
Citation: Al Younes, Y.; Barczyk, M.

Adaptive Nonlinear Model

Predictive Horizon Using Deep

Reinforcement Learning for Optimal

Trajectory Planning. Drones 2022, 6,

323. https://doi.org/10.3390/

drones6110323

Academic Editor: Andrey V. Savkin

Received: 3 October 2022

Accepted: 23 October 2022

Published: 27 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Adaptive Nonlinear Model Predictive Horizon Using Deep
Reinforcement Learning for Optimal Trajectory Planning
Younes Al Younes and Martin Barczyk *

Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
* Correspondence: mbarczyk@ualberta.ca

Abstract: This paper presents an adaptive trajectory planning approach for nonlinear dynamical
systems based on deep reinforcement learning (DRL). This methodology is applied to the authors’
recently published optimization-based trajectory planning approach named nonlinear model pre-
dictive horizon (NMPH). The resulting design, which we call ‘adaptive NMPH’, generates optimal
trajectories for an autonomous vehicle based on the system’s states and its environment. This is done
by tuning the NMPH’s parameters online using two different actor-critic DRL-based algorithms, deep
deterministic policy gradient (DDPG) and soft actor-critic (SAC). Both adaptive NMPH variants are
trained and evaluated on an aerial drone inside a high-fidelity simulation environment. The results
demonstrate the learning curves, sample complexity, and stability of the DRL-based adaptation
scheme and show the superior performance of adaptive NMPH relative to our earlier designs.

Keywords: trajectory planning; nonlinear model predictive approach; adaptive design; deep rein-
forcement learning; deterministic policy gradient; soft actor-critic

1. Introduction

Path planning and trajectory tracking control are compelling domains for researchers
working with autonomous robotic systems. Some formulations require accurate system
dynamics models to design the control and navigation algorithms [1]. However, obtaining
accurate models is challenging in practice, especially if the system dynamics are vary by
time or task. Changes in system dynamics require updating the system model and/or
the associated control and navigation algorithms. For instance, adaptive control designs
adjust the controller’s parameters in response to changes in the system dynamics and the
environment [2]. Adaptive control methods can be traced back to the 1950s and early
1960s [3]. Richard Bellman showed how dynamic programming is related to the different
aspects of adaptation [4], and various adaptive flight control systems from this era are
reported in [5]. One of the simplest instances of adaptive control is dynamically adjusting
the gains of a PID control law; some techniques proposed by researchers for online PID
tuning include [6–9].

The world is witnessing rapid progress in the use of artificial intelligence (AI) tech-
niques for self-adaptive systems [10]. In particular, some AI-based techniques have gener-
ated great interest for adaptive control designs for mobile robots [11–13]. One of the most
productive paradigms in AI is reinforcement learning (RL), which is a learning method
for an agent interacting with its environment [14]. In the literature, RL has been used by
researchers as an adaptive control strategy, for instance, a Q-learning-based cruise control
method was developed by [15] to control a vehicle’s speed on curved lanes. Q-learning [16]
is an RL algorithm that learns the value of an action for a given state of the system. For
online tuning purposes, [17] used the Q-learning method to auto-tune fuzzy PI and PD
controllers for both single- and multi-input/output systems, while [18] used an actor-critic
RL technique to tune the weights of an LQR controller to adjust to different payloads being
carried by a robot arm manipulator.

Drones 2022, 6, 323. https://doi.org/10.3390/drones6110323 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones6110323
https://doi.org/10.3390/drones6110323
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0002-8295-8356
https://doi.org/10.3390/drones6110323
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones6110323?type=check_update&version=2

Drones 2022, 6, 323 2 of 18

Recent developments in RL have made it possible to use neural networks as approxi-
mators of the RL value and policy functions [14]. In general, RL methods that use neural
networks in their structure are called deep reinforcement learning (DRL). One class of DRL
methods that support continuous-time system models belongs to the actor-critic family [19],
including the deep deterministic policy gradient (DDPG) [20], twin delayed deep determin-
istic (TD3) [21], soft actor-critic (SAC) [22], and asynchronous advantage actor–critic (A3C)
[23]) algorithms. Actor-critic methods simultaneously learn policy and value functions
that are maintained independently using separate memory structures [14]. The actor is a
policy function that selects the best action for the current observations, and the critic is a
value function that criticizes the actions made by the actor. The algorithms listed above
have recently begun being used to implement adaptive control. For example, the DDPG
algorithm was used by [1] for self-tuning gains of PID controllers onboard mobile robots,
while [24] utilized the A3C algorithm to tune the gains of a PID controller used for position
control of a two-phase hybrid stepping motor. DRL-based algorithms can also be used
to autonomously tune the parameters of algorithms other than control, for instance path
planning. This will be the focus of the present paper.

Recently, the authors introduced a path planning methodology called nonlinear model
predictive horizon (NMPH) [25], which produces optimal, consistent, collision-free, and
computationally efficient trajectories that respect the internal and external constraints of a
mobile robot (in our case, an aerial drone). By design, the NMPH algorithm compensates
for the system’s nonlinearities to reduce or even remove the non-convexity of its underlying
optimization problem. This is done by combining the nonlinear plant model with various
nonlinear feedback control design methodologies, such as feedback linearization (FBL) [25]
and backstepping control (BSC) [26]. The optimization problem embedded within NMPH
contains various parameters that affect its cost function, as further explained in Section 2.1.
In our previous works, these parameters were selected empirically; however, in the present
paper, a new framework is proposed that dynamically adjusts these parameters to optimize
the path planning performance in real time. Our approach uses DRL algorithms (DDPG or
SAC) to automatically tune the NMPH parameters based on system states and observations
from the environment. This framework is called ‘adaptive NMPH’.

The research contributions of this paper are as follows:

• Introducing an adaptive NMPH framework that uses a DRL-based method to tune the
parameters of the underlying optimization problem of generating the best possible
reference trajectories for the vehicle.

• Designing the RL components (the agent, the environment, and the reward scheme)
of the proposed system.

• Implementing two different actor-critic DRL algorithms—the deterministic DDPG ap-
proach and the probabilistic SAC algorithm—within the adaptive NMPH framework,
comparing them in terms of learning speed and stability.

• Evaluating the performance of the overall system with each of the above DRL algo-
rithms in a lifelike simulation environment.

The remainder of this paper is organized as follows: Section 2 describes the various
methodologies used in this work. Section 3 presents the adaptive NMPH framework for
trajectory planning. Section 4 evaluates the proposed designs in simulation, and Section 5
concludes the paper and proposes future work directions.

