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Abstract: Hardware implementations of cryptographic primitives require protection against physical
attacks and supply chain threats. This raises the question of secure composability of different attack
countermeasures, i.e., whether protecting a circuit against one threat can make it more vulnerable
against a different threat. In this article, we study the consequences of applying logic locking,
a popular design-for-trust solution against intellectual property piracy and overproduction, to
cryptographic circuits. We show that the ability to unlock the circuit incorrectly gives the adversary
new powerful attack options. We introduce LEDFA (locking-enabled differential fault analysis) and
demonstrate for several ciphers and families of locking schemes that fault attacks become possible (or
consistently easier) for incorrectly unlocked circuits. In several cases, logic locking has made circuit
implementations prone to classical algebraic attacks with no fault injection needed altogether. We
refer to this “zero-fault” version of LEDFA by the term LEDA, investigate its success factors in-depth
and propose a countermeasure to protect the logic-locked implementations against LEDA. We also
perform test vector leakage assessment (TVLA) of incorrectly unlocked AES implementations to show
the effects of logic locking regarding side-channel leakage. Our results indicate that logic locking is
not safe to use in cryptographic circuits, making them less rather than more secure.

Keywords: cryptography; logic locking; fault attacks; side channel analysis

1. Introduction

In recent years, the security of sensitive data has become increasingly important, espe-
cially for embedded devices or Internet of Things (IoT) applications. It is crucial to ensure
privacy and integrity while meeting hardware constraints. For instance, smartphones pro-
cess a growing amount of sensitive data, and it is the responsibility of circuit designers to
guarantee data integrity and prevent leakage. As a result, it has been widely accepted that
hardware is an essential component of any critical electronic system and must be secure.

Data security can, to some extent, be improved by using cryptographic primitives,
but physical limitations in power and space need to be considered as well [1]. Striking
a balance between hardware constraints and security is crucial. However, it may lead to
design flaws that an attacker can take advantage of. Therefore, implementation must be
carefully planned, especially if the attacker has physical access to the device. An attacker
can study the device and use various physical attacks to achieve their objectives.

Several attack vectors have been identified that specifically target hardware implemen-
tations at various stages of a circuit’s life cycle and aim to compromise different assets [2].
Therefore, various countermeasures have been proposed against specific attack vectors,
such as side-channel analysis, fault-injection attacks, hardware manipulation, or coun-
terfeiting. However, it has been observed that these countermeasures are not readily
composable [3]. A countermeasure that is effective against one type of attack may actu-
ally increase the vulnerability of the circuit to other attacks. For instance, in [4], adding
error-detecting circuitry to counteract fault attacks increased information leakage and, as a
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result, simplified side-channel analysis. This can be seen as a “security paradox”, where
attempts to strengthen security against certain attacks can actually weaken the overall
security of the system [5,6]. The objective of this work is to enhance the secure composition
of physical attack countermeasures by identifying any potential negative consequences of
specific countermeasures in other attack scenarios.

Various attack mechanisms can compromise cryptographic circuits, making them
vulnerable. To prevent such attacks, several countermeasures have been proposed. Physical
attacks, including algebraic fault attacks (AFA) and side channel attacks (SCA), are among
the most prevalent types. AFA combines mathematical analysis and traditional fault
attacks to recover the secret cryptographic key of a cipher. This technique derives equations
from the algebraic descriptions of the cipher, fault-affected values, and a fault model.
A SAT solver then processes the equations and the fault model to recover the secret key
or limit the key space. SCA, on the other hand, captures side channel information such
as power consumption or electromagnetic radiation to gather sensitive information about
the cryptographic primitives. This is possible because the operation of cryptographic
circuits can cause variations in power consumption or electromagnetic radiation that can
be detected and analyzed. By capturing this information, an attacker can infer sensitive
information about the cryptographic primitives, which can compromise the security of the
system. Therefore, it is essential to implement proper countermeasures to prevent these
attacks and ensure the security of cryptographic systems.

