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Abstract: Mission-oriented UAV networks operate in nonsecure, complex environments with time-
varying network partitioning and node trustworthiness. UAV networks are thus essentially asyn-
chronous distributed systems with the Byzantine General problem, whose availability depends on the
tolerance of progressively more erroneous nodes in the course of a mission. To address the resource-
limited nature of UAV networks, this paper proposes a lightweight asynchronous provable Byzantine
fault-tolerant consensus method. The consensus method reduces the communication overhead by
splitting the set of local trusted state transactions and then dispersing the reliable broadcast control
transmission (DRBC), introduces vector commitments to achieve multivalue Byzantine consensus
(PMVBA) for identity and data in a provable manner and reduces the computational complexity,
and the data stored on the chain is only the consensus result (global trustworthiness information of
the drone nodes), avoiding the blockchain’s “storage inflation” problem. This makes the consensus
process lighter in terms of bandwidth, computation and storage, ensuring the longevity and overall
performance of the UAV network during the mission. Through QualNet simulation platform, existing
practical asynchronous consensus algorithms are compared, and the proposed method performs
better in terms of throughput, consensus latency and energy consumption rate.

Keywords: mission-oriented UAV network; Byzantine fault-tolerant; lightweight asynchronous
provable consensus

1. Introduction

The use of UVAs as a flight platform is growing rapidly. Due to their inherent at-
tributes such as mobility, flexibility and adaptive altitude, UAVs have many key potential
applications in wireless systems [1]. UAV networks performing missions in clusters of
UAVs have irreplaceable applications in emergency networking, rescue and military appli-
cations due to their light weight and fast deployment, such as [2] the study of the phase
synchronization problem of establishing connections between base stations (BS) and ground
receivers (GR) by a group of UAVs as relays. The UAV network is a mobile ad hoc network
that is not supported by a reliable central authority and the completion of the mission
relies on the interoperability of the UAV nodes. Maintaining the trustworthiness of the
UAV network and correctly assessing the reliability and trustworthiness of the nodes is
therefore key to mission accomplishment. However, the complex mission environment
exposes the UAV network not only to network partitioning caused by physical interference
but also to the risk of malicious cyber attacks from external nodes. Moreover, during the
mission, legitimate drone nodes can become faulty or selfish due to external interference
and energy consumption; the open nature of wireless networks also makes drone nodes
more vulnerable to network attacks (e.g., link layer attacks) and compromises them to
become Byzantine nodes with a legitimate identity. The absence of central authoritative
support, the dynamic generation of errant nodes and the arbitrary nature of Byzantine
node behavior make the UAV network during a mission essentially an asynchronous dis-
tributed system in a Byzantine environment. Information passed between nodes may be
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discarded, delayed or even tampered with. It is therefore necessary to establish a highly
trusted distributed Byzantine fault-tolerant system for the UAV network, thus ensuring
high availability for resource-constrained UAV networks in unfriendly mission environ-
ments. The key to solving the problem lies in sensing node state changes in real time,
accurately identifying untrustworthy nodes and isolating them from the mission network
in time for the UAV network to effectively reach consensus on the latest state records of all
participating nodes. In this regard, the Byzantine environment, the asynchronous nature
of the UAV network and resource constraints are the main challenges in establishing a
lightweight and efficient consensus-based UAV trusted network.

Distributed systems rely on message passing to enable communication and coordi-
nation between processes or nodes, and consensus algorithms are key to achieving data
consistency among system components. Therefore, consensus algorithms have been a hot
research topic in distributed systems and are the core of blockchain. According to the
fault tolerance of distributed systems for faulty components, consensus protocols are di-
vided into two main categories, namely, crash-tolerant protocols (CFT) and Byzantine
fault-tolerant protocols (BFT) [3]. The consensus protocol for the UAV network explored
in this paper is a BFT protocol that needs to resist not only malicious attacks from exter-
nal nodes but also faces interference from dynamically generated faulty nodes internally.
The consensus algorithm is divided into two main steps: first, the selection of the master
node and the determination of the proposed master node; second, the agreement of consen-
sus on the proposal. The consensus protocol is divided into deterministic and probabilistic
consensus based on the consistency decision. Castro and Liskov [4] first proposed the
practical Byzantine consensus algorithm (PBFT) based on replication technology, which first
made the implementation of highly available distributed fault-tolerant systems possible.
The PBFT specifies that all nodes take turns to be the master node and uses a three-stage
protocol (sorting, communication and acknowledgment) by two-by-two communication
between nodes to achieve deterministic consensus, with good consensus efficiency and no
possibility of changing the consensus result. However, the identity of participants must
be clear, the communication complexity is high, and the scale of the system is limited. Its
application scenarios usually have relatively sufficient bandwidth and computing power, so
it is widely used in coalition chains of manageable scale. However, the high complexity of
communication, the need for relatively sufficient bandwidth and computing power and the
need to clearly identify system participants result in limited system size and application
scenarios. As an unlicensed public chain, Bitcoin uses “Satoshi Nakamoto Consensus”,
essentially a probabilistic consensus that competes for master nodes through proof-of-work
(POW), sends new blocks through only one round of broadcasts and uses multiple confir-
mations to progressively increase the probability of consistency. The literature [5,6] uses
POW consensus-only blockchain combined with MANET to assist in establishing trusted
routes. The advantages are reduced communication complexity and no licensing required
for participating nodes, thus increasing the scalability of the system. The disadvantages are
also obvious: the time cost of consensus is too high, and the consensus result is uncertain.

The FLP Impossibility Conclusion [7] is the most fundamental conclusion of consensus
algorithms (protocols) for asynchronous systems: there is no deterministic consensus algo-
rithm that can solve the Byzantine consensus problem in an asynchronous environment,
even when only benign errors occur. For specific asynchronous distributed system applica-
tions, the design of asynchronous Byzantine consensus algorithms needs to consider how
to break the limits of the FLP’s impossible conclusion. Mission-oriented UAV networks
are lightweight and have nodes with limited bandwidth, computational power and energy
availability, which, together with the presence of external malicious nodes and internal
Byzantine nodes, makes the UAV network of distributed mission systems asynchronous
most of the time. The complexity of the mission environment, the generation of errant
nodes and the dynamics of the network topology all affect the security and activeness of
the UAV network distributed system consensus mechanism. At the same time, the time-
sensitive nature of the task requires improving the consensus efficiency of the algorithm
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to meet the availability and trustworthiness of the UAV network. Existing asynchronous
Byzantine consensus algorithms [8–10] do not set limits on the computational power of
nodes in these application scenarios, although they fully consider asynchronous features
(e.g., introducing random methods to save activities and eliminating cycle synchronization
and network timeout settings). Given the light weight of UAV network nodes, the high
mission timeliness and the asynchronous nature of the network, the key to ensuring the
overall trustworthiness of the network in an environment where erroneous nodes are
gradually increasing is the ability of the UAV network to quickly and efficiently agree on
the latest trustworthy state of the UAV nodes involved in the mission.

The main contributions of this work are as follows:

• First, a node state blockchain monitoring system is introduced to achieve real-time
scoring of neighboring nodes’ forwarding behavior. Each node generates local state
transactions, which contain neighboring nodes’ trustworthiness loss assessment, re-
maining energy and neighboring nodes list. The blockchain system stages a consensus
on the set of local state transactions, calculates the global trustworthiness of nodes,
marks untrustworthy nodes and elects new authorized nodes. The consensus result
is used as new block information to update the blockchain, and the drone nodes
reconfigure the trusted network based on the latest block.

• Secondly, a fuzzy K-Modes clustering algorithm that can handle classification type
data is introduced to divide the UAV network into k subnetwork regions based on the
location of UAV node distribution, with a list of neighboring node IDs as the feature
vector, and calculate the subregion center nodes. The region centers are stored in
the new blocks as part of the configuration information to guarantee the maximum
coverage of the UAV network in the new round of upper-layer networks and optimize
the interzone routing.

• Third, the lightweight asynchronous provable Byzantine fault-tolerant algorithm
(LAP-BFT) is proposed. This algorithm partitions the set of local state transactions so
that each delegated authorization node is only burdened with a small share of data for
reliable broadcast transmission. Multivalued Byzantine asynchronous consensus is
accomplished through an external proof smart contract (with computational complex-
ity O(1)) in the Genesis block. This not only reduces the bandwidth requirement for
individual nodes but also avoids the high computational power consumption caused
by threshold key operations. It enables asynchronous consensus to operate lightly in
resource-constrained UAV networks.

