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Abstract: Thoracic diseases refer to disorders that affect the lungs, heart, and other parts of the rib cage,
such as pneumonia, novel coronavirus disease (COVID-19), tuberculosis, cardiomegaly, and fracture.
Millions of people die every year from thoracic diseases. Therefore, early detection of these diseases
is essential and can save many lives. Earlier, only highly experienced radiologists examined thoracic
diseases, but recent developments in image processing and deep learning techniques are opening the
door for the automated detection of these diseases. In this paper, we present a comprehensive review
including: types of thoracic diseases; examination types of thoracic images; image pre-processing;
models of deep learning applied to the detection of thoracic diseases (e.g., pneumonia, COVID-19,
edema, fibrosis, tuberculosis, chronic obstructive pulmonary disease (COPD), and lung cancer);
transfer learning background knowledge; ensemble learning; and future initiatives for improving
the efficacy of deep learning models in applications that detect thoracic diseases. Through this
survey paper, researchers may be able to gain an overall and systematic knowledge of deep learning
applications in medical thoracic images. The review investigates a performance comparison of
various models and a comparison of various datasets.

Keywords: thoracic diseases; deep learning; transfer learning; ensemble learning; CXR

1. Introduction

Thoracic diseases are diseases of the organs within the rib cage, including heart and
lung diseases. Lung diseases result in hypoxia and dyspnea. Furthermore, some diseases
may cause the failure of the entire respiratory system and thus lead to death [1], such as the
novel coronavirus disease (COVID-19), which emerged recently and became a pandemic
that poses a threat to the entire world. There are several types of thoracic diseases [2,3]
represented as follows: (i) asthma, COVID-19, tuberculosis (TB), and chronic obstructive
pulmonary disease (COPD) are examples of diseases that affect the airways or lungs;
(ii) diseases that affect the heart, such as cardiomegaly and heart failure; (iii) other diseases
affecting bones and muscles in the chest, such as fracture and lung metastasis. The World
Health Organization (WHO) has classified pneumonia as the third-deadliest disease in
the world after heart disease and cerebral palsy. As in 2019, 2.5 million death cases from
pneumonia around the world [4], 14% of all deaths of children under five years old, which
results in the death of 672,000 children [5]. In addition, COVID-19 has caused more than
6.5 million death cases around the world since its emergence in 2019 [6]. Tuberculosis (TB)
resulted in the death of approximately 1.5 million people in 2020.

Early detection refers to detecting symptomatic patients as early as possible, detection
refers to the act of detecting or sensing something; discovering something that was hidden
or disguised, and diagnosis refers to the identification of the nature and cause of an illness.
As a result, human health is at a serious risk due to thoracic diseases, and early detection
of these diseases improves recovery and reduces mortality. The consultant provided by
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a thoracic expert or radiologist is solely responsible for the patient’s diagnosis. However,
there may be emergency situations where radiology professionals are too busy, unavailable,
or unable to diagnose a large number of thoracic images rapidly [7,8]. Artificial intelligence
(AI) systems can be extremely useful in this regard [9].

AI is used to analyze, display, and understand complex medical and health data. The
ability of computer algorithms to guess conclusions based solely on input data are known
as artificial intelligence. The major goal of health-related AI applications is to figure out
how clinical procedures affect patient outcomes. AI systems are employed in diagnostics,
treatment protocol creation, drug research, personalized medicine, patient monitoring, and
care. What distinguishes AI technology from traditional healthcare solutions is its ability
to collect and process data and deliver a specific and fast result [10]. Artificial intelligence
does this through the use of machine learning (ML) and deep learning (DL) algorithms.
These processes are able to recognize patterns of behavior and develop their own logic.

ML allows software applications to become more accurate at predicting outcomes
without being explicitly programmed to do so. Machine learning algorithms use historical
data as input to predict new output values. There are four basic approaches for ML:
supervised learning, unsupervised learning, semi-supervised learning, and reinforcement
learning [11]. The type of the algorithm; that the data scientists choose to use, depends on
what type of data they want to predict. There are different learning techniques which can
be summarized as follows:

• Supervised learning: data scientists supply algorithms with labeled training data and
define the variables they want the algorithm to assess for correlations. Both the input
and the output of the algorithm are specified. Some of the most common algorithms
in supervised learning include Support Vector Machines (SVM), Decision Trees, and
Random Forest;

• Unsupervised learning: involves algorithms that train on unlabeled data. The algo-
rithm scans through datasets looking for any meaningful connection. The data that
the algorithms train on as well as the predictions or recommendations they output are
predetermined;

• Semi-supervised learning: occurs when part of the given input data has been labeled.
Unsupervised and semi-supervised learning can be more appealing alternatives as it
can be time-consuming and costly to rely on domain expertise to label data appropri-
ately for supervised learning;

• Reinforcement learning: data scientists typically use reinforcement learning to teach
a machine to complete a multi-step process for which there are clearly defined rules.
Data scientists program an algorithm to complete a task and give it positive or negative
cues as it works out how to complete a task. However, for the most part, the algorithm
decides on its own what steps to take along the way.

Table 1 illustrates a simplified summary of the four types of ML approaches.
Machine learning models are trained using large amounts of input data in order to

provide relevant insights and predictions. Currently, several datasets of thoracic images for
different thoracic diseases are publicly available. The doctor’s efficiency can be improved
by AI systems, especially through DL.

AI is now widely applied in a variety of sectors, including medicine and the rapid
detection of diseases. AI played a key contribution in developing a Coronavirus vaccine in
record time [12]. In South Korea, intelligence assisted doctors in learning the statistics of
affected persons, allowing them to predict the Coronavirus outbreak at the start of the crisis.
At a time when many governments around the world were still considering the idea of
imposing a blanket closure owing to the pandemic, a business in Seoul (Seegene) employed
artificial intelligence to develop tests to detect the Coronavirus in weeks, whereas it would
have taken months without it [13]. “People thought the delta mutant would spread across
the African continent, clogging hospitals with patients, but with AI, we can control it,”
explains a South African AI expert. Artificial intelligence has aided scientists in gaining a
better understanding of how quickly the virus can change, as well as in developing and
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testing vaccines against the Coronavirus. As indicated in the paper, many research has
demonstrated the value of AI algorithms in detecting specific types of diseases with great
accuracy. The initial use of AI in the face of a health catastrophe is almost definitely to
assist researchers in developing a vaccine that will protect caretakers while also containing
the pandemic. Biomedicine and research rely on a wide range of methodologies, many
of which have long been aided by computer science and statistics applications. As a
result, AI is a component of this continuity [14]. Scientists have already avoided months of
experimentation by using AI to forecast the virus structure. Even if it is constrained due to
so-called “continuous” rules and infinite combinatorics for the study of protein folding, AI
appears to have provided important support in this regard. Moderna, an American start-up,
has made a name for itself by mastering biotechnology based on messenger ribonucleic acid
(mRNA), which necessitates the study of protein folding. With the use of bioinformatics, of
which AI is a key part, it was able to dramatically cut the time it took to build a prototype
vaccine that could be tested on humans. In February 2020, Baidu, a Chinese technological
powerhouse, released its Linearfold prediction algorithm in collaboration with Oregon
State University and the University of Rochester to research the same protein folding. This
method predicts the structure of a virus’ secondary ribonucleic acid (RNA) significantly
faster than standard algorithms, giving scientists more knowledge on how viruses spread.
Linearfold could have predicted the secondary structure of COVID-19’s RNA sequence in
27 s instead of 55 min. DeepMind, a subsidiary of Alphabet, the parent company of Google,
has also shared its coronavirus protein structure predictions with its AlphaFold AI system.
IBM, Amazon, Google, and Microsoft have also offered their servers’ computing power to
the US government for the processing of very big datasets in epidemiology, bioinformatics,
and molecular modeling.

Table 1. ML approaches summary.

Method Advantage Disadvantage

Supervised
Learning

It performs classification and
regression tasks. It exists notions

of the output along the
learning process.

It requires a
labeled dataset.

Unsupervised
Learning

It does not require a training
data to be labeled. Classification

task is fast.

There are no notions of
the output along the

learning process.

Semi-
Supervised
Learning

Builds a model through a mix of
labeled and unlabeled data.
Reduced training dataset.

Computationally
complex.

Reinforcement
Learning

Can gain experience and
feedbacks (rewards) from their

actions which help them to
improve their results.

needs large datasets to
make better benchmarks

and decisions.

Thus, an intelligent and automatic system is required to diagnose the hidden patterns
in clinical data. Using image classification and detection techniques, DL models have
provided advanced digital imaging applications for faster disease detection [15]. DL is
based on extracting features from raw data using multiple layers to recognize different
parts of the input data [16]. DL provides guidance to doctors and other researchers on
how to automatically detect diseases [17]. However, DL requires a large amount of data to
perform better. Therefore, images will be crucial data for detecting diseases [18].

Deep learning use cases in healthcare such as medical imaging, data analytic, person-
alized medical treatments, drug discovery, genomics analysis, and mental health research.
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Among the recent work based on deep learning are the detection of acute lymphoblastic
leukemia [19–24], chest disease [25], and Alzheimer’s disease [26–28].

Although AI has made an effective contribution to the medical field, it has some
limitations [29] as:

1. Cost (analyzing data will be very costly both in terms of energy and hardware use);
2. These technologies are still a group of very rapidly developing technologies, and

therefore they are still under development. Thus, we need experts in this field to deal
with it;

3. These technologies are not widely available in the healthcare sector;
4. Security needs to be integral in the AI process.

The primary contributions to this article are as follows:

1. It provides a comprehensive overview of the use of AI in detecting thoracic diseases,
including COVID-19;

2. It presented the different types of AI models that used to detect thoracic diseases and
the databases that include those diseases. In addition, the progress of the works and
the direction the researchers are moving in this domain throughout the recent years;

3. To express that CNN has penetrated the field of understanding the medical picture
with high accuracy;

4. It collected many different databases for thoracic diseases with descriptions;
5. It also presents the issues of thoracic diseases detection using deep learning found in

the literature studies.

2. Methodology

The methodology used to conduct the survey of recent thoracic diseases detection
using DL/ML models: First, an appropriate dataset containing a large number of images
that includes related diseases must be selected, and this is described in detail in the next
section. Second, the DL/ML algorithms that are applied to detect related diseases must
be identified, and this is described in detail in the next section. In the last stage, the
performance of the model used in the detection of the disease is determined.

3. The Taxonomy of State-of-the-Art Work on Thoracic Diseases Detection
Using DL/ML

In this section, a taxonomy of the recent work on thoracic diseases detection using
DL/ML is presented, which is the first contribution of this paper.

The taxonomy consists of 9 traits that are common in the surveyed articles: image type,
dataset description, image pre-processing, deep learning models, ways to train deep learn-
ing, the ensemble of classifiers, pre-trained models, type of disease, and evaluation criteria.

3.1. Imaging Thoracic Exams

Medical and health protocols recommend thoracic imaging because it is a rapid and
painless technique. Infected patients, including children, adults, and the elderly, are now
being assessed using image scans. Imaging systems that rely on AI technologies are
provided with thousands of medical images so that these systems can identify abnormal
masses that could indicate the onset of disease. Then, these systems are able to identify
a specific area on the radiograph for the doctor to examine with greater accuracy, thus
integrating ‘artificial intelligence’ techniques with the doctors’ efforts [30]. Some diseases of
the thoracic require radiological images (as X-ray or CT-Scan) to detect the disease. Others
require examination of the tissues themselves to confirm the presence of the disease. The
most examination types to diagnose thoracic diseases [31] are:

• Chest X-ray (CXR): can be used to check for diseases such as pneumonia [32] and
a lung infection that causes fluid buildup [33]. It can also be used to detect cancer
or pulmonary fibrosis, which is a scar tissue buildup in the lungs. CXR scans are
commonly used in clinical practice since they are inexpensive, simple to perform, give
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a quick scan for the patient as two-dimensional (2D) images, and can be widely used
for diagnosis and treatment of lung and cardiovascular diseases [34,35]. Although
X-rays are frequently used, they have side effects such as exposure to ionizing radiation
harmful to the human body and relatively low information when compared to other
imaging methods;

• Computerized Tomography (CT): is a more advanced imaging test that can be used
to detect disorders such as cancer that an X-ray could miss [36–39]. A CT scan is
a series of X-rays taken from various angles that are patched together to create a
complete image. While CT scans are more reliable in diagnosing COVID-19, they
are less accurate in diagnosing non-viral pneumonia-like consolidation [40]. The CT
scan is very accurate spatial information and quick, but the disadvantages of the CT
scan are the risk of exposure to radiation is high, require expensive equipment, and is
therefore not always accessible to all levels of people;

• Histopathology: often known as histology, is the microscopic examination of organic
tissues in order to observe the appearance of diseased cells [41]. The tissue that was
sent for testing, as well as the characteristics of the tumor under the microscope is
described in a histopathology report [42]. A biopsy report or a pathology report are
both terms used to describe a histopathology report. It can identify features of what
cancer looks like under the microscope, or detect cardiomegaly disease [43]. Histology
examination is low cost and allows an evaluation of infection distribution in various
tissues. However, it needs 2–7 days of preparation time, might not detect low-level
infection, and it depends on the expertise of pathologists;

• Sputum Smear Microscopy: refers to the microscopic investigation of sputum [44].
This has been proved to be one of the most effective ways of detecting tuberculosis
infection in patients so that treatment can begin [45]. In some times, a chest X-ray and
a sputum sample are needed to find out if a person has tuberculosis [46]. In poor and
middle-income countries, sputum smear microscopy has been the major approach for
diagnosing pulmonary tuberculosis [47]. Sputum smear microscopy examination has
a long experience, inexpensive, and is used for the follow-up of patients on treatment.
However, it is cumbersome for laboratory staff and patients and needs two samples;

• Magnetic Resonance Imaging (MRI): is a type of scan that uses powerful magnetic
fields and radio waves to provide detailed images of the inside of the body. An MRI
scanner is a huge tube with powerful magnets within. During the scan, the patient
will be lying inside the tube. MRI scans can be used to investigate practically any
region of the body, including the brain, breast, and heart problems [48]. MRI has
more advantages as a 3D technique and is safer (no ionizing radiation, and excellent
soft-tissue contrast. However, it has long total scan times (30–75 min), is not as readily
accessible, and is claustrophobic (enclosed space).

