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and Inkyu Sa

Received: 13 March 2022

Accepted: 23 April 2022

Published: 27 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Lightweight Detection Network for Arbitrary-Oriented Vehicles
in UAV Imagery via Global Attentive Relation and
Multi-Path Fusion
Jiangfan Feng * and Chengjie Yi

College of Computer Science and Technology, Chongqing University of Posts and Telecommunications,
Chongqing 400065, China; s200231131@stu.cqupt.edu.cn
* Correspondence: fengjf@cqupt.edu.cn

Abstract: Recent advances in unmanned aerial vehicles (UAVs) have increased altitude capability
in road-traffic monitoring. However, state-of-the-art vehicle detection methods still lack accurate
abilities and lightweight structures in the UAV platform due to the background uncertainties, scales,
densities, shapes, and directions of objects resulting from the UAV imagery’s shooting angle. We
propose a lightweight solution to detect arbitrary-oriented vehicles under uncertain backgrounds,
varied resolutions, and illumination conditions. We first present a cross-stage partial bottleneck
transformer (CSP BoT) module to exploit the global spatial relationship captured by multi-head self-
attention, validating its implication in recessive dependencies. We then propose an angle classification
prediction branch in the YOLO head network to detect arbitrarily oriented vehicles in UAV images
and employ a circular smooth label (CSL) to reduce the classification loss. We further improve the
multi-scale feature maps by combining the prediction head network with the adaptive spatial feature
fusion block (ASFF-Head), which adapts the spatial variation of prediction uncertainties. Our method
features a compact, lightweight design that automatically recognizes key geometric factors in the
UAV images. It demonstrates superior performance under environmental changes while it is also
easy to train and highly generalizable. This remarkable learning ability makes the proposed method
applicable to geometric structure and uncertainty estimates. Extensive experiments on the UAV
vehicle dataset UAV-ROD and remote sensing dataset UACS-AOD demonstrate the superiority and
cost-effectiveness of the proposed method, making it practical for urban traffic and public security.

Keywords: UAVs; vehicle detection; lightweight model; deep neural networks; remote sensing

1. Introduction

Unmanned aerial vehicles (UAVs), also known as drones, are ideally suited for road-
traffic monitoring and management because of their mobility, increased altitude capability,
low cost, and broad view range [1]. Moreover, they avoid risks to pilots under diffi-
cult weather conditions and play a crucial role in managing transportation systems for
next-generation intelligent cities [2]. Significantly, vehicle detection is a fundamental
problem faced by these applications. Considerable progress is being made to create fully
autonomous vehicle detection with UAVs. However, technical obstacles remain.

Efficient object detectors, for instance, play a crucial role in UAV applications and
pose severe challenges due to numerous constraints, such as limited energy, speed, and
vulnerability to various conditions. Recent approaches can be grouped by the orientation
of the bounding box, such as horizontal detectors (horizontal bounding boxes) and rotation
detectors (arbitrary-oriented bounding boxes). Previous studies on generic horizontal
detectors can be divided into two categories: two-stage and one-stage detectors [3]. The two-
stage detectors generate category-agnostic region proposals and then perform classification
and regression on these candidate regions to classify and localize the targets, such as Faster
R-CNN [4] and R-FCN [5]. Although two-stage detectors have high accuracy, they typically
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have slow speed and increased complexity. To achieve high efficiency, the developments of
one-stage detectors perform bounding-box regression and classification simultaneously
for improved inference speed and simplicity, such as SSD [6], YOLO series [7–10], and
RetinaNet [11].

Although generic horizontal detectors have great success in natural scenes, a consider-
able performance drop is apparent when these detectors are directly used in UAV and aerial
images. The poor performance is due to the specific nuisances of UAV images, such as
complex backgrounds, significant differences in object sizes, and weather and illumination
variations. Therefore, the improved generic horizontal detectors applied in UAV and aerial
images have drawn increasing attention from researchers. Kim et al. [12] proposed an
efficient channel attention pyramid YOLO (ECAP-YOLO) to detect small objects precisely
in aerial images. Walambe et al. [13] combined different one-stage detector models and
applied voting strategies to capture multi-scale objects in UAV images. Wu et al. [14]
proposed a deep nuisance disentanglement approach, the nuisance disentangled feature
transform (NDFT), to learn domain-robust features and improve the vehicle detection
performance of generic-object detectors in UAV images. Yang et al. [15] proposed a clus-
tered detection (ClusDet) network inspired by the often-clustered objects in some regions,
which unifies object clustering and detection in an end-to-end framework. Vandersteegen
et al. [16] focused on real-time object detection and tracking on limited hardware through
an improved YOLOv3 model and a multi-dataset learning strategy. Li et al. [17] focused
on the image-cropping strategy. They proposed a density map-guided object-detection
network to address the challenge of the non-uniform distribution of objects in aerial images.
The density map can judge whether there is an object in an area and help the network
learn the scale information according to the pixel intensity, which can guide cropping
images statistically. Koyun et al. [18] proposed a crop-based two-stage model to address
the small-object detection problem in aerial images, mainly consisting of two parts. The
first part is to generate clusters of objects through Gaussian Mixture, and the second part
proposes the incomplete box suppression (IBS) algorithm to solve the incomplete boxes
caused by overlapping focal regions.