The rest of paper is organized as follows: Work related to the consensus problem of the
Byzantine system is in Section 2. The system model, including the network model, the threat
model of the network and the structure of the blockchain, is placed in Section 3. A specific
description of the recommended scheme, including blockchain node state detectors, is in
Section 4. The proof and analysis of the nature of the system is presented in Section 5, where
security and activity are proven and analyzed. Section 6 observes the consensus latency,
throughput and energy consumption rate of each of the four asynchronous consensus
algorithms by comparing their operation in a UAV network scenario. Section 7 concludes
and looks at the possibility of the dynamic execution of smart contracts in UAV network
trusted systems.

2. Related Work

Consensus as a fundamental problem in distributed computing was first introduced
by Shostak, Pease and Lamport [11]. Since then, many different variants of the consensus
problem have emerged to be studied in depth, e.g., [12,13]. The consensus on the latest
status of nodes in a mission process by a trusted system of a UAV network belongs to
the consensus problem of asynchronous Byzantine distributed systems. The consensus
process consists of two parts, the determination of the nodes that propose values (called
the chosen master) and the consensus protocol (the way to reach consensus). According
to whether the consensus result is certain or not can be divided into definite consensus
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protocol and probabilistic consensus. The emergence of bitcoin in 2008 has triggered a great
deal of attention to blockchain technology, and most of the unlicensed public blockchains
use probabilistic consensus method; the consensus process only requires one round of
broadcast communication, and the consensus of an asynchronous Byzantine system is
achieved by making the consensus probability converge to 1 through multiple rounds
of confirmation of transactions, but the result is uncertain and the consensus inefficient.
For the UAV network trustworthy system discussed in this paper, the consensus object
is the dynamically changing status evaluation value of the running nodes, rather than
the third-party customer transactions unrelated to the nodes, which has high timeliness,
and the UAV network is relatively small in scale and more vulnerable to 51% attack,
so the multiround probabilistic consensus cannot meet the consensus requirements of
the UAV network trustworthy system. The Byzantine Fault Tolerance (BFT) protocol
achieves deterministic consensus through message interactions between all nodes in the
authentication environment. However, the number of erroneous nodes present in the
system cannot exceed 1/3 of the total number of system nodes and the communication
complexity is as high as O(N3).

The PBFT [7] is a simple and efficient Byzantine consensus scheme proposed by
Castro and Liskov in 1999, and it is the first state machine that can operate correctly
in an asynchronous Byzantine error-ridden scenario. The PBFT employs a number of
optimizations to improve system performance, such as using message authentication
codes instead of signatures for message authentication and transferring message hashes
wherever possible to avoid transferring large message originals. However, the environment
is vulnerable to a class of delayed attacks against the leader in a fully asynchronous network
environment, rendering the system inoperable [14,15]. The consensus object of the UAV
network blockchain system is the state transaction data submitted by all nodes, and as
the size of the UAV network increases, so does the volume of data transmission, which is
overwhelming for individual drone nodes with limited bandwidth.

Due to the well-known FLP impossibility theory, there can be no deterministic consen-
sus in an asynchronous setting as long as one node crashes. Research on asynchronous BFT
has thus long focused on theoretical limitations and feasibility. The weaker asynchronous
common subset (ACS) proposed by Ben-Or [16] and Rabin [17] pioneered circumventing
that impossibility through randomization. Bracha proposed a Byzantine protocol for asyn-
chronous networks in 1987, in which he first proposed the idea of “restricting adversary
behavior with a broadcast protocol before consensus” and gave the first implementation of
a reliable broadcast protocol (RBC) [18]. This construction idea has had a profound impact
on subsequent research on Byzantine protocols, but the scheme itself is slow to achieve
consensus, and the desired number of rounds required to achieve consensus is related to the
total number of nodes in the system, N, which cannot be guaranteed to be achieved within
a constant number of rounds. These pioneering works have inspired many in-depth studies
on asynchronous binary protocols (ABA) (which consider each node’s input to be just one
bit). ABA protocols have become an important part of building mature BFT or atomic
broadcast protocols [19–22], but experiments in [8] show that running a large number of
ABA instances becomes a bottleneck in consensus efficiency. The multivalued Byzantine
Agreement system (MVBA) proposed by Cachin et al. [23] is a solution for distributed
consensus. Distinguished from the 0–1 Byzantine consensus scheme (ABA) [15,24], MVBA
is a multivalued consensus scheme and can provide stronger functionality. MVBA can run
in a fully asynchronous network environment, and it uses the design ideas and modular
design approach proposed in [10], where each node first transmits the proposed values via
a broadcast protocol, and then the system runs the ABA protocol to reach consensus on the
proposed values. MVBA can achieve consensus in a constant number of rounds, and the
transmission cost of consensus message m is O(N3|m|). More research on asynchronous
consensus is unfolding in different applications [22,23,25,26] to address the respective prob-
lems, but there are still problems of inefficient protocols, high communication complexity
(up to O(n2) or even O(n3)) and high computational overhead, making the performance of
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these protocols drop dramatically when the system scales up, and thus difficult to enter the
practical usable stage.

Miller et al. constructed an efficient Byzantine protocol, HoneyBadger BFT (HB-
BFT) [8] based on the MVBA framework, using a carefully chosen underlying protocol,
which uses the efficient RBC protocol from the literature [27] for the broadcast of proposed
values and innovatively combines the idea of “apportionment” with an asynchronous
common subset (ACS) protocol [25,28] to reduce transmission costs. The HoneyBadger BFT
can achieve consensus in a constant number of rounds, and the consensus message m is
transmitted at a cost of only O(N|m|). Due to the FLP impossibility, ABA must be a ran-
domized protocol. This introduces the following drawback: while the expected number of
“rounds” of each ABA protocol has a constant number of “rounds”, the expected number of
rounds to run n concurrent ABA sessions can be huge, at least O(log10 n). More than that,
these ABA instances are not executed in a fully concurrent manner. The reasons for this are
firstly that not all instances start at the same time and some may start later because the input
(from the previous RBC) has not yet been delivered, and secondly, that normal nodes also
suffer from a drop in efficiency when faced with large concurrent executions (not enough
CPU cores, etc.). When n becomes large and the network is unstable, this leads to a difficult
determination of the ACS runtime for HB-BFT. This is not applicable for a trusted system
of a UAV network that uses the latest trusted status of UAV nodes in the runtime phase as
the consensus object. The implementation of [9] confirms that the ABA protocol in HB-BFT
has a greater practical impact on system performance.The time cost of running multiple
ABA instances per node dominates HB-BFT through statistics on the average RBC and
ABA runtimes. This pattern becomes more pronounced as the system grows in size, and
the use of preferred agents, provably reliable broadcast protocols, etc., effectively reduces
the number of ABA instances and speeds up the efficiency of asynchronous Byzantine
consensus. The Dumbo-BFT enhances the improvement of the communication model
based on [8] by proposing an optimized multivalued verified Byzantine asynchronous
consensus algorithm, which greatly reduces the communication volume and reduces the
communication bits from O(µn2 + λn2 + n3) to O(µn + λn2), (µ is the length of the mes-
sage, n is the number of nodes, indicating the network size, and λ is the security parameter),
reaching optimal performance at µ > λn. Refs. [8–10] present an asynchronous consensus
algorithm that is practical in Byzantine asynchronous environments and is based on the
optimization and improvement of the ACS protocol, but the scenarios in which it is applied
do not consider the limitation of computing power, the network topology is relatively
stable and the consensus data are third-party customer transactions, independent of the
nodes involved in the consensus. Table 1 compares the performance of the above consensus
methods, where λ is the length of the security parameter and N is the network size.

Practical asynchronous consensus algorithms have been better used. However, their
threshold signature, encryption and decryption require high computing power support.
The consensus object is the transaction set of a third party, which can be transmitted by
randomly selecting the transaction set and decentralized by corrective code (RS_Code) en-
coding. However, these asynchronous consensus algorithms cannot be applied to the UAV
network application scenario discussed in this paper, where the set node resources are lim-
ited and the consensus object is the state change in the node itself. Thus, the asynchronous
consensus algorithm recommended in this paper replaces the threshold encryption with
an external proof smart contract of computational complexity O(1) with the support of
an authenticated blockchain and establishes decentralized lightweight reliable broadcast
transmission (LD-RBC) based on delegated authorized nodes to avoid RS_Code operations.
This reduces the bandwidth pressure on nodes and improves the throughput and consen-
sus efficiency. Additionally, the periodic update of delegated agents for consensus also
effectively improves the overall fault tolerance of the UAV network.
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Table 1. Consensus method performance comparison.