2. Methodologies

This section provides a background on the different methodologies used within the
adaptive NMPH framework.

2.1. Nonlinear Model Predictive Horizon Based on Backstepping Control

Nonlinear model predictive horizon (NMPH) was originally proposed by the authors
in [25]. NMPH is an optimization-based method used to generate reference trajectories
for a closed-loop system. Within its optimization problem, NMPH uses a model of the

Drones 2022, 6, 323 3 of 18

nonlinear plant, a nonlinear control law (here, backstepping control), and a set of constraints
representing input limits plus static and dynamic obstacles in the environment. Connecting
the nonlinear plant with the control law aims to reduce the nonlinearity of the overall
closed-loop system and consequently the non-convexity of the associated optimization
problem. This greatly improves the efficiency of the optimization calculations, which
enables real-time trajectory generation to run onboard the drone vehicle.

Consider a nonlinear system with state, input, and output vectors x ∈ X ⊆ Rnx ,
u ∈ U ⊆ Rnu , and ξ ∈ Ξ ⊆ Rnξ , respectively. The output vector is assumed to be a subset
of the system state, Ξ ⊆ X. In addition, let f

(
x(n), u(n)

)
: X×U → X be the smooth map

that represents the plant dynamics, and g
(
x(n), ξre f (n)

)
: X× Ξ→ U the smooth nonlinear

control law map.
NMPH is designed to generate estimated reference trajectories ξ̂re f ∈ Ξ, which will

be tracked by the closed-loop system consisting of the plant and control law. As shown
in (1), a copy of these closed-loop dynamics is used by the NMPH optimization problem,
where the variables used by NMPH are denoted by a ˜ to visually differentiate them from
the actual system variables. For instance, within (1), x̃ represents the predicted system state
trajectory, and ξ̃ is the predicted output trajectory.

The online NMPH optimization problem to bring the system from a current state x
to a terminal stabilization setpoint xss is shown in Equation (1) [27]. Let tn, n = 0, 1, 2, · · ·
represent successive sampling times. At every sampling instant, the optimization treats the
following problem for x̃ and ξ̂re f , running for as long as ‖xss − x(tn)‖ ≥ ∆, where ∆ ∈ R+

is a user-specified tolerance:

argmin
x̃,ξ̂re f

(
J
(
x̃, ξ̂re f

)
= E

(
x̃(tn + T)

)
+
∫ tn+T

tn
L
(

x̃(τ), ξ̂re f (τ)
)

dτ

)
(1)

subject to x̃(tn) = x(tn) , (1a)
˙̃x(τ) = f (x̃(τ), ũ(τ)), (1b)

ũ(τ) = g
(
x̃(τ), ξ̂re f (τ)

)
, (1c)

x̃(τ) ∈ X , ũ(τ) ∈ U , ξ̃(τ), ξ̂re f (τ) ∈ Z , (1d)

Oi(x̃) ≤ 0 , i = 1, 2, . . . , p, (1e)

for τ ∈ [tn, tn + T].

where X ⊆ X, U ⊆ U, and Z ⊆ X are the constraint sets for the state, input, and
output trajectories, respectively, and each Oi(x̃) ≤ 0 in (1e) is an inequality constraint
corresponding to a detected static or dynamic obstacle within the environment [27]. The
stage cost L and terminal cost E functions in (1) are assigned as follows:

L
(
x̃(τ), ξ̂re f (τ)

)
= ‖x̃(τ)− xss‖2

Wx
+ ‖ξ̃(τ)− ξ̂re f (τ)‖

2
Wξ

(2a)

E
(

x̃(tn + T)
)
= ‖x̃(tn + T)− xss‖2

WT
(2b)

where the errors in (2a) and (2b) are weighted by matrices Wx ∈ Rnx×nx , Wξ ∈ Rnξ×nξ , and
WT ∈ Rnx×nx , which in this work will be adaptively tuned using DRL algorithms.

The optimization problem in (1) begins with measuring the current state of the physical
system x(tn) at time tn. The cost function J

(
x̃, ξ̂re f

)
is then minimized over the prediction

horizon [tn, tn + T] subject to constrains (1b), (1c), and (1e) to provide a prediction of the
values of x̃ and ξ̂re f . Finally, either the estimated reference trajectory ξ̂re f or the predicted
output trajectory ξ̃ (as both converge to each other) is input into the closed-loop system
for tracking. This process is repeated in real time at a user-specified rate until the plant
reaches the desired terminal setpoint. Details about the NMPH approach can be found in
our recent works [25,26].

Drones 2022, 6, 323 4 of 18

In this work, the nonlinear backstepping control law is used within the NMPH opti-
mization problem as a constraint in (1c). The detailed development and implementation
of the BSC technique within NMPH, as well as its advantages over the earlier FBL-based
design [25], are described in our recent work [26].

The NMPH trajectory planning algorithm receives terminal points from a modular
global motion planner [27]. The global motion planner generates terminal points within
unexplored areas of an incrementally built-up volumetric map of the environment [28,29].
These terminal points, along with the current pose of the vehicle, the constraints represent-
ing the closed-loop system dynamics and environmental obstacles (which are extracted
from the volumetric map), and the entries of the weighting matrices (which in the present
design are adjusted online by a DRL algorithm) are sent to the NMPH optimization problem
in order to calculate optimal trajectories between the vehicle’s current pose and the next
terminal point. The results are then used as reference trajectories by the vehicle’s low-level
flight controller.

2.2. Deep Reinforcement Learning Overview

This section covers the preliminaries of reinforcement learning, then describes the
DDPG and SAC algorithms used within the adaptive NMPH frameworks.

2.2.1. Reinforcement Learning Preliminaries

A reinforcement learning (RL) system is composed of an agent that interacts with an
environment in a sampling-based manner. Assuming the environment is fully observed,
at each time sample the agent observes the environment state s ∈ S , applies the action
a ∈ A decided by a policy, and receives a scalar reward r : S ×A → R, where S and A are
the environment state space and the action space, respectively. In our work, we consider
continuous action spaces with a real-valued vector a ∈ Rn. The main components of an RL
framework are depicted in Figure 1.

EnvironmentAgent

environment state (𝑠)

action (𝑎)

reward (𝑟)

Figure 1. Block diagram of an RL framework.

The agent’s policy can be deterministic (denoted by µ(s)), or stochastic (denoted by
π(·|s)). In deep RL, we parameterize the policy and represent it using a universal function
approximator realized by a neural network. The parameters (representing the weights and
biases of the policy’s neural network) are denoted by θ, and the corresponding policies for
the deterministic and stochastic cases are denoted by µθ(s) and πθ(·|s), respectively.