Most vehicles in UAV images have the characteristic of being arbitrary-oriented. The
vehicle’s horizontal bounding box is less efficient when the vehicle orientation is not paral-
lel to the coordinate axis from the drone’s perspective, as shown in Figure 1. There is a large
empty margin and a false intersection area when vehicles are bounded with horizontal
boxes, and it does not provide accurate rotation and scale information. Therefore, these
horizontal detectors cannot be used in UAV platforms for vehicle detection if the view angle
is the bird’s view. The rotated bounding box used to process rotating objects from UAV and
aerial images can provide more accurate regions for instances and introduce considerably
less background noise. Ma et al. [19] presented the extra orientation prediction and rotated
anchor boxes into Faster RCNN to detect the oriented object. Yang et al. [20] designed a
sampling fusion network to obtain a more effective anchor sampling and an improved
smooth L1 loss by adding the IoU constant factor to address the boundary problem of
rotated bounding-box regression. Ding et al. [21] applied a spatial transformation to trans-
form the horizontal region of interest (ROI) into a rotated ROI. Yang et al. [22] designed a
circular smooth label (CSL) to convert angular prediction from a regression problem to a
classification problem to avoid the discontinuous boundary problem. Based on this work,
they further proposed a new angle-encoding mechanism, densely coded labels (DCL) [23],
to speed up the angle classification branch. Ming et al. [24] proposed a critical feature
capturing network (CFC-Net) to achieve superior detection performance through a polar-
ized attention module and a dynamic anchor-selection strategy. Ming et al. [25] proposed
a dynamic anchor-learning (DAL) method to alleviate the imbalance between positive
and negative samples and the problem of feature misalignment between classification and
regression tasks. Yi et al. [26] also regarded the angle prediction as a classification prob-
lem and captured the oriented bounding boxes through the box boundary-aware vectors
(BBAVectors). Based on this work, Yu et al. [27] designed an anchor-free arbitrary-oriented
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object detector and introduced a context enhancement module to improve multi-feature
information interaction. Ming et al. [28] constructed multiple representations of oriented
targets and transformed the bounding-box regression task into an optimal matching pro-
cess. In addition, Ming et al. [29] selected high-quality anchors to alleviate the imbalance
between classification and regression tasks. Feng et al. [30] converted presented horizon-
tal anchors into rotated anchors through anchor refinement in the RetinaNet algorithm.
Despite the high-resolution UAV images, a lightweight model and real-time detection
are required. These off-the-shelf arbitrary-oriented detection methods used in detecting
vehicles still lack accurate, lightweight structure and real-time ability in the UAV platform.
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Modeling the global units and their relations in an image is critical for arbitrary-
oriented detection. The multi-head self-attention (MHSA) mechanism [31] has been shown
to learn the relationship among distant targets effectively [32,33]. Moreover, the MHSA can
facilitate handling nuisances in natural images [34], such as noise in the background and
some occlusions. Therefore, several attention-based approaches have integrated the multi-
head self-attention mechanism into their detector network [35–37]. Yu et al. [35] introduced
a transformer module into the backbone network to enhance the detector performance in
side-scan sonar images. Zhu et al. [36] applied transformer encoder blocks in the YOLO
head network and the end of the backbone. Sun et al. [37] proposed an encoder-only DETR
model to accelerate DETR training and improve the detector of FCOS and Faster RCNN
based on it.

In addition to global relation capturing, computation-consuming and low storage
capacity are essential for autonomous UAVs. Most rotation detectors build an intense and
complex architecture of neural networks to achieve better accuracy. Thus, it brings up many
more computations and storage burdens, making vehicle detection unaffordable for drones.
The UAV platform’s key to accurate and real-time vehicle detection is finding a suitable
base detection model that balances accuracy, model complexity, and inference speed. Fur-
thermore, it should have a lightweight structure and be low-resource-intensive due to the
UAV platform’s hardware computing power and storage-space limitation. Several efforts
have been made to perform light-object detection. For instance, YOLOv5 [38] is the SOTA,
the most notable and convenient one-stage detector with fast detection speed and precision,
including YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5x. YOLOv5x can obtain 68.9% AP@0.5
for the COCO val2017 dataset, and the minimum model size of the YOLOv5s is only
14 megabytes. Considering the accuracy and model complexity, we selected YOLOv5s as
our base model for the UAV dataset UAV-ROD [30] and YOLOv5m for the remote-sensing
dataset UCAS-AOD [39]. However, YOLOv5 is a generic horizontal detector that is not fully
applicable to UAV images. The horizontal bounding box for the vehicles is less efficient
when the view angle of the UAV is bird-view. In contrast, we added an angle classification
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prediction branch in the YOLO head network and employed the circular smooth label to
avoid the discontinuous boundary problem and reduce the classification loss.

While aiming for a cost-effective and scalable detection model for arbitrary-oriented
vehicles in UAV Imagery, three serious challenges need to be addressed: (1) Efficiency. Cur-
rent methods for arbitrary-oriented detection require a significant amount of computation
and storage, making them impractical for time-critical applications. (2) Adaptivity. The
UAV can fly at various altitudes while capturing images from different and complementary
angles, which causes significant differences in target sizes and more different visual ap-
pearances of the same object. However, most works lack adaptivity, and they do not allow
scale or angle differences that may require resampling to be considered. (3) Correlativity.
Vehicles are distributed on the road randomly according to a Poisson distribution and tend
to be highly clustered in certain regions, such as parking lots. However, most detectors do
not consider the distribution characteristics of vehicles.

This paper addresses the above problems in a lightweight structure with global atten-
tive relations and multi-path fusion. First, we developed a cross-stage partial bottleneck
transformer (CSP BoT) module to capture vehicles’ potential global spatial relationships in
UAV images and enhance the critical information. By replacing some blocks in YOLOv5
with the CSP BoT, it follows that detection tasks can capture vehicles’ potential global
spatial relationships, thus enabling multi-scale insensitivity to uncertainties. Second, we
proposed the multi-scale feature fusion by combining the prediction head network with
the adaptive spatial feature fusion (ASFF) block [40], which can autonomously learn the
spatial weights of different feature maps and improve their interaction. Thus, it captures
more detailed features, enabling global spatial correlation analysis. Furthermore, our ap-
proach, composed of simple but effective modules, balances model size and accuracy well.
The experimental results validate its excellent performance in detecting arbitrary-oriented
vehicles.

In summary, the main contributions of this article are summarized as follows:

1. We proposed a lightweight arbitrary-oriented vehicle detection network. We incor-
porated an angular classification prediction branch in the YOLO head network and
employed a circular smooth label to reduce the classification loss. This significantly
improves the detection performance for arbitrary-oriented vehicles in UAV images
without incurring the extra model complexity and computation burden.

2. We presented a cross-stage partial bottleneck transformer (CSP BoT) module to our
detection framework, a hybrid module using convolutions and the multi-head self-
attention mechanism that can capture vehicles’ potential global spatial relationship in
UAV images and enhance critical information.

