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Abstract: Cerebral stroke (CS) is a heterogeneous syndrome caused by multiple disease mechanisms.
Ischemic stroke (IS) is a subtype of CS that causes a disruption of cerebral blood flow with subsequent
tissue damage. Noncontrast computer tomography (NCCT) is one of the most important IS detection
methods. It is difficult to select the features of IS CT within computational image analysis. In this
paper, we propose AC-YOLOv5, which is an improved detection algorithm for IS. The algorithm
amplifies the features of IS via an NCCT image based on adaptive local region contrast enhancement,
which then detects the region of interest via YOLOv5, which is one of the best detection algorithms at
present. The proposed algorithm was tested on two datasets, and seven control group experiments
were added, including popular detection algorithms at present and other detection algorithms
based on image enhancement. The experimental results show that the proposed algorithm has a
high accuracy (94.1% and 91.7%) and recall (85.3% and 88.6%) rate; the recall result is especially
notable. This proves the excellent performance of the accuracy, robustness, and generalizability of
the algorithm.

Keywords: ischemic stroke; noncontrast computer tomography; features; detection algorithm; YOLOv5

1. Introduction

Cerebral Stroke (CS) is a heterogeneous syndrome caused by multiple disease mecha-
nisms and causes a disruption of cerebral blood flow with subsequent tissue damage [1,2].
CS is an acute cerebrovascular disease with a high incidence rate, high mortality rate, and
high disability rate [3]. CS occurs when the blood supply in the brain is damaged. It is
a result that blocks cerebral vessels and stops blood from flowing to an area of the brain
(called an ischemic stroke) or bursts cerebral vessels and causes intracerebral hemorrhage
(called a hemorrhagic stroke). Every year, 15 million people suffer from stroke all over
the world, including 5 million deaths and 5 million permanent disabilities. Survivors can
experience loss of vision and/or speech, paralysis, and confusion [4]. Investigations have
shown that CS is the primary reason for adult disability in some countries [2].

The incidence rate of ischemic stroke (IS) is higher at 60~70% than CS. The most
common symptoms of IS are a sudden weakness of the face, arms, or legs, sudden dizzi-
ness and unconsciousness, sudden mouth/eye deviation, hemiplegia, confusion, diffi-
culty in speaking or understanding, monocular or binocular vision difficulty, difficulty
in walking, dizziness, loss of balance or coordination, severe headache without cause,
fainting, etc. [5–7]. The severity and symptom duration of neurological dysfunction after
cerebral artery stenosis and occlusion can be divided into three types: transient ischemic
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attack, reversible ischemic neurologic deficit, and complete stroke, among which the symp-
toms of a complete stroke are the most serious [8]. After the onset of IS, it is painful for
patients, their families, and society. IS is a cerebrovascular disease with a high incidence in
middle age, mostly in people over 40 years old.

At present, prevention is considered to be the best measure for IS because of the
lack of effective treatment. For the prevention of stroke, effective prevention strategies
include reducing the intake of salt in a diet, eating more fresh vegetables and fruits,
strengthening an appropriate amount of physical exercise, avoiding excessive drinking,
and banning smoking, etc., in daily life, which has been proven to effectively reduce the
incidence of cardiovascular disease. In addition, the regular screening of healthy people
and regular monitoring and intervention of high-risk populations with disease risk have
also proved to be effective. Necessary intervention measures are proposed for potential
patients too. Timely and accurate diagnosis plays an important role in preventing and
developing a treatment plan. The clinical diagnosis includes detection in blood and urine,
electrocardiogram and blood pressure, cerebral angiography, and brain imaging technology,
in which brain imaging technology plays an important role in the cause, location, and area
of a stroke [9]. Brain imaging technology for imaging brain tissue or structures utilizes
rays (X-ray, γ, etc.) or radio waves, such as noncontrast computer tomography (NCCT), CT
angiography (CTA), CT perfusion (CTP), magnetic resonance imaging (MRI). The imaging
duration of NCCT is less than one hour at the fastest, and the cost is half or even lower than
other brain imaging technologies [10]. Therefore, NCCT is actually a common detection
method for stroke, especially for acute IS [11,12].