3.2. Dataset Description

A high number of trainable parameters are required to train a neural network model,
which necessitates very large datasets. Several publicly available open-source datasets of
thoracic images are reported in Table 2. Some of the datasets contain images of multiple
diseases of the thoracic, such as the National Institute of Health (NIH) dataset [49], ChestX-
ray8 [49], Chowdhury’s Kaggle [50], COVID-19 Image Data Collection [51], PadChest [52],
CheXpert [53], COVIDx Dataset [54], COVID-19 Radiography Database [55], and the
MIMIC dataset [56].

Other datasets contain only images of one disease, such as Andrew’s Kaggle dataset,
JSRT [57], Optical Coherence Tomography (OCT) and Chest X-ray Images [58], RSNA Pneu-
monia Detection Challenge Dataset [59], RIH-CXR [60], NCI Genomic Data Commons [61],
COVID Chest X-ray Dataset, ImageCLEF [62], ChestX-ray images (Pneumonia) [58], Mont-
gomery and Shenzhen datasets [63], Shenzhen datasets [63], COVID-CT Dataset [64],
Autofocus database [65], Sajid’s Kaggle dataset, LDOCTCXR [66], Sunnybrook Cardiac
MRI dataset [67], CPTAC-LUAD dataset [68], and the LIDC-IDRI dataset [69].
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All of these datasets display about 32 different diseases labels which can listed as fol-
lows: Pneumonia, Viral Pneumonia, Bacterial Pneumonia, Atypical Pneumonia, COVID-19,
Edema, Consolidation, Atelectasis, Lesion, Asbestosis Signs, Cardiomegaly, Enlarged Car-
diomediastinum, Heart Insufficiency, Pleural Thickening, Pneumothorax, Fracture, Lung
Metastasis, Mass, Hernia, Effusion, Nodule, Emphysema, Fibrosis, COPD signs, Tuber-
culosis, Tuberculosis Sequelae, Post Radiotherapy Changes, Pulmonary Hypertension,
Respiratory Distress, Lymphangitis Carcinomatosa, Infiltration, and Lepidic Adenocarci-
noma. The majority of the available datasets are CXR images, as shown in Table 2.

Table 2. Public datasets are used by contributions to deep learning applications in pulmonary medical
imaging analysis.

Name of Dataset/Ref. &
Download Link Dataset Classes Images Type Dataset Description

ChestX-ray8 [49,70]

8 thoracic diseases and a
normal case. Diseases labels

are Atelectasis, Cardiomegaly,
Effusion, Infiltration, Mass,
Nodule, Pneumonia, and

Pneumothorax.

X-ray

108,948 frontal images in PNG
format with resolution of
images 1024 × 1024, from

30,805 patients.

ChestX-ray14 [49,70]

14 thoracic diseases and a
normal case. Diseases labels
are Edema, Cardiomegaly,
Effusion, Infiltration, Mass,

Nodule, Pneumonia,
Pneumothorax, Atelectasis,
Hernia, Pleural thickening,
Emphysema, Fibrosis, and

Consolidation.

X-ray

112,120 total images in PNG
format from 32,717 patients.

Images resolution
1024 × 1024.

ImageCLEF 2019 [39,71] Tuberculosis CT

335 images in PNG format for
218 patients, with a set of

clinically relevant metadata.
Image size 512 × 512 pixels.

ImageCLEF 2020 [62,72] Tuberculosis CT 403 images in PNG format
512 × 512 pixels.

JSRT dataset [57,73] Normal and Lung Nodules CT and X-ray

93 normal and 154 nodule
images in PNG format, with

metadata. Image size
2048 × 2048 pixels.

Montgomery dataset [63,74] Tuberculosis and Normal X-ray

138 TB images and 80 normal
images in PNG format with

metadata. Images size is
either 4020 × 4892 or
4892 × 4020 pixels.

Autofocus database [65,75] Tuberculosis Sputum Smear Microscopy 1200 images with resolution of
2816 × 2112 pixels.

Andrew’s Kaggle
Database [76] COVID-19 CT and X-ray

16 CT images and 79 X-ray
images in JPEG format with

different size of images.
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Table 2. Cont.

Name of Dataset/Ref. &
Download Link Dataset Classes Images Type Dataset Description

Chowdhury’s Kaggle
dataset [50,77]

COVID-19, Pneumonia, and
Normal X-ray

1341 Normal, 219 COVID-19,
and 1345 Pneumonia in PNG

format images.

Optical Coherence
Tomography (OCT) and Chest

X-ray Images [58,78]
Normal and Pneumonia X-ray and CT

5856 images, 1583 normal and
4273 pneumonia images in
JPEG format with different

images size. Bacterial
Pneumonia, Viral Pneumonia,

and COVID-19 are all
represented in the
Pneumonia class.

Shenzhen dataset [63,79] Tuberculosis and normal X-ray

662 frontal images;
326 Normal and 336 TB.

Images are in PNG format
with different size about

3000 × 3000.

CheXpert [53,80]

18 different diseases labels as
Atelectasis, Consolidation,
Infiltration, Pneumothorax,

Edema, Emphysema, Fibrosis,
Effusion, Pneumonia, Pleural

Thickening, Cardiomegaly,
Nodule, Mass, Hernia, Lung

Lesion, Fracture, Lung
Opacity, and Enlarged
Cardiomediastinum

X-ray

224,316 images in PNG and
JPG format from 65,240

patients with both frontal and
lateral views, with different

images size.

RSNA Dataset [59] Pneumonia and Normal X-ray 5863 images in JPEG format
with different images size.

PadChest [52,81]

16 different diseases labels as
Pulmonary Fibrosis, COPD

signs, Pulmonary
Hypertension, Pneumonia,

Heart Insufficiency,
Pulmonary Edema,

Emphysema, Tuberculosis,
Tuberculosis Sequelae, Lung

Metastasis, Post Radiotherapy
Changes, Atypical

Pneumonia, Respiratory
Distress, Asbestosis Signs,

Lymphangitis Carcinomatosa,
and Lepidic Adenocarcinoma

X-ray

160,868 images in PNG format
with different images size
from 67,625 patients and

206,222 reports.

NCI Genomic Data
Commons [61,82] Lung Cancer Histopathology More than 575,000 images

with size 512 × 512.

Covid Chest X-ray
database [83] COVID-19 X-ray

231 COVID-19 images in JPEG
format with different images
size, and contains metadata
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Table 2. Cont.

Name of Dataset/Ref. &
Download Link Dataset Classes Images Type Dataset Description

RIH-CXR [60] Normal and Abnormal X-ray

17,202 frontal images;
9030 Normal and 8172
abnormal images from
14,471 patients. It also

contains metadata.

Sajid’s Kaggle database [84] Normal and COVID-19 X-ray

28 Normal and 70 COVID-19
images in JPEG, JPG, and

PNG format with different
images size.

Covid-19 Radiography
Database [55,77]

Normal, COVID-19, Lung
Opacity, and Viral Pneumonia X-ray

10200 Normal,
3616 COVID-19, 6012 Lung

Opacity, and 1345 Viral
Pneumonia. 299 × 299 pixels
images in PNG format. The
dataset contains metadata.

ChestX-ray images
(Pneumonia) [58,85] Normal and Pneumonia X-ray

5232 chest X-ray images from
children. 3883 pneumonia

(2538 bacterial and 1345 Viral)
and 1349 normal, from a total

of 5856 patients to train a
model and then tested with

234 normal and
390 Pneumonia from 624

patients. The images are in
JPEG format with different

size.

COVID-CT database [64,86] Normal and COVID-19 CT

15589 images for normal and
48260 images for COVID-19 in
DICOM format with 512×512

pixels.

COVID-19 Image Data
Collection [51,87]

4 classes: COVID-19, Viral
Pneumonia, Bacterial

Pneumonia, and Normal
X-ray

It contains 306 images, 79
images for normal, 69 images
for COVID-19, 79 images for
Bacterial Pneumonia, and 79

images for Viral Pneumonia in
JPG format with different size.

It also contains metadata.

LIDC-IDRI [69,88] Lung Cancer CT
It conatins 1018 images from
1010 patients. It also contains

metadata.

LDOCTCXR [66,78] Normal and Pneumonia X-ray 3883 Pneumonia and
1349 Normal images.

COVIDx Dataset [54,89] Pneumonia, Normal, and
COVID-19 X-ray

5559 Pneumonia, 8066
Normal, and

573 COVID-19 images

CPTAC-LUAD Dataset [68,90] Lung Cancer MRI, CT, and X-ray 43,420 images in
DICOM format.
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Table 2. Cont.

Name of Dataset/Ref. &
Download Link Dataset Classes Images Type Dataset Description

Sunnybrook Cardiac
MRI [67,91] Heart Disease MRI

The SCD had 45 MRI images
with the combination of

patients with the following
classes such as healthy,

hypertrophy, heart failure
with infarction and heart

failure without infarction. The
image resolution is 255 × 255.

MIMIC-CXR Dataset [56,92] Chest radiograph X-ray

377,110 chest radiographs
with 227,835 radiology reports
in DICOM format. The size of
the chest radiographs varies

and is around
3000 × 3000 pixels.

3.3. Image Pre-Processing

The main goal of image pre-processing a segmentation is to enhance the quality of the
input image and reduce the amount of noise. Images must match the network’s input size in
order to train a network model and make predictions on new data. You can re-scale or crop
your data to the desired size if you need to modify the size of your images to fit the network.
By using random augmentation to your data, you can effectively enhance the amount of
training data [93]. The image augmentation creates many variations from the original
images. The image augmentation process may include cropping, flipping, brightness,
saturation, contrast, rotation, scaling, translation, zooms, and/or adding noise, as shown
in Figure 1. The figure illustrates the different variations from the input X-ray image,
including horizontal and vertical shift, horizontal and vertical flip, rotation, brightness,
and zoom using Keras ImageDataGenerator method. As an example of data augmentation
pre-processing, in [94], the authors used data augmentation to diagnose pneumonia disease
and achieved an accuracy of 96.61%. For image classification tasks, in terms of training loss,
accuracy, and validation loss, a deep learning model with image augmentation outperforms
a deep learning model without it. Augmentation can solve the problem of imbalanced
classes in binary classification [95]. When training a binary classification model, the
resulting model will be biased if one class has more samples than the other. There are
other advanced methods that are used to handle the imbalanced dataset, such as the
synthetic minority oversampling technique (SMOTE) [96], generative adversarial networks
(GAN) [97,98], and adaptive synthetic sampling method (ADAYSN) [99]. In [98], the
authors used GAN method to detect lung cancer and achieved an accuracy of 99.86%.
Image segmentation is used to perform operations on images to detect patterns and retrieve
information from them. Image segmentation is the process of splitting a digital image
into several regions or objects, each of which is made up of sets of pixels with similar
features or attributes that are labeled differently to represent distinct regions or objects. The
purpose of segmentation is to make an image more understandable and easier to evaluate
by simplifying and/or changing its representation, as in [100], which achieved an AUC
of 97.7% for segmentation. In [101], the authors achieved an accuracy of 96.47% without
segmentation and 98.6% with segmentation.
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Original Image 90°-Rotation Image 180°-Rotation Image Brightness Image Zoom Image

Horizontal-Shift Image Vertical-Shift Image Vertical-Flip ImageHorizontal-Flip Image

Figure 1. Results of the data augmentation procedure on a certain CXR image.

3.4. Deep Learning Models

Deep learning has become very popular in the field of scientific computing because
its algorithms are widely used to solve complex problems in medical applications. Deep
learning algorithms employ several types of neural networks to perform specific tasks
such as speech recognition, image recognition, data compression, machine translation,
data visualization, and image classification. Deep learning supports the classification,
quantification, and identification of medical images. DL is a learning type of neural
network relevant to layer size [102], and it refers to systems that learn from experience
on large data sets. Deep learning is predicated on the concept of extracting features from
input data utilizing many layers to find different elements that are important to the input
data. Data classification is very important in the medical field to generate statistics about
the causes of illness and causes of death. Many varieties of deep learning algorithms are
utilized in different applications as the nature of the data determines which deep learning
algorithms are used. The most widely used deep learning algorithms are as follows:

3.4.1. Convolutional Neural Networks (CNNs)

For image classification, CNN is one of the most commonly used deep neural network
types [103]. Unlike neural networks ‘ANN’, where the input is a vector, here the input is a
multi-channeled image. CNN operates by extracting features from images directly [104].
The essential features are not pre-trained; they are learned while the network trains on a set
of images. This automated feature extraction makes deep learning models more accurate
for computer vision tasks such as object classification [105]. CNN learns to detect distinct
aspects of an image using many hidden layers. CNN is formed by three main types of
layers (convolutional layer, pooling layer, and fully connected layer) [106,107] as shown in
Figure 2. The description of these layer types is as follows:

COVID-19

Normal

Input Images
Convolutional Layers Pooling Layers Fully Connected Layers

Feature extraction part in multiple hidden layers Classification part in the output layer

Figure 2. CNN architecture using chest X-ray images as an input.