Categories Papers
Overhead

Commu. Complexity Deterministic Tolerance Efficiency
Comp Stor

Sync (BFT) [7,11–13] High Low O(N2)−O(N3) Yes 1/3 Low

Theoretical Asyn [19–26] Mid Low O(N2) Yes 1/3 low

Practical Asyn
(Blcok-chain)

POW [5,6] Very High High O(1) No 1/2 low

HB-BFT [7] High High O(N2|m|+ λN3 logN) Yes 1/3 Mid

Dumbo-1 [8] Mid High O(N2|m|+ λN3 logN) Yes 1/3 Mid

Bumbo-2 [9] Low High O(N2|m|+ λN3 logN) Yes 1/3 High

3. System Mode

The mission-oriented UAV network consists of N lightweight UAVs, denoted as
−→
Ui

i∈{1,2,...,N}, and can be considered as a P2P virtual network based on a mobile ad hoc
network. The global trust platform for the UAV network is a private permission blockchain
system. The system is based on the elliptic curve cryptosystem of setting the public and
private keys of the drone Ui, the drone node identity IDi and the proof of the node’s
existence in the network W_i. The identity vector commitment and the registered node
base information of the UAV network are stored in the Genesis block and synchronized
to all registered UAVs before the mission starts. The security environment is set up with
an elliptical public key cryptosystem, where the registration server allocates public and
private keys for UAVs and generates a unique identity for UAVs by hashing the IP and
public key of UAVs and mapping them to a point of the elliptical curve (finite exchange
group G). The system constructs UAV identity vector commitment and provides a witness
of existence for all registered UAVs. A random set of UAV nodes are selected as delegated
agents responsible for the first round of consensus at the start of the mission. This part is
not the focus of this paper, so only the setup and security foundation of the UAV network is
briefly explained. The following description is the basic setup required for the blockchain
system to operate. H1 = (0, 1)∗ → Z∗q , H2 = (0, 1)∗ → G are the hash functions to generate
UAV identity,

IDi = H2(H1(PKi ‖ Ui) ‖ SignSK
reg(H1(PKi ‖ IPi))) (1)

where SignSK
reg is the signature function of the registration server.

−→
ID = {ID1, ID2, . . . , IDN}

is the identity vector of all registered UAVs, using the vector commitment algorithm to
generate the identity vector commitment (VCID) and the identity witness (Wi) of the UAVs.
VCID = W(IDi)

i is an authentication function with computational complexity O(1), which
is deployed as a smart contract to the blockchain Genesis block.

3.1. Network Model

The mission environment of the UAV network contains multiple types of nodes:
trusted nodes, which operate strictly according to the specified protocol and do not deviate
from it in any way; untrusted nodes, which include external malicious nodes and internal
error nodes that are dynamically generated during the mission, i.e., faulty nodes; UAVs that
cannot complete incoming and outgoing messages; selfish nodes, UAVs that send data but
do not forward network data; and compromised nodes, UAVs that delay, discard or even
tamper with forwarded data. UAV networks in mission execution suffer from the Byzantine
General problem and exhibit asynchronicity in most cases. Therefore, the trustworthiness of
the UAV network depends on the current performance state of the UAV nodes participating
in the mission, including the global reputation assessment of the nodes, the nodes’ own
residual energy and the number of neighbouring nodes. As the mission progresses, the
credibility of the UAV nodes evolves. The blockchain trustworthiness system based on a
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lightweight asynchronous provable consensus mechanism explored in this paper assesses
the local state of the drone nodes in real time and achieves a consistent and up-to-date
network-wide trustworthiness state assessment through the consensus of the authorisation
committee to ensure high trustworthiness of the drone network in operation. Figure 1
shows the model of the unmanned network blockchain trustworthiness system during the
mission execution phase.

All UAVs involved in the mission in the system model are full nodes of the blockchain
system, and all UAV nodes are trusted at the beginning of the mission. Neighboring
UAV nodes monitor each other’s data forwarding behavior, while recording the number
of their respective neighboring nodes. According to the set deduction rules, the drone
nodes evaluate the local reputation of all neighboring nodes, collect the remaining energy,
establish a record of the nodes’ current trustworthiness status and multicast it to the
delegated agents after the new block is chained. The Delegated Agent group is selected
periodically and consists of the top M trusted nodes with the best status. The system
authorizes the delegated agent group to perform consensus operations. The untrustworthy
nodes are identified by counting the global state of the nodes, updating the delegated
agents and finally creating new blocks.

Add

Rejoin

Genesis 

block

LAP-BFT

Trusted 

Node

Comprised

Node

Delegated

Node

Faulty/Selfish

Node

External malicious

Node

Blockchain

Byzantine Agreement

Local Status Report

Behavior Monitor

Local Status   

Assessment

NewBlock Synchronize

Figure 1. LAP-BFT consensus UAV blockchain network model.

3.2. Thread Model

In an unfriendly mission environment, external malicious nodes cannot only use their
own powerful performance to carry out replay attacks, DOS attacks, etc., but also can
take advantage of the openness of the wireless network to implement intrusions, such as
link layer attacks, which cause legitimate UAV nodes to compromise and cause the UAV
network to generate Byzantine nodes. As a special kind of mobile ad hoc network, the
UAV network forwards data in a multi-hop, multi-path fashion via neighbouring node
broadcasts. Therefore Byzantine error nodes, which are dynamically generated during
the mission, cannot prevent the delivery of information between trusted nodes. However,
errant nodes can discard messages sent by the correct node, or send inconsistent messages
to different nodes, or deliberately delay the delivery of Ui and U j messages from the correct
node, tamper with the content of forwarded messages, misrepresent the state of the node
itself, etc. Byzantine nodes can even collude with each other to improve the trustworthiness
of each other’s state. The selfish nodes in the error nodes’ behavior of only receiving
and not forwarding does not lead to malicious attacks, but it can also consume network
resources. Too many error nodes in the system will not only seriously affect the overall
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performance of the UAV network, but also cause the system to crash due to the inability of
the consensus algorithm to complete.

3.3. Blockchain Strcture

UAVs act as blockchain nodes in a secure environment and register their identity,
allocate public and private keys, generate a vector committed witness for authentication,
etc. Initially, the system assigns a maximum global reputation value to all UAV nodes.
The blockchain creation block is generated by a security center that is not involved in the
mission. The Genesis block contains basic information about the registered UAV (a list of
key–value pairs, {ID : (IP, PK, Reputaion)}. Identity vector commitments for all drones,
the first round of delegated agents authorized to perform consensus operations, and the
smart contracts required by the system are deployed in the Genesis block. The smart
contracts mainly include a local reputation assessment smart contract, a node global status
statistics smart contract and an identity authentication smart contract. The Genesis block is
broadcast by the security centre to the network-wide nodes, and the drone nodes update the
block chain. Each node activates the local instant status collection and evaluation function,
monitors the data forwarding behaviour of neighbouring nodes, evaluates local reputation
and collects the latest status. The delegated agent committee acts as the authorisation centre
to collect and count the current trusted status assessment (global reputation of the node,
remaining energy and number of neighbouring nodes) of the registered drone nodes. The
delegated agent committee performs consensus on the collected local state data and the
new delegated agent committee is finally elected, and the change committee will perform
the next round of consensus operations. The block structure and blockchain form is shown
in Figure 2.

Type UAV Identity Info

Key-Value {𝐼𝐷𝑖: (𝑃𝐾𝑖,𝐼𝑃𝑖,𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡)}

Global Trust Assessment

Block

High
0

Current 
block 
hash 

UAVs ID Vector Commitment

Local Status Assessment

Smart Contacts

Register UAVs’ info List

Next

Block

Block

High

Previous 
block 
hash 

Current 
block 
hash 

Untrusted UAVs 
Sub-Vector  Commitment

Global Status  Statistic

Delegated UAVs  Agents

Identity Authentication

Register UAVs’ info  List

Creator’s 
Infomation

Other 
parameters

Delegated UAVs Agents

Genesis block

Figure 2. UAV network blockchain structure.