Computer-aided diagnosis (CAD) is increasingly becoming a reliable and essential
means against the background of artificial intelligence (AI) [13–18]. For the region of interest
(ROI) detection, the current CAD models detect the ROI by mining valuable features in the
images. Consequently, the more obvious the features of the ROI, the better the detection.
However, the characteristics of NCCT for acute IS are relatively simple, whether it is the
composition elements or the color in the image area, especially in the ROI, the hypodensity
in the infarct area, the gray matter, types of gray matters, etc. [19], which have differences
compared to some diseases, such as tumors with obvious tissue deformation; this leads to
a lower feature detection sensitivity of NCCT for IS [20]. Chalela et al. evaluated NCCT
to screen acute ischemic stroke. The result was only 56 acute IS patients were screened
from 217 acute IS patients, with a sensitivity of 26% [21]. Lansberg et al. also found that
the screen rate of acute IS from NCCT was 42–63% [22]. Marbun et al. proposed a method
that combined contrast-limited adaptive histogram equalization (CLAHE) and CNN to
detect stroke NCCTs and achieved 90% accuracy and 76% sensitivity using a small test
set [23]. Kuang et al. studied a model based on a random forest classifier to detect 100
testing acute IS patient NCCTs with a specificity of 91.8% and a sensitivity of 66.2% [24].
Luo et al. proposed the UCATR for the detection of acute IS lesions. UCATR uses a
transformer to learn the global features of NCCT, and CNN is used to detect the ROI.
The result showed good performance, with a Dice similarity coefficient of 73.58% and a
sensitivity of 73.12% [25]. Therefore, we studied a detection algorithm that can realize high
accuracy and sensitivity detection for IS NCCT.

2. Materials and Methods
2.1. Image Enhancement

The enhanced image is a kind of data transformation for image data in order to
highlight some feature information, creating a better visual effect that can easily fit the
subsequent image processing. Its purpose is to make some features that are not obvious
in the original image easier to interpret and recognize. These features are often selective.
At the same time, the way to enhance them is relative, which can enhance the feature
information of interest or weaken the feature information of interest.

The common methods of enhancement can be divided into the spatial domain and
frequency domain, according to the processing spaces of the target object [26,27]. The
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objective of the spatial method is the enhancement of the image itself. The operation
is for pixels and components composed of pixels in the image, including the grayscale
transformation, histogram equalization, and the smoothing of image areas; the frequency
method refers to the enhancement or suppression of some features through processing for
the frequency domain. For example, reducing noise by setting a low-pass filter.

As one of the most classic spatial enhancement methods, histogram equalization (HE)
is an algorithm that uses the pixel conversion of an image to increase image contrast [28].
Take the grayscale image as an example; firstly, create a histogram of the grayscale values
in the selected area; secondly, convert the grayscale histogram into an approximate uniform
distribution and, finally, transform the grayscale histogram into an image based on the
approximate uniform distribution (according to mapping function) to achieve an image con-
trast adjustment. With the deepening of research into different application scenarios, some
new derivative algorithms of histogram equalization have been proposed, such as adap-
tive histogram equalization (AHE) [29], contrast-limited adaptive histogram equalization
(CLAHE) [30], and adaptive contrast enhancement using the local region stretching [31].
The adaptive contrast enhancement using local region stretching algorithm (ACELES)
firstly divides the image according to its brightness and then performs HE on the three
regions; then, after the HE of the three regions, the equalization result and the input are
weighted averages to realize the output of the result. In addition, grayscale stretching is an
image enhancement method that uses grayscale transformation via a linear transformation
function. Its main idea is to improve the dynamic range of the grayscale levels in image
processing [32]. Zhang et al. studied an image enhancement algorithm based on K-means,
which was used to deal with imaging in low-brightness environments [33].

2.2. The Model of Detection Based on YOLOv5

Conventional convolutional neural networks (CNN), such as region CNN (R-CNN)
and fast region CNN (fast R-CNN), are two-stage target detection algorithms [34,35]. In
the two-stage detection, the model will extract the features of the detection region and
generate the region proposal (RP) during the first stage, and then use the CNN to classify
the samples in the second stage. The YOLO (you only look once) series as deep learning
with one stage has been proposed since 2016 and has developed into YOLOv5 (the fifth
vision YOLO algorithm). YOLOv5 is the one of state-of-the-art algorithms in the YOLO
family, which is one of the most popular target detection algorithms at present and is
applied in target detection and recognition [36,37]. The YOLO algorithm is a one-stage
target detection algorithm, which the model can directly use for the network structure
to extract features and realize the detection and classification of samples, leaving out the
process of RP. Therefore, the YOLO model is more lightweight and efficient, relying on the
detection accuracy and generalization ability [38–40].