• Convolutional layer has a set of filters (or kernels). A kernel or a filter is a collection
of weights, where each neuron in one layer is connected to every neuron in the next
layer in the neural network using weights. It performs a convolution operation (a
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linear operation involving a set of weights multiplied (in a dot product mode) by the
input is called convolution) [108]. To obtain a certain value, the value of dot products
are added together;

• Pooling layer is applied to the feature maps produced by a convolutional layer. It
provides an approach for downsampling feature maps by summarizing the presence
of features in patches of the feature map, which leads to reducing the number of
parameters and calculations in the network. It recognizes the complex objects in
the image and thus preventing overfitting. Average pooling and max pooling are
two common pooling algorithms that summarize a feature’s average presence maps;

• Fully connected layer connects all of the neurons from the previous layer and assigns
each connection a weight. Each output node in the output layer represents a class’s
score. Multiple convolutional-pooling layers are merged to generate a deep architec-
ture of nonlinear transformations, which helps to create a hierarchical representation
of an image, facilitating the learning of complex relationships.

CNN is widely used in image classification because it is powerful in achieving high
accuracy with lowest error rate, but there are some disadvantages as follows: CNN has
multiple layers, hence the training process takes a lot of time and also requires a large data
set to process and train the neural network [109].

3.4.2. Recurrent Neural Networks (RNNs)

RNNs are widely employed in image labels, speech recognition, time series analysis,
machine translation, and natural language processing (NLP). RNNs use some types of
feedback, in which the output is fed back into the input as shown in Figure 3.

h

h

h

h

y

y

y

h

x

Input 
Layer Hidden Layers

Output 
Layer

Rotate anti-clockwise and 
compress the layers

A

C

B

Figure 3. Simple recurrent neural network architecture.

It is a loop that passes data back to the network from the output to the input. The
nodes in different layers of the neural network are compressed to form a single layer of
recurrent neural networks. ‘x’ is the input layer, ‘h’ is the hidden layer, and ‘y’ is the output
layer. A, B, and C are the network parameters used to improve the output of the model.
At any given time t, the current input is a combination of input at x(t) and x(t − 1). The
output at any given time is fetched back to the network to improve on the output. The
previous elements of a sequence determine the output of the RNNs. Therefore, they are
able to remember previous data and use that information in their prediction [110].

RNN is the best example of long-term memory as it remembers all information since
it was first used. Using its prior knowledge, it anticipates your other actions. However,
there are some drawbacks such as slow computation of this neural network, training can
be difficult, and very long sequences cannot be processed if you use relu as an activation
function. Therefore, RNN includes less feature compatibility when compared to CNN [111].

3.4.3. Deep Belief Networks (DBNs)

DBN is a type of deep neural network that comprises a large number of hidden units
connected between layers but not between units within each layer as shown in Figure 4.
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………….
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…………..

………..Input Layer

Restricted Boltzmann 

Machines

Label Units
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Hidden units

Restricted Boltzmann 

Machines

Figure 4. Simple deep belief network architecture.

Restricted Boltzmann Machines (RBMs) are a binary variant of factor analysis. Instead
of having multiple factors, the network output will be determined by a binary variable. DBN
can be used to extract the in-depth features of the original data. Object recognition, video
sequences, and motion capture data are all processed using DBN applications [112,113].

A deep belief network is especially useful when limited training data are available.
DBN has specific robustness in classification (size, position, color, and viewing angle
rotation). The same neural network approach in a DBN can be implemented on various
applications and data types. However, there are some drawbacks including that it requires
huge data to perform better techniques such as CNN model, has hardware requirements,
and requires classifiers to understand the output [114].

3.4.4. Multilayer Perceptron (MLP)

MLP is a sort of feedforward neural network made up of multiple layers of perceptrons
with activation functions and is a fully connected class of Artificial Neural Network (ANN),
where ANN refers to models of human neural networks that are designed to help computers
learn. It consists of a large number of highly interconnected processing elements called
neurons, and one or more hidden layers. MLP are made up of at least three fully connected
layers: input, hidden, and output layers as shown in Figure 5.

Input feature 1

Input feature 2

Input feature 3

Input 
layer

Hidden layer

Output

Output layer

Figure 5. Simple MLP architecture.

MLP might have several hidden layers, and they are employed in applications of
machine translation software, complex signal processing, speech recognition, and image
recognition [115].
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The MLP model is one of the best and simplest types of artificial neural networks, and
it works well with both small and large input data. However, one of its drawbacks is that
the calculation process is difficult and takes a long time [116].

3.5. Ways to Train Deep Learning Models

A pre-trained model is one that has been trained on a large dataset to handle a problem
similar to the one we are working on. There are three types of training a deep learning
model: learning from scratch, transfer learning, and fine-tuning.

• Learning from scratch collects a large number of labeled datasets and designs a
network architecture to learn the features that may then be used as input to a model
(i.e., feature extractor). Feature extraction images may be extracted from a model
automatically as in the CNN model or manually using hand-crafted methods such as
Histogram of Oriented Gradients (HOG), Intensity Histograms (IH), Scale Invariant
Feature Transform (SIFT), Local Binary Patterns (LBP), and Edge Histogram Descriptor
(EHD) [117]. For applications with a large number of output classes, this strategy is
useful, but it needs more time to train a model [118];

• Transfer learning is the process of transferring information from one model to the
next, allowing for more accurate model creation with less training data as shown
in Figure 6. Instead of starting the learning process from scratch, transfer learning
begins with patterns learned while solving a previous problem, allowing for faster
progress and improved performance while tackling the second problem [119]. Many
studies use transfer learning to enhance their model performance, such as the ones
in [94,101,120–122];

• Fine-tuning is a common technique for transfer learning. In addition, it is making
minor changes in order to obtain the desired result or performance, using the weights
of a pre-trained neural network model as initialization for a new model trained on
the same domain’s data. Except for the output layer, the target model duplicates all
model designs and their parameters from the source model and fine-tunes them based
on the target dataset. The target model’s output layer, on the other hand, must be
trained from scratch. Fine-tuning deep learning involves using weights of a previous
deep learning algorithm for programming another similar deep learning process
as in [32,123,124]. Because it already has crucial knowledge from a previous deep
learning algorithm, its procedure dramatically reduces the time required to develop
and process a new deep learning algorithm. When the amount of data available for
the new deep learning model is limited, fine-tuning deep learning models can be used,
but only if the datasets of the current model and the new deep learning model are
similar [125].

3.6. Ensemble Learning

Ensemble learning is the process of strategically generating and combining several
models, such as classifiers to solve a specific problem [126]. It is largely used to improve a
model’s performance (classification, prediction, function approximation, etc.) or to lower
the chance of a poor model selection. It can also be used to assign a confidence level to the
model’s decision, data fusion, incremental learning, non-stationary learning, pick optimal
(or near-optimal) features, and error-correcting. Classifiers may be Support Vector Machine
(SVM), SoftMax, Decision Trees, or Naïve Bayes Classifiers. Voting scheme [127,128],
bagging [129], boosting [130,131], and stacking [132,133] are the most commonly used
ensemble learning algorithms.

3.7. Pre-Trained Models

As mentioned before, transfer learning is a machine learning method where we reuse
a pre-trained model as the starting point for a model on a new task as shown in Figure 6.
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Figure 6. The concept of transfer learning.

The following are many pre-trained models for image classification and segmenta-
tion as:

• Visual Geometry Group (VGG) is the most familiar model for image classification.
It is a standard CNN with multiple layers [134]. The VGG models are VGG-16
and VGG-19, which supports 16 and 19 convolutional layers, respectively, trained
on the ImageNet (ImageNet is a database with over 14 million images divided into
1000 categories). VGG-16 takes a long time to train compared to other models, and
this can be a disadvantage when we are using large datasets. The main feature of this
architecture is that it focuses on basic 3 × 3 size kernels rather than a large number of
hyper-parameters (a kernel is a matrix of weights that are multiplied with the input
to improve the output in a preferred manner) in the convolutional layers and the
max-pooling layers of 2 × 2 size. Finally, it has two fully connected (FC) layers for
output, followed by a Softmax classifier. The VGG’s weight configuration is publicly
available and has been utilized as a baseline feature extractor in a variety of other
applications and challenges. VGG-19 differs from VGG-16 in that each of the three
convolutional blocks has an extra layer [135]. The work in [136] used VGG-16 for the
classification of 14 different thoracic diseases and the work in [137] used the same
model for COVID-19 detection. The work in [138] used VGG-19 for the detection of
tuberculosis and the work in [139] used VGG-19 in the detection of pneumonia;

• Inception-V3 Szegedy et al. invented a type of CNN in 2014 [140]. Inception v3
is an image recognition model that has been shown to attain greater than 78.1%
accuracy on the ImageNet dataset [141]. Inception models are different from typical
CNNs in that they are made up of inception blocks, concatenating the results of
many filters on the same input tensor. The model itself is made up of symmetric and
asymmetric building blocks, including convolutions, average pooling, max pooling,
concatenations, dropouts, and fully connected layers. Batch normalization is used
extensively throughout the model and applied to activation inputs. Loss is computed
using Softmax. Inception-V3 is a new version of the starting model that was first
released in 2015. It has three different filter sizes in a block of parallel convolutional
layers (1 × 1, 3 × 3, and 5 × 5). Moreover, a maximum 3 × 3 assembly is performed.
The outputs are transmitted to the next unit in a consecutive order. It accepts an entry
image size of 299 × 299 pixels [142]. In [119], the authors used this model for the
detection of lung nodule disease;

• ResNet50 is a type of deep neural network that is a subclass of CNNs and is used to
classify images. ResNet50 is a variant of ResNet model which has 48 Convolution lay-
ers along with one MaxPool and one Average Pool layer [143]. The usage of residual
layers to create a new in-network architecture is a major innovation. ResNet50 is com-
prised of five convolution blocks, each having three layers of convolution. ResNet50 is
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a residual network that accepts photos with a resolution of 224 × 224 pixels and has
50 residual networks [144]. The work in [120,145] used this model in the classification
of 14 different thoracic diseases;

• Inception-ResNet-V2 is an ImageNet-trained CNN. The network is 164 layers deep
and can classify images into 1000 object categories [141]. It is a hybrid approach
that combines the structure of inception with the residual connection. It accepts
299 × 299 pixel images and generates a list of estimated class probabilities. The con-
version of inception modules into residual inception blocks, the addition of more
inception modules, and the creation of a new type of inception module (Inception-A)
following the Stem module are among the advantages of Inception-Resnet-V2 [146];

• DenseNet201 is a 201-layer CNN that receives a 224 × 224 pixel input image.
DenseNet201 is a ResNet upgrade that adds dense layer connections. It connects
one layer to the next in a feed-forward approach. DensNet201 has direct connections
L(L + 1)/2 while the standard convolutional networks have L layers and L connec-
tions. In DenseNet, each layer obtains additional inputs from all preceding layers and
passes on its own feature-maps to all subsequent layers. Concatenation is used. Each
layer is receiving a “collective knowledge” from all preceding layers. Since each layer
in DenseNet receives all preceding layers as input, it has more diversified features and
tends to have richer patterns [147]. By increasing the amount of computing required,
encouraging feature reuse, minimizing the number of parameters, and reinforcing
feature propagation, DenseNet can enhance the model’s performance [148];

• MobileNet-V2 is an improved version of MobileNet-V1 that uses the ImageNet
database to train. It contains only 54 layers and a 224 × 224 pixel input image.
MobileNetV2 contains the initial fully convolution layer with 32 filters, followed by
19 residual bottleneck layers [149]. Its key distinctive feature is that it uses depth-wise
separable convolutions instead of a single 2D convolution. That is, two 1D convo-
lutions with two kernels are used. As a result, training takes up less memory and
requires fewer parameters, resulting in a tiny and efficient model. A residual block
with a stride of 1 and a downsizing block with a stride of 2 are the two types of
blocks. Each block has three layers: a 1 × 1 convolution with ReLU6, a depthwise
3 × 3 convolution with ReLU6, and another 1 × 1 convolution with nonlinearity.
MobileNetV2 is a mobile-oriented model that can be used to solve a variety of visual
identification tasks (classification, segmentation, or detection) [150]. The work in [151]
used MobileNet-v2 in the classification of 14 different thoracic diseases, and the work
in [101] used this model for the detection of tuberculosis disease;

• Xception is a CNN that has 71 layers called Xception and presented by Chollet [152].
It features depthwise separable convolutions and is a more advanced version of
Inception’s architecture. The traditional Inception modules are replaced by depthwise
separable convolutions in Xception. It outperforms VGG16, ResNet, and Inception in
conventional classification issues when compared to them. It uses a 299 × 299 pixel
input image [152];

• NASNet is a type of convolutional neural network discovered through a search for
neural architecture. It has been trained on over a million images from ImageNet. For a
wide variety of images, the network learned rich feature representations. Normal and
reduced cells are the basic building blocks [153]. The network accepts 331 × 331 pixel
images as input [154]. The work in [135] used this model in lung cancer detection;

• U-Net is used for semantic segmentation. It is a convolutional network architecture
for fast and precise segmentation of images. It is used for biomedical image seg-
mentation [155]. In the U-Net model, the input images go through several stages
of convolutional and pooling, which reduce the height and width of the image as
the depth grows after each convolution in down-sampling, followed by fully con-
volutional and several stages of up-sampling to produce the image mask [156]. The
segmentation image size of 512×512 pixel [157,158]. In [159], the authors used this
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model for segmentation of thoracic fracture disease, and in [100], the authors used
U-Net in segmentation of cardiomegaly disease.