We consider a stochastic environment with transition probability function p : S ×R×
S ×A → [0, 1], where p(s′, r|s, a) is the probability of transition from the current state s
and action a to the next state s′ with reward r ∈ R. In addition, we define the ‘return’ as the
expected weighted sum of future rewards R = ∑∞

t=0 γtr(s, a), where r(s, a) is the reward
function and 0 ≤ γ ≤ 1 is the discounting factor. The main objective in RL is to find a policy
that maximizes the expected sum of rewards J = E

τ∼π

[
R
]
, where τ = (s0, a0, s1, a1, . . .) is

the trajectory sequence of states and actions in the RL system.
The state-action value function (also known as the Q-function) specifies the expected

return of an agent after performing an action a at a state s by following a policy π or µ. The
Q-function can be described by a Bellman equation [14].

Many recent advances in deep reinforcement learning consider a replay buffer (also
known as an experience buffer or experience replay) during the learning process. The
replay buffer is a memory that collects the previous experience tuples (s, a, r, s′) ∈ B, in

Drones 2022, 6, 323 5 of 18

which the agent uses them to increase the computational efficiency and speed up learning
[30].

We will now review the DDPG and SAC deep reinforcement learning algorithms used
within our proposed adaptive NMPH frameworks.

2.2.2. Deep Deterministic Policy Gradient

Deep deterministic policy gradient (DDPG) [20] is a model-free deep reinforcement
learning technique that is designed for applications with deterministic action spaces. It
uses stored experiences in a replay buffer to concurrently learn a Q-function and a policy.
DDPG is classified as an actor-critic technique, where the actor is a policy network that
receives the state of the environment and provides continuous action to the system, while
the critic is a Q-function network that inputs a state and action pair and outputs a Q-value.

DDPG seeks to find the optimal action-value function Q∗(s, a) followed by the optimal
action a∗(s), where a∗(s) = arg maxa Q∗(s, a). As a deep reinforcement learning approach,
DDPG uses universal function approximators represented by neural networks to learn
Q∗(s, a) and a∗(s). Consider a neural network approximator Qφ(s, a) (also known as a Q-
network) with parameters φ, where the objective is to make the approximator as close as
possible to the optimal action-value function written in the form of a Bellman equation.
The associated mean square Bellman error (MSBE [31]) function is defined as follows:

JQ(φ,B) = E
(s,a,r,s′)∼B

[(
Qφ(s, a)−

(
r + γ max

a′
Qφ(s′, a′)

))2
]

(3)

where a random batch of data (s, a, r, s′) from the replay buffer B is used for each update.
The goal is to minimize the loss in (3) by performing a gradient descent of the MSBE
JQ(φ,B).

As shown in (3), the neural network parameters represented by φ are used for both
the action-value function approximator Qφ(s, a) and the network that estimates Qφ(s′, a′),
which uses the next states and actions. Unfortunately, this makes it impossible for the
gradient descent to converge. To tackle this issue, a time delay is added to the network
parameters φ for Qφ(s′, a′). The adjusted network is called the target Q-network Qφtarg(s

′, a′)
with parameters φtarg. A copy of the Q-network Qφ(s′, a′) is used for the target Q-network
Qφtarg(s

′, a′), where the latter uses the weighted average of the model parameters φtarg ←
ρφtarg +(1− ρ)φ to stabilize Q-function learning [32]. It should be noted that the parameters
of the target Q-network are not trained. However, they are periodically synchronized with
the original Q-network’s parameters.

The MSBE function given in (3) contains a maximization term for the Q-value. One
way to perform this maximization is to apply the optimal action a∗(s). This can be achieved
by creating another approximator for the policy µθ(s) with parameters θ and maximizing
the associated Q-function with regard to the replay buffer B. This new policy also requires
a time delay to stabilize its learning. Therefore, a target policy µθtarg(s) is introduced to
maximize Qφtarg . The Bellman equation, MSBE, and policy learning function are respectively
given by

y(r, s′) = r + γ

target Q-network︷ ︸︸ ︷
Qφtarg(s

′, µθtarg(s
′)︸ ︷︷ ︸

target policy network

) (4)

JQ(φ,B) = E
(s,a,r,s′)∼B

[(
Qφ(s, a)︸ ︷︷ ︸
Q-network

− y(r, s′)
)2
]

(5)

Jµ(θ,B) = E
s∼B

[
Qφ

(
s, µθ(s)

)]
(6)

Drones 2022, 6, 323 6 of 18

Practically, for a random sample B = {(s, a, r, s′)} from the replay buffer B with
cardinality |B|, Equations (5) and (6) can be expressed as

JQ(φ, B) =
1
|B| ∑

(s,a,r,s′)∈B

(
Qφ(s, a)− y(r, s′)

)2 (7)

Jµ(θ, B) =
1
|B| ∑

s∈B
Qφ

(
s, µθ(s)

)
(8)

During training, Ornstein–Uhlenbeck noise is added to the action vector to enhance
the exploration of the DDPG policy [31]. The pseudo-code summarizing the DDPG process
is given in Algorithm 1.

Algorithm 1 Deep Deterministic Policy Gradient.

1: Initialize: θ, φ, B ← ∅
2: Set θtarg ← θ, φtarg ← φ
3: repeat
4: Observe the state s
5: Find and apply noise to the action a = µθ(s) + ηOU-noise
6: Apply a by the agent
7: Observe the next state s′ and calculate the reward r
8: Store (s, a, r, s′) in the replay buffer B
9: for a given number of episodes do

10: Obtain a random sample B = {(s, a, r, s′)} from B
11: Compute Bellman function y(r, s′)
12: Update the Q-function by applying gradient descent to MSBE: ∇φ JQ(φ, B)
13: Update the policy by applying gradient ascent to (8): ∇θ Jµ(θ, B)

14: Update the parameters of the target networks:

{
φtarg ← ρφtarg + (1− ρ)φ

θtarg ← ρθtarg + (1− ρ)θ

15: until convergence

The hyperparameters used for the DDPG algorithm are the number of training
episodes, target update factor (ρ), actor and critic network learning rates, replay buffer
size, random batch size, and discount factor value. The sensitivity to the hyperparameter
values and the interaction between the Q-value and policy approximator µθ(s) make ana-
lyzing the stability and convergence of DDPG difficult tasks [33], especially when using
high-dimensional nonlinear universal function approximators [34]. Moreover, DDPG is
expensive in terms of its sample complexity, which is measured by the number of training
samples needed to complete the learning process.

An alternative approach that overcomes the issues of the DDPG algorithm is soft
actor-critic (SAC) [22,34], a probabilistic DRL algorithm, which is considered next.