3. Considering the specific characteristics of UAV images, such as complex backgrounds,
different visual appearances of the same object, and significant variations in target
sizes, we combined the adaptive spatial feature fusion (ASFF) block with the predic-
tion head (ASFF-Head). This adaptively combines features of different resolutions
before prediction to improve the multi-scale feature fusion and enhance information
interaction.

4. Extensive experimental results on the UAV vehicle dataset UAV-ROD and remote sens-
ing dataset UACS-AOD show the proposed method’s superiority, cost-effectiveness,
and low model complexity.

2. Materials and Methods

This section introduces the proposed network of arbitrary-oriented vehicle detec-
tion and several specific improvement measures, including cross-stage partial bottleneck
transformer (CSP BoT), adaptive spatial feature fusion prediction head (ASFF-Head), and
improved multi-task loss function.
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2.1. Overview of the Proposed Model

The overall structure of our proposed network is illustrated in Figure 2. It is im-
proved based on the detection network of YOLOv5s, and it can be divided into three
parts: backbone, neck, and prediction. The backbone network is fine-tuned based on the
YOLOv5s, and we replaced the C3 module after the spatial pyramid pooling (SPP) [41]
structure with CSP BoT to make it more suitable for vehicle detection in UAV images. The
neck is designed to better use the feature maps by collecting feature maps from different
stages in the backbone. Our neck is a combination structure of a feature pyramid network
(FPN) [42] and a path aggregation network (PANet) [43], and we replaced the first C3
module in the bottom-up path with CSP BoT. The prediction was used to generate the
vehicle’s classification, position, objectness, and angle information in UAV images.
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Figure 2. The structure of the proposed network. The YOLOv5s backbone with a CSP BoT at the
end. The neck is a combination structure of the FPN and PANet with a CSP BoT in the bottom-up
path. The adaptive spatial feature fusion (ASFF) block is applied in the YOLO prediction head.
In addition, the angle loss needs to be optimized due to the angle classification prediction branch
added to the network.

We first performed data augmentation to enhance the UAV images, including random
flip, HSV augmentation, translation, and rotation. Then we sent the preprocessed images to
the backbone network to extract general features. The backbone network consists of several
different modules. The Focus module takes out every other pixel on the three RGB channels
of an input image, as shown in Figure 2. It halves the height and width but expands its
channel four times, transferring the spatial information to the channel dimension. The Conv
block contains a convolution layer, batch normalization layer, and a sigmoid-weighted
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linear unit [44] activation function. The SPP module mainly contains three maxpool layers,
improving multiple receptive fields fusion and the detection performance for small targets.
The C3 module is short for CSP Bottleneck. The C3 module and CSP BoT are described in
Figure 3. Next, the PANet and FPN structures transmit the low-level feature information to
the high-level feature maps through bottom-up paths, and high-level semantic information
is sent to the bottom feature maps through top-down approaches. Subsequently, the
ASFF-Head module enhances the information interaction before prediction and performs
different operations depending on a different phase. The ASFF-Head computes multi-
task loss during the training phase, including classification loss, horizontal bounding-box
regression loss, confidence loss, and angle loss. The testing phase generates detection
predictions via non-maximum suppression (NMS).
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2.2. CSP Bottleneck Transformer (CSP BoT) Module

From the UAV dataset UAV-ROD, we observed that vehicles are only distributed
in specific image areas and tend to be highly clustered in certain regions, such as roads
and parking lots. In their high-level features, some feature pixels represent the vehicle
information, some represent important environmental information related to these vehicles,
such as roads, etc., and some are insignificant. Using the MHSA mechanism in these feature
maps, we can calculate the relationship among different pixels to capture this potential
global spatial relationship and enhance critical information.

The most widely used MHSA mechanism structure is the transformer encoder [45],
as shown in Figure 3a. It mainly contains two layers. The first layer is the MHSA and the
second layer is the multi-layer perceptron (MLP) model. Some recent studies applied it
in their YOLOv5 network and improved detection performance [35,36]. The cross-stage
partial network (CSPNet) architecture can optimize gradient combinations while reducing
the computation cost [46]. As CSPNet was proposed, the CSP Bottleneck designed based
on the CSPNet structure has been the basic component of YOLOv4 and YOLOv5, as shown
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in Figure 3b. It divides the input feature map into two parts and combines them through
a cross-stage residual edge. Motivated by this and MHSA in BotNet [47], we propose a
cross-stage partial bottleneck transformer (CSP BoT) module by integrating MHSA into
CSP Bottleneck, as shown in Figure 3c.

CSP BoT is a hybrid model using convolutions and MHSA. The MHSA is the core
component and introduces three 1 × 1 convolutions to compute Q, K, V, and the relative
position parameters. The vector Qh, Kh, and Vh are given as:

Qh= XWq
h, Kh = XWk

h, Vh = XWv
h, (1)

where Wq
h, Wk

h, and Wv
h are learned linear transformations from input matrix X to queries Q,

keys K, and values V of head h. Considering the two-dimensional positional embeddings
of the self-attention mechanism [48], this output of head h can be formulated as:

Oh= Softmax(
QhKT

h+SH
h +SW

h√
dh

k

)Vh (2)

where SH
h , SW

h ∈ RHW×HW are matrices of relative position logits along the height and
width dimensions, and dh

k is the dimension of keys in head h. The relative position matrix
SH

h [i, j] and SW
h [i, j] are given as:

SH
h [i, j] = qT

i rH
jy−iy (3)

SW
h [i, j] = qT

i rW
jx−ix (4)

where qi is the i-th row of queries Q and rH
jy−iy and rW

jx−ix are learned relative positional

embeddings for height and width, respectively.
We only apply CSP BoT at the end of the backbone network and the start of PANet.

Because these two feature maps are low-resolution and contain more semantic information,
using CSP BoT can capture global information and much contextual information without
expensive computing and storage overhead.

Compared with the structure of the transformer encoder, the CSP BoT model is lighter
and has lower computational complexity. Furthermore, the ablation study in the UAV-ROD
dataset proves the superiority of using CSP BoT in our detection framework rather than
transformer encoder and CSP Bottleneck.

2.3. ASFF-Head

Drones are very flexible when shooting images, which will cause the scale of the
vehicle target in the image to vary significantly. Unlike surveillance cameras that only
capture images of a specific area, drones usually capture a more extensive range. The
background of these images is complex and constantly changing, which introduces con-
siderable background noise. Therefore, the vehicle detection network requires a powerful
feature-fusion module.