3.8. Evaluation Criteria

The final step is using a loss function or confusion matrix Cij to determine the number
of observations that were categorized properly or wrongly. The loss function is the differ-
ence between the expected outcome and the expected output. From the loss function, we
can derive the gradients which are used to update the weights. For a data point Yi and
its predicted value Yj, where n is the total number of data points in the dataset, the mean
squared error (MSE) is defined as in Equation (7). The observed i and projected j outcome
values are compared as shown in Figure 7. The confusion matrix shows the number of
correct and incorrect predictions categorized by type of outcome [160]. Recall, Precision,
Specificity, Accuracy, Area Under the Curve (AUC), and Receiver Operating Characteristics
(ROC) curve can be measured using a confusion matrix. The benchmark metrics are:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1-Score = 2 × Precision × Recall
Precision + Recall

(4)

Sensitivity =
TP

TP + FN
(5)

Speci f icity =
TN

TN + TP
(6)

MSE =
1
n
×

n

∑
i=1

(Yi − Yj)
2 (7)

Positive Negative

False Negative
(FN)

True Positive
(TP)

True Negative
(TN)

False Positive
(FP)

Negative Predictive 
Value
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Sensitivity
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Negative
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Actual 
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Figure 7. Confusion matrix.
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3.9. Type of Disease

In this paper, we focus on classifying the thoracic diseases into three classes: lung
diseases or respiratory system diseases, heart diseases, and others as shown in Figure 8. For
each class, we discuss the research that classifies these diseases whether the classification is
binary or multiple, the type of image for each disease, the type of AI model that is used
to detect this disease, the dataset used, and the performance of each model. Lung diseases
include pneumonia [139], COVID-19 [137,161–165], edema [166], lesion [135], asbestosis
signs [167], consolidation [168], atelectasis [169], COPD [170], pleural thickening [171],
fibrosis [172], asthma [173], lung metastasis [98], pneumothorax [174], emphysema [175],
tuberculosis (TB) [176], and infiltration [177]. Heart diseases include cardiomegaly [128] and
heart insufficiency disease [178]. Other diseases include fracture [159], hernia [179], and
mass [180].

Thoracic diseases

Lung diseases

Asthma
COPD

TissuesAirways

Pneumonia Edema

Pleural Thickening

Consolidation

Heart diseases

Cardiomegaly Heart Insufficiency

Others

Fracture Hernia
Mass

Pneumothorax

Atelectasis

Asbestosis Signs

Infiltration

Lung Metastasis

Lesion

FibrosisTBCOVID-19

Emphysema

Figure 8. Thoracic diseases classification.

3.9.1. Lung Diseases

These chest diseases affect the structure of the lung tissue, airways, or any part of
the respiratory system, causing it to become scarred or inflamed, which makes the lungs
unable to fully expand [181]. These diseases appear as opacities on chest radiograph such
as pneumonia, MERS-CoV, edema, and consolidation [182]. Tables 3–5 summarize the
studies on using deep learning to diagnose lung diseases.

Lung Diseases That Affect Tissues

Table 3 includes the following diseases: Pneumonia, Fibrosis, Lesion, Pleural Thicken-
ing, Asbestosis Signs, Edema, Lung Metastasis, and Consolidation.
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Table 3. Lung diseases detection summary that affect tissues.

Ref. (Year) Name of
Disease

Input Image
Type Dataset Used

Data
Preparation

Type
Model Type Ensemble

Technique Target Results Open Issues

[127] (2019) Pneumonia X-ray

RSNA
Pneumonia
Detection
Challenge

dataset

Data
Augmentation

including
flipping,
rotation,

brightness,
gamma

transforms,
random

gaussian noise,
and blur.

RetinaNet and
Mask R-CNN voting scheme Localization and

Classification Recall 79.3%

A lateral chest
X-ray or/and

CT images
should be

augmented to
the chest X-ray.
Metadata such
as age, gender,

and view
position can be
useful in later
investigations.

[94] (2021) Pneumonia X-ray

Covid Chest
X-ray and

optical
coherence

tomography
datasets.

intensity
normalization.

Contrast
Limited

Adaptive
Histogram

Equalization
(CLAHE).

Data
Augmentation.

CNN
pre-trained on
Inception-V3,

VGG16, VGG19,
DenseNet201,

Inception-
ResNet-V2,
Resnet50,

MobileNet-V2,
and Xception

Detection and
Classification

Accuracy
96.61%,

Sensitivity
94.92%, F1-Score

96.67%,
Specificity

98.43%,
Precision 98.49%

Create a
complete system
that can detect,
segment, and

classify
pneumonia.

Furthermore,
performance

could be
improved by
using larger
datasets and

more advanced
feature

extraction
techniques

including color,
texture, and

shape.
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Table 3. Cont.

Ref. (Year) Name of
Disease

Input Image
Type Dataset Used

Data
Preparation

Type
Model Type Ensemble

Technique Target Results Open Issues

[139] (2021) Pneumonia X-ray ChestX-ray8 image resizing VGG19 Voting Classifier Classification
and Detection

Accuracy
97.94%

Using texture
and shape

feature
extraction

techniques to
improve the
handcrafted

feature vector.
Using a suitable
classifier system

to replace the
SoftMax layer.

To improve
classification
accuracy, the

fully-connected
layer and the

drop out layer
were modified.

[166] (2020) Edema X-ray MIMIC-CXR

Data
Augmentation

including
translation and

rotation

BERT model

Classification
and Prediction
of the Edema
severity level

overall accuracy
89%

Suggest
utilizing text to

semantically
explain the

image model.
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Table 3. Cont.

Ref. (Year) Name of
Disease

Input Image
Type Dataset Used

Data
Preparation

Type
Model Type Ensemble

Technique Target Results Open Issues

[183] (2019) Edema X-ray MIMIC-CXR

Data
Augmentation

including
rotation,

transformation,
and cropping.

Bayesian
predicting
pulmonary

edema severity
RMS 0.66

To improve the
pulmonary

edema severity
prediction
accuracy,

researchers
suggest using an

alternative
machine
learning

approach.

[184] (2018) Fibrosis Histopathology
cardiac

histological
images dataset

Data
Augmentation

including
rotation,
flipping,

warping, and
transformation.

CNN Segmentation
and Detection

Mean DSC is
0.947

Learning data
should include
proportions of
each class and

color variations
in particular
structures, as

well as an
approximate

representation
of the attributes

in the whole
image

collection.

[172] (2019) Fibrosis CT
LTRC-DB,
MD-ILD,

INSEL-DB
CNN

Segmentation,
Classification,
and Diagnosis

Accuracy 81%
and F1-score

80%

Use
Histopathology
or X-ray in the

diagnosis.
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Table 3. Cont.

Ref. (Year) Name of
Disease

Input Image
Type Dataset Used

Data
Preparation

Type
Model Type Ensemble

Technique Target Results Open Issues

[168] (2020) Consolidation X-ray Pediatric Chest
X-ray

Data
Augmentation

including
cropping,

Histogram
matching

transformation,
and Contrast

Limited
Adaptive

Histogram
Equalization

(CLAHE)

DCNN

Detection and
Perturbation
visualization
(Heatmap)

Accuracy
94.67%

Test DCNN
model in multi-
classification.

[185] (2021)

Consolidation
and

(Pneumonia,
SARS-CoV-2)

X-ray COVIDx
Dataset

Data
Augmentation

including
flipping,

rotation, and
scaling.

CNN
pre-trained on

VGG-19

Classification
and

Visualization
(GradCam)

Accuracy
89.58% for

binary
classification

and 64.58% for
multi-

classification

Enhance
accuracy by
using a large

amount of data
in multi-

classification.
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Table 3. Cont.

Ref. (Year) Name of
Disease

Input Image
Type Dataset Used

Data
Preparation

Type
Model Type Ensemble

Technique Target Results Open Issues

[135] (2019)
Lung

Lesion/Lung
Cancer

CT LIDC-IDRI

DCNN
pre-trained on

VGG-19,
VGG-16,

ResNet50,
DenseNet121,

MobileNet,
Xception, and

NASNet

Segmentation
and

Classification

DenseNet:
Accuracy
87.88%,

Sensitivity is
80.93%,

Specificity is
92.38%,

Precision is
87.88%, and

AUC is 93.79%.
Xception:
Accuracy
87.03%,

Sensitivity
82.73%,

Specificity
89.92%,

Precision
84.97%, and

AUC 93.24%.

Focusing on the
application of
deep learning

models to small
datasets.

Using CNNs to
synthesize
artificial

datasets, such as
generative
adversarial
networks.

[186] (2020) Lung Nodule CT

Japanese Society
of Radiological

Technology
database

Data
Augmentation

including
horizontal

flipping and
angle rotation.

CNN

nodule
enhancement,

nodule
segmentation,

and nodule
detection.

Sensitivity
91.4%

To improve
CAD

performance,
the ROI image

can be
transformed to
an RGB image
and combined

with additional
nodule

enhancement
images.
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Table 3. Cont.

Ref. (Year) Name of
Disease

Input Image
Type Dataset Used

Data
Preparation

Type
Model Type Ensemble

Technique Target Results Open Issues

[119] (2019) Lung Nodules CT JSRT

Data
Augmentation

including
rotation, flip,

and shift.

DCNN
pre-trained on
Inception-v3

Classification

sensitivity
95.41%,

specificity
80.09%

Using ensemble
learning to

overcome the
problem of the
deep learning
model’s large
gap between

specificity and
sensitivity.

[167] (2021) Asbestosis Sign CT Private dataset LRCN
Classification

and
Visualization

Accuracy 83.3%

The LRCN
model can be

used to
diagnose a wide

range of lung
diseases.

[187] (2022) Asbestosis CT Private dataset

Data
Augmentation

including zoom,
flipping,

rotation, and
shift. Random

sampling.

LRCN (CNN
and RNN)

Segmentation
and Diagnosis

Sensitivity
96.2%,

Specificity
97.5%, Accuracy
97%, AUROC of

96.8%, and F1
score 96.1%

To supplement
the limitations

of a short
dataset, more

data should be
obtained, and

external
validation

should be done
through a

multicenter
study involving

additional
hospitals.
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Table 3. Cont.

Ref. (Year) Name of
Disease

Input Image
Type Dataset Used

Data
Preparation

Type
Model Type Ensemble

Technique Target Results Open Issues

[171] (2018)

Pleural
Thickening and

another 13
different
diseases

X-ray ChestX-ray14

Data
Augmentation

including
cropping and

flipping

AG-CNN Localization and
classification AUC 86.8%

Look into a
more accurate
localization of

the lesion areas.
Take on the

challenges of
sample

collecting and
annotation (with

the help of a
semi-

supervised
learning
system).

[145] (2021)

Pleural
Thickening and

another 13
different
diseases

X-ray ChestX-ray14
and CheXpert

CNN
pre-trained on

ResNet50

Localization and
classification

AUC (Pleural
Thickening) 79%
of ChestX-ray14
& average AUC

83.5%

Invite a group of
top radiologists
to work on mask
level annotation
for the NIH and

CheXpert
datasets.

[98] (2021)

Lung
Metastasis—

Lung
Cancerv

CT

SPIE-AAPM
Lung CT

Challenge Data
Set

Data
Augmentation

using GAN
network

CNN
pre-trained on

AlexNet
Classification Accuracy

99.86%

Adjusting the
parameters of
each layer to

obtain the best
parameter

combination or
implement the

optimizer in
different
network

architectures.
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Table 3. Cont.

Ref. (Year) Name of
Disease

Input Image
Type Dataset Used

Data
Preparation

Type
Model Type Ensemble

Technique Target Results Open Issues

[121] (2021) Lung Cancer CT LIDC-IDRI
CNN

pre-trained on
GoogleNet

Classification

Accuracy
94.53%,

Specificity
99.06%,

Sensitivity
65.67%, and
AUC 86.84%

To increase the
classification

accuracy of lung
lesions in CT
images, more
study on the
GoogleNet
network is
required.
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Pneumonia

Pneumonia is an infection that causes breathing difficulties by inflaming the air sacs
in one or both lungs.

Using the current deep learning architectures (VGG-16, VGG-19, ResNet-50, DenseNet-
201, Inception-ResNet-V2, Inception-V3, MobileNet-V2, and Xception models) for transfer
learning to compare current deep CNN architectures and retraining of a baseline CNN,
Idri et al. [94] established the best performing architecture for 2-class categorization (pneu-
monia and normal) based on X-ray images. The OCT and COVID Chest X-ray were the two
datasets used. As a result, they determined that the fine-tuned version of Resnet50 operates
exceptionally well, with rapid increases in training and testing accuracy (more than 96%).
Using transfer learning of current deep learning architectures, they established the best
performing architecture for 2-class categorization (pneumonia and normal) based on X-ray
images. Dey et al. [139] presented a Deep-Learning System (DLS) to diagnose lung diseases
based on X-ray images. The suggested study makes use of traditional chest radiographs as
well as chest radiographs that have been processed with a threshold filter. Standard DL
models with a SoftMax classifier are utilized for the first experimental evaluation using
the ChestX-ray8 dataset, including AlexNet, VGG16, VGG19, and ResNet50. The results
showed that VGG-19 has a higher classification accuracy of 86.97% when compared to other
approaches. They then used the Ensemble Feature Scheme to modify the VGG19 network
to identify pneumonia. VGG19 with an RF classifier has a higher accuracy of 95.70%. When
the same experiment was conducted with chest radiographs that had been handled with a
threshold filter, the classification accuracy of the VGG19 using the RF classifier was 97.94%.