4. Recommended Solution

The lightweight asynchronous provable consensus Byzantine fault-tolerant consensus
mechanism recommended in this paper operates as a blockchain in a drone network and is
called a blockchain node state detector. All nodes monitor the data forwarding behavior
of their neighboring nodes in real time and assess the behavioral trust discount of their
neighbors’ forwarding; delegated authorized nodes collect local state data for global repu-
tation statistics and Byzantine fault-tolerant consensus, including decentralized reliable
transmission, provable multivalue Byzantine consensus, global trustworthy state assess-
ment, and blockchain synchronization after the creation of new blocks. The state detector
continuously updates the global reputation assessment, providing the basis for the trusted
operation of the UAV network. After a brief description of the UAV network trust system
setup, this section describes the details of the UAV network trusted blockchain system
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consensus algorithm in turn. Figure 3 shows the process of the dynamic maintenance of
network trust by the enrolled nodes and periodically elected delegated agent nodes of
the UAV network during the mission. The process includes the generation of node state
transactions, trust consensus reaching, new block creation and blockchain updates.

𝑈𝐴𝑉1 𝑈𝐴𝑉2 𝑈𝐴𝑉𝑑 𝑈𝐴𝑉𝑚
𝑈𝐴𝑉𝑖 𝑈𝐴𝑉𝑛

⋯ ⋯⋯

Generating Nodes

ൟ{𝑆𝑡𝑎𝑡𝑢𝑠𝑖
𝑡
i∈[𝑁]

T1

Waiting current transactions:

𝑺𝒕𝒂𝒕𝒖𝒔𝒊
𝒕: ቄ

ቅቃ

𝑰𝑫𝒊 ∥ 𝑾𝒊 ∥ 𝑬𝒏𝒆𝒓𝒈𝒚𝒊
𝒕

∥ 𝑵𝒆𝒊𝒔𝒊
𝒕 ∥ 𝑩𝒍𝒐𝒄𝒌𝑯𝒊𝒈𝒉𝒕𝒕

∥ [𝑰𝑫𝒋: 𝑳𝑹𝒆𝒑𝒖𝒕𝒂𝒕𝒊𝒐𝒏𝒊
𝒋
⋯

Decision consensus:

New block from ACSNew Block

Uploading the chain

Data consensus :

ACS from ൟ{𝑆𝑡𝑎𝑡𝑢𝑠𝑖
𝑡
i∈[𝑁]

New round of status 
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Figure 3. Flowchart of UAV network node status detection and consensus.

4.1. Node Trusted Status Detection: Local Trusted Status

All mission nodes implement local trust assessment by monitoring the forwarding
behavior of their neighboring nodes at the network layer and collecting their latest opera-
tional status, mainly the node’s remaining energy and the list of neighboring nodes. Nodes
periodically multicast updated status packets containing the current blockchain height
to the delegate agent. The assessment method is a reputation discount for bad behavior.
Initially, all nodes are trusted with an initial reputation of 10.0. Nodes are identified as
untrustworthy when their global reputation assessment is below equal to 0. The local state
assessment algorithm classifies the forwarding behavior of UAV neighboring nodes into
the following four types: normal forwarding, delayed forwarding, sending data but not
forwarding data and forwarding incorrect data, and it penalizes them with a reputation dis-
count. The discount scoring rules are shown in Table 2. For unresponsive behavior of faulty
nodes, as well as collusive spoofing, local assessment is difficult to screen, but problems
can be identified by statistical analysis of the consensus results.

Table 2. Classification of data forwarding behavior and penalty rules.

Data Forwarding Behavior Reputation Discount

Normal forwarding 0

Delayed forwarding −1

not forwarding data −2

Forwarding of incorrect data −3

Two neighbor lists, (Neis) and (Neis_check), are set up to hold the two types of
neighbor nodes detected in each round, one to hold the identity information ID of the
neighbor node that requested to forward data, Algorithm 1 (line 4–7), and the other to
hold the identity information of the neighbor node that requested to forward data after it
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helped itself. The other type is a neighbor node that is monitored after helping itself to
forward data, which saves the identity information ID of the neighbor node that requested
to forward data and sets the local state collection period, the size of which is dynamically
set according to each round of network state. The scheme is improved from the inter-
zone protocol IARP in ZRP, where after detecting data returned by a neighbouring node,
the node no longer discards the data directly, but reviews the content of the data. If the
returned packet is forwarded out by the node, it looks for tampering, delayed message
forwarding, and confirmation that the data has not been discarded by checking the list of
neighbouring nodes. The Algorithm 2 is a local reputation evaluation function in which
two timeout thresholds are set, i.e., the person counts its own broadcast data from time t1
and considers it to be intentionally delayed if it receives forwarded data beyond t1. The
lists of two neighbouring nodes in the current round are compared to find out if there
is selfish behaviour and to penalise it. Calculate the current trustworthiness loss of all
neighbouring nodes according to the rules in Table 2. A normal forwarding discount score
of 0 is given, 1 point is deducted if there is an intentional delay, 2 points are deducted if one
sends one’s own data and does not forward others’ data, and 3 points are deducted if there
is data tampering. Lines (13–20) of the algorithm refalg:lsc and lines (1–28) of the algorithm
refalg:lsa implement this idea. The final tally is the discount score for each neighbouring
node. Suppose IDx is a neighbouring node of IDi, CurScorex

i denotes the reputation loss
score for the current round, and Discountk

(i−x) is the discount estimate of IDi for the kth
forwarding behaviour of IDx. k is the cumulative value indicating the number of times the
forwarding behaviour of a neighbouring node has been detected in the current round. In
this way the discount scores for all behaviours of the nodes at this stage are recorded and
their average is used as the latest local plausibility loss.

Due to the nature of wireless networks, there is a conflict between receiving and
sending, and it is possible for a node to fail to receive data returned by a neighbouring
node and produce a misjudgement of the neighbouring node’s behaviour in dropping
forwarded data. Treating the local reputation assessment in the loop as an average can
weaken the effect of misjudgement on the assessment. Also only a credibility discount
penalty is applied to the behaviour, which effectively avoids high score assessments where
malicious nodes collude with each other. Thus, at the end of a round, the discounted value
of the local trust status of neighbouring nodes is as follows.

CurScorebcheight
i−x =

∑nCount
k Discountk

i−x
nCount

(2)

where nCount is the number of times IDi detected IDx forwarding behavior in the current
round of detection. The local reputation evaluation of all neighboring nodes is denoted
CurScorex

i (x∈[Nei]), [Nei]neighboring nodes set. The node obtains the current energy value
Energyi, constructing a local reputation state record for the current round of IDi.

LSAt
i = {IDi ‖Wi ‖ Energyi ‖ Neighborsi ‖

curBlockHigh ‖ CurScorex
i x∈[Nei] ‖ SignSKi

}
(3)

and multicast to the delegated agents of the current round, where Wi is existential witness,
denoted as IDi, existing in the identity vector commitment, and the authenticity of the
data source is verified by the identity authentication smart contract in the Genesis block.
SignSKi

is the signature of IDi on the local state data used to ensure the integrity of the
local trusted data. curBlockHigh corresponds to the height of the blockchain, indicating
the current round, and is used to prevent replay attacks. The process of collecting a round
of local trusted data is completed by the function buildLocStatusPack in Algorithm 2 and
line (15–21) in Algorithm 1.
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Algorithm 1 LSC: Local Status Information Collecting.
Let: Neis← {}, Neis_check← {},

Tc← f ixedV.
Let: curTurnScore← {}, localDiscount[N][]← 0,

count← 0, expired← 0
1: /* Protocol for an UAV IDi */
2: while 1 do
3: if Tc < 0 then
4: Tc← f ixedV
5: end if
6: curtime← getlocaltime()
7: curBlockHigh← getcurBlockHigh()
8: while true do
9: upon received neighbor’s packet, not from itself do