2.2.3. Soft Actor-Critic

Soft actor-critic (SAC) is a model-free deep reinforcement learning technique that
obtains a stochastic policy by maximizing its expected return and entropy [22]. Maximizing
the expected entropy in the policy leads to broader exploration in complicated domains,
which enhances the sampling efficiency, increases robustness, and guards against con-
vergence to a local maximum [31]. SAC is a probabilistic framework that builds on Soft
Q-learning within an actor-critic formulation.

SAC involves simultaneously learning two Q-functions Qφ1 , Qφ2 using two different
Q-networks, as well as a stochastic policy πθ using a policy network. Both Q-functions
use a modified MSBE (known as soft-MSBE), to be presented in (10), where the minimum
Q-value of both functions is used to update the policy [21]. SAC employs a ‘target network’
associated with each Q-network to enhance the stability of the learning process, where

Drones 2022, 6, 323 7 of 18

both target Q-networks are copies of the corresponding Q-network, but employ weighted
averaging on the network parameters during training. Because of the policy’s stochastic
nature, SAC uses the current policy to obtain the next state-action values without needing
to have a target policy [31]. In addition, the stochastic nature of the exploration process
means it’s not necessary to artificially introduce noise, as was done in the deterministic
DDPG.

The objective of SAC is to maximize the sum of the expected return and entropy. The
Bellman equation within its Q-value function thus includes the expected entropy of the
policy as follows:

Qπ(s, a) ≈ r + γ
(
Qπ(s′B , a′π)− α log π(a′π |s′B)

)
(9)

where α is the coefficient that regulates the trade-off between the expected entropy and
return, s′B indicates that the replay buffer is used to obtain the expectation of the future
states, and a′π ∼ π(·|s′) indicates that the current policy is used to obtain future actions.
For simplicity of notation, we will denote s′B by s′ and a′π by a′ in the sequel.

Two Bellman residuals are used within SAC [22], referred to as soft-MSBEs. In addition
to the policy network πθ , each soft-MSBE includes a Q-network and two target Q-networks
in its calculation as follows:

JQ(φi,B) = E
(s,a,r,s′ ,a′)∼B

[(
Qφi (s, a)− y(r, s′, a′)

)2
]

, i = 1, 2 (10)

and their Bellman equation forms are

y(r, s′, a′) = r + γ

(
min
j=1,2

Qφtarg,j(s
′, a′)− α log πθ(a′|s′)

)
, a′ ∼ πθ(·|s′) (11)

Similar to DDPG, the Q-functions are updated using gradient descent, while gradient
ascent is utilized to update the policy network.

The policy should maximize the state-value function Vπ(s), defined as follows:

Vπ(s) = E
a∼π

[
Qπ(s, a)− α log π(a|s)

]
(12)

which represents the expected return when starting from a state s and following a policy π.
For the optimal value of the action, we can employ reparameterization [22,31] to obtain

a continuous action from a deterministic function that represents the policy. The function is
expressed by the state and additive Gaussian noise as follows:

aθ(s, ξ) = tanh(µθ(s) + σθ(s) ξ), ξ ∼ N
(
0, diag(1, . . . , 1)

)
. (13)

The policy optimization can be performed by maximizing the Q-function, which
implicitly maximizes the entropy of the trajectory. Using the computed value of the action
from (13), the function to be maximized is

Jπ(θ,B) = E
s∼B, ξ∼N

[
min
j=1,2

Qφj(s, aθ(s, ξ))− α log πθ(aθ(s, ξ)|s)
]

(14)

and the optimum policy can be obtained by finding arg maxθ Jπ(θ,B) using gradient ascent.
For a random sample B = {(s, a, r, s′, a′)} from the buffer B, Equations (10) and (14) can be
expressed as follows:

JQ(φi, B) =
1
|B| ∑

(s,a,r,s′)∈B

(
Qφi (s, a)− y(r, s′, a′)

)2, i = 1, 2 (15)

Jµ(θ, B) =
1
|B| ∑

s∈B

(
min
j=1,2

Qφj

(
s, aθ(s, ξ)

)
− α log πθ

(
aθ(s, ξ)|s

))
(16)

Drones 2022, 6, 323 8 of 18

The pseudo-code for the SAC algorithm is provided in Algorithm 2.

Algorithm 2 Soft Actor-Critic.

1: Initialize: θ, φi, α, B ← ∅, i = 1, 2
2: Set φtarg,i ← φi
3: repeat
4: Observe the state s
5: Find the action a ∼ πθ(·|s), and apply it through the agent
6: Observe the next state s′ and the reward r
7: Find the next action a′ ∼ πθ(·|s′)
8: Store (s, a, r, s′, a′) in the replay buffer B
9: for a given number of episodes do

10: Obtain a random sample B = {(s, a, r, s′, a′)} from B
11: Compute Bellman functions y(r, s′, a′) in (11) and find the soft-MSBEs (10)
12: Apply gradient descent on the soft-MSBEs: ∇φi JQ(φi, B)
13: Reparametrize the action: aθ(s, ξ) = tanh(µθ(s) + σθ(s) ξ)
14: Apply gradient ascent on the policy: ∇θ Jµ(θ, B)
15: Apply gradient descent to tune α: ∇α J(α)
16: Update target networks: φtarg,i ← ρφtarg,i + (1− ρ)φi

17: until convergence

3. Adaptive Trajectory Planning Framework

In this section, we present the DRL-based adaptive framework used to adjust the
gains of the NMPH trajectory planning algorithm. First, we will describe the agent and
environment involved in the DRL problem; then, we will present two adaptive NMPH
architectures based on the DDPG and the SAC algorithm, respectively.

3.1. Agent and Environment Representations

Figure 2 shows the main components of the adaptive NMPH system. The environment
is an autonomous drone that flies within an incrementally built-up 3D volumetric map
of the surroundings. The drone uses the NMPH algorithm for planning local trajectories
between the current pose and a terminal setpoint provided by the exploration algorithm
presented in [27]. As covered in Section 2.1, the NMPH optimization process (blue box in
Figure 2) contains models of the nonlinear system dynamics and nonlinear control law, as
well as constraints representing actuation limits and environmental obstacles. The onboard
flight control system tracks the optimum reference trajectories generated by the NMPH.

From an RL perspective, at each episode the drone is commanded to fly through k
terminal setpoints. Hence, each episode consists of k iterations. Following each iteration,
three observations are sent to the agent: initial velocity vo, angle ϕ between the initial
velocity vector vo and the vector ~r = pss − po running from the initial point po to the
terminal point pss, and the distance |~r|.