An automated model for detecting and localizing pneumonia on chest X-ray images
were provided by Sirazitdinov et al. [127]. For pneumonia identification and localization,
they suggest an ensemble of two convolutional neural networks, Mask R-CNN and Reti-
naNet, where RetinaNet is a one-stage object detection model that utilizes a focal loss
function to address class imbalance during training. The RetinaNet backbone uses ResNet
and Feature Pyramid Net (FPN) structures. Based on the FPN structure, a top-down path
and horizontal connection are added. Each level of the FPN is connected to the fully convo-
lutional networks, which include two independent subnets that are used for classification
and regression. The Mask R-CNN is a Convolutional Neural Network and state-of-the-art
in terms of image segmentation. This variant of a Deep Neural Network detects objects in
an image and generates a high-quality segmentation mask for each instance.

For the detection of pneumonia, the Faster R-CNN-based technique was used. They
used the Kaggle Pneumonia Detection Challenge dataset, which contains 26,684 X-ray
images of pneumonia. The recall score was 79.3%.

Fibrosis

The pulmonary fibrosis disease is characterized by scarred and damaged lung tissue.
These thick, rough tissues make it difficult for your lungs to function properly, and as
pulmonary fibrosis worsens, you will start to feel short of breath.

Christe et al. [172] presented a CNN model for the classification and diagnosis of
pulmonary fibrosis disease by using CT images. They used three datasets: Lung Tissue
Research Consortium Database (LTRC-DB), the Multimedia Database of Interstitial Lung
Diseases (MD-ILD), and the Inselspital Interstitial Lung Diseases Database (INSEL-DB).
They used the random forest (RF) classifier that was able to recommend a radiological
diagnosis. The output accuracy is 81%, and the F1-score is 80%.

Fu et al. [184] developed and tested an elegant convolutional neural network (CNN)
for histological image segmentation, particularly those containing Masson’s trichrome
stain. There are 11 convolutional layers in the network. The CNN model was trained and
tested on a 72-image dataset of cardiac histology pictures (labeled fibrosis, myocytes, and
background). The segmentation performance of the model was excellent, with a test mean
dice similarity coefficient (DSC) of 0.947.
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Lesion

Pulmonary lesions, pulmonary nodules, lung nodules, pulmonary nodules, white
spots, and lesions are various words for the same thing: an abnormality in the lungs.
They are distinct, well-defined spherical opacities with a diameter of less than or equal
to 3 cm (1.5 in) that are entirely surrounded by lung tissue, do not touch the lung root or
mediastinum, and are not associated with enlarged lymph nodes, collapsed lung, or pleural
effusion. A pulmonary nodule might be malignant or benign.

Zhang et al. [135] presented a DCNN model pretrained on VGG-19, VGG-16, ResNet50,
DenseNet121, MobileNet, Xception, and NASNet. They showed that DenseNet121 and
Xception achieved better results for lung nodule diagnosis. They used the CT Lung Image
Database Consortium and the image database resource initiative (LIDC-IDRI). The output
accuracy for the DenseNet model is 87.77%, sensitivity is 80.93%, specificity is 92.38%,
precision is 87.88%, and AUC is 93.79%. Xception output performance is as follows: 87.03%
accuracy, 82.73% sensitivity, 89.92% specificity, 84.97% precision, and 93.24% AUC.

Chen et al. [186] introduced a faster region convolutional neural network (Faster R-
CNN) that has been effectively used for computed tomography nodule candidate detection.
Before doing nodule detection, they did nodular enhancement and segmentation. They
used the database of the Japanese Society of Radiological Technology. The model performed
well, with a sensitivity of 91.4% and 97.1%, respectively, with 2.0 and 5.0 false positives per
image (FPs/image).

To categorize pulmonary images, Wang et al. [119] employed a DCNN model pre-
trained on Inception-v3 to create a viable and practicable computer-aided diagnostic model.
The computer-aided diagnostic approach could help clinicians diagnose thoracic disorders
more accurately and quickly. They employed the fine-tuned Inception-v3 model based on
transfer learning and a variety of classifiers (Softmax, Logistic, and SVM). They worked
using the JSRT dataset. The sensitivity of the model was 95.41%, and the specificity
was 80.09%.

Pleural Thickening

Pleurisy is a disease that causes thickening of the lung lining, or pleura that may cause
chest pain and difficulty breathing.

Guan et al. [171] proposed an attention guided convolution neural (AG-CNN) network
that avoids noise and improves alignment by learning from disease-specific regions. AG-
CNN is divided into three branches. Five convolutional blocks with batch normalisation
and ReLU make up the global and local branches. A max pooling layer, a fully connected
(FC) layer, and a sigmoid layer are then connected to each of them. Unlike the global
branch, the local branch’s input is a local lesion patch that is cropped by the mask formed
by the global branch. The fusion branch is then created by concatenating the maximum
pooling layers of these two branches. They initially learn about a global CNN branch by
looking at global visuals. Then, they used the attention heat map obtained by the global
branch to infer a mask to crop a discriminative region from the image.

The ChestX-ray14 dataset was used to train and test the model. The AUC for AG-CNN
is 86.8% on average. The average AUC was 87.1% when DenseNet-121 is utilized.

For clinical applications, solving the problem of abnormality localization in addition
to categorising abnormalities, further training of these models to locate abnormalities could
be employed to address this problem. However, doing so accurately will necessitate a
significant number of clinical expert disease localisation annotations.

Ouyang et al. [145] employed a hierarchical attention mining framework that unites
activation and gradient-based visual attention in a holistic manner, as well as an attention-
driven weakly supervised algorithm. The three layers of attention mechanisms in the
hierarchical attention mining framework are foreground attention, positive attention, and
abnormal attention. ChestX-ray14 and CheXpert datasets are used in their investigation.
The average AUC for the ChetX-ray dataset is 83.5%. The AUC of ResNet50 and ResNet152
increased to 88.8% and 89.5%, respectively, when transfer learning was used.
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Asbestosis Signs

Asbestosis is a long-term lung illness caused by inhaling asbestos fibers. Long-term
exposure to these fibers causes lung tissue scarring and shortness of breath. The disease’s
symptoms can range from minor to severe, and they normally do not show up for several
years following persistent exposure.

Using medical CT data, Myong et al. [167] presented a Long-term Recurrent Con-
volution Networks (LRCN) model capable of recognizing the existence and severity of
asbestosis. The CNN and RNN models are combined in the LRCN model. LRCN processes
the variable-length visual input with a CNN. In addition, their outputs are fed into a stack
of recurrent sequence models, which is long short-term memory (LSTM). The final output
from the sequence models is a variable-length prediction. DenseNet161 is used to train the
CNN model (transfer learning). They used private data from 469 patients who had been
screened for asbestosis at Seoul St. Mary’s Hospital in Korea. The purpose of this study
was to employ LSTM which is a special type of RNN to address the image classification
problem with CT data. The model achieved an accuracy of 83.3%, with a true positive of
81.578% and a true negative of 86%. Additionally, a model was built that can test validity
by assisting an expert with a Grad-CAM that can see the judgement.

A lung segmentation and deep learning model-based approach for recognizing pa-
tients with asbestosis in segmented computed tomography (CT) images has been developed
by Kim et al. [187], which could be used as a clinical decision support system (CDSS). They
also suggested that the LRCN model to categorize lungs into normal and asbestosis lungs
(CNN extracts image features, and RNN learns the extracted sequence information). They
used a private dataset at Seoul St. Mary’s Hospital, which is part of the Catholic University
of Korea’s College of Medicine (IRB no. KC17ENSI0379). There were a total of 447 patients,
with 275 being healthy and 172 having asbestosis. In addition, 87 of the 172 patients with
asbestosis were diagnosed in the early stages, while 85 were discovered in the advanced
stages. The algorithm built with the DenseNet201 pre-trained model performed excep-
tionally well, with a sensitivity of 96.2%, specificity of 97.5%, accuracy of 97%, AUROC of
96.8%, and F1 score of 96.1%.

Pulmonary Edema

Excess fluid in the lungs causes this disorder. This fluid gathers in the lungs’ many air
sacs, making breathing harder.

Chauhan et al. [166] used the Medical Information Mart for Intensive Care CXR dataset
(MIMIC-CXR) to present a Bidirectional Encoder Representations from a Transformers
(BERT) neural network model that learns from images and text to assess pulmonary edema
severity from chest radiographs, where BERT is a deep learning model in which every
output element is connected to every input element, and the weightings between them are
dynamically calculated based upon their connection. Overall, the accuracy is 89%.

Liao et al. [183] also measure the severity level of pulmonary edema in CXR images,
but by using a Bayesian model for training and testing on the MIMIC-CXR dataset. The
root mean squared (RMS) error is 0.66, and the Pearson correlation coefficient (CC) is 0.52.

Lung Metastasis

Metastasis of the Lungs or Metastatic Lung Disease Cancer is a malignant tumor that
develops elsewhere and spreads to the lungs through the circulation. Breast cancer, colon
cancer, prostate cancer, sarcoma, bladder cancer, neuroblastoma, and Wilm’s tumor are all
common malignancies that metastasize to the lungs. Any malignancy, on the other hand,
has the potential to move to the lungs.

To overcome the difficulty of sparse data, the Generative Adversarial Network (GAN)
was presented by Lin et al. [98] to generate computed tomography images of lung cancer.
GAN is applied to generate new data automatically. It trains the generator and discrimina-
tor networks simultaneously. The former generates new images, and the latter learns to
distinguish the fake images from the input of real and generated data. The AlexNet model
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is applied for the classification of lung cancer into benign or malignant tumors. They used
the SPIE-AAPM Lung CT Challenge Data Set that contains 22,489 lung CT images, with
11,407 images of malignant tumors and 11,082 images of benign tumors. The image size is
512 × 512 pixels. The model achieved an accuracy of 99.86%.

Using CT images from the LIDC-IDRI datasets, Ashharet al. [121] evaluated the
performance of five convolutional neural network architectures: ShuffleNet, GoogleNet,
SqueezeNet, DenseNet, and MobileNetV2 in categorizing lung tumors into two classes:
malignant and benign categories. They proved that GoogleNet has the best performance for
CT lung tumor classification with a specificity of 99.06%, an accuracy of 94.53%, sensitivity
of 65.67%, and AUC of 86.84%.

Consolidation

Pulmonary consolidation is an area of normally compressible lung tissue that occurs
when that tissue is filled with fluid instead of air.

To detect consolidation lung illness, Rostami et al. [168] deployed a pre-trained deep
convolutional neural network (DCNN) VGG16 and DenseNet121 on ImageNet datasets.
The dataset they used was the Pediatric Chest X-ray dataset, which contains two classes,
normal and pneumonia/consolidation. The model correctly identified consolidation with a
94.67% accuracy.

A CNN classification model pre-trained on VGG-19 was developed by Bhatt et al. [185]
for COVID-19 pulmonary consolidations in chest X-ray detection. They look at binary clas-
sification to detect consolidation lung disease, followed by multi-classification predictions
(normal, pneumonia, and SARS-CoV-2). They used the COVIDx dataset, which includes
66 COVID-19 among the 16,756 chest radiography images. For binary classification, the
accuracy was 89.58%, while for multi-classification, it was 64.58%.

Lung Diseases That Affect Airways

Table 4 includes the following diseases: Asthma, COPD, TB, and COVID-19.
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Table 4. Lung diseases detection summary that affect airways.

Ref. (Year) Name of
Disease

Input Image
Type Dataset Used

Data
Preparation

Type
Model Type Ensemble

Technique Target Results Open Issues

[188] (2021) COPD CT KNUH and
JNUH 3D-CNN

Extraction,
visualization,

and
classification

Accuracy 89.3%
and Sensitivity

88.3%

Apply a
3D-model using
a wide range of

datasets.

[170] (2021) COPD CT RFAI

data
augmentation

processes:
random rotation,

random
translation,

random
Gaussian blur,

and
subsampling

MV-DCNN Classification Accuracy 97.7%

Applied
MC-DCNN to

diagnose a
variety of lung

diseases.

[175] (2019) Emphysema CT private dataset DCNN Classification
and Detection

Accuracy
92.68%

Use transfer
learning to

achieve high
accuracy.

[189] (2019)

Emphysema
and another
different 13

diseases

X-ray ChestX-ray14 CNN Classification
overall

Accuracy
89.77%

Ensemble
approaches

were used to
improve the

model’s
performance.

[173] (2018) Asthma Reports only Private dataset DNN Diagnosis Accuracy 98%

Apply a
different

classifier to
outperform the
DNN algorithm

in terms of
accuracy.
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Table 4. Cont.

Ref. (Year) Name of
Disease

Input Image
Type Dataset Used

Data
Preparation

Type
Model Type Ensemble

Technique Target Results Open Issues

[190] (2018) Asthma Reports only Private dataset
Bayesian
Logistic

Regression

Prediction for
Asthma disease

Accuracy
86.3673%,
Sensitivity

87.25%

Check if there is
an increase in
the accuracy

when including
more patients in

the dataset,
using the

posteriors from
this study as
priors for the
new dataset.

[137] (2020) COVID-19 CT Private dataset

Histogram
equalization

features
extraction
Intensity

transformation

CNN
pre-trained on

VGG-16
Classification

Precision 92%,
Sensitivity 90%,
Specificity 91%,
F1-Score 91%,
Accuracy 90%

It is possible to
use deep
learning

networks with
more complex

backbone
architecture.
GANs can be
developed to
increase the
number of

suitable images
for network
training and

hence improve
the model’s

performance.
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Table 4. Cont.