10: if ValidForwardingPacket(data_j) = 1 then
11: Neis← Neis ∪ IDj
12: end if
13: upon Boardcast(messagei, IDi) do
14: count← count + 1
15: {localdiscount[j], Neis_check} ← LocReAssess(locdiscount[j], Neis_check)
16: if curBlockHight = 0 until getlocaltime()˘curtime = Tc do
17: expired← 1
18: if curBlockHight > 0 until getcurBlockHigh() > curBlockHigh do
19: expired← 1
20: curBlockHigh← getcurBlockHigh()
21: while expired = 1 do
22: localdiscount[j]← localdiscount[j]/count;
23: curTurnScorecurTurnScore ∪ {IDj ‖ laocaldiscount[j] ‖ Hashj}
24: curNeis← getCurNeighbors(Neis, Neis_check)
25: LSAcurBlockHigh

i ← buildLocStatusPack(curScore, curNeis, IDi)
26: Neis← {}, Neis_check← {}
27: curTScore← 0, count← 0, expired← 0
28: multicast(Agents, LSAcurBlockHigh

i )
29: end while
30: end while
31: end while

4.2. Node Trusted Detection, Global Trusted Status Assessment

The current global trusted state assessment of all nodes is performed by a group of
delegated agents authorized by the system. During mission execution, honest UAV nodes
send the local state data collected during the round to all delegated agents in a multicast
fashion. As a result, the delegated agent nodes receive the same node’s local state data
consistently, but there is no guarantee that the total local state data set is the same for
all agent nodes. The reasons for this are mainly interference from errant nodes in the
asynchronous UAV network, network partitioning, etc., resulting in inconsistent numbers
of nodes completing data communication with different delegate agents at this stage. In
order to obtain a consistent local state dataset, consensus must be reached between the
delegate agents. At the same time, to ensure that the delegate agents are trustworthy,
a set of trusted UAV nodes with the best state is selected to update the committee of
delegate agents based on the consensus results. A consensus result is generated between
all honest proxy agents, i.e., a public subset of the local trusted state dataset at this stage,
and the global trusted state of all nodes is evaluated based on the consensus result, which
is ultimately used to create new blocks and update the blockchain. The aim of this design
is to avoid single point risks, balance the consumption of network resources, minimise the
probability of errant nodes becoming proxy agents and, more importantly, to enable honest
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proxy nodes to have deterministic and consistent outputs for all collected local trusted state
data. The detailed procedure is described in algorithm refalg:lap-b. Let IDd be some proxy
agent and the node state detector consensus operate in IDd. At the beginning of the run,
the list S ← {.} is set to be empty to hold the identity ID of the sender of the local state
data record; Td is the maximum consensus period, taken from the current latest block and
dynamically assigned according to the actual state of the consensus in each round. Td is
used to ensure that when the set of delegate agents has more than Td, it is used to guarantee
the activity of the asynchronous consensus algorithm when more than one-third of the
erroneous nodes are in the delegated agents set; [M] and [N] denote the current round
delegated agents set and the set of all mission nodes, respectively. RBCPacketd denotes the
subset of locally trusted state records from IDd used for consensus in the current round.
The process of asynchronous consensus consists of three major steps: lightweight dispersed
reliable transmission, provable multivalued Byzantine consensus and new block creation
and blockchain updates. The Lightweight Dispersed Reliable Broadcast subprotocol.

The purpose of the Reliable Broadcast subprotocol (RBC) is to reliably transmit the
proposed values proposed by each node to other nodes in the system. The proposed
LD-RBC scheme builds on the traditional RBC protocol of Bracha [29], dropping the
corrective coding (erasure code) scheme used in [8–10,29] with identity vector commitment
authentication and data integrity verification instead of threshold encryption. Instead
of randomly selecting encrypted transactions from a pool of transactions, the collected
trusted state records are segmented according to the order of the delegated agent list and
the length of the list to form dispersed packets of consistent length, reducing computation
and improving transmission efficiency. Algorithm 3 starts the round by locally initializing
the trusted state records of the registered nodes. The delegated agent IDd processes
the collected local trusted state data, Line (7–12). First, verify the smart contract and
hash function for legitimate validation, including identity authentication and data hash
validation, based on the identity commitments of all registered UAVs in the node’s local
creation block, with a validation cost of O(1). Secondly, check if there are duplicate data,
as only the data collected in the current round is stored locally, it is easy to determine if
it is the required data set for the agent based on the block height in the submitted data,
and discard it if it is duplicate data to avoid replay attacks. If the block height in the received
packet does not match the delegated agent block height and is higher than the agent block
height, simply discard the process; if it is lower than the agent block height, perform
blockchain synchronization on the sending node. After confirming that the received state
data is valid and legitimate, it is saved to the local database. The node’s ID that sent the
trusted data is also saved to cache S, where Td is the maximum duration of the collection
record, which is stored as parameter information in the block structure and is dynamically
calculated based on the actual communication status each round, a process represented
by lines 16–19 in Algorithm 3. The dispersed packets are obtained by firstly calculating
the size B (number of state records) of the dispersed packet, e.g., line (20–22), B← (N/M),
and secondly, by the position ordinal number of IDd in the list of delegated agents taking
the number of locally trusted states in the corresponding position subset as the dispersed
packet. Since there is no process of threshold encryption and decryption, the number of
communication bits for IDd to submit data is O(B|LSAd|). Finally, the agent node IDd
sends its own dispersed packet (Equation (4)) to the other agent nodes according to the
RBC protocol.

RBCPacketd = {IDd ‖Wd ‖ LSAd ‖ SignSKd(Td ‖ LSAd)} (4)
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Algorithm 2 Functions with related Parameters for LSA.
Function ValidateForwardingPacket(data_j, IDi)

1: Parse data_j as {IDj ‖Wj ‖ Message ‖ Sign}
2: /* IDi get AC and PK j in its genesisblock */
3: {AC, PK j} ← getACandPK f romGenesis(IDi, IDj)
4: Output:VeriOpen(IDj, Wj, AC)&&VeriSign(PKi)

Function LocDiscountAssess(curScore, Neighbors, IDi)

1: let t0← v1(ms), t1← v2(ms), curScorej ← 0
2: Brodcast(messagei)#after IDi Broadcast Message
3: let curtime← getlocaltime()
4: let Discountj ← 0; count← count + 1
5: upon: get back the message from the neighbors do:
6: /* parse the behavior of neighbors */
7: if getlocaltime()− curtime < t0 then
8: if messagej−i = messagei then
9: Discountj ← 0

10: end if
11: if messagej−i 6= messagei then
12: Discountj ← −3
13: end if
14: end if
15: if getlocaltime()− curtime > t0 then
16: if messagej−i = messagei then
17: Discountj ← −1
18: end if
19: if messagej−i 6= messagei then
20: Discountj ← −3
21: end if
22: end if
23: Neighborscheck ← Neighborscheck ∪ IDj
24: if getlocaltime()− curtime > t1 and IDj ∈ Neighbors then
25: Discountj ← −2 /*selfish behavior*/
26: end if
27: curScore = curScore + Discountj
28: Output :{curScore, Neighbors_check}
Function buildLocStatusPack(curScore, curNei, IDi)

1: Energyi ‖ getDevResidualEnergy(IDi)
2: curBlockHigh← getcurBlockHigh(IDi)
3: status = IDi ‖Wi ‖ Energyi ‖ curNeighbors ‖ curBlockHigh ‖ curScore
4: Mac← Hash(status)
5: Output :{status ‖ Signski

(status) ‖ Mac}
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Algorithm 3 LAP-BFT running in Delegated Agent IDd.
/*[N]:UAV Nodes,[M]:agents */

Let: S← {}, Td← 0,[M] ⊆ [N]
/*refer to |R| Records of RBC, IDd is the sender*/

Let: LStatusPacketd ← |R|
1: while 1 do
2: InitlizeLocalDB(⊥)
3: curTime← getlocaltime()
4: if isAgent(IDd) = 1 then
5: validwork← 0
6: end if
7: while true do
8: Td← getAgentCollect f romCurBlock(IDd)
9: if stop = 1 then quit

10: /*IDx ∈ [N],x 6= d*/
11: upon Receiving the LSA(ID) do
12: S← S ∪ IDx
13: if ValidateLSA(IDx) = 1 then
14: /*Locally save LSArecord*/
15: SaveLocalDB(LSA(IDx)
16: end if
17: if curBlockHigh < getBlockHigh(IDd) then
18: /*Synchronize the local blockchain of IDx*/
19: unicast(IDx, sychronousBlocks)
20: end if
21: wait until Td is expired do
22: if |S| < (N + 1)/3 then stop← 1
23: else
24: Td← (getlocaltime()˘curtime)× (N/|S|)
25: B← (N/M)
26: index ← getIndexO f AgentsList(IDd)
27: LSAd ← getLocalDB(index, B)
28: LStatusPacketd = {IDd ‖Wd ‖ Td, LSAd ‖ SignSKd(Td, LSAd)}
29: Reliable Broadcast [LStatusPacket]
30: stop← 1, validwork← 1
31: if stop = 0 then break /* Collection is over.*/
32: end while
33: if validwork = 1 then
34: ValidAgents← 0
35: S[B][]← {} /* B: RBCPackets number*/
36: Ts← getMaxRBCtime f romCurBlock()
37: curtime← getlocaltime(),expired← 0
38: end if
39: upon receiving |S[index]| = 2×M/3 do
40: ValidAgents← ValidAgents + 1
41: ReplaceLocalDB(RBCPacket, index)
42: upon receiving {RBCPacket, index, SignSK_j} firstly do
43: if ValidRBCPacket({RBCPacket, index}) = 1 then
44: S[index]← {S[index] ∪ {IDj ‖ SignSKj}
45: deliver {RBCPacket, index} to other agents
46: end if
47: upon ValidAgents = 2×M/3 do
48: get untrusted Nodes; updated Agent Nodes
49: statistic agent’s LSA; create own new Block
50: uploading local blockchain
51: end while
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4.3. Provable Multivalue Byzantine Consistent Subagreement (PMVBA)