On the other hand, profit-driven globalization of integrated circuit design has resulted
in many hardware-based attacks due to the outsourcing of fabrication to untrustworthy off-
shore foundries. As a result, new techniques are necessary to safeguard Integrated Circuits
(ICs) against various attacks. One such technique is logic locking, which involves modifying
the circuit and adding new locking key inputs. These locking keys must be set to the correct
values for the circuit to function correctly. Unfortunately, since its inception, several
attacks have successfully broken logic locking, i.e., unauthorized users can determine the
locking key [7,8]. The most relevant among these is the SAT attack, which helps categorize
logic locking approaches into “pre-SAT” and “post-SAT” methods. The latter have been
specifically designed to withstand the SAT attack. In order to counter these attacks, many
countermeasures have also been proposed [9–12].

In this article, we show that the logic locking schemes proposed for security against
supply chain threats are a weak link in protecting cryptographic hardware. The cryp-
tographic primitives are resistant against (classical) cryptanalysis mainly due to their
algebraic properties, and we show that when an adversary can apply incorrect locking keys,
logic locking can destroy this resistance. We demonstrate that differential fault analysis
(DFA) on incorrectly unlocked cryptographic circuits is simpler than on regular circuits
without logic locking. We call the resulting attack locking-enabled DFA or LEDFA. More-
over, the circuit can even become vulnerable to classical differential cryptanalysis with no
physical faults injected for some locking keys. We refer to this attack as LEDA. Note that
neither LEDFA nor LEDA aims to attack the logic locking scheme itself (in fact, we assume
an adversary with legitimate access to the circuit and correct logic-locking key). The target
of the attack is the cryptographic key used by the primitive, and the locking circuitry is
used as a vehicle to facilitate this attack.

Our article has a two-fold objective. Firstly, we intend to provide a comprehensive
exploration of the LEDA and LEDFA algorithms, with particular emphasis on potential vul-
nerabilities resulting from logic locking. We will look into the intricacies of both algorithms
and highlight potential weaknesses that an attacker could exploit. We will also analyze
successful attacks to demonstrate why our attacks are successful. In addition to [13], we
have two new contributions. First, we propose a countermeasure against LED(F)A based
on our findings and show empirical results to demonstrate its effectiveness. Secondly, we
aim to also investigate the impact of logic locking on the side channel vulnerabilities of
an AES module. We will conduct empirical assessments of power consumption traces to
gain insights into the interaction between logic locking and the overall security profile of
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cryptographic circuits. Our study aims to provide valuable insights into how logic locking
can affect the security of cryptographic circuits and highlight potential areas of concern
for designers and developers. Overall, our article contributes to the ongoing debate on
the security of cryptographic circuits and provides insight into improving their robustness
against attacks.

In order to demonstrate and study both LEDFA and LEDA, we developed a method-
ology which is summarized in Figure 1. Firstly, we generated implementations of cryp-
tographic circuits logic locked using a representative selection of schemes from the three
prominent logic locking families: pre-SAT, modification-based post-SAT, and restoration-
based post-SAT logic locking schemes. To achieve this, we extended the existing circuit
with the locking logic and additional inputs for the locking key lk, in addition to the
regular inputs of the plaintext p and the cryptographic key k. Next, we ran DFA for the
resulting locked circuit with the new lk inputs fixed to either the correct or random in-
correct values. To accomplish this, we used an existing algebraic fault attack framework
that was extended to support locking key inputs. The AFA framework generates a fault
attack for a user-specified number of fault injections for a given fault model. Specifically, it
constructs a Boolean formula in its conjunctive normal form (CNF) that can be solved for
the cryptographic key by plugging in the fault-affected circuit responses.

Figure 1. Overview of the attack methodology (the first step is executed in our evaluation; in a real
attack scenario, the circuit is locked already).

Our results show empirically that utilizing LEDFA with randomly selected incorrect
locking keys is a more effective method than using DFA on a circuit that has no locking
circuitry or has been correctly unlocked. Furthermore, LEDA, which does not require fault
injections, has a success rate of 27% to 87% for lightweight ciphers, presenting a severe
vulnerability since attackers can repeat the process using different incorrect locking keys
until a successful attack. We conducted an extensive investigation into LED(F)A’s success
factors, including the impact of non-trivial locking circuitry in post-SAT schemes and the
optimal choice of the locking key. As part of this investigation, we have demonstrated cases
where LEDA can successfully attack full-scale AES. Overall, we show that logic locking is a
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problematic technique for cryptographic hardware and goes against the principle of secure
composition of countermeasures.