Ref. (Year) Name of
Disease

Input Image
Type Dataset Used

Data
Preparation

Type
Model Type Ensemble

Technique Target Results Open Issues

[131] (2020) COVID-19 CT Private dataset

Volume features
based on

segmented
infected lung

regions,
Histogram

distribution,
Radiomics
features.

CNN Boosting
Segmentation

and
Classification

Accuracy
91.79%,

Sensitivity
93.05%,

Specificity
89.95%, AUC

96.35%,
Precision

93.10%, and
F1-score 93.07%

Plan to collect
more data from

patients with
different

diseases and
apply the
AFSDF

approach to
further

COVID-19
classification

tasks (e.g.,
COVID-19 vs.
Influenza-A

viral pneumonia
and CAP, severe

patients vs.
non-severe
patients).

[122] (2021)
COVID-19,
Pneumonia,
Tuberculosis

X-ray

Pediatric CXRs,
IEEE COVID-19

CXRs, and
Shenzhen
datasets.

Data
Augmentation

including
rotation, shift,
and adding

noise.

DenResCov-19 Classification

Precision
82.90%, AUC

95%, and
F1-Score 75.75%

Increase the
number of
classes to

address more
lung illnesses.

The number of
COVID-19

patients should
be raised.
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Table 4. Cont.

Ref. (Year) Name of
Disease

Input Image
Type Dataset Used

Data
Preparation

Type
Model Type Ensemble

Technique Target Results Open Issues

[191] (2021) COVID-19 X-ray RSNA dataset

Data
Augmentation

including zoom,
flipping,
rotation,

translation, and
shift.

COVID-Net
CXR-S

Detection and
Classification

Sensitivity
(level1) 92.3%,

Sensitivity
(level2) 92.85%,

PPV (level1)
87.27%, PPV

(level2) 95.78%,
Accuracy

92.66%

Build innovative
clinical decision

support
technologies to
aid clinicians all
throughout the

world in dealing
with the

pandemic.

[133] (2022) COVID-19 X-ray

COVID-19
dataset,

chest-X-ray,
COVID-19
pneumonia

dataset, private
dataset collected

from MGM
Medical College

and hospital

DCNN Stacking Classification
and Detection

Accuracy
88.98% for three

classifications
and 98.58% for

binary
classification.

Using more
public datasets

will improve the
model’s

accuracy.

[192] (2022) COVID-19 CT
COVID-19 CT

Images
Segmentation

segmentation DRL Image
segmentation

Precision
97.12%, a

sensitivity of
79.97%, and a
specificity of

99.48%

The mask
extraction stage

could be
improved. In

addition, more
complex

algorithms,
approaches, and
datasets appear

promising to
improve system

performance.
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Table 4. Cont.

Ref. (Year) Name of
Disease

Input Image
Type Dataset Used

Data
Preparation

Type
Model Type Ensemble

Technique Target Results Open Issues

[193] (2019) Tuberculosis Sputum Smear
Microscopy

ZNSM-iDB
dataset

Data
Augmentation

including
rotation and
translation

RCNN
pre-trained on

VGG-16

localization and
classification

Recall 98.3%
Precision 82.6%
F1-Score 89.7%

Planning to
expand the

amount of data
used in a deep

network.

[101] (2020) Tuberculosis X-ray
NIAID TB

dataset and
RSNA dataset

Data
Augmentation

including
cropping.

CNN
pre-trained on
(Inception-V3,

ResNet-18,
DenseNet-201,

ResNet-50,
ResNet-101,

ChexNet,
SqueezeNet,
VGG-19, and

MobileNet-V2)
and UNet for
segmentation.

Lung
Segmentation

and TB
Classification

Without
Segmentation:

Accuracy
96.47%,

Precision
96.62%, and

Recall 96.47%

With
Segmentation:

Accuracy 98.6%,
Precision

98.57%, and
Recall 98.56%

Split lungs into
patches that can

be fed into a
CNN model,

perhaps
improving

performance
even more.

[176] (2021) Tuberculosis X-ray

Montgomery
County (MC)
CXR dataset,

Shenzhen
dataset, RSNA

Pneumonia
Detection
Challenge

dataset, Belarus
dataset, and
COVID-19

radiography
database

EfficientNet and
Vision

Transformer
Boosting Classification &

Detection

Accuracy
97.72%
AUC 100%

Planning to add
new baselines to
compare to the

tool that has
been developed.

Planning to
release a mobile
app that can run
on small devices

like
smartphones
and tablets.
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Table 4. Cont.

Ref. (Year) Name of
Disease

Input Image
Type Dataset Used

Data
Preparation

Type
Model Type Ensemble

Technique Target Results Open Issues

[138] (2021) Tuberculosis X-ray

Montgomery
County dataset

(MC) and
Shenzhen

dataset (SZ)

Histogram
Equalization &

Contrast
Limited

Adaptive
Histogram

Equalization
(CLAHE).

CNN
pre-trained on

VGG19
Stacking

Segmentation
and Detection

TB disease

AUC 99.00 ±
0.28/98.00 ±

0.16 for MC/SZ
For the MC/SZ
accuracy 99.26 ±

0.40/99.22 ±
0.32.

Propose
scalability

testing for the
proposed

approach on
large datasets.

Use big data
technologies

like distributed
processing

and/or
Map-Reduced

based
approaches for

complex
network

building and
feature

extraction.
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Tuberculosis

Tuberculosis (TB) is a bacterial infection caused by Mycobacterium tuberculosis bacte-
ria. The bacteria most commonly assault the lungs, but they can also harm other regions of
the body. When a person with tuberculosis coughs, sneezes, or talks, it spreads via the air.

Tuberculosis was was properly detected from chest X-ray images using data augmenta-
tion, image segmentation, and deep-learning classification approaches. Rahman et al. [101]
employed nine distinct deep CNNs for transfer learning (ResNet18, ResNet50, ResNet101,
ChexNet, InceptionV3, VGG19, DenseNet201, SqueezeNet, and MobileNet). They used
the NIAID TB dataset as well as the RSNA dataset. Without segmentation, the output
classification accuracy, precision, and recall for tuberculosis detection were 96.47%, 96.62%,
and 96.47%, respectively, but with segmentation, they were 98.6%, 98.57%, and 98.56%.

Duong et al. [176] presented a practical method for detecting tuberculosis from chest
X-ray pictures. The Montgomery County (MC) CXR, the Shenzhen dataset, the Belarus
dataset, the COVID-19 dataset, the COVID-19 Radiography Database, and the RSNA
Pneumonia Detection Challenge dataset were all utilized to train and evaluate the Hybrid
EfficientNet with a Vision Transformer model. The model achieved a 97.72% accuracy and
100% AUC.

Khatibi et al. [138] introduced a new Multi-Instance Learning (MIL) strategy that
combines CNNs, clustering, complex network analysis, and stacked ensemble classifiers
for TB diagnosis from CXR images. To detect tuberculosis, they employed a multi-instance
classification based on a CNN model.They used two datasets for the TB scans: Shen-
zhen dataset (SZ) and the Montgomery County dataset (MC). The accuracy of MC/SZ
is 99.26 ± 0.40/99.22 ± 0.32, and the AUC is 99.00 ± 0.28/98.00 ± 0.16. Support Vector
Machine (SVM), Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and
Adaboost were among the classifiers utilized.

El-Melegy et al. [193] presented a Faster Region-based Convolutional Neural Network
(RCNN) to detect Tuberculosis Bacilli using Sputum Smear microscopy images. They
employed the ZNSM-iDB public database, which includes auto-focused data, overlapping
objects, single or few bacilli, views without bacilli, occluded bacilli, over-stained views
with bacilli, and artifacts. The model achieved F1-Score of 89.7%, a recall of 98.3%, and
precision of 82.6%.

COVID-19

This disease caused by the severe acute respiratory syndrome coronavirus (SARS-
COV-2) is called emerging coronavirus disease (COVID-19). COVID-19 appeared in late
2019, and it appears as a ground-glass opacity (GGO) on radiographs. In March 2020,
COVID-19 was declared a global pandemic by the WHO.

By using a chest CT scan from Tabriz’s Alinasab Hospital, Sadjadi et al. [137] demon-
strated a deep convolutional neural network (DCNN) model for classification of COVID-19
versus healthy individuals, where DCNN is a CNN that consists of several layers using a
three-dimensional neural pattern. There were 131 COVID-19 patients and 150 normal cases
controls in this study, which employed a total of 10,979 CT images. VGG16 was used to
pretrain a CNN model. They scored 92% precision, 90% sensitivity, 91% specificity, 91%
F1-Score, and 90% accuracy.

An adaptive feature selection guided deep forest (AFSDF) method was proposed
by Sun et al. [131] for COVID-19 classification from chest CT images. This model was
built using a high-level representation of the features. A feature selection approach was
applied to the trained deep forest model to remove feature redundancy. They used a private
dataset that included 1027 individuals with community-acquired pneumonia (CAP) or
non COVID-19 and 1495 patients with COVID-19. The model achieved 91.79% accuracy,
specificity, sensitivity, and area under the ROC curve, respectively, were 89.95%, 93.05%,
and 96.35%.

Mamalakis et al. [122] presented a new deep transfer learning pipeline network
(DenResCov-19) based on chest X-ray images to diagnose patients with COVID-19, pneu-
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monia, and tuberculosis. They have added an extra layer with CNN blocks to combine
these two models (DenseNet-121 and ResNet-50) and achieve superior performance over
either of them. They put their proposed network to the test on classification problems with
two classes (pneumonia vs. healthy), three classes (including COVID-19), and four classes
(including tuberculosis). In all four datasets, the proposed network was able to correctly
classify these lung diseases, and it outperformed the benchmark networks, DenseNet and
ResNet. For the four classes, precision is 82.90 percent, AUC is 95 percent, and F1-Score
is 75.75%.

COVID-Net CXR-S was introduced by Aboutalebi et al. [191]. It is a CNN model
that uses CXR images to predict the severity of a SARS-CoV-2 positive patient’s airways.
With customized macroarchitecture and microarchitecture designs for COVID-19 diagnosis
from chest X-ray images, the COVID-Net backbone design demonstrates sparse long-
range connectivity and a significant architectural diversity. To give better representational
capabilities while maintaining minimal architectural and computational difficulties, the
network architecture used projection–expansion–projection–expansion (PEPE) patterns,
which are light-weight design patterns. The model classifies input images into two levels
of severity. They used the RSNA dataset. The model achieved Level 1 sensitivity, Level
2 sensitivity, level 1 Positive Predictive Value (PPV), Level 2 PPV value, and accuracy of
92.3%, 92.85%, 87.27%, 95.78%, and 92.66%, respectively. They proved that a COVID-Net
CXR-S model has high performance compared with CheXNet and ResNet-50.

Deb et al. [133] presented a DCNN model to classify COVID-19 disease. They used
VGGNet, GoogleNet, DenseNet, and NASNet to pre-train the model. They used two
publicly available datasets and one private dataset. They demonstrated that a multi-model
ensemble architecture outperforms a single classifier in terms of performance. When using
a public dataset, the model achieved an accuracy of 88.98% for three class classifications
(COVID-19, Normal, and Community-Acquired Pneumonia (CAP)) and, for binary class
classification, they reported an accuracy of 98.58%. The model achieved accuracy of 93.48%
when they used private dataset.

In order to extract visual features from COVID-19-infected areas and deliver an accu-
rate clinical diagnosis while optimizing the pathogenic diagnostic test and cutting down
on time, Allioui et al. [192] proposed deep reinforcement learning (DRL) mask extraction-
based methodologies. DRL used to minimize the long-term manual mask extraction and
enhance medical image segmentation frameworks. They used a public CT images dataset.
The model achieved a precision of 97.12% with a Dice of 80.81%, a sensitivity of 79.97%,
and a specificity of 99.48%.

Asthma

It is a disorder in which the airways narrow and swell, producing excess mucus and
making breathing difficult, coughing, and shortness of breath.

To diagnose adult asthma, a deep neural network (DNN) was presented by
Tomita et al. [173], where DNN is a neural network with some level of complexity, usually
at least two layers. They used a private dataset derived from clinical records of 566 adult
outpatients who presented to Kindai University Hospital for the first time with non-specific
respiratory symptoms. The output accuracy result is 98%.

Spyroglou et al. [190] presented a Bayesian Logistic Regression model to predict
asthma. Data were gathered from 147 patients by the Pediatric department of the University
Hospital of Alexandroupolis, Greece during the period from 2008 to 2010. The output
accuracy for prediction was 86.3673% and the sensitivity of 87.25%.

COPD

Chronic Obstructive Pulmonary Disease (COPD) is a set of diseases that cause airflow
restrictions in the lungs and breathing difficulties. Emphysema and chronic bronchitis
are two conditions that make breathing difficult. The lungs rely on the natural flexibility
of the airways and alveoli to remove air from the body. In the case of COPD, the lungs
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lose their elasticity, which leads to their expansion, which leads to the retention of air
inside them [194]. COPD affects millions of people, although it is rarely recognized or
treated [195]. Changes in the airways of the lungs are an early sign of COPD. According
to WHO estimates, COPD is the third largest cause of mortality worldwide, causing
3.23 million deaths in 2019 [196]. A chest X-ray may not show COPD until it is severe,
and the images may show enlarged lungs or airways (bullae), cardiac stenosis, or a flat
diaphragm. Thus, doctors may request a computerized tomography (CT) scan after the
X-ray scan to obtain a clearer picture to help diagnose them [197].