The structure combination of PANet and FPN consists of a bottom-up path and a
top-down path, an effective multi-scale feature fusion method. However, it suffers from
the inconsistency of target scales at different feature layers. Before prediction, it cannot
fully utilize varying feature branch information, limiting the information interaction in
the feature maps and further performance gain. To solve this problem, ASFF-Head is
introduced in this paper. The ASFF module can filter features at three levels after neck and
combine the helpful information. We combined the YOLOv5 head network with the ASFF.
The target of ASFF-Head autonomously learns the spatial weights of each scale and then
fuses them to generate feature maps of homogeneous sizes before prediction. The structure
is shown in Figure 4, and it consists of three steps: (1) scale transformation, (2) adaptive
fusion, and (3) prediction.



Drones 2022, 6, 108 8 of 21

Drones 2021, 5, x FOR PEER REVIEW 8 of 21 
 

The target of ASFF-Head autonomously learns the spatial weights of each scale and then 
fuses them to generate feature maps of homogeneous sizes before prediction. The struc-
ture is shown in Figure 4, and it consists of three steps: (1) scale transformation, (2) adap-
tive fusion, and (3) prediction. 

 
Figure 4. The structure of ASFF-Head. Each ASFF-Head consists of scale transformation, adaptive 
fusion, and prediction. The scale transformation part in each ASFF-Head is different, and we show 
them in detail. The adaptive fusion and prediction of each ASFF-Head are the same process, and we 
take ASFF-Head2 as an example to show them in detail. 

2.3.1. Scale Transformation 
The resolution and channel of the three feature maps F1F2F3 obtained through the 

neck are different, and their resolutions are 1/8, 1/16, and 1/32 of the original image, re-
spectively. Therefore, we first need to harmonize their resolutions and channels before 
adaptive fusion by taking up-sampling or down-sampling strategies and 1 × 1 convolu-
tions. Specifically, for up-sampling, we first applied 1 × 1 convolutions to harmonize the 
number of channels of feature maps to that in level l and then upscaled the resolution 
through interpolation. For down-sampling with a 1/2 ratio, we used 3 × 3 convolutions 
with a stride of 2 to modify the number of channels and the resolution simultaneously. 
For down-sampling with a 1/4 ratio, we added a two-stride-max-pooling layer first and 
then employed 3 × 3 convolutions with a stride of 2. 

2.3.2. Adaptive Fusion 
As shown in Figure 4, taking ASFF-Head2 as an example. If the feature map F2 after 

fusion is marked as L2, three spatial weights of F1, F2, F3 to L2 are marked as α2, β2, γ2, 
respectively. It is expressed as the following formula:  

C

F1

F2

F3

C

C

C

Concat C S L2 C

K

4

1

180

C

F1

F2

F3

C

F1

F2

F3

/8

/16

/32

F1

F2

F3

Scale Transformation

Adaptive Fusion Prediction Head

DownSample 1/2 

UpSample 2

DownSample 1/4 

DownSample 1/2 

UpSample 4

UpSample 2
Adaptive Fusion Prediction Head

Adaptive Fusion Prediction Head

C 1 Convolution Feature mapS Softmax Function

K Classes 4 Bounding Box 1 Confidence 180 Angles
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take ASFF-Head2 as an example to show them in detail.

2.3.1. Scale Transformation

The resolution and channel of the three feature maps F1F2F3 obtained through the
neck are different, and their resolutions are 1/8, 1/16, and 1/32 of the original image,
respectively. Therefore, we first need to harmonize their resolutions and channels before
adaptive fusion by taking up-sampling or down-sampling strategies and 1× 1 convolutions.
Specifically, for up-sampling, we first applied 1 × 1 convolutions to harmonize the number
of channels of feature maps to that in level l and then upscaled the resolution through
interpolation. For down-sampling with a 1/2 ratio, we used 3 × 3 convolutions with
a stride of 2 to modify the number of channels and the resolution simultaneously. For
down-sampling with a 1/4 ratio, we added a two-stride-max-pooling layer first and then
employed 3 × 3 convolutions with a stride of 2.

2.3.2. Adaptive Fusion

As shown in Figure 4, taking ASFF-Head2 as an example. If the feature map F2 after
fusion is marked as L2, three spatial weights of F1, F2, F3 to L2 are marked as α2, β2, γ2,
respectively. It is expressed as the following formula:

L2
ij= α2

ij·F1→2
ij +β2

ij·F2→2
ij +γ2

ij·F3→2
ij (5)

where F1→2
ij and F3→2

ij represent the processed result of scale transformation, converting
the feature vector at position (i, j) in F1 and F3 to the same resolution and channel as F2.
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It is noted that α2
ij, β

2
ij and γ2

ij are scalar variables and are defined as follows by using the
softmax function:

α2
ij =

e
λ2
αij

e
λ2
αij+e

λ2
βij+e

λ2
γij

(6)

β2
ij =

e
λ2
βij

e
λ2
αij+e

λ2
βij+e

λ2
γij

(7)

γ2
ij =

e
λ2
γij

e
λ2
αij+e

λ2
βij+e

λ2
γij

(8)

where force α2
ij+β2

ij+γ2
ij= 1 and α2

ij, β
2
ij, γ

2
ij ∈ [0, 1]. λ2

αij
, λ2

βij
and λ2

γij
are the control

parameters of three weights, respectively. We use 1 × 1 convolutions to compute them, and
they can thus be learned through standard back-propagation.

2.3.3. Prediction

After subjecting the feature maps from neck to scale transformation and adaptively
spatial feature fusion, we integrated the feature information and transformed it into the
prediction. Our multi-scale detection head will generate the corresponding scale prediction
feature maps and output detection results for large, medium, and small targets, respectively,
according to different feature branches. Specifically, the prediction feature map from F1 is
suitable for detecting small vehicles, such as small cars. The prediction feature map from
F2 is ideal for detecting medium vehicles, such as trucks and vans. The prediction feature
map from F3 is suitable for detecting large vehicles, such as buses.