YOLOv5 is a kind of CNN with the inherent network composition structure of a
traditional CNN, including the input layer, convolution layer, and pooling layer. In addition,
it also adds new network composition modules [41,42]. The structure of YOLOv5 is shown
in Figure 1. It mainly consists of four parts: Input, Backbone, Neck, and Head. The
image is input into YOLOv5 through the Input Layer and is completed by the image
preprocessing, including normalization, data enhancement, and the setting of the bounding
box. The function of the Backbone network is to realize the learning and classification of
the image features. It includes one convolution component, the focus component, with one
convolution module and several residual network modules. The Neck network is used to
improve the diversity of the features and the robustness of the network while acquiring the
features of different stages. The design of the head output is used to realize the output of
the target detection results. The structure of YOLOv5 is shown in Figure 1.
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Figure 1. The architecture of YOLOv5.

Specifically, the image inputs the YOLOv5 network from the Input Layer. The Input
Layer mainly completes the basic preprocessing operation, including image compression
and normalization. The process of normalization is completed with the Batchnorm2d
module, as shown in Equation (1); in addition, YOLOv5 uses the Mosaic data enhancement
operation in the Input Layer to improve the training speed of the model and the accuracy of
the network. In addition, the YOLOv5 model also adds an adaptive anchor frame module
and an adaptive picture scaling module. The function of the Backbone network is to realize
the learning and classification of the image features. It includes a csparknet53 structure and
a focused structure, including one convolution module and 23 residual network modules;
the Neck network can improve the variety of features and the robustness of the network
by acquiring features at different stages. It includes an important feature fusion module:
FPN-PAN. The FPN structure includes three maximum pooling layers, which can enhance
the fusion of different features. The PAN can further enhance the fusion of the FPN features.
In the FPN-PAN structure, the deep semantic features can be transmitted to the shallow
layer through FPN, and the shallow positioning information can be transmitted to the deep
layer through the PAN, thus enhancing the multi-scale and multi-level feature map fusion.
In the process of learning and acquiring features, the Backbone and Neck networks need to
activate functions to fit the features. The activate function is called Leaky_ReLU, as shown
in Equation (2). The Head output is located in the last layer of the network. It is the output
of the target detection result. It includes three detections using the convolution structure
and detects the target on the feature map from the previous network, finally outputting the
detection result. At this time, the Sigmoid as an activation function will also be used, as
shown in Equation (3).

n =
m− E[m]√
Var[m] + o

•α + β (1)

where, m is the original data to be normalized, E[m] and Var[m], respectively, represent the
mean and variance of m, n is the normalized data, α and β are the parameters for linear
transformation; the parameter o can avoid meaningless equations when the Var[m] is equal
to zero.

yi =

{ xi
ai

, xi < 0
xi, xi ≥ 0

(2)
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where i represents the coefficient of the ith hidden layer, and xi and yi, respectively, represent
the input and output of the ith hidden layer, after being processed by the activation function
ai ∈ (1,+∞) .

f (x) =
1

1 + e−x (3)

where x and y, respectively, represent the input and output in output layer.

2.3. AC-YOLOv5

In this paper, we propose an improved detection algorithm for IS NCCT based on
YOLOv5 (AC-YOLOv5). The original IS NCCT is enhanced by ACELES; then, the enhanced
image input to the model based on YOLOv5 is for target detection. The Algorithm 1 is
as follows.

Algorithm 1. AC-YOLOv5

Input: The original image;
Output: The Network structure, location, and accuracy of the target(s);
Step 1: Adaptively acquire the gray values of pixel points in the original image, and divide all
pixel points into three classes based on the gray values, i.e., light, medium and dark according to
the gray values;
Step 2: Perform HE on the three classes respectively, and then weight the results after HE and
output the image;
Step 3: Input the image into the YOLOv5. Generate the original feature maps and feature matrix A
about the object(s) based on the image;
Step 4: Training to predict and get feature maps and feature matrices Â;
Step 5: The loss function is calculated and optimized according to the matrix A and the matrix Â;
Step 6: Perform iterations from step 3 to step 5 until the desired accuracy is achieved.

