiple datasets according to the size of the CU.
Then, we use the pre-decision dictionary to filter out the obtained dataset, filter out some
CUs in the sample that do not need to use SAE-CNN and obtain the final dataset. The
cross-entropy function is used as the loss function during training, and the SAE-CNN
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model is updated by Back Propagation (BP), and Stochastic Gradient Descent (SGD) is
utilized for majorization. The formula of the loss function is as follows:

loss = ∑ n
i=1[yi log(

∧
y) + (1− yi) log(1− ∧y)] (3)

∧
y =

exi

∑ n
i=1exj

(4)

where yi indicates the true value;
∧
y indicates the predicted value processed by the soft-

max function.

Table 2. Table of video sequence selection.

Sequence Class Resolution

DaylightRoad2 A 3810 × 2160
ArenaOfValor B 1920 × 1080

BasketballDrillText C 832 × 480
BasketballPass D 416 × 240

Vidyo3 E 1280 × 720

We installed the SGD momentum and weight attenuation at 0.9 and 0.005 respectively,
and installed the original learning rate at 0.001. We plan to decrease the learning rate
by a coefficient of 0.25 after every 25,000 repetitions, and a total of 85,000 repetitions are
performed to renew the SAE-CNN model. In addition, the training method is also different
from the traditional method. The corresponding datasets composed of different CU sizes
are sent to SAE-CNN for training in order from small to large. The 8 × 8 block will be
trained foremost, and afterward the dataset with a size of 16 × 8 will be trained, and finally
training datasets of different sizes will be trained in sequence. It should be noted that
starting from the 16 × 8 dataset, the SAE-CNN parameters are obtained through training
the 8 × 8 dataset, rather than randomly initialized parameters. By analogy, the SAE-CNN
parameters are updated until the entire training process is completed.

4. Experimental Results

In this section, we describe the experiments conducted to assess the usefulness of our
method in decreasing VVC encoding time. Here, we mainly introduce the experimental
configuration and performance evaluation standards. At the same time, the experimental
results are analyzed and compared with the current advanced technologies in terms of
complexity reduction, bit rate loss and trade-off performance between coding complexity
and coding quality.

4.1. Experimental Setup

All experiments were carried out under the AI configuration in the VVC official test
software VTM10.0 version. The CNN architecture was built and tested in python4.0 based
on the pythorch learning library. Each encoding and SAE-CNN prediction was carried out
individually on Intel Core i5-8500 processor running at 3.00 GHz on Window10 operating
system. The CTC sequence specified by JVET is widely used because it contains a wide
range of resolutions, texture complexities, bit depths and motion information. Therefore,
we selected 15 sequences from the CTC sequence and divided them into five categories: A
(3840 × 2160), B (1920 × 1080), C (832 × 480), D (416 × 240), and E (1280 × 720), forming a
test set to test the proposed method. In the experiment, four QP (22,27,32,37) were used
to encode each sequence separately, and the average value of the coding time reduction
under four QP was calculated, and the experimental results were obtained. It should be
noted that in order to ensure the fairness of the experiment and the effectiveness of the
proposed algorithm, the sequence selected in the test set is completely different from the
sequence selected in the CNN train dataset.
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Here, we chose three standards to measure the performance of the proposed algorithm,
including the Bjøntegaard Delta Bit Rate (BD-BR) to measure the coding quality; ∆T to
measure the complexity reduction performance; and ∆T/BD-BR to assess the trade-off
performance of our method between coding complexity and coding quality. The calculation
formula of ∆T is as follows:

∆T =
Tbase − Tprop

Tbase
× 100%, (5)

where Tbase and Tprop respectively represent the encoding time running in the original
version of VTM10.0 and the encoding time running after the improved algorithm.

4.2. Results and Analysis

We contrasted the suggested algorithm with the method recommended by Tang
et al. [25] and the method proposed by Li et al. [23]. It should be noted that [25] and [23]
were tested under the VTM5.0 and VTM7.0 versions, respectively. In addition, the result
selection in [23] comes from the running result of the “fast” mode in its proposed algorithm.
The detailed experimental results are shown in Table 3.

Table 3. Coding performance of the proposed algorithm.