There are three preset anchor boxes of corresponding scales of each grid from the
prediction feature map. Each grid will generate (K + 4 + 1 + 180) prediction parameters.
K represents the number of the target class; 4 represents the center point coordinates and
the offset of the width and height; 1 represents the object’s confidence; 180 represents the
180 classification angles. During the training phase, we used these parameters to compute
the multi-task loss. In addition, we leveraged the non-maximum suppression algorithm
during the testing phase to process the results and obtain the final prediction results.

2.4. Multi-Task Loss Function

In the rotated bounding box, the boundary is not parallel to the coordinates axis.
Therefore, we cannot adopt the definition of w and h of the horizontal bounding box.
In this study, the five-parameter method was used to define the rotated bounding box, as
shown in Figure 5. The longer side is defined as w and the short side as h, and the angle
between the width and the x-axis is the rotation angle. The range of the rotation angle is
[−180, 0). In order to facilitate network training, the angle of each target in the label is
added by 180 degrees. Therefore, the range of the target angle in the label is [0,180).
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For our arbitrary-oriented vehicle detection network, we added an angular classifica-
tion layer to the YOLOv5 prediction head and decoupled the angle information from the
bounding box regression parameters. Therefore, the total loss is given as:

Ltotal= λ1Lang+λ2Lreg+λ3Lobj+λ4Lcls (9)

where Lang, Lreg, Lobj, and Lcls represent the angle loss, horizontal bounding box regression
loss, confidence loss, and classification loss, respectively. The λ1, λ2, λ3, and λ4 are hyper-
parameter to control the loss weight.

2.4.1. Angle Loss

Most rotation detectors obtain angle information through region regression, but these
detectors have their limitations. The regression methods will suffer the problem of dis-
continuous boundaries and usually require additional and more complex treatment to
alleviate the problem [22], which increases the complexity of the detector. Meanwhile,
the vehicle in UAV images occupies more pixels and has a smaller aspect ratio than the
target in the remote-sensing images, which means the vehicle in the UAV image has a
relatively high tolerance to the angle prediction. As shown in Figure 6, the vehicle angle
label is 175◦, but a rotated bounding box with an angle of 176◦ can also provide an accurate
region. Therefore, we transformed the angular prediction from a regression problem to
a classification problem to avoid the discontinuous boundary problem and simplify the
angle-prediction algorithm. Although converting from continuous regression to discrete
classification can cause certain losses, the loss of accuracy has a negligible impact on the
vehicle detection task with a high tolerance between adjacent angles.
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Figure 6. An example illustrates that the angle prediction of the vehicle in UAV images has a high
error tolerance for adjacent angles, and the one-hot label is not suitable to encode the angle.

As the five-parameter representation method has a 180◦ angular range, we divided
the angles into 180 classes with a 1◦ interval between each angle class. However, the vanilla
classification loss cannot measure the effect of the rotation angle distance between the
predicted rotated bounding box and the ground truth on the IoU calculation. As shown in
Figure 6, the angle prediction results are 176◦ and 85◦, respectively. Their angle losses are
the same when the one-hot label codes the angled label, but the prediction result of the angle
equal to 176◦ close to the ground-truth should be allowed from the IoU calculation and
the detection visualization. Meanwhile, the one-hot label suffers the problem of angular
class imbalance. Therefore, we used the circular smooth label (CSL) to code the angle
ground-truth before calculating angle classification loss.

CSL converts the original angle label into 180 labels with a window function. The
comparison of the CSL and the one-hot label is shown in Figure 7. The CSL has a high error
tolerance for adjacent angles and alleviates the problem of angle-class imbalance compared
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with the one-hot label. It can obtain a more robust angular prediction. The expression of
CSL is as follows:

CSL(x) =
{

g(x), θ− r < x < θ+ r
0, otherwise

(10)

where g(x) is a window function with four properties: periodicity, symmetry, maximum,
and monotonic. The most effective window function is the Gaussian function [22]. The
expression is as follows:

g(x)= exp

(
− (x− θ)2

2r2

)
(11)

where θ represents the ground truth of the angle and r represents the window radius. The
window radius controls the error tolerance between adjacent angles. The angle loss is
calculated with binary cross-entropy (BCE) logit loss as follows:

LAng =
Np

∑
i

BCEWithLogits(P ang, CSL(θ)) (12)

where Np indicates the number of prediction layers. Pang and CSL(θ) denote the prediction
of the angle and angle labels encoded by CSL, respectively. BCEWithLogits is defined as

LBCEWithLogits = −
N

∑
n=1

[y i·logσ(xi)+(1− y i)·log(1− σ(x i))] (13)

where N represents the number of the input vector, xi and yi represent the predicted vector
and ground-truth vector, respectively.
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Figure 7. (a) The one-hot label when the angle label equals 175◦. (b) The circular smooth label when
the angle label equals 175◦.

2.4.2. Horizontal Bounding-Box Regression Loss

IoU, GIoU, DIoU, and CIoU are mainly used to calculate the bounding-box regression
loss in the horizontal-object detection task [49]. However, these algorithms will not be
suitable for calculating IoU between rotating rectangular boxes when the angle is obtained
through a regression algorithm for the arbitrary-oriented detection task. Our model adopts
the CSL algorithm to solve the problem of angle prediction. It processes the angle prediction
into a classification task and decouples the angle information from the bounding-box
regression parameters. Therefore, the rotating bounding-box regression loss is divided into
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the angle and horizontal bounding-box regression losses. The latter still uses the IoU, GIoU,
DIoU or CIoU loss function.

An excellent horizontal bounding box regression loss should consider three geometric
factors: overlap area, center point distance, and aspect ratio. Therefore, the CIoU loss is
adopted for Lreg, which is calculated as:

Lreg =
Np

∑
i

LCIoU (14)

LCIoU= 1− IoU+
ρ2(b, bgt)

c2 +αυ (15)

where IoU is defined as the ratio of the intersection and union of the areas between the
predicted bounding box and the ground-truth box. The b and bgt represent the center
points of the two boxes, respectively. The ρ represents the Euclidean distance between the
two center points. The c is the diagonal length of the smallest enclosing box covering two
boxes. The υ measures the consistency of the aspect ratio and is given as follows:

υ =
4
π2 (artan

wgt

hgt −artan
w
h
)

2

(16)

where w and h represent the width and height, respectively. α is a positive trade-off
parameter. It is defined as

α =
υ

(1− IoU)+υ
(17)

2.4.3. Confidence Loss and Classification Loss

The binary cross-entropy (BCE) logits loss is also adopted to calculate the confidence
loss and classification loss, which is given as:

Lobj =
Np

∑
i

BCEWithLogits(P obj, Tobj) (18)

Lcls =
Np

∑
i

BCEWithLogits(P cls, Tcls) (19)

where Pobj indicates the predicted confidence, and Tobj indicates the CIoU between the
predicted bounding box and the ground-truth box. Pcls represents the predicted probability
distribution of all classes, and Tcls is the corresponding probability distribution of the
ground truth.