The structure of AC-YOLOv5 is shown in Figure 2. Firstly, the model performs
ACELES to achieve image enhancement. This step leads to the features of ROI of NCCT
becoming more prominent in the global region. The NCCT image is a grayscale image;
thus, the grayscale value of a pixel actually represents the brightness of the pixel; Secondly,
Input the enhanced image into YOLOv5. The image is divided into several grids of equal
size and generates the bounding box(es) of the object(s). The original feature maps for the
objects are generated too, which are used to store three feature vectors for the object in
the image in the grid, including object position information (center point, height, and the
width of the box), the class is inside or outside the grid and the class information. Thirdly,
training to obtain the anchor point and box of the object(s); then, predict and get feature
maps, including the center point and height and width of the box. The loss function is
calculated and optimized according to the original feature maps and the predicted feature
maps; finally, repeat the second and third steps until the network convergence condition is
reached. Output the position information of the target objects and the width and height of
the bounding box(es).
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In terms of convergence conditions, we use the loss function as the preset. The loss
function consists of three parts: the bounding box deviation, the confidence deviation, and
the prediction accuracy deviation, which are shown in Equation (4). There are five terms of
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polynomial accumulation in the formula, wherein the sum of the first term and the second
item describes the position information of the bounding box, the third term and the fourth
term describe the confidence information, and the fifth term describes the deviation of the
prediction probability.

Loss = λcoord ∑s2

i=0 ∑B
j=0 1obj

ij

[
(xi − x̂i)

2 + (yi − ŷi)
2
]

+λcoord ∑s2

i=0 ∑B
j=0 1obj

ij

[(√
wi −

√
ŵi
)2

+

(√
hi −

√
ĥi

)2
]

+∑s2

i=0 ∑B
j=0 1obj

ij
(
Ci − Ĉi

)2

+λnoobj ∑s2

i=0 ∑B
j=0 1noobj

ij
(
Ci − Ĉi

)2

+∑S2

i=0 1obj
i ∑c∈classes(pi(c)− p̂i(c))

2

(4)

where xi, yi, respectively, represent the abscissa and ordinate of the center point of the
anchor box, hi is the width of the anchor box, wi is the height of the anchor box, Ci is
the confidence score for the object inside or outside the anchor box, pi(c) is probability of
classification. 1obj

ij represents the jth predictor in the ith box. If there is an object in the

area and the confidence of jth predictor is the highest, then the 1obj
ij is 1. On the contrary, if

there is no object in the ith cell, then the 1noobj
ij is 1. λcoord and λnoobj are constants, and the

weight of related terms can be adjusted.

3. Results
3.1. Dataset and Construction of Detection Model

The experimental data for the IS NCCT images we selected consisted of two kinds.
One is from GitHub, which is one of the most popular software open-source websites at
present. We selected the Hypodense-Segmentation-Using-CNN and AISD datasets. The
first dataset contains 250 CT images. The second dataset, AISD, contains 397 CT images
of IS, all of which are from IS patients and have been labeled for the ROI regions. The
second kind of datat came from open-source website resources [43–47], and the ROI region
labeling was also already carried out. The multisource experimental data can better verify
the performance of the model, including accuracy and generalization ability.

In terms of the construction of the detection model, the dataset of Hypodense-Segmentation-
Using-CNN was selected to complete this process. The dataset is divided into three parts,
including the training dataset, validation dataset, and testing dataset. The ratio was
3:1:1, that is, 150 training samples, T, 50 verification samples, V, and 50 test samples, T1.
Otherwise, we selected 64 samples from AISD and open website resources to compose the
test sample, T2, to verify the accuracy and generalization ability of the model.