After each agent node receives a dispersed packet from another agent, it verifies the
identity of the agent node sending the packet and validates each record in the dispersed
packet as legitimate through a smart contract in the Genesis block. First, the sender’s
identity is verified, and then the received data records are verified with records from the
recipient’s local corresponding region. If there are local state data records that are not
identical, the sender is deemed to have tampered with the data and the data submitted by
this agent node is rejected, otherwise the broadcast continues after adding its own signature.
When the number of additional signatures is, for example, greater than two-thirds of the
total number of delegated agents, |M| ∗ 2/3, it indicates that a deterministic consensus
result is obtained. At this point, the consensus time Ts is counted, and Ts is used for the
next round of the maximum consensus cycle calculation. (The Ts in the Genesis block is an
empirical value obtained from experiments, in this paper, we use 100 nodes for experiments,
set the existence of 10 faulty nodes and 20 Byzantine nodes, obtain the time required to
complete a consensus Ttest and calculate the maximum time for the first consensus by
Ts = N× 3/10× Ttest× 1.2). Algorithm 3 starts at line 39 for the consensus phase, and line
(47–49) demonstrate the process.The function ValidRBCPacket proves the legitimacy of the
packet, including authentication of the originating node to indicate that the data source
is valid; the hash of the data content is verified to determine that the data has not been
tampered with. Each delegate agent receives the decentralised packet, signed and added
to the packet in the form of IDx ‖ SignSx(Hash) after confirming validity with the above
function. Verify all hash signatures to prove that the data has been signed and confirmed
by multiple honest delegated agents. Algorithm 3 in line (43–46) adds the signature
information to the corresponding cache, S[B][], for all signature information of the dispersed
packet, as in line 44, S[index]← S[index]∪{IDx ‖ Sign(SKx)} , and subsequently proceeds
to send the dispersed packet line (40–42). When the number of valid signatures reaches
two-thirds, the node status record in the local database corresponding to the serial number
is replaced. When two-thirds of the dispersed packets are acknowledged, the consensus
process ends and the extraction of the asynchronous common subset is completed. The rules
for global reputation discounts are shown in Table 3.

Table 3. The rules for global reputation discounts.

Reasons for Trust Discount Global Discount

Discountx
σ > 5σx −0.5

Selfish Node, Discountx
error −1

According to the rule, Equation (5) corrects the global trust discount of node x.
Equation (6) calculates the current global trustworthiness.

GDiscountx = GDiscountx + Discountx
σ + Discountx

error (5)

GReputationbcheight
x = GReputaionbcheight−1

x + GDiscountx (6)

When GReputationbcheight
x is less than or equal to 0, it means that the node is also

untrustworthy and its node ID and its authentication information are accumulated to the
wrong node subvector commitment and isolated from the network.

4.4. Delegated Agent Nodes Elections

The dynamic nature of the UAV network requires the upper-layer management net-
work to be time-varying, and the nodes that make up the upper-layer network need
to be not only trusted but also regionally representative. The upper-layer network con-
structed by the trusted central nodes of each subregion of the UAV network at each stage
minimizes redundant routes. This solution uses clustering algorithms to regionally de-
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lineate the UAV network and find the regional centers. The clustering feature is a list
of neighboring addresses of the UAV nodes. The feature UAV node i is represented as:
−→
Ni = [IDi1, IDi2, · · · , IDim], m is the number of its neighboring nodes, and if the number
of neighbors is less than m, the missing part is filled with zeros. The UAV network is
represented by a feature vector as

−→
U =

[−→
N1,
−→
N2, · · · ,

−→
Nn

]
, with n being the number of

UAVs in the current mission network. The feature vectors used for clustering are not of
numerical type but are lists used for classification. Therefore, a fuzzy K-modes clustering
algorithm [30–32] is used, replacing the mean with the mode as the central node of the zone
(cluster) and adapting to the situation of overlapping regions. Clustering makes use of
simple matching dissimilarity, i.e., the dissimilarity between two UAV nodes is expressed
in terms of the cumulative number of m neighbors of the feature vector, the fewer the
mismatches, the closer the two nodes are. The mathematical expression (7) shows the
proximity of two UAV nodes.

d(
−→
Ni ,
−→
Nj) =

m

∑
x=1

m

∑
y=1

δ(IDix, IDiy) (7)

where

δ(IDix, IDiy) = 0, if (IDix 6= IDiy);
δ(IDix, IDiy) = 1, if (IDix = IDiy).

Let Uk = [
−→
Nk

1 ,
−→
Nk

2 , · · · ,
−→
Nk

n] be a subzone of the UAV network, and the mode in the
UAV network denotes the feature vector of the central node of the zone.

Definition 1. The feature vector Q = [ID1, ID2, · · · , IDm] is the mode of the UAV network Uk,
if it makes the function (8),

D(Q,
−→
Ni) =

m

∑
i=1

d(
−→
Ni , Q) (8)

take the minimum value and Q ∈ Uk.
Let nIDx be the times the neighbor node IDx appears in all lists of neighbors, the frequency of

IDx in the zone Uk:
f (ID = IDx|Uk) =

nIDx

m
(9)

Theorem 1. Mode update method for k-modes of UAV networks; the function D(Q, Ni) reaches
a minimum when and only when the following inequality holds:

f
(

ID = IDx

∣∣∣Uk
)
≥ f (ID = IDj|Uk) (10)

where IDx 6= IDj, ∀j = (1, 2, · · · , m). After the upper layer network nodes reach consensus on
the local state data at this stage, a consistent subset of common local state data is generated at this
stage and the global trustworthiness of the nodes is tallied. The clustering process obtains the central
nodes of the partition and uses these nodes as delegated agent nodes to form a new upper layer
network for the next stage of consensus operation and inter-zone route discovery.

The entire consensus process includes the detection of node trusted states, asyn-
chronous consensus of local trusted state data by proxy, output of asynchronous common
subset, then decision consensus on data consensus results, final determination of global
trustworthiness of nodes, and new members of proxy members. Finally, the updated
blockchain provides a trusted foundation for the continued operation of the UAV network,
one round of consensus for LAP-BFT can be summarized in Figure 4.
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Figure 4. One-round consensus process for the LAP-BFT protocol.

A mission network of n UAVs (light blue nodes). All mission nodes send the latest
local trusted state data to the delegate agents (m blue nodes), the delegate agents receive
a local state dataset txi

i∈{1,2,...,m} that is not guaranteed to be consistent, generate a consistent

local state dataset tx
′

via LAP-BFT, honest delegated agents statistics tx′, elect a new set
of delegated agents (a set of green nodes), identify untrustworthy nodes (yellow nodes),
create a new block based on the statistics and broadcast it across the network to update
the blockchain.

5. Proof of System Properties and Performance Analysis

The ultimate design aim of this solution is to achieve atomic broadcast of the latest
state assessment of UAV nodes in an asynchronous UAV network and to establish consistent
networkwide block data of the global section trusted state to support continuous trusted
running of the UAV network. Formally, an atomic broadcast protocol satisfies the following
properties with overwhelming probability.

• Agreement, if an honest node outputs a value v then every honest node outputs v.
• Total Order, if two honest nodes output 〈v0, v1, . . . , vj〉 and 〈v

′
0, v

′
1, . . . , v

′
j 〉 ,respectively,

then v0 = v
′
0, v1 = v

′
1, . . . , vj = v

′
j.

• Censorship resilience, if a value v is input to n− f honest nodes, then it will eventually
be output by each honest node.