A sketch of the observations {vo, ϕ, |~r|} for one iteration is given in Figure 3.
Our objective is to tune the NMPH parameters online by using reinforcement learning

to maximize the total reward. This reward is a function of the tracking performance by
the drone of the reference path generated by the NMPH algorithm, which consists of three
indicators:

• Trajectory tracking reward, which reflects how well the flight trajectory matches the
generated reference. The trajectory tracking reward is calculated as follows:

rtraj =

{
− rt,max

rt,th
et,RMS + rt,max, for et,RMS ≤ rt,th

0, otherwise
(17)

Drones 2022, 6, 323 9 of 18

where et,RMS is root-mean-square (RMS) error between the generated and flight tra-
jectories, and rt,max and rt,th are the maximum and threshold values of the trajectory
tracking reward, respectively.

• Terminal setpoint reward, which reflects how close the ending point of the flight trajec-
tory is to the terminal setpoint of the reference trajectory. The terminal setpoint reward
is calculated as follows:

rss =

{
− rs,max

rs,th
ess + rs,max, for ess ≤ rs,th

0, otherwise
(18)

where ess = ‖pss − ξ̂
pos
re f (tn + T)‖ is the error between the terminal point and the final

point of the reference trajectory generated by the NMPH, and rs,max, rs,th are the
maximum and threshold values of this reward, respectively.

• Completion reward, which reflects how far the drone travels along its prescribed flight
trajectory in the associated time interval. This is given by the following:

rc =

{
− rc,max

rc,th
ec + rc,max, for ec ≤ rc,th

−5, otherwise
(19)

where ec = ‖pss − p|tn+T‖ is the error between the drone’s position at tn + T and
the flight trajectory’s endpoint, while rc,max, rc,th are the maximum and threshold
values of the completion reward, respectively. We place more importance on this
factor by reducing the total reward (rc < 0) whenever the error ec exceeds the assigned
threshold value rc,th. Consequently, the overall algorithm will give priority to ensuring
the drone reaches the desired setpoint in the allotted timeframe.

Drone
System

current state 𝑥 𝑡𝑛

optimized variables

𝑥 , መ𝜉𝑟𝑒𝑓

Nonlinear Model Predictive Horizon

Nonlinear
Control Law

𝑢 𝜏

Nonlinear
Plant Model

ሶ𝑥 𝜏 Optimization
Problem

Solver

Constraints

Cost Function, 𝐽 𝑥, መ𝜉𝑟𝑒𝑓
𝑡𝑛 … 𝑡𝑛 + 𝑇

terminal setpoint

𝑥𝑠𝑠

Exploration
Algorithm

Environment

Agent

Policy

Reinforcement
Learning Algorithm

observation
/state, 𝑠 action, 𝑎

return, 𝑅

Policy
Update

Weights𝑥 𝑡𝑛

point cloud/
depth image

Figure 2. Adaptive NMPH architecture.

Drones 2022, 6, 323 10 of 18

𝑥

𝑧

𝑦

𝑝𝑠𝑠

𝜑

Ԧ𝑟

Ԧ𝑣𝑜

Generated

Trajectory

flight

Trajectory

𝑝𝑜

Figure 3. Observations from the environment for one Iteration.

3.2. DRL-Based Adaptive NMPH Architecture

The objective of adaptive NMPH is to integrate deep learning—in this case, an actor-
critic method (DDPG or SAC)—within the NMPH optimization problem to adaptively tune
the NMPH parameters and thus provide the best possible reference flight trajectories for
the drone.

The structures of the NMPH-DDPG and NMPH-SAC algorithms are illustrated in
Figures 4 and 5, respectively. Both DRL structures contain two parts, the actor and the critic.
The actor contains the policy network, which selects the action that maximizes the total
reward (a function of the state of the vehicle and environment) and subsequently improves
the policy based on feedback from the critic. A target policy network is used in DDPG to
obtain a stable learning process, while SAC does not need a target network because of its
probabilistic nature. The critic is responsible for policy evaluation; within DDPG, it consists
of a Q-network and a target Q-network, while in SAC, it is composed of two Q-networks,
two target Q-networks, and an optimization problem for α tuning. Both DDPG and SAC
employ a replay buffer to store previous experiences, which are used to refine the actor and
critic networks. The policy evaluation and improvement processes within DDPG and SAC
are explained in Sections 2.2.1 and 2.2.2 and depicted in Figures 4 and 5, respectively.

The action produced by the actor is a vector of positive values representing the
entries of the weighting matrices used in the NMPH optimization problem. Using these,
NMPH calculates its stage and terminal cost functions used to perform its optimization and
generates the estimated reference trajectory ξ̂re f . This result is used by the drone’s flight
control system, and the vehicle’s resulting trajectory is used to calculate the observations
{vo, ϕ, |~r|} and the total reward rt = rtraj + rss + rc sent to the replay buffer to be used in
the learning process.

Replay Buffer

Q-Network
𝑄𝜙 𝑠, 𝑎

Target Q-Network
𝑄𝜙𝑡𝑎𝑟𝑔

𝑠, 𝑎

Policy Network
𝜇𝜃 𝑠

Policy
Improvement

Policy
Evaluation

Update

Sample
Data

Store
Data

Action

Observation

Reward

Target Policy
Network
𝜇𝜃𝑡𝑎𝑟𝑔 𝑠

Update

Sample
Data

NMPH
Optimization

Problem

Drone
system

Reference
trajectory

መ𝜉𝑟𝑒𝑓

𝑣𝑜, 𝜑, Ԧ𝑟

𝑟𝑡𝑟𝑎𝑗 + 𝑟𝑠𝑝 + 𝑟𝑐

𝑊

Figure 4. Adaptive NMPH-DDPG structure.

Drones 2022, 6, 323 11 of 18

Replay Buffer

Q- Networks
𝑄𝜙𝑖

𝑠, 𝑎

Target Q- Networks
𝑄𝜙𝑡𝑎𝑟𝑔,𝑖

𝑠, 𝑎

Alpha optimization

Policy Network
𝜋𝜃 𝑎|𝑠

Policy
Improvement

Policy
Evaluation

Update

Sample Data

Sa
m

p
le

 D
at

a Sto
re

 D
ata

log-probability

Action

Observation

Reward

m
in

𝑊

𝑟𝑡𝑟𝑎𝑗 + 𝑟𝑠𝑝 + 𝑟𝑐

NMPH
Optimization

Problem

Drone
system

Reference
trajectory

መ𝜉𝑟𝑒𝑓

𝑣𝑜, 𝜑, Ԧ𝑟

Figure 5. Adaptive NMPH-SAC structure.