3.2. Results and Evaluation

As described in Figure 3, there were training results in the YOLOv5 model’s own
results window. There were some items in the results window, including three feature
vectors (box (the position information of object, i.e., center point, height, and width of box),
obj (inside or outside the grid), cls (class information)), metrics (precision, recall, and mAP
(mean Average Precision)). After hundreds of epochs, the three feature vectors and the
metrics reach the convergence conditions set by the loss function. This indicates that the
AC-YOLOv5 model shows excellent performance, including the accuracy and robustness
of the model.
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In order to better evaluate the performance of the AC-YOLOv5 model, we added seven
control group experiments: Fast R-CNN (FR-CNN), YOLOv5(without image enhancement),
the image enhancement based on Kmeans + YOLOv5 (K-YOLOv5), the image enhancement
of Grayscale stretching + YOLOv5 (G-YOLOv5), the image enhancement of HE + YOLOv5
(H-YOLOv5), the image enhancement of AHE + YOLOv5 (AH-YOLOv5), and the image
enhancement of CLAHE + YOLOv5 (CL-YOLOv5). In addition, we used Accuracy and
Recall to evaluate the accuracy of the algorithm. The generalization was verified by T1
and T2.

The experimental results for T1 and T2 are shown in Table 1. The experimental
results show that image enhancement based on HE can significantly improve the accuracy
of detection and the generalization ability of the model. Moreover, K-YOLOv5 had the
worst results, whether that was for T1 or T2. AC-YOLOv5 had the best comprehensive
performance. Specifically, the accuracy of the proposed AC-YOLOv5 algorithm on the T1
and T2 sets was 94.1% and 91.7%, and the recall rate was 85.3% and 88.6%, respectively,
especially in generalization ability.

Table 1. The experimental results on T1 and T2.

T1 T2

Accuracy Recall Accuracy Recall

F-RCNN 67.80% 54.30% 2.00% 4.10%

YOLOv5 83.10% 67.50% 55.10% 40.40%

K-YOLOv5 34.30% 22.00% 7.60% 7.61%

G-YOLOv5 86.30% 69.00% 57.10% 42.20%

H-YOLOv5 87.10% 65.00% 77.60% 65.10%

AH-YOLOv5 98.70% 76.10% 74.90% 69.60%

CL-YOLOv5 87.00% 71.40% 57.70% 65.20%

AC-YOLOv5 94.10% 85.30% 91.70% 88.60%

4. Discussion

Research shows that timely and rapid detection of IS and targeted interventions can
minimize the damage and even save the patient’s life. As a fast-imaging technology, NCCT
is one of the most important methods to detect IS [48]. In this paper, we presented a
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detection algorithm for IS NCCT. The algorithm enhances the features of NCCT to make
the ROI easier to detect, and the results show high accuracy and recall performance.

Our proposed algorithm includes an image enhancement module and a detection
module. The image enhancement module introduces the adaptive mechanism in the en-
hancement of NCCT, which makes feature enhancement processing become more adaptive
and generalizable. Meanwhile, the image enhancement module can make the local features
more prominent rather than global, potentially useless features, which will undoubtedly
improve the subsequent detection accuracy. In the detection module, ROI detection is
completed based on the YOLOv5 target detection model. YOLOv5, as one of the most
advanced target detection algorithms, has a lighter network structure and stronger gener-
alization capability than traditional CNN networks. It has been proven to be an efficient
target detection model in many fields [49,50].

Our algorithm has achieved excellent accuracy and recall performance, especially for
recall. Other studies have also focused on solving the problem of the insufficient sensitivity
of IS NCCT features. From their research results, recall is often an urgent problem, and
the verification of the model is mainly completed on a single dataset [51]. Our algorithm
has achieved good results and has been verified over several datasets. We propose that
AC-YOLOv5 achieves 94.1% accuracy and 85.3% recall and 91.7% accuracy and 88.6% recall
on the two different datasets, respectively; it has the best comprehensive performance when
compared to the seven control groups in the experiment. In addition, from the experimental
results, we also found that the YOLOv5 algorithm has better overall performance than
traditional CNN algorithms; the model training of CNN training needs a lot of data as a
basis [12], and this will also add additional time costs. Both the traditional CNN algorithm
and the YOLOv5 algorithm have the problem of insufficient sensitivity toward feature
detection in NCCT, but image enhancement based on HE can effectively solve this problem.

5. Conclusions

CS is a serious disease that threatens human health and normal life, especially IS,
which accounts for the majority of CS cases. NCCT is one of the most important methods
for IS detection. The AC-YOLOv5 model can effectively solve the problem of feature
insensitivity in the CAD of IS NCCT and achieve efficient diagnosis effects with accuracy
and generalizability. We also hope to provide a feasible and effective exploration for the
CAD of NCCT in other diseases to save time and human resources.
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