The Lightweight Asynchronous Provable Byzantine Fault-Tolerant Consensus Proto-
col (LAP-BFT) is an asynchronous common subset (ACS) consisting of the Decentralized
Reliable Broadcast Subprotocol (DRBC) and the Provable Multi-Valued Byzantine Con-
sistency Subprotocol (PMVBA). Combined with the smart contract used for validation in
the Genesis block, it can be efficiently and simply converted to an atomic broadcast for all
node local state datasets with the correct delegate agent node outputting the public subset.
LAP-BFT MUST satisfy the Agreement, Total Order and External-Validity properties for
security, and the Termination property for activity.

5.1. Proof of Security and Activity

Theorem 2. The system satisfies the following Agreement property: At the end of a round of
consensus protocol, if there exists an honest node that outputs a locally trusted set of state records
{LStatusPacketd}(|R|), then all honest nodes output {LStatusPacketd}(|R|).

Proof. M delegated agents arrange the collected local trusted status data records (LSAs)
into the dataset {LSA}N in the order of the nodes’ identity vector commitments in the
Genesis block. Disperse them into M subsets of records of size B = N/M. The dele-
gated agent nodes take the corresponding B records in the order of their position in the
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current delegated agent list, e.g., if the position of the agent node IDd requires Index,
then LStatusPacketd = {LSA}(index+B). After RBC communication, there are R sets of
LStatusPacketd data records in R honest nodes, which are combined into a consistent data
set {LStatusPackeTd}(|R|) in the order of Index size and proven.

Theorem 3. The system satisfies the following Total order property: If an honest node outputs
a sequence of messages {v0, v1, . . . , vj}, another honest node outputs a sequence of messages
{v′0, v

′
1, . . . , v

′
j}, then v0 = v

′
0, v1 = v

′
1, . . . , vj = v

′
j.

Proof. The local trusted state dataset collected by the delegated agent group is ordered
based on the order in which the identity vector commitments were generated at the time
of UAV registration. Honest nodes transmit dispersed packets via a reliable broadcast
protocol, which are then verified by a provable multivalue agreement protocol and finally
concatenated according to the order of the delegated agent nodes’ positions in their lists, so
that the order of the data in all honest nodes is consistent and proven.

Theorem 4. Corresponding to the resilience of censorship in atomic broadcasting, ACS requires
verifiability of consensus results, and this scheme provides external validation. The system satisfies
the following External-Validity property, such that if an honest node outputs a value v, then
Ext_Veri f y(v) = true, where Ext_Veri f y is external verification.

Proof. The UAV network runs in an authenticated environment with an authentication
function stored in the Genesis block as a blockchain smart contract. This includes au-
thentication of the data sender; node data integrity verification, i.e., the node performs
a HASH(curScorex

i ) process on the reputation assessment values of its local data against
neighboring nodes, and during the consensus process, the agent nodes receiving the dis-
persed packets compare the corresponding hash values to determine whether the sender
has tampered with them. The legitimacy of the data sent by the honest node is confirmed
by the data legitimacy verification smart contract provided by the blockchain, which
is proven.

Theorem 5. The system satisfies the following Termination property. Let f be the number of
error nodes in the delegated agent nodes. If ( f + 1) activates the PMVBA protocol and all
messages between honest nodes (trusted delegated agents) arrive, then the honest nodes output
{LStatusPacketd}(|R|), where |R| is the number of honest nodes.

Proof. The PMVBA protocol is executed in all delegated agent nodes, and if there are f + 1
primary agents that are trusted honest nodes, then there are honest nodes that receive |R|
signed and acknowledged copies of the scattered packets, where |R| = f + 1, and eventually
the honest nodes output {LStatusPacketd}(|R|). However, even if f > (N + 1)/3, (N is
the total number of nodes in the UAV network), the consensus protocol can terminate
execution as long as the number of erroneous nodes in the agents f

′
< (M + 1)/3, (M is

the total number of agents). The UAV network operates in a complex environment, and
it is possible that the agent nodes may not be able to meet the Byzantine fault tolerance
requirements, resulting in a situation where the consensus protocol cannot be terminated.
Because the agent has periodically elected trusted nodes to act as such, the data record can
be verified between honest nodes, and therefore a consensus cycle can be set to resolve the
activity problem. If the timeout fails to terminate consensus, but the number of scattered
packet signatures has exceeded two, the master node is determined based on the order of
the size of the agent ID and the local trusted state dataset of that master node is used as an
asynchronous common subset to maintain consensus activity. Obtained.
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5.2. Other Security Analyses

Preventing replay attacks: The UAV network blockchain system provides authen-
tication based on identity vector commitment, where malicious external nodes in the
mission environment cannot perform unauthorized access but can still launch replay at-
tacks. The height of the current block is included in the local trusted state packet, while
the agent node saves one round of collected local trusted state data to local data, so that
duplicate data for the same round is discarded directly. Data from different rounds are
also rejected because they do not match the height of the local block chain. This effectively
prevents replay attacks, and the same round of data can be cleared after a new block is
chained, avoiding storage pressure.

Preventing erroneous blocks from being chained: Honest delegated agent nodes
in the consensus process locally validate the received dispersed trusted status packets,
validated as described in Theorem 4. If the delegated agent transforms into a Byzantine
node, the validation of the dispersed packets it sends does not pass. Add the signature
SignSKx(LStatusPacketd) to verify legitimacy. If passed, the signature is merged into S as
a key-value pair IDx : (SignSKx, LStatusPacketd). The UAV node receiving the new block
prevents forgery of it by a malicious node in the delegate agent by verifying S.

5.3. Effectiveness Analysis

The completion of missions in complex environments with resource-constrained UAV
networks relies on how their systems meet lightweight requirements. This scheme provides
a lightweight asynchronous provable multivalued Byzantine consensus algorithm for the
analysis of UAV networks in terms of communication, computation (energy consumption)
and storage.

Lightweight communication: The scheme provides de asynchronous consensus algo-
rithm where consensus transactions are local state records generated by the nodes them-
selves at this stage, rather than transaction data from third parties. Primarily at the network
layer neighbouring nodes collect data by monitoring each other’s forwarding behaviour
and performing reputation discount assessment. The message complexity depends on the
number of one-hop neighbouring nodes of the node. In terms of the reputation discount
evaluation value of a neighbouring node IDx, curScorex

i ), its size is 5 bytes, and even if the
node IDi has 100 neighbouring nodes, its local state data length is much less than 1 KB. Let
the single local status be provided by the node. The size of the data is L. Additionally, in
this phase, multicast is sent to the proxy and the communication complexity is O(1); in
the consensus phase, the number of agent nodes, M, is much smaller than the number of
nodes participating in the mission, N. This dispersed data is used for stable transmission
(DRBC), and the length of the dispersed packet |m| = L× M/N. The communication
complexity of the synchronization phase is O(M2|m|), Mgg{N and there is no need to keep
historical transactions in the block. The main component of the consensus data is the global
reputation evaluation (IDi, Greputaion) of the current round of N drone nodes, which is
also 5 bytes. Thus even at a network size of 1000 drones, the new block size is only K levels.
The communication complexity of delegating the agent to broadcast the new block to the
current network is O(1).

Lightweight computation: The consensus algorithm provided by this scheme adopts
the method of external proof function to verify the consensus result, the verification
method does not need to traverse the query, such as identity authentication using vector
commitment to verify the existence witness provided by the node, integrity verification by
comparing the hash value and verifying the signature, etc.; the computational complexity
is all O(1). The output Asynchronous Common Subset (ACS) is a direct merging of the
dispersed trusted state records submitted by the honest delegated agent nodes, which does
not require the use of corrective codes to disperse and recover data because of the guarantee
of external proofs, avoiding the computation of [8–10] threshold encryption and decryption.
In addition, the scheme uses delegated authority to select the node with the best state for
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each round of consensus computing and dynamic change, which also effectively achieves
computational balance and extends the overall running time of the UAV network.

Lightweight storage: The UAV network trusted system is essentially a stateless
blockchain, replacing the identity registration record with a 32-bit vector commitment.
There is also no need to keep dynamically generated local trusted state data as a historical
record. At each consensus stage, only the aggregated subvector of untrustworthy node
witnesses from the global trusted state record and the list of new proxy agents are kept.
The delegated agents only provide the local state data storage required for a consensus
round. No cumulative storage is required.