4. Implementation and Evaluation

This section evaluates the effectiveness of tuning the NMPH parameters in real time
via two DRL algorithms (DDPG and SAC). It also assesses the sample complexity and
stability of both methods.

The overall architecture is implemented within the robot operating system (ROS) [35],
which handles the interactions between the various subsystems, including physics simula-
tion, optimization calculations, and DRL algorithm. The AirSim open-source simulator [36]
is used to simulate the physics of the drone and provides photo-realistic environment
data. For optimization, the ACADO Toolkit [37] is used to solve the NMPH’s optimization
problem in real time. The TensorFlow [38] and Keras [39] libraries are used to train the
deep neural networks within the DDPG and SAC algorithms. In addition, the TensorLayer
library [40] was used to tailor the SAC algorithm to our application. TensorLayer is a
TensorFlow-based package that offers various RL and DRL modules for learning system
implementations.

As stated in Section 3.2, three observations of the system are fed back to the individ-
ual neural networks: vo, ϕ, and |~r|. DDPG is very sensitive to hyperparameters when
the action space has a high dimension, in which case achieving stable learning becomes
challenging. Therefore, we employ only three actions corresponding to the weights of the
NMPH optimization dealing with position states. The learning process for the three weight
factors {w1 = wx, w2 = wy, w3 = wz} is performed using DDPG and SAC in parallel for
comparison purposes.

Each episode is composed of a sequence of iterations, where each iteration represents
a trajectory between two endpoints (terminal points). At the start of each iteration, the
velocity vector of the drone vo, the angle ϕ between the velocity and endpoint-to-endpoint
vectors, and the distance |~r| between endpoints are calculated, followed by the errors
{et,RMS, ess, ec} and the total reward at the end of the iteration. All this data is stored in the
replay buffer. In order to cover a wider portion of the state and action spaces of the system,
the initial velocity is randomly selected at the beginning of each episode.

The structures of the actor-critic DRL (policy and Q-networks) for DDPG and SAC
algorithms are presented in Figures 6 and 7, respectively. Each network is composed of
an input layer, multiple hidden layers, and an output layer. Figures 6 and 7 depict our
neural network designs in terms of the layer structure of each network and the number
of nodes in each layer. The policy networks in the actor are responsible for generating
actions that maximize the total reward based on observations of the environment, while
the Q-networks in the critic compute a Q-value that is used for policy improvement. For
DDPG, four networks are used: a policy network, a Q-network (depicted in Figure 6), a
target policy network, and a target Q-network. The target networks are replicas of the
policy and Q-networks with a delay added to their parameters. Meanwhile, SAC consists of
five networks: a policy network, two Q-networks, and two target Q-networks. The SAC’s
policy and Q-network structures are shown in Figure 7.

Drones 2022, 6, 323 12 of 18

(a) Actor network (policy network) (b) Critic network (Q-network)

Figure 6. Neural networks used by DDPG. IL: input layer; HL: hidden layer; OL: output layer.

(a) Actor network (policy network) (b) Critic network (Q-network)

Figure 7. Neural networks used by SAC. IL: input layer; HL: hidden layer, OL: output layer.

Figure 8 shows the average episodic reward during the training processes of the DDPG
and SAC architectures. In this comparison, each framework is learning to optimize the
values of only three actions, which represent the entries of the weight matrix corresponding
to the position states within the NMPH optimization problem.

To enhance DDPG performance in terms of sample complexity and its sensitivity to
hyperparameters, we propose and apply a ‘pre-exploration’ technique, which traverses the
RL problem spaces before the training process is started. Pre-exploration is performed by
applying a set of predefined actions and considering a random system state for each action.
The collected experiences of the pre-exploration process are then stored in the replay buffer,
which is used during the training process. It was found that using this technique helps
DDPG to improve convergence and stability over the case without pre-exploration, as can
be seen from Figure 8. Conversely, a number of episodes must be spent for pre-exploration,
which delays the learning process in the real-time adaptation. Note that the results shown
in Figure 8 also show that SAC generally outperforms DDPG (either with or without
pre-exploration) in terms of learning speed. In addition, during the training process, SAC
showed noticeably better learning stability relative to DDPG with regard to the process of
selecting the hyperparameter values for each algorithm.

Drones 2022, 6, 323 13 of 18

0 50 100 150 200 250
Episode

0

20

40

60

80

100

Av
g.
 E
ps
io
di
c
Re

wa
rd

SAC
DDPG with pre-exploration
DDPG without pre-exploration

Figure 8. Training curves of SAC, DDPG with pre-exploration, and DDPG without pre-exploration
for adaptively tuning three NMPH parameters.

To test the performance of the SAC approach in a higher-dimensional setting, the num-
ber of actions was increased to 12 to estimate the weight matrix entries corresponding to the
position, velocity, and acceleration states {wx, wy, wz, wψ, wẋ, wẏ, wẋ, wψ̇, wẍ, wÿ, wẍ, wψ̈}
within the NMPH optimization problem. Figure 9 shows the resulting training curve of
SAC; DDPG failed to complete the learning process in this case. The effect of increasing
the number of NMPH parameters being tuned can be seen by comparing the SAC training
curves in Figures 8 and 9 in terms of the average episodic reward. In the 12-parameter
trial, SAC has better training performance than in the 3-parameter case, which is because
the former covers a larger action space and consequently provides better solutions of the
NMPH optimization problem.

To test the trajectory planning performance of NMPH with and without the proposed
adaptation scheme, four different flight tests were performed within the AirSim simulation
environment. For the second case, the weighting matrices within NMPH used fixed param-
eters, which were used as the initial values in the DRL-based adaptation method. Table 1
provides a comparison between the conventional NMPH design with fixed parameter
values and the adaptive NMPH-SAC design. The comparison is based on the average of
the error metrics discussed in Section 3.1, namely et,RMS, ess , and ec . Each flight trajectory
consists of ten trials, and each trial includes five iterations. The initial velocity and drone
orientation were selected randomly at the beginning of each trial. The first trial uses a
zigzag pattern, which consists of five paths, each with length of 5.6 m. For the second trial
(square pattern), the side length was 5 m. For the third trial (ascending square pattern), the
elevation gain was set to 1 m. The fourth trial involved a set of position setpoints provided
by a graph-based exploration algorithm (see [27] for the complete details). As shown in
Table 1, the flight performance obtained with the adaptive NMPH is much better than
the one from the non-adaptive (conventional) NMPH. The reason for this is that real-time
adaptation of NMPH parameters works better than using a single set of fixed values when
performing a variety of different flying trajectories.