It is noted that the correlation between the prediction confidence and the prediction
angle is completely decoupled, which means the confidence loss is only related to the
horizontal bounding-box regression parameters.

3. Experiments and Discussion
3.1. Datasets and Implementation Details
3.1.1. UAV-ROD

The UAV-ROD dataset is a low-altitude, drone-based dataset with a flying height
between 30 m and 80 m, including 1577 images and 30,090 vehicle instances annotated
by oriented bounding box labels. The original images are sampled into two resolutions:
1920 × 1080 and 2720 × 1530. The image scenes are rich and diverse, including urban
roads, parking lots, residential areas, roadsides, etc. The total dataset is divided into the
training and test sets, including 1150 and 427 images.
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3.1.2. UCAS-AOD

UCAS-AOD is a high-resolution aerial-object detection dataset, including two cate-
gories of cars and airplanes. It is collected from Google Earth and contains 1510 images,
including 1000 images for planes and 510 images for cars annotated by the oriented bound-
ing box. Following the division method of images by Ming et al. [24], the total dataset is
divided into the training set, validation set, and test set with 755 images, 302 images, and
452 images, respectively.

3.1.3. Implementation Details

Experiments were conducted using Python programming based on the Pytorch 1.7
deep-learning framework. The experimental training and validating environment was
the Ubuntn16.04 system, running on an Intel CPU Xeon Gold 6126, NVIDIA Tesla V100,
256 GB RAM. The experimental testing environment was the Ubuntu 18.04 system, running
on an Intel i5-9400F CPU@2.90GHz, with an NVIDIA GeForce RTX 2060.

For the UAV-ROD dataset, we used stochastic gradient descent (SGD) with momentum
as the training optimizer, setting the initial learning rate to 0.01 and momentum and weight
decay coefficients to 0.937 and 0.0005, respectively. The batch size was set to 16 in the
evaluation of angular classification and 8 in other ablation studies. The epoch was set
to 200. The Adam optimizer was used for training for the UCAS-ROD dataset, and the
learning rate was set to 0.001. The batch size was set to 4, and the epoch was set to 200. The
confidence threshold was set to 0.4, and the IoU threshold was set to 0.2 in all experiments
during the test.

Owing to the high resolution of UAV images and remote sensing images and the
limitation of the hardware device, we needed to preprocess the original image. Directly
processing the high-resolution images will increase the computational burden and signifi-
cantly reduce the training effectiveness. Therefore, we uniformly resized and padded the
image to 960 × 960 for the UAV-ROD dataset and 800 × 800 for the UCAS-AOD dataset.
In all ablation study experiments, we only shuffled the training images and did not employ
any data augmentation to ensure the consistency of the training data. The number in bold
of all tables denotes the best result in all tables.

3.2. Ablation Study
3.2.1. Evaluation of All Modules

We conducted a series of experiments on the UAV-ROD dataset to demonstrate the
superiority of all modules. We used the original YOLOv5s as the baseline model and added
a YOLOv5m-CSL model as the comparative model. The experimental results are shown
in Table 1.

Table 1. Effects of each modules on UAV-ROD dataset.

Model CSL CSP BoT ASFF-Head AP (%) AP50 (%) Parameters (M) Model (M)

YOLOv5m √ 77.34 95.11 20.77 41.9

YOLOv5s

13.75 34.42 7.54 14.7√ 67.78 90.37 7.54 14.7
√ √ 76.39 95.70 7.18 14.0
√ √ √ 78.07 96.53 12.59 24.4

The CSL angle encoding strategy significantly improved the detection results, increas-
ing 54.03% in AP and 55.95% in AP50. It indicates that the original YOLOv5s cannot learn
the angle information of the rotated bounding box in vehicles, and the YOLOv5s with the
CSL can obtain the angle information of vehicle targets accurately. Meanwhile, the CSL
almost does not incur additional model complexity and computation burden. It only adds
extra angle-prediction parameters in the prediction head network. The CSP BoT captures
the potential global spatial relationship in high-level feature maps and enhances critical
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information, and reduces the parameters and model size by replacing 3 × 3 convolutions
with MHSA in CSP Bottleneck. As a result, the CSP BoT improved AP by 8.61% and AP50
by 5.33%, while parameters were reduced by 0.36 million and model size was reduced by
0.7 MB. Meanwhile, the YOLOv5s-CSL with CSP BoT detection result in AP50 is better than
YOLOv5m-CSL, while its parameters and model size are nearly three times smaller than
the latter. The ASFF-Head further improves the AP by 1.68% and AP50 by 0.83%. It proves
that adaptive spatial-feature fusion can further multi-feature information interaction and
enhance the detection performance. Although the ASFF-Head increases the parameters
and model size, the YOLOv5s-CSL with CSP BoT and ASFF-Head parameters and model
size are half of the model YOLOv5m-CSL, and its detection performance in AP and AP50
are better than the latter.

3.2.2. Evaluation of Angular Classification

The accuracy of the CSL-improved YOLOv5s depends to a large extent on the Gaussian
window radius. The circular smooth label tends to be a one-hot label when the window
radius is too small. The larger the window radius, the bigger is the deviation of the angle
prediction, and the smaller the window radius, the harder it is for the model to learn angle
information. Therefore, a different application scenario has a different suitable window
radius. As shown in Table 2, the most appropriate window radius in the UAV-ROD dataset
is 12 after a series of experiments. However, the value is 6 in the remote-sensing dataset
UCAS-AOD dataset, as shown in Table 3.

Table 2. Comparison of detection results of different window radii for UAV-ROD dataset.