6. Simulation Experiments

The experiments were conducted using the QualNet network simulation environment.
The QualNet simulator, developed by Scalable Networks Technologies (SNT) for network
design, operation and management, simulates the network behavior and performance of
thousands of nodes and is a comprehensive set of tools for simulating large wireless or
wired networks. The biggest difference between the UAV network trusted system and other
application scenarios is that transactions are node-related, and consensus transactions are
the state values of all nodes during runtime, rather than third-party customer-submitted
data. The more nodes there are the more transactions there are. The UAV network has no
error nodes at the beginning of the mission, and as the mission progresses creates faulty
nodes, selfish nodes and Byzantine nodes.

Scenarios with different scales of wireless communication are set up in the QualNet
simulation environment with a certain percentage of error nodes. The dynamic changes in
the operation of the UAV network mission are simulated by configuring multiple sets of
configuration files and by the node application importing different configurations at differ-
ent time periods. Several asynchronous consensus protocols are deployed into the node
stack separately, and the consensus process throughput, latency and energy consumption
are compared for different combinations of mission nodes of different sizes and containing
different proportions of error nodes.

In this scheme, the final asynchronous generic subset of ACS is generated by executing
DRBC and PMVBA subprotocols. Let the length of the data to be consented |m| and
the simulation experiments focus on the message complexity, communication complexity
and computational complexity in the related algorithms during the consensus process.
Comparing the throughput, latency and computational overhead of the asynchronous
consensus algorithms in [8–10] in one round of consensus. Table 4 shows a comparison of
the performance of processing ACS.

Table 4. Complexity comparison for ACS.

Protocol Computation Communication Message Fault Tolerance

HB-BFT O(logN) O(N2|m|+ λN3 logN) O(N3) 1/3

Dumbo1 O(logk) O(N2|m|+ λN3 logN) O(N3) 1/3

Dumbo2 O(1) O(N2|m|+ λN3 logN) O(N3) 1/3

LPA-BFT O(1) O(N2|M|) O(M3) ≥1/3
Where λ is the length of the security parameter, k is the number of fixed agents elected by Dumbo1 and M is the
length of the Delegated agents list.

The base latency: A round of consensus latency, is defined in this scenario using the
latency in HB-BFT; the average time interval from the first node starting the protocol to the
n-fth node obtaining the result. The latency is related to the size of the transaction volume
and the number of participating nodes, and the application scenario in this paper, where
the transactions are the nearest trusted state data of the nodes, and thus the more nodes the
larger the transaction volume. The experimental design sets different network sizes and
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configures no more than one-third of the total number of erroneous nodes in the consensus
delay during a consensus round, and the experimental results are shown in Figure 5.
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Figure 5. Comparison of consensus base delay.

It is obvious that the asynchronous consensus latency of HB-BFT is much higher than
other schemes, mainly because the ABA subprotocol in the ACS protocol has multiple
instances in each node, which not only consumes a large number of operations but also
increases the consensus latency. In contrast, the algorithm in [9] uses an agent approach to
reduce the number of ABA instances, but because the consensus result of the final generated
ACS is achieved by all participating nodes randomly selecting a set of transactions using the
RS_Code technique, the threshold encryption and decryption operations are added to the
consensus algorithm, while in this case the asynchronous consensus algorithm of LAP-BFT
only runs on the selected proxy and provides smart contracts through the blockchain for
external proof to achieve the final ACS consensus result, which takes less time to run.

Latency under different error nodes: Multi-round consensus delay experiments to
design application scenarios for a UAV network with 60 nodes. A different number of error
nodes are generated in each round as the mission progresses. The number of error nodes
is gradually increased in each consensus round by the UAV network through several sets
of aggregate profiles, which are loaded into the system at different stages to simulate the
dynamic generation of error nodes in a complex task environment. Comparing the latency
of the four consensus algorithms is shown in Figure 6. It can be seen that the consensus
algorithms of HB-FBT and Dumbo-HBT have a gradual increase in latency as the number of
errant nodes increases, and the latency rises more rapidly. When the number of erroneous
nodes exceeds 1/3 of the total number of participating nodes, the consensus reaching
condition cannot be satisfied, the consensus process cannot be terminated and the latency
is infinite. lAP-BFT uses dynamic selection of the best group of nodes based on reputation
as the proxy for each round of asynchronous consensus to minimize the possibility of
erroneous nodes appearing in the delegated agent nodes. This way the probability of more
than 1/3 error nodes arising in the delegated agent nodes is very small. As a result, LAP-
BFT asynchronous consensus satisfies the terminable condition even with erroneous nodes
that exceed Byzantine tolerance, and with little change in consensus latency as erroneous
nodes increase.
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Figure 6. Comparison of delay times with different error nodes.

Relationship between throughput and latency: Throughput is the number of trans-
actions submitted by the system per second and is a concept that is closely related to
bandwidth. The transaction volume in the application scenario of this paper is related to
the number of nodes, but the transaction data consists mainly of reputation discounts from
neighboring nodes, which are small in order of magnitude. As the network size gradu-
ally increases, the node throughput also gradually increases, and after reaching a peak,
the throughput decreases. Experiment-1 demonstrates that ABA is too consuming in the
HB-BFT scenario and that the computational power of HB-BFT asynchronous consensus
bottlenecks at more than 60 nodes. In addition, it is more meaningful to study the rela-
tionship between throughput and latency for this application scenario, so the experiments
were designed for different scales of up to 60 drones, first to ensure that each asynchronous
algorithm can run in these scenarios, and then for the consensus latency case at different
throughputs; the maximum tolerable error nodes exist for each scale. The experimental re-
sults are shown in Figure 7. Again due to the different ways of building ACS, Dumbo1 and
Dumbo2 require threshold signature encryption, and latency rises faster with throughput,
while HB-BFT needs to handle threshold key processing, and the number of ABA instances
per node increases with the number of nodes, and the number of nodes is proportional
to the volume of transactions, so HB-BFT rises fastest with the number of nodes. Latency
growth for LAP-BFT is more moderate because the computational complexity of external
validation of the consensus process is constant and because there is only one instance of
PMVBA per node and the computation occurs in a small number of delegated agents.

Rate of energy consumption: The UAV network’s energy supply is limited, and extend-
ing the runtime of the UAV network is also an important manifestation of lightweighting.
The verification environment of a UAV network of 50 registered UAVs generates 14 erro-
neous nodes at some stage. The asynchronous state of the network is simulated by setting
node property parameters and specifying their forwarding behavior in the program run.
Five faulty nodes, which do not process forwarded data; five Byzantine nodes, which
randomly tamper with forwarded data; and four selfish nodes, which send data but do
not forward it. The drones move on a given path, without considering obstacle avoidance.
The simulated energy values are set to correspond to the running times of the different
required algorithms corresponding to the nodes deployed on them, and the experiments
compare the rate of consumption of a given amount of energy by different asynchronous
consensus algorithms. This is shown in Figure 8:



Drones 2022, 6, 187 23 of 25

0 10 20 30 40 50 60
Throughput/Nodes

0

20

40

60

80

100

120

La
te

nc
y(

s)

Throughput Nodes-latency
HBBFT
Dumbo1
Dumbo2
LAP-BFT

Figure 7. Throughput versus latency.
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Figure 8. Comparison of energy consumption rates.

Dumbo1 uses fixed proxies and its computational complexity is related to the number
of proxies, but because the consensus algorithm runs all the time, the proxy nodes are
consumed quickly and the consensus process cannot continue when the proxy consump-
tion ends. Dumbo2 uses more energy than LAP-BFT because the threshold key is still
computed. This is because LAP-BFT uses only external verification to prove the consensus
result, and more importantly, dynamically selects groups of delegated agents to share the
consensus computation, extending the running time of the entire network.

7. Conclusions

The objective of this solution is to establish an asynchronous fault-tolerant system
to maintain the trustworthiness of the UAV network during mission execution. Through
mutual monitoring between drone nodes during data delivery, the nodes evaluate the
behavior of their respective neighboring nodes and collect the latest current local trusted
state. A lightweight asynchronous provable consensus is used to reach networkwide agree-
ment on the global trusted state of the nodes, providing a trusted environment for the
next round of drone network operation. The security and activity of the asynchronous
consensus proposed in the scheme are explained in terms of theoretical proofs, and the
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transmission efficiency and computational overhead of three practical asynchronous con-
sensus algorithms operating in the UAV network environment are compared by QualNet
network simulation software. Experiments with one or more rounds of consensus process
show that this scheme has superior performance in terms of throughput, consensus latency
and consensus computational overhead of a single round. The smart contract is used in
many aspects of the scheme, such as authentication, proof of consensus results, etc. In an
asynchronous environment, how to execute the smart contract dynamically according to
the actual needs is the focus of the next paper.
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