The remainder of the article is structured as follows. Section 2 provides essential
background information on fault injection attacks, side channel analysis, and different
logic locking schemes. In Section 3, we give a detailed motivational example. Section 4
summarises the individual attack steps and explains the chosen threat model. Section 5
reports on the experimental results. In Section 6, success factors are analyzed, including
the choice of a specific locking key and the propagation of cryptographic key bits through
locking subcircuits. Section 7 discusses a proposed countermeasure against LEDA. Finally,
Section 8 concludes the article.

2. Background

Cryptographic primitives, the foundational building blocks ensuring secure data com-
munication, have historically been the target of various sophisticated attacks. One such
prevalent modality is the fault injection attack. Within this category, differential fault attacks
have been particularly noteworthy due to their mechanism of leveraging fault injections
to instigate faulty cipher executions. Intriguingly, these faulty executions only marginally
deviate from fault-free operations. This variation facilitates differential cryptanalysis across
a truncated number of cipher rounds, amplifying the efficacy of these attacks. The potency
of differential fault attacks is underscored by their ability to fully derive keys for ciphers,
including, but not limited to, AES-128 [14,15], LED [16], and PRESENT [17]. Often, a singu-
lar or minimal fault injection suffices for this derivation. The ensuing data created from
such injections are commonly channelled into specialized [14] or generic equation-solving
paradigms [18], with the latter often rooted in Boolean satisfiability solving.

Parallel to these, the hardware domain grapples with an array of attack vectors
predominantly centred on supply chain security. These threats span malicious circuitry
alterations during design or fabrication phases, commonly known as hardware Trojans [19],
to more overt violations like piracy, cloning, counterfeiting, and overbuilding. The latter
subset pertains to scenarios wherein circuits or their intellectual properties are unlawfully
procured or originate from unauthorized entities [20]. These challenges are ubiquitously
pertinent but assume higher significance in the context of cryptographic circuits.

Several countermeasures have been proposed to counter such threats. These include
camouflaging—obscuring identifiable hardware architectures to thwart recognition [21];
logic locking—enabling circuit operability exclusively for authorized users possessing the
requisite locking key [22]; watermarking—infusing the circuit with an indelible authorial
signature [23]; fingerprinting—an augmented form of watermarking, it entails the inclusion
of the purchaser’s identity [24]; metering—a mechanism devised for the meticulous tracking
of individual circuits [25].

2.1. Logic Locking

Introduced in 2008 as part of the EPIC (“Ending Piracy of Integrated Circuits”) frame-
work [26], random-logic locking (RLL) adds key gates connected to new locking key inputs
at random locations within a given circuit. However, in 2012 [27], it was observed that
an attacker with access to a functional (unlocked) circuit and a reverse-engineered netlist
could make individual locking key bits observable at the circuit’s outputs. To counter
against this threat, strong logic locking (SLL), fault-analysis-based logic locking (FLL) [28],
and look-up-table-based locking [29] were proposed. However, these techniques were com-
promised by the SAT attack [7], which used Boolean satisfiability (SAT) solving to compute
“distinguishing input patterns” (DIPs) and thus reduce the key search space iteratively.
The introduction of the SAT attack has led to the development of several new locking
techniques such as SARLock [9], Anti-SAT [10], CASLock [30], TTLock [11], SFLL [12],
and cyclic Locking [31].

In the recent literature, there exists a differentiation between pre-SAT and post-SAT
logic locking techniques [32]. The former employs key gates inserted into the netlist,
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varying only in their placement. The latter, on the other hand, utilizes point functions,
which are Boolean functions that produce a value of 1 for only one point in the input space.
This approach limits the extent of locking-triggered perturbation to the original circuit’s
functionality, thereby reducing the valuable information for an SAT attack. Another type
of post-SAT scheme is the cyclic logic locking scheme, which introduces loops into the
combinational circuitry, potentially oscillating under incorrect locking keys. However, these
circuits violate standard design rules, and we consider them impractical for cryptographic
applications. This study assesses a representative selection of both pre- and post-SAT
techniques, including two varieties of RLL as the most basic pre-SAT schemes and two
post-SAT schemes, namely Anti-SAT and SFLL. All of the schemes utilized are discussed in
detail below.