Method Window Radius AP (%) AP75 (%) AP50 (%)

YOLOv5s ~0 13.75 10.03 34.42

YOLOv5s+CSL

4 58.66 65.04 88.20
6 69.62 83.84 93.91
8 75.51 91.51 95.24

10 76.27 92.17 95.21
12 76.73 92.37 95.80
14 75.59 91.09 94.65

Table 3. Comparison of detection results of different window radii for UCAS-AOD dataset.

Method Window Radius Car Airplane AP50 (%)

YOLOv5m+CSL

4 80.39 90.47 85.43
5 88.60 90.30 89.45
6 88.97 90.34 89.66
7 88.65 90.47 89.56
8 88.24 90.45 89.35

For vehicles in UAV images, the window radius tends to be large because the minor
deviations in angle prediction have little effect on the rotated bounding box of vehicles.
A big window radius can significantly alleviate the problem of angle-class imbalance. For
rotating-object detection in remote-sensing images, the window radius is often set to be
relatively small. The target in remote-sensing images tends to be small and occupies fewer
pixels than the target in UAV images. Therefore, it is more sensitive to angles because
the minor deviations in angle information can cause a significant effect on the rotated
bounding box.

3.2.3. Evaluation of CSP BoT

In this section, we compare the performance of the CSP Bottleneck and different multi-
head self-attention modules, including CSP BoT and transformer encoder. The original
YOLOv5 model uses CSP Bottleneck at the end of the backbone and the start of the PANet.
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We replaced it with a transformer encoder or CSP BoT, and the comparison of the results of
the various models is shown in Table 4. The model parameters, floating-point operations
(FLOPs), and model size describe the model complexity. GFLOPs denote 1 billion FLOPs.
Meanwhile, we added a YOLOv5m-CSL model as our other comparative model. Its model
size is almost three times that of YOLOv5s-CSL. Naturally, it can also achieve better AP50.

Table 4. Analysis of CSP Bottleneck, transformer encoder and CSP BoT on UAV-ROD dataset.

Method CSP
Bottleneck

Transformer
Encoder CSP BoT AP50 (%) Parameters

(M) GFLOPs Model Size
(M)

YOLOv5m-CSL √ 95.11 20.77 52.7 41.9

YOLOv5s-CSL

√ 90.37 7.54 17.9 14.7
√ 94.25 7.54 17.5 14.7

√ 95.70 7.18 17.3 14.0

According to the test results, we can see that the transformer encoder and CSP BoT
can not only increase AP50 but also reduce the model size, parameters, and GFLOPs to
some extent. This also proves that the multi-head self-attention mechanism is helpful in
vehicle detection in UAV images. Specifically, after using the transformer encoder, the AP50
increases from 90.37% to 94.25%, and GFLOPs decrease from 17.9 to 17.5. Furthermore, the
use of the proposed module CSP BoT increases the AP50 from 90.37% to 95.70%, decreases
the total parameters from 7.54 to 7.18 and GFLOPs from 17.9 to 17.3. Significantly, its
detection performance in AP50 is better than the big model YOLOv5m-CSL, and the latter
has nearly three times the model size and parameters.

Compared with the original CSP Bottleneck in YOLOv5, the CSP Bottleneck is a fully
convolutional model. The CSP BoT is a hybrid model using convolutions and the multi-
head self-attention mechanism, which can change the weightings of each pixel in feature
maps based on the global attention from several subspaces and focus on targets and the
significant area near the targets, not the background noise. The original CSP Bottleneck in
YOLOv5 uses 3 × 3 convolution at the MHSA in the CSP BoT. The 3 × 3 convolution only
focuses on a small and fixed receptive field, but MHSA considers the global and effective
information via flexible and dynamic receptive fields to encode contextual cues. Therefore,
the model incorporating the MHSA mechanism, including the transformer encoder and
CSP BoT, can improve detection accuracy significantly compared to the original CNN
model in this task. Moreover, the 3 × 3 convolution introduces more parameters and extra
floating-point operations compared to the MHSA structure in CSP BoT. It is noted that
the MHSA-related models require more GPU memory, training, and inference time as
the self-attention mechanism is the quadratic time and memory complexity with input
sequence length [50].

Compared with the transformer encoder, the CSP BoT can perform better while
reducing parameters, GFLOPs, and model size. The transformer encoder improves AP by
3.88% by replacing the CSP Bottleneck, but the CSP BoT improves by 5.33% in the same way.
Additionally, the parameters, GFLOPs, and model size of the CSP BoT are smaller than the
transformer encoder. The MHSA plays a crucial role in both models, but the architecture of
CSPNet is more suitable for the framework of YOLOv5 as the structure of CSP has been the
basic structure of YOLOv4 and YOLOv5 since it was proposed.

3.2.4. Evaluation of ASFF-Head

The ablation study on ASFF-Head is shown in Table 5. We also added a YOLOv5m-
CSL model as our other comparative model. Our ASFF-Head achieves a remarkable
improvement of 9.67% in AP and 5.47% in AP50, which indicates that ASFF-Head can
further fuse the multi-level feature maps and help the detector accurately localize the
rotating vehicles that vary significantly in size. Although it increases the complexity and
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size of the original model, its model size and complexity are half of the model YOLOv5m-
CSL, and its detection performance AP and AP50 are better than the latter.

Table 5. Analysis of ASFF-Head on UAV-ROD dataset.

Method ASFF-Head AP (%) AP50 (%) Parameters (M) Model Size (M)

YOLOv5s-CSL 67.78 90.37 7.54 14.7
YOLOv5m-CSL 77.34 95.11 20.77 41.9
YOLOv5s-CSL √ 77.45 95.84 12.96 25.1

3.3. Comparisons with State-of-the-Arts
3.3.1. Results on UAV-ROD

The UAV-ROD dataset has only one category of vehicles, where some of them have
various orientations, significant differences in size, and intensive distribution. Therefore,
it is still challenging to accurately detect vehicles in this UAV dataset, especially high-
quality detection performance. Table 6 shows the comparison of different methods on
the UAV-ROD dataset in terms of the AP, AP50, number of parameters, model size, and
FPS. Following the MS COCO evaluation metrics, we report the AP and AP50 results.
Our method achieves the best detection accuracy in AP of 83.99% among the compared
methods. In addition, the model size is several times smaller than other models, requiring
only 24.4 MB of storage space, which is particularly helpful when deploying on limited
hardware platforms such as UAVs. In terms of inference time, our method achieves real-
time detection around 29.4 FPS in NVIDIA GeForce RTX 2060 6GB for an input size of
960 × 960. It proves the superiority and cost-effectiveness of our method.