Using CT scans, Bao et al. [170] presented a 15-direction Multi-View Deep Neural
Network (MV-DCNN). To create the MV-DCNN, they used 15 anti-aliased ResNet18 models
as well as a classification layer. The three steps of the multi-View DCNN algorithm are as
follows: The initial step is to extract images from three-dimensional data from 15 different
angles. The second stage is to improve the data in each of these 15 views. To extract
and categorize the features, the final step is to build 15 Multi-View DCNN (MV-DCNN)
models. They used RFAI’s synthetic texture datasets to test the accuracy of 3D texture
feature classification techniques. COPD classification has an output accuracy of 97.7%.

A new 3D-cPRM classification approach for COPD grouping was developed by
Ho et al. [188] using a 3D-CNN model and the parametric-response mapping (PRM) method.
The researchers then utilized a technique called gradient-weighted class activation mapping
(Grad-CAM) to highlight the key components of the CNN learning process. They used data
from the Institutional Review Boards of Kangwon National University Hospital (KNUH)
and Jeonbuk National University Hospital (JNUH). CT scans at KNU and JNU Hospitals
yielded 596 patients (204 with COPD and 392 without COPD). The model had a sensitivity
of 88.3% and an accuracy of 89.3%.

Emphysema

A symptom of a lung disorder is shortness of breath. In persons with emphysema, the
air sacs in the lungs (alveoli) become damaged, and the alveoli’s inner walls weaken and
burst over time, resulting in bigger air gaps rather than many smaller ones. The surface
area of the lungs is reduced, limiting the amount of oxygen that reaches the bloodstream.
Emphysema is a part of COPD.

Peng et al. [175] using multi-scale deep convolutional neural networks, a novel deep
learning DCNN technique for pulmonary emphysema classification was presented. The
findings revealed that, (1) when compared to a single scale setup, the multi-scale technique
was far more effective. (2) In terms of performance, the model exceeded current approaches.
(3) The severity of emphysema measured agreed well with various pulmonary function
indices. They worked using a private dataset. The accuracy of the classification output is
92.68 percent.

Choudhary et al. [189] presented a CNN model used to predict the probability of one
of the fifteen diseases, including emphysema. They used the ChestX-ray14 dataset. An
overall accuracy of 89.77% was achieved for the classification of the different diseases.

Infiltration

A pulmonary infiltrate is a substance that is denser than air and persists within the
parenchyma of the lungs, such as pus, blood, or protein. Tuberculosis is related to pul-
monary infiltrates. Table 5 provides a summary of some of the infiltration disease literature.
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Table 5. Atelectasis, Pneumothorax, and Infiltration diseases detection summary.

Ref. (Year) Name of Disease Input Image Type Dataset Used Data Preparation
Type Model Type Ensemble

Technique Target Results Open Issues

[169] (2018)
Atelectasis and

another 13
different diseases

X-ray ChestX-ray14 ChestNet Classification and
Visualization

Average AUC
0.7810

Concentrate on
understanding the

relationships
between those
illness image

descriptors and
implementing
them into the

computer-aided
diagnosis

procedure.

[151] (2021)
Atelectasis and

another 13
different diseases

X-ray ChestX-ray14

Data
Augmentation

including rotation,
flipping, and

transformation

MobileNet V2
Classification and
Prediction of chest

14 disease

Average AUC
0.811 and

Accuracy above
90%

In the medical
field, a light

neural network
design can be

used. Look into
using new

architectures to
take advantage of

label
dependencies and

segmentation
data.

[174] (2019) Pneumothorax X-ray ChestX-ray14

Data
Augmentation

including
translating,

scaling, rotating,
horizontal
flipping,

windowing, and
adding noise

CNN for
classification MIL

for localization
FCN for

segmentation

linear combination
(Ensemble
Averaging)

Classification,
localization, and

segmentation

AUC
(Classification)

96%, AUC
(Localization) 93%,

and AUC
(Segmentation)

92%

Use other
techniques to

combine the three
approaches.
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Table 5. Cont.

Ref. (Year) Name of Disease Input Image Type Dataset Used Data Preparation
Type Model Type Ensemble

Technique Target Results Open Issues

[198] (2019) Pneumothorax CT Private dataset CNN Detection and
localization Accuracy 87.3%

To improve the
model’s

performance, use
data from

multiple sources.

[177] (2018)
Infiltration and

another different
13 diseases

X-ray ChestX-ray14

CNN for
Classification

CPNN and BPNN
for Diagnosis
Chest diseases

Classification &
Diagnosis

CNN Accuracy
92.4%

BPNN Accuracy
80.04%

CPNN Accuracy
89.57%

CNN with GIST
Accuracy 92%

VGG16 Accuracy
86%

VGG19 Accuracy
92%

Propose
employing several
transfer learning

strategies to
improve model

accuracy.

[136] (2019)
Infiltration and

another different
13 diseases

X-ray ChestX-ray14 CNN pre-traind
on VGG-16

Classification &
Visualization

Accuracy 83.671%
(scratch CNN) and

97.81% (transfer
learning)

Using a
fine-tuning model

other than the
VGG-16 to analyze

medical images
can be a viable

option.
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Abiyev et al. [177] explained the applicability of CNN technology to classify chest X-
ray diseases. Backpropagation neural networks (BPNNs) and competitive neural networks
(CpNNs) with unsupervised learning are being utilized to diagnose chest diseases. All of
the networks were trained and tested using the ChestX-ray14 database. CNN has a 92.4%
output performance, BPNN has an 80.04% output performance, and CPNN has an 89.57%
output performance.

Hazra et al. [136] presented first a CNN architecture including convolutional, activa-
tion, pooling, and fully connected layers, followed by a Softmax layer that delivers the
likelihood of the output for each type of sickness. Then, a CNN model was trained using
the ChestX-ray14 dataset and a pre-trained VGG-16 model. Using Grad-CAM, they were
able to see how the model performed against a test image. They obtained 83.671% accuracy
(scratch CNN) and 97.81% accuracy (transfer learning).

Atelectasis

When the patient’s lung sacs do not inflate properly, the blood may be unable to supply
oxygen to your organs and tissues, resulting in atelectasis. Table 5 provides a summary of
some of the atelectasis disease literature.

Wang et al. [169] proposed a ChestNet model for diagnosing chest diseases with X-ray
images consists of two branches: attention and classification. The attention branch exploits
the correlation between class labels and the locations of pathological abnormalities, allow-
ing the model to focus adaptively on the pathologically abnormal regions. The classification
branch (ResNet-152 model) serves as a uniform feature extraction–classification network,
freeing users from troublesome handcrafted feature extraction. Six convolutional layers
make up the attention branch: 1 × 1, 3 × 3, and 1 × 1 kernels are used in the first three
convolutional layers, which are each followed by a ReLU activation function. The ChestX-
ray14 dataset was used. ChestNet’s overall AUC is 0.7810, while Atelectasis disease’s AUC
is 0.7433.

Abdelbaki et al. [151] presented the MobileNet V2 model (CNN + Additional Neural
Network layers) for classifying and predicting frontal thoracic X-ray lung diseases. They
used the NIH ChestX-ray14 database. The AUC average of 81.1% has an accuracy of more
than 90% and a specificity of 97.3%. Atelectasis has an accuracy of 79.6% and a specificity
of 96.8%.

Pneumothorax

A pneumothorax or a deflated lung occurs when a collapsed lung causes an abnormal
collection of air in the pleural space between the lung and the chest wall. The most common
symptoms are dyspnea and severe pain on one side of the chest. A pneumothorax is a
complete or partial collapse of the lung that needs to go to medical attention immediately.
Table 5 provides a summary of some of the pneumothorax disease literature.

Gooßen et al. [174] compare and contrast three distinct deep learning algorithms for
detecting and localizing pneumothorax in chest X-ray images (CNN, multiple-instance
learning, and fully convolutional networks). To predict 14 illnesses, a CNN model trained
on the ChestX-ray14 dataset and pre-trained on ResNet-50. The dense layer for pathology
prediction was replaced by a new binary classification layer for pneumothorax identifi-
cation. Multiple-Instance Learning (MIL) combines classification and localization while
only requiring image-level labels for training. Fully Convolutional Networks (FCNs) are
more advanced networks that are designed for semantic segmentation. They combined
the separate methods in a linear fashion. The three approaches (CNN, MIL, and FCN)
had AUCs of 96%, 93%, and 92%, respectively. The total classification performance was
improved by combining the proposed three approaches as an ensemble.

Based on the whole 26-layer you only look once (YOLO) model, a CNN model was
proposed by Park et al. [198]. The YOLO model was utilized to determine the lesions’
bounding boxes. The CNN model was developed using a proprietary dataset that included
1596 chest radiographs of pneumothorax patients of varying severity, as well as 11,137
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of normal cases, which were gathered from two tertiary referral hospitals. The CNN
model performed well in diagnosing pneumothorax on chest radiographs, with an overall
accuracy of 87.3%.

3.9.2. Heart Diseases

Cardiovascular or Heart diseases (CVDs) are diseases that impact your heart’s struc-
ture or function, such as: cardiomegaly and heart insufficiency diseases [199]. Cardiovas-
cular disease (CVD) is the major cause of death in the world which causes narrowing or
blockage of blood vessels, causing shortness of breath and chest pain. According to the
World Health Organization (WHO), 17.9 million people died from cardiovascular diseases
in 2019, accounting for 32% of all fatalities worldwide [200]. The data in Table 6 illustrate
the summary of heart disease detection.

Cadiomegaly

Many studies have looked at the detection of cardiomegaly with other abnormalities
in a multi-classification situation, predicting all available labels from the datasets provided
as in [100,120,128] and some studies detect cardiomegaly in a binary classification as [201].

Ammar et al. [128] presented a cardiac segmentation and diagnosis through an au-
tomated pipeline based on a private MRI images dataset of 150 patients from the Dijon
Hospital (Medical Image Computing and Computer Assisted Intervention in the Post-2017
Era (MICCAI)). They employed a complete CNN model for classification and UNet deep
learning segmentation network. To classify heart diseases, they utilized a multilayer per-
ceptron (MLP), support vector machine (SVM), and a random forest (RF). As a result of
this procedure, the accuracy was 92%.

Sogancioglu et al. [100] used the publicly available ChestX-ray14 dataset for Classi-
fication to study the detection of cardiomegaly on frontal chest radiographs using two
alternative deep-learning approaches: anatomical segmentation and image-level classifica-
tion. They trained a typical U-net architecture on a separate JSRT dataset to partition the
heart and lung areas. They used ResNet18, ResNet50, and DenseNet121 in the classification.
The AUC for segmentation is 0.977, while the AUC for classification is 0.941 as a result. They
will look into applying the segmentation-based method to other diagnostic procedures.

The same ChestX-ray14 dataset was used to classify the 14 diseases, Nickisch et al. [120]
looked at the performance of multiple network architectures including ResNet-38, ResNet-
50, and ResNet-101 to classify 14 different diseases. ResNet-50 achieved an elevated AUC
of 0.822 on average.

DCNN was used by Candemir et al. [201] to automatically detect cardiomegaly in
digital chest X-rays. They used and fine-tuned various deep CNN architectures to detect
cardiomegaly disease. Following that, the researchers provided a CXR-based pre-trained
model in which they fully trained an architecture (AlexNet, VGG-16, VGG-19, and Incep-
tionV3) with a large CXR dataset. Finally, they investigated the association between the
severity of the disease and a Softmax probability of an architecture. The datasets they used
were the NLM-Indiana Collection and the NIH-CXR, both of which are freely available.
The accuracy of the NIH-CXR dataset is 88.24% (training set: NIH set and 30% of Indiana
Collection; test set: 70% of Indiana Collection) and 89.86% (training set: NIH set and 30%
of Indiana Collection).
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Table 6. Heart diseases’ detection summary.

Ref. (Year) Name of Disease Input Image Type Dataset Used Data Preparation
Type Model Type Ensemble

Technique Target Results Open Issues

[128] (2021) Heart disease MRI

Automated
Cardiac Diagnosis

Challenge
(ACDC-2017)

Handcrafted
features, data
augmentation,

and ROI
extraction

CNN for
Classification and

UNet for
Segmentation

Voting technique
Classification and
diagnosis of Heart

disease
Accuracy 92%

Planning to
investigate for

more
enhancement and
improvement of

the current result.

[100] (2020) Cardiomegaly X-ray ChestX-ray14 Data
Augmentation

ResNet18,
ResNet50, and

DenseNet121 for
classification and

UNet for
Segmentation

Segmentation and
classification

AUC for
segmentation is

0.977 and AUC for
classification is

0.941

Investigate
whether the

segmentation-
based approach
may be used for
other diagnostic

tasks.

[120] (2019) Cardiomegaly and
other 13 diseases X-ray ChestX-ray14 Data

Augmentation
CNN pre-trained

on ResNet50 Classification AUC average is
0.822

Investigate other
model

architectures, new
architectures for
leveraging label

dependencies and
incorporating
segmentation
information.

[201] (2018) Cardiomegaly X-ray
NIH-CXR and
NLM-Indiana

datasets

CNN pre-trained
on VGG-16,

VGG-19, AlexNet,
and InceptionV3

Detection Accuracy is 0.8986

In addition to
image-based clues,

look into other
factors such as

lung size, rib-cage
measurements,
and diaphragm

lengths.
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Table 6. Cont.