Drones 2022, 6, 323 14 of 18

0 200 400 600 800 1000
Episode

0

20

40

60

80

100

Av
g.
 E
ps
io
di
c
Re

wa
rd

Figure 9. Training curve of SAC adaptively tuning 12 parameters of the NMPH optimization.

Table 1. Comparison between the conventional NMPH design (fixed values of the NMPH parameters)
and the adaptive NMPH-SAC approach, for different flight trials.

Average Error Zigzag Pattern Square Pattern Ascending Square
Pattern

Random
Setpoints

(Exploration)

Fixed NMPH et,RMS 0.11353 0.09758 0.10741 0.09646
parameters ess 0.08659 0.07547 0.07663 0.07339

ec 0.12033 0.06426 0.07413 0.07739

Adaptive et,RMS 0.08877 0.08495 0.09212 0.06749
NMPH-SAC ess 0.01029 0.00919 0.01046 0.01150

ec 0.04400 0.04419 0.04952 0.05874

To show how the values of the NMPH parameters are adjusted online using SAC,
Figures 10 and 11 present the results of a flight through 20 randomly generated setpoints.
Figure 10 depicts the values of the observations vo, ϕ, and |~r| at the beginning of each
iteration, and Figure 11 shows the changing values of the NMPH weighting matrix entries.
An animation of this test showing the vehicle’s flight trajectory and corresponding online
calculation outputs is available as a supplementary video file.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Iteration

0

2

4

6

8

St
at
e vo (m/s)

ϕ (rad)
|r| (m)

Figure 10. Observations at start of iterations.

Drones 2022, 6, 323 15 of 18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Iteration

0

25

50

75

100

125

150

175

200

Pa
ra
m
et
er
 V
al
ue

wx

w ̇x
w ̈x

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Iteration

0

25

50

75

100

125

150

175

200

Pa
ra
m
et
er
 V
al
ue

wy

w ̇y
w ̈y

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Iteration

0

25

50

75

100

125

150

175

200

Pa
ra
m
et
er
 V
al
ue

wz

w ̇z
w ̈z

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Iteration

0

25

50

75

100

125

150

175

200

Pa
ra
m
et
er
 V
al
ue

wψ
wψ̇
wψ̈

Figure 11. Values of NMPH weighting matrix entries being adjusted online by SAC.

5. Conclusions and Future Work

This paper presented a DRL-based adaptive scheme to tune the optimization pa-
rameters of our previously proposed NMPH trajectory planning approach. The overall
design aims to provide the best-performing flight trajectory generation for an aerial drone
across a wide range of flight patterns and environments by tuning these parameters in
real-time flights instead of selecting them a priori. The adaptation scheme was imple-
mented through two different actor-critic DRL algorithms—the deterministic DDPG and
the probabilistic SAC.

Drones 2022, 6, 323 16 of 18

The two variants of DRL-based NMPH were trained and tested on an aerial drone in a
simulation environment. The results showed a marked improvement in flight performance
when using the adaptive NMPH-DDPG and NMPH-SAC over the conventional NMPH.
Comparisons between DDPG and SAC showed that the latter outperforms the former in
terms of learning speed, ability to handle a larger set of tuning parameters, and overall
flight performance.

The pros, cons, and limitations of this study are summarized as follows:

• Pros:

– The proposed design is able to dynamically adjust the parameters of the opti-
mization problem online during flight, which is preferable to tuning them before
flight and evaluating the resulting performance afterwards.

– The DRL model can adapt the gains of the optimization problem in response to
changes in the vehicle, such as new payload configurations or replaced hardware
components.

• Cons:

– DRL algorithms employ a large number of hyperparameters. While SAC is less
sensitive to hyperparameters than DDPG, finding the best combination of these
parameters to achieve fast training is a challenging task.

• Limitations:

– The present study was performed entirely within a simulation environment and
does not include hardware testing results.

Future work will include implementing NMPH-SAC onboard our hardware drone
and testing its performance in a variety of real-world environments, as well as using the
DRL algorithms for disturbance and parameter estimation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/drones6110323/s1.

Author Contributions: Conceptualization, Y.A.Y. and M.B.; methodology, Y.A.Y.; software, Y.A.Y.;
validation, Y.A.Y.; formal analysis, Y.A.Y.; investigation, Y.A.Y.; resources, M.B.; data curation, Y.A.Y.;
writing—original draft preparation, Y.A.Y.; writing—review and editing, M.B.; visualization, Y.A.Y.;
supervision, M.B.; project administration, M.B.; funding acquisition, M.B. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by NSERC Alliance-AI Advance Program grant number 202102595.
The APC was funded by NSERC Alliance-AI Advance Program.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Carlucho, I.; De Paula, M.; Acosta, G.G. An adaptive deep reinforcement learning approach for MIMO PID control of mobile

robots. ISA Trans. 2020, 102, 280–294.
2. Åström, K.J. Theory and applications of adaptive control—A survey. Automatica 1983, 19, 471–486.
3. Åström, K. History of Adaptive Control. In Encyclopedia of Systems and Control; Baillieul, J., Samad, T., Eds.; Springer-Verlag:

London, UK, 2015; pp. 526–533.
4. Bellman, R. Adaptive Control Processes; A Guided Tour; Princeton University Press: Princeton, NJ, USA, 1961.

https://www.mdpi.com/article/10.3390/drones6110323/s1
https://www.mdpi.com/article/10.3390/drones6110323/s1

Drones 2022, 6, 323 17 of 18

5. Gregory, P. Proceedings of the Self Adaptive Flight Control Systems Symposium; Technical Report 59-49; Wright Air Development
Centre: Boulder, CO, USA, 1959.

6. Panda, S.K.; Lim, J.; Dash, P.; Lock, K. Gain-scheduled PI speed controller for PMSM drive. In Proceedings of the IECON’97 23rd
International Conference on Industrial Electronics, Control, and Instrumentation (Cat. No. 97CH36066), New Orleans, LA, USA,
14 November 1997; Volume 2, pp. 925–930.

7. Huang, H.P.; Roan, M.L.; Jeng, J.C. On-line adaptive tuning for PID controllers. IEE Proc.-Control. Theory Appl. 2002, 149, 60–67.
8. Gao, F.; Tong, H. Differential evolution: An efficient method in optimal PID tuning and on–line tuning. In Proceedings of the

First International Conference on Complex Systems and Applications, Wuxi, China, 10–12 September 2006.
9. Killingsworth, N.J.; Krstic, M. PID tuning using extremum seeking: Online, model-free performance optimization. IEEE Control

Syst. Mag. 2006, 26, 70–79.
10. Gheibi, O.; Weyns, D.; Quin, F. Applying machine learning in self-adaptive systems: A systematic literature review. ACM Trans.