Table 6. Comparisons with other methods for input size of 960 × 960 on the UAV-ROD dataset.

Method Back Bone AP (%) AP50 (%) Parameters (M) Model Size (M) FPS

R-RetinaNet [11] ResNet-50 71.46 97.68 36.3 139.1 8.34
R-Faster R-CNN [4] ResNet-50 75.79 98.07 41.4 471.9 6.67

TS4Net [30] ResNet-50 75.57 98.03 37.6 144.2 -
YOLOv5m-CSL YOLOv5m 82.37 94.26 20.8 41.9 24.32

CFC-Net [24] ResNet-50 82.56 99.51 37.5 450.9 7.37
Ours YOLOv5s 83.99 98.28 12.6 24.4 29.40

Figure 8 shows the partial visualization results in the UAV-ROD dataset. Our method
can accurately detect vehicles from diverse backgrounds, including urban roads, parking
lots, residential areas, roadsides, etc. Even for densely arranged vehicles, our method can
still distinguish each vehicle well and output high-quality rotated bounding boxes.
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3.3.2. Results on UCAS-ROD

Our method is suitable for vehicle detection in drone imagery and achieves great
detection results in remote-sensing datasets. Since the background of the remote-sensing
image is highly complex, and the vehicle target occupies only a few pixels in the image,
a robust backbone network is required to extract features. Therefore, to strike a balance
between detection accuracy, model size, and inference speed, we choose YOLOv5m as our
backbone feature extraction network.

Table 7 shows the experimental results on the UCAS-AOD dataset in terms of the
accuracy of cars and airplanes, AP50, number of parameters, model size, and FPS. Our
method outperforms the other compared methods, reaching an AP50 of 89.74% following
the VOC2007 evaluation metrics while consuming the lowest storage space with a model
size of only 69.8MB. In addition, our method achieves real-time detection with 22.88 FPS in
NVIDIA GeForce RTX 2060 6GB for an input size of 800 × 800, which inference speed is
several times faster than other methods. It proves the superiority of our method and has a
wide range of application scenarios.

Table 7. Comparisons with other methods for input size of 800 × 800 on UCAS-AOD dataset.

Method Back Bone Car (%) Airplane (%) AP50 (%) Parameters (M) Model Size (M) FPS

R-YOLOv3 [9] DarkNet53 74.63 89.52 82.08 61.6 704.7 3.41
R-RetinaNet [11] ResNet-50 84.64 90.51 87.57 36.3 139.1 7.69

R-Faster R-CNN [4] ResNet-50 86.87 89.86 88.36 41.4 471.9 6.11
RoI Transformer [21] ResNet-50 88.02 90.02 89.02 55.3 631.0 3.92

RIDet-Q [28] ResNet-50 88.05 89.96 89.23 37.7 431.0 6.81
SLA [29] ResNet-50 88.57 90.30 89.44 40.9 293.1 6.91

CFC-Net [24] ResNet-50 89.29 88.69 89.49 37.5 450.9 7.04
RIDet-O [28] ResNet-50 88.88 90.35 89.62 37.7 431.0 6.43
Yu et al. [27] ResNet-50 88.92 90.48 89.70 - - -

Ours YOLOv5m 88.94 90.53 89.74 21.8 69.8 22.88
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We further visualized some of the detection results, as shown in Figure 9. It can be
seen that our method can output accurate rotated bounding boxes in vehicles and airplanes
in remote-sensing images, even the dense arrangement.
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3.4. Discussion

Despite the limitations of energy and altitude, UAV-based surveillance offers a signifi-
cant cost reduction compared with airplane and helicopter-based aerial applications widely
used to trace vehicles in traffic scenarios. Our approach is designed to quickly characterize
vehicles and orientations for uncertain environments in UAV images. The performance is
notable because we developed the particular module according to the characteristics of the
UAV scene and used lightweight, readily available architecture. In contrast, most previous
studies used a significant amount of computation and storage to improve performance.
Our method may be more limited than previous methods using airborne sensors regarding
the spatial scale. However, the low-cost and easy-to-use features of UAVs can enable
periodic monitoring. Meanwhile, other UAV research identified only a few directions or
applied particular environments. Our approach successfully identified arbitrary-oriented
and adapted to uncertain environments regarding these points. Thus, our approach can be
cost-effective and convenient for vehicle monitoring and management applications.



Drones 2022, 6, 108 19 of 21

4. Conclusions and Future Work

In this paper, we analyzed the characteristics of vehicles in UAV images and presented
a lightweight detection network for arbitrary-oriented vehicles. First, since the horizontal
bounding box is less efficient and does not provide accurate rotation and scale information
for arbitrary-oriented vehicles, we proposed an angle classification prediction branch in
the YOLO head network to generate angle information and employ the circular smooth
label to reduce the angle classification loss. Second, to capture the potential global spatial
relationship of vehicles in UAV images and enhance the vital information, we proposed a
CSP bottleneck transformer (CSP BoT) module, a hybrid model using the multi-head self-
attention mechanism convolutions. Finally, the ASFF-Head was presented to adaptively
aggregate features at different resolutions by weighted cross-scale connections, adapting
the spatial variation of prediction uncertainties.

Extensive experiments on the UAV dataset UAV-ROD and the remote-sensing dataset
UCAS-AOD demonstrated that our approach could obtain encouraging accuracy, inference
speed, and model-size results. Our method can reach a better accuracy while its model
size, parameters, and inference speed are several times better than other methods. Overall,
our method is superior to the existing arbitrary-oriented vehicle detection methods in UAV
images in terms of accuracy, model size, and real-time ability, and it meets vehicle-detection
needs better in drone platforms. In addition, the present study provides an approach using
pre-collected datasets; however, actual experiments should be performed in future work to
evaluate the application of the proposed framework further.
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