2.1.1. Random-Logic Locking

As mentioned before, RLL randomly inserts locking key gates in a netlist. There
are two different schemes considered for this work: random XOR/XNOR insertions and
random AND/OR insertions. We refer to them as “RLL-⊕” and “RLL-∧”, respectively,
in the rest of the article. In RLL-⊕, we select n wires in the circuit, where n is the size of
the locking key, and then introduce n new XOR/XNOR gates. We disconnect each wire’s
driver from its sink and insert either an XOR or an XNOR gate. Whether we choose an
XOR or an XNOR gate depends on the matched locking key bit. Similarly, in the case of
RLL-∧, we randomly insert either an AND or an OR gate.

Let us consider Figure 2a representing an original circuit, which consists of three
inputs and an output. It comprises five gates. On the other hand, Figure 2b shows the same
circuit locked with RLL-⊕ using a 3-bit locking key. This variant has three additional XOR
and XNOR key gates. At least one of the inputs of each key gate is driven by a wire from
the original design, while the other input is driven by a locking key bit. The new locked
circuit will only generate the correct output when activated using the correct locking key.
For instance, consider Figure 2b again: if the locking key value of 110 is loaded into memory,
the correct output for all input patterns (e.g., Y = 0 for input 000) is produced because
all key gates will function as buffers. However, if an incorrect key value is used, certain
key gates will function as inverters, resulting in errors in the circuit’s output. For example,
when the locking key 010 and the input 000 are applied, the key gate lk1 will behave as an
inverter, leading to an incorrect output Y = 1.

a
b

c y

(a)

a
b

c
y

(b)

lk1

lk2

lk3

Figure 2. (a) A simple combinational circuit. (b) Circuit in (a) locked using random XOR/XNOR in-
sertions.

2.1.2. Point Function-Based Logic Locking

Let us take a closer look at a generic point function-based logic locking scheme, shown
in Figure 3a. These schemes utilize a root and an tree input set to embed the logic-locking
block into a given circuit. The logic-locking block has as inputs the locking key lk and
the tree input set, or X, which consists of a set of signals, either the primary inputs or
intermediate wires. The size of this set is equal to the size of the locking key. The logic-
locking block creates a point function Y, which is then connected to the randomly selected
root within the original circuit. Our study investigates two schemes: Anti-SAT and stripped
functionality logic locking (SFLL).
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Figure 3. (a) Generic point function-based logic locking (b) Anti-SAT (c) SFLL.

Anti-SAT, the circuit block shown in Figure 3b, is relatively lightweight and consists
of two functions, g and g, that are connected to the same inputs, X, and locked with two
n-bit keys, lk1 and lk2. This results in a locking key size of 2n and a tree input set size of
n. If the correct (lk1, lk2) is applied to unlock the circuit, the outputs of g and g must be
complementary. These outputs are then fed into an AND gate to produce a constant output
of Y = 0, which does not affect the original circuit’s functionality. However, suppose
an incorrect locking key is applied. In that case, the complementary nature of g and g is
violated, and Y assumes the value 1 for some inputs, which leads to incorrect functionality
of the original circuit.

The hardware implementation of SFLL intentionally removes parts of the design
functionality through either gate insertions or replacements. As a result, the original design
and the hardware implementation are not the same. A restore unit is added to recover
the correct functionality, as shown in Figure 3c, which cancels the built-in error when the
correct logic-locking key is applied. However, if an incorrect locking key is applied, it
introduces additional errors in the design. With SFLL, designers can specify a permissible
Hamming distance from the correct locking key. As a result, the restore unit recovers the
original circuit behavior only when the locking key supplied by the circuit’s user is within
the specified Hamming distance from the correct