Auton. Adapt. Syst. (TAAS) 2021, 15, 1–37.
11. Jafari, R.; Dhaouadi, R. Adaptive PID control of a nonlinear servomechanism using recurrent neural networks. In Advances in

Reinforcement Learning; Mellouk, A., Ed.; IntechOpen: London, UK, 2011; pp. 275–296.
12. Dumitrache, I.; Dragoicea, M. Mobile robots adaptive control using neural networks. arXiv 2015, arXiv:1512.03345.
13. Rossomando, F.G.; Soria, C.M. Identification and control of nonlinear dynamics of a mobile robot in discrete time using an

adaptive technique based on neural PID. Neural Comput. Appl. 2015, 26, 1179–1191.
14. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
15. Hu, B.; Li, J.; Yang, J.; Bai, H.; Li, S.; Sun, Y.; Yang, X. Reinforcement learning approach to design practical adaptive control for a

small-scale intelligent vehicle. Symmetry 2019, 11, 1139.
16. Watkins, C. Learning from Delayed Rewards. Ph.D. Thesis, King’s College, University of Cambridge, Cambridge, UK, 1989.
17. Boubertakh, H.; Tadjine, M.; Glorennec, P.Y.; Labiod, S. Tuning fuzzy PD and PI controllers using reinforcement learning. ISA

Trans. 2010, 49, 543–551.
18. Subudhi, B.; Pradhan, S.K. Direct adaptive control of a flexible robot using reinforcement learning. In Proceedings of the 2010

International Conference on Industrial Electronics, Control and Robotics, Rourkela, India, 27–29 December 2010; pp. 129–136.
19. Barto, A.G.; Sutton, R.S.; Anderson, C.W. Neuronlike adaptive elements that can solve difficult learning control problems. IEEE

Trans. Syst. Man, Cybern. 1983, 13, 834–846.
20. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep

reinforcement learning. arXiv 2015, arXiv:1509.02971.
21. Fujimoto, S.; Hoof, H.; Meger, D. Addressing function approximation error in actor-critic methods. In Proceedings of the

International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 1587–1596.
22. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a

stochastic actor. In Proceedings of the International Conference on Machine Learning, PMLR, Stockholmsmässan, Sweden, 10–15
July 2018; pp. 1861–1870.

23. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous methods for deep
reinforcement learning. In Proceedings of the International Conference on Machine Learning, PMLR, Baltimore, MD, USA, 17–23
July 2016; pp. 1928–1937.

24. Sun, Q.; Du, C.; Duan, Y.; Ren, H.; Li, H. Design and application of adaptive PID controller based on asynchronous advantage
actor–critic learning method. Wirel. Netw. 2021, 27, 3537–3547.

25. Al Younes, Y.; Barczyk, M. Nonlinear Model Predictive Horizon for Optimal Trajectory Generation. Robotics 2021, 10, 90.
26. Al Younes, Y.; Barczyk, M. A Backstepping Approach to Nonlinear Model Predictive Horizon for Optimal Trajectory Planning.

Robotics 2022, 11, 87.
27. Younes, Y.A.; Barczyk, M. Optimal Motion Planning in GPS-Denied Environments Using Nonlinear Model Predictive Horizon.

Sensors 2021, 21, 5547.
28. Dang, T.; Mascarich, F.; Khattak, S.; Papachristos, C.; Alexis, K. Graph-based path planning for autonomous robotic exploration

in subterranean environments. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), The Venetian Macao, Macau, 4–8 November 2019; pp. 3105–3112.

29. Oleynikova, H.; Taylor, Z.; Fehr, M.; Siegwart, R.; Nieto, J. Voxblox: Incremental 3d euclidean signed distance fields for on-board
mav planning. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Vancouver, BC, Canada, 24–28 September 2017; pp. 1366–1373.

30. Liu, R.; Zou, J. The effects of memory replay in reinforcement learning. In Proceedings of the 2018 56th annual allerton conference
on communication, control, and computing (Allerton), Monticello, IL, USA, 2–5 October 2018; pp. 478–485.

31. Achiam, J. Spinning Up in Deep Reinforcement Learning. 2018. Available online: https://github.com/openai/spinningup
(accessed on 26 October 2022).

32. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
33. Duan, Y.; Chen, X.; Houthooft, R.; Schulman, J.; Abbeel, P. Benchmarking deep reinforcement learning for continuous control. In

Proceedings of the International Conference on Machine Learning, PMLR, New York, NY, USA, 20–22 June 2016; pp. 1329–1338.

https://github.com/openai/spinningup

Drones 2022, 6, 323 18 of 18

34. Haarnoja, T.; Zhou, A.; Hartikainen, K.; Tucker, G.; Ha, S.; Tan, J.; Kumar, V.; Zhu, H.; Gupta, A.; Abbeel, P.; et al. Soft actor-critic
algorithms and applications. arXiv 2019, arXiv:1812.05905v2.

35. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source Robot Operating
System. In Proceedings of the ICRA Workshop on Open Source Software in Robotics, Kobe, Japan, 12–17 May 2009.

36. Shah, S.; Dey, D.; Lovett, C.; Kapoor, A. AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles. In Field
and Service Robotics; Hutter, M., Siegwart, R., Eds.; Springer: Cham, Switzerland, 2018; pp. 621–635.

37. Houska, B.; Ferreau, H.; Diehl, M. ACADO Toolkit – An Open Source Framework for Automatic Control and Dynamic
Optimization. Optim. Control. Appl. Methods 2011, 32, 298–312.

38. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: https://tensorflow.org (accessed on 26
October 2022).

39. Chollet, F. Keras. 2015. Available online: https://keras.io (accessed on 26 October 2022).
40. Lai, C.; Han, J.; Dong, H. Tensorlayer 3.0: A Deep Learning Library Compatible with Multiple Backends. In Proceedings of the

2021 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Shenzhen, China, 5–9 July 2021; pp. 1–3.

https://tensorflow.org
https://keras.io

	Introduction
	Methodologies
	Nonlinear Model Predictive Horizon Based on Backstepping Control
	Deep Reinforcement Learning Overview
	Reinforcement Learning Preliminaries
	Deep Deterministic Policy Gradient
	Soft Actor-Critic

	Adaptive Trajectory Planning Framework
	Agent and Environment Representations
	DRL-Based Adaptive NMPH Architecture

	Implementation and Evaluation
	Conclusions and Future Work
	References