Ref. (Year) Name of Disease Input Image Type Dataset Used Data Preparation
Type Model Type Ensemble

Technique Target Results Open Issues

[178] (2018) Heart Failure Histopa- thology

Private dataset
collected from the

Cardiovascular
Research Institute

Data
Augmentation

including
cropping, rotation,
image mirroring,
and stain color

CNN Classification and
detection

Sensitivity 99%
and specificity

94%

The ability of
CNNs to detect

pre-clinical
disease must be

evaluated. Focus
on heart failure

prognostic
modeling and

post-transplant
rejection

surveillance, as
well as etiologic
classification of
cardiomyopathy

etiologies.

[202] (2021) Heart Failure reports only

IBM Commercial
and Medicare
Supplement
Databases

LSTM algorithm-
based sequential

model architecture
Boosting

Detection of Heart
Failure and

severity
classification

AUC 0.861

Better
regularization

approaches,
models

pre-trained on
other datasets,
and the use of
larger datasets

with more
detailed clinical

data are all
possible options to

increase the
performance of

the model.
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Heart Failure

Heart failure, or insufficiency, refers to the heart’s inability to properly pump blood
throughout the body. This occurs when the heart becomes too weak or stiff. It does not
indicate that the heart has stopped working; it only requires some assistance to help it
function better.

Nirschl et al. [178] created a CNN classifier to predict clinical heart failure in 209 pa-
tients using H&E stained whole-slide images. They used private data from the University
of Pennsylvania’s Cardiovascular Research Institute and Department of Pathology and
Laboratory Medicine, which they received and analyzed. They proved that the CNN model
is able to detect patients with heart failure or severe pathology with a sensitivity of 99%
and a specificity of 94%.

To predict hospital admission, exacerbation of HF, at 30 and 90 days in patients with
heart failure with low ejection fraction (HFrEF), Wang et al. [202] employed a sequential
model architecture based on bidirectional long-term memory (Bi-LSTM) layers. They used
two sets of data: the HFrEF patient group, which had only 47,498 patients but had almost
two million medical events or interactions obtained from claims, and the general patient
group data collection. The AUC is 86.1%.

3.9.3. Others

This class includes diseases that affect bones or muscles of the chest such as fracture,
hernia, and mass, as shown in Figure 8. Table 7 illustrates the summary of mass, fracture,
and hernia diseases detection.

Fracture

Chest fractures are injuries to the chest wall, such as the bones, skin, fat, and muscles
that protect your lungs or any of the organs inside the chest.

Wu et al. [159] used a three-dimensional rib segmentation model (U-Net) and a deep
learning R-CNN pre-trained on the ResNet50 algorithm capable of recognizing rib fractures
and related anatomic locations on CT images. First, they scanned the rib fractures and the
ribs segmented section by section using a two-dimensional (2D) detection network. To
improve rib segmentation accuracy, a three-dimensional (3D) network was used. With an
84.3% free-response receiver operating characteristic (FROC) score on the test set 1, the
model correctly diagnosed rib fractures. With a detection sensitivity of 84.9%, a precision of
82.2%, and an F1-score of 83.3%, the system did well in the test set 2. The model achieved
an AUC of 93%, a sensitivity of 87.9%, and a specificity of 85.3% on the test set 3. The model
received an 82.7% dice score and a 96% accuracy for rib segmentation.

Zhou et al. [203] also demonstrated an R-CNN model that can detect and categorize
rib fractures in computed tomography (CT) images and generate structured reports. First,
CNN’s raw output was used, and then the merged structured report was used. They
used private data from three hospitals. There were 1079 patients in this study. The results
indicated that the model does a good job of classifying rib fractures into three classes (old,
healing, and fresh fractures). Fresh fractures and healing fractures had higher detection
efficiency than old fractures (F1-scores of 84.9%, 85.6%, and 77%, respectively), and the
model’s robustness was good in the five multicenter/multiparameter validation sets (all
mean F1-score 80%). The five radiologists’ precision climbed from 80.3% to 91.1%, while
their sensitivity increased from 62.4% to 86.3%. The radiologists’ diagnosis time was
decreased by 73.9 s.
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Table 7. Other diseases’ detection summary.

Ref. (Year) Name of Disease Input Image Type Dataset Used Data Preparation
Type Model Type Ensemble

Technique Target Results Open Issues

[159] (2021) Fracture CT Private

R-CNN for
classification &

UNet for
Segmentation

weighted average
of probabilities

Segmentation and
detection

Average
Sensitivity 89.2%

and Precision
88.4%

A 3D-CNN model
can be used as a

classification
model to further

classify the
observed rib

fracture types
from the existing

model. The
performance of

the rib
segmentation and

labelling
algorithm must be

improved.

[203] (2020) Fracture CT Private
R-CNN

pre-trained on
ResNet101

Detection and
classification

For three
multicenter

datasets: Precision
80.3% and

Sensitivity 62.4%
For five

multicenter
datasets: Precision

91.1% and
sensitivity 86.3%

The anatomical
location was

identified using a
three-dimensional
deep learning and
tracking approach.

[179] (2019)
Hernia and
another 13

different diseases
X-ray ChestX-ray14

Data
Augmentation

including flipping

CNN pre-trained
on DenseNet121 Classification

AUC 84.3% and
AUC for Hernia

only 96.37%

Entropy
weighting loss
improved the

binary
classification of

Hernia.
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Table 7. Cont.

Ref. (Year) Name of Disease Input Image Type Dataset Used Data Preparation
Type Model Type Ensemble

Technique Target Results Open Issues

[204] (2021)
Hernia and
another 13

different diseases
X-ray ChestX-ray14 CNN pre-trained

on DenseNet121
multiscale

ensemble module Classification AUC 82.6%

Using
pathologically

abnormal region
annotations to

regularize
attention learning.

Addressing the
uncertainty that
existed in noisy

labels.

[180] (2020) Mass X-ray ChestX-ray14
Quibim App
Chest X-ray

Classifier
Detection

Sensitivity 76.6%,
AUC 91.6%,

Accuracy 83%,
and Specificity of

88.68%.

During the
diagnostic

procedure, build
the four

algorithms that
were mentioned in

this paper to
improve

sensitivity and
specificity.

[205] (2017) Mass X-ray JSRT dataset RCNN detection and
localization Accuracy 53%

Compare the
RCNN algorithm

to other
state-of-the-art
mass detection

algorithms.
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Hernia

The section of a lung that pushes through a tear or bulges through a weak area in the
chest wall, neck canal, or diaphragm is called a lung hernia.

To increase model performance, an entropy weighting loss was presented by
Mo et al. [179] to notice inter-label relationships and make full use of classes with fewer
cases than others. They tested out three different deep learning models (VGG16, ResNet50,
DenseNet121). Under the Chest X-ray14 dataset, DenseNet121 produced better results,
with an AUC score of 84.3% on average.

The triple-attention learning model was presented by Wanget al. [204] for computer-
aided diagnosis (CAD) of thoracic diseases. For element-wise, channel-wise, and scale-wise
attention learning, the model combines three attention modules into a cohesive framework.
It was pre-trained using DenseNet121 for feature extraction. The deep learning model
can use element-wise attention to focus on areas with pathological abnormalities, and
scale-wise attention to rescale feature maps. The utilized dataset was the ChestX-ray14.
The model achieved an AUC of 82.6% across 14 different thoracic diseases.

Mass

A lung mass is defined as a spot or abnormal area in the lungs larger than 3 cm (about
1.5 inches) in size.

On chest radiographs, Liang et al. [180] evaluated the diagnostic performance of a
deep learning-based system for the detection of clinically significant lung nodules/masses.
They used the ChestX-ray14 dataset for 100 patients with 47 mass images and 53 images
without mass. They used four algorithms to detect pulmonary nodules/masses: heat
map, abnormal probability, nodule probability, and mass probability. They used the
QUIBIM Chest X-ray Classifier app module that assists radiologists in dealing with the
vast amounts of chest radiographs. Chest radiographs are generated in health centers every
day, by prioritizing potentially problematic instances. The Chest Radiograph Module is a
collection of 14 pathology-specific 19-layer convolutional neural networks, followed by a
fully connected layer that takes a chest radiograph and generates a likelihood of disease
as well as heat maps indicating the areas of the image that are most symptomatic of chest
disease. For pulmonary nodule/mass detection, the mass probability algorithm exhibited
the best predictive performance with a sensitivity of 76.6%, AUC 91.6%, and specificity
of 88.68%.

Li et al. [205] presented a faster Region-based convolutional neural network (RCNN)
pre-trained on ResNet to diagnose lung mass disease. They used the JSRT dataset. The
model achieved an accuracy of 53.38%.

4. Discussion

After analyzing these data from previous studies, we present the trend analysis of
thoracic diseases detection recently through the following attributes, the analysis of the
trend image type, transfer learning, data augmentation, deep learning model, and an
ensemble classifier, respectively.

X-ray images were used in the majority of studies (59%) followed by CT scans (33%)
as shown in Figure 9, and this is because it is cheaper, has a simple technique, has lower
radiation compared to CT scans, and is widely used by radiologists to identify cracks,
infection levels, and identify abnormal cases. However, it does not provide 3D information.
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When there is a limited number of data or the emergence of a new disease, such as the
recent pandemic of COVID-19 disease. Thus, the data are in a higher class than another,
which leads to the model becoming biased. Data Augmentation solved this problem. Data
augmentation has the ability to improve the model’s performance and image quality when
it is employed. As a result, the number of works that use data augmentation increased over
time. Figure 11 illustrates the majority usage of data augmentation in this survey.
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Figure 12. Model type distribution using deep learning aided thoracic diseases detection in the
recent years.

Despite the fact that ensemble is a less popular technique, as shown in Figure 13, stud-
ies that used it reported superior detection performance than those that did not. This study
shows that the use of an ensemble classifier to detect lung illness is still underused. The
types of ensembles presented in the research are as follows: stacking, boosting, averaging,
majority voting, and multi-scale ensemble module. Ensemble models can generate better
predictions and accomplish better results than any single contributing model, and can
reduce the spread or dispersion of the predictions.
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This research presented several thoracic diseases that can automatically detect using
deep learning, namely pneumonia, COVID-19, edema, lesion, cohesion, fibrosis, emphy-
sema, atelectasis, asthma, asbestos signs, cardiomegaly, heart failure, chronic obstructive
pulmonary disease, pleural thickening, fracture, lung metastasis, hernia, pneumothorax,
mass, tuberculosis, and infiltration.

Segmentation of lung may increase the performance of the model. Therefore, some
research uses it in some diseases as in [101].

5. Critical Analysis

There are four major difficulties/issues in the papers we presented: data imbalance,
image size handling, dataset availability, and high correlation of errors when employing
ensemble techniques:

(i) Data Imbalance: occurs when completing classification training. The resulting
model will be biased if one class has a lot more samples than the other. It is preferable if
each class has the same number of images. Therefore, researchers use the data augmentation
technique to avoid this problem;

(ii) Image Size Handling: most studies reduced the original image size during training
to save computing costs. Training a very complex model with the original image size is
incredibly computationally expensive, and even with the most powerful GPU hardware, it
takes a long time;

(iii) Dataset Availability: for training purposes, thousands of images of each class
should be collected. This is carried out in order to create a more accurate classifier. The
amount of available training data is generally less than optimal due to the limited number
of datasets available. As a result, researchers are looking for new ways to produce a
good classifier;

(iv) When employing ensemble approaches, there is a high correlation of errors: For an
ensemble of classifiers to perform well, they must make a variety of errors. The correlation
between the base classifiers employed should be very low. In other words, the base
classifiers are supposed to work together to give better classification results. In the majority
of the experiments surveyed, only classifiers with similar selected features were combined.
As a result, the base classifier’s correlation errors are high.

Open issues that must be considered in order to improve the efficiency of deep learning
models based thoracic diseases diagnosis:

• Publicize datasets, so researchers would have access to more data and the classifiers
developed would be more accurate;
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• Efforts can be focused on investigating several features. When employing ensemble
approaches, this can help address the issue of high error correlation. As more features
are added, the number of contrasts increases and the model’s accuracy improves. The
results are often better when merging multiple versions;

• Using ensemble learning, especially in multi-classifications, to improve the accuracy
of model detection and reduce training time;

• The majority of the models discussed in this analysis classify rather than localize or
segment abnormalities, and this is an area that can be explored further;

• Unsupervised learning approaches like generative adversarial networks and varia-
tional autoencoders are being used by numerous researchers to investigate automated
data curation.

6. Conclusions and Future Work

Medical practitioners and computer scientists all over the world are working collabo-
ratively to develop effective techniques to diagnose thoracic diseases and track them by
using AI-based methods. This paper provides a literature review of recent thoracic disease
diagnosis and prediction research which involves the use of AI techniques. This research
introduced a new classification of thoracic diseases from the medical point of view. It
covered many different thoracic diseases, including COVID-19. A comprehensive survey of
diseases belonging to this classification was made in terms of image type, the dataset used,
model type, ensemble techniques, results, and open issues. Other researchers may use the
classification provided to plan their contributions and research activities. A possible future
approach could lead to increased efficiency and an increase in the number of applications
for the detection of thoracic diseases with the help of AI.

The suggested future work is the use of multi-modality data, including medical visual
data and patient health information, to verify the severity of the disease. Fusion methods
will play a pivotal role in determining the severity score of the disease and overcoming
the varied nature of the data utilized. The future of this work is to employ ML and/or DL
algorithms to investigate various fusion techniques to achieve more accurate results and
use recent models such as vision transformers (ViT), hybrid models, or explainable artificial
intelligence (XAI) in the diagnosis of these diseases.
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