Class Sequence Ref. [23], VTM7.0 Ref. [25], VTM5.0 Proposed Algorithm
BD-BR (%) ∆T (%) ∆T/BD-BR BD-BR (%) ∆T (%) ∆T/BD-BR BD-BR (%) ∆T (%) ∆T/BD-BR

A Campfire 2.91 59.87 20.57 1.05 34.96 33.29 1.01 35.78 35.43
CatRobot1 3.28 55.99 17.07 / / / 0.96 36.98 38.52

B

BQTerrace 1.79 56.94 31.81 0.95 34.50 36.31 0.89 36.79 41.34
Cactus 1.86 60.56 32.56 / / / 0.87 34.12 39.22

MarketPlace 1.28 58.22 45.48 / / / 0.82 37.74 46.02
Kimono / / / 0.87 33.32 38.29 0.71 34.59 48.71

C
BasketballDrill 2.98 52.62 17.66 1.30 33.39 25.68 1.10 35.03 31.84

PartyScene 1.16 58.94 50.81 0.55 31.10 56.54 0.67 34.55 51.57
RaceHorsesC 1.61 57.89 35.96 0.37 23.63 63.86 0.75 33.89 45.19

D
BlowingBubbles 1.57 53.40 34.01 0.95 33.90 35.68 0.97 35.86 36.97

BQSquare 1.33 55.16 41.47 0.68 30.73 45.19 0.71 32.35 45.56
RaceHorses 1.88 53.34 28.37 0.71 31.79 44.77 0.76 33.14 43.61

E
FourPeople 2.20 59.74 27.15 1.38 38.01 27.54 0.99 38.40 38.79

KristenAndSara 2.75 60.01 21.82 1.61 34.84 21.63 1.08 35.84 33.19
Video 1 / / / 1.63 38.73 23.76 1.32 38.93 29.49

Average 2.05 57.13 27.87 1.00 33.24 33.24 0.91 35.60 39.12

The experimental results show that compared with the original VTM10.0 version, our
suggested algorithm only increases the coding gain by 0.91% on average, but saves the
coding time by 35.60%. In particular, after the sequence in Class E runs in the algorithm
proposed in this article, it saves 37.72% coding time. Compared with [25], our experimental
results have a smaller BD-BR increase and a larger coding time saving, which is more
obvious in Figure 7. As shown in the figure, we randomly selected seven sequences to
test with the method in [25] and the algorithm proposed in this paper, and the comparison
results for coding time were obtained.

We used the algorithm proposed in this article and the original algorithm of VTM10.0
to encode the sequence BasketballDrill and randomly selected a frame to compare the
CU division of the two, as shown in Figure 8. It can be seen that whether it is in the
texture complex area (athlete area) or in the texture smooth area (floor area), the CU
division shown by the algorithm proposed in this paper is mostly the same as the original
algorithm. This also proves that the algorithm proposed in this paper can basically replace
the original algorithm to complete the work of CU partitioning while reducing the coding
complexity, and the partitioning result is close to the optimal partitioning result of the
original algorithm.
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In addition, compared with [23], although the algorithm recommended in this article
is not as effective as [23] in terms of saving coding time, the algorithm of [23] caused
a substantial increase in BD-BR in order to increase the saving of coding time. So, the
algorithm of [23] does not balance the relationship between coding complexity and coding
quality. It is also obvious from Table 3 that the average value of ∆T/BD-BR obtained by
our proposed algorithm is 39.12, and the average value of ∆T/BD-BR in [23] is only 27.87.
Therefore, our proposed algorithm can achieve a better balance between coding complexity
and coding quality. In summary, the algorithm suggested in this article has improved
compared with the original method and other algorithms in terms of reducing the coding
complexity or balancing the reduction of complexity and the increase in bit rate.

5. Conclusions

This article proposes a VVC intra prediction complexity reduction algorithm based on
statistical theory and SAE-CNN. The proposed algorithm was applied to the residual block.
We used pre-decision and SAE-CNN to predict whether the coding unit is divided and if
part of RDO can be reduced, so as to attain the aim of decreasing coding time. In addition,
unlike the traditional CNN architecture, we introduced the concept of a shape-adaptive
pooling layer in the CNN architecture. Additionally, in the data set establishment and
training plan, we propose the establishment of a corresponding size data set according
to the different CU sizes and training the CNN in the order of the size of the CU from
small to large, so as to achieve the purpose of using a CNN to divide CUs of different sizes
and improve the network utilization. Compared with the original VTM10.0, our proposed
algorithm reduces the coding complexity by 35.60%, while BD-BR only increases by 0.91%;
Compared with other advanced technologies, our proposed algorithm can also achieve a
better balance between the reduction in coding complexity and the increase in BD-BR. This
also proves that the algorithm proposed in this paper has a good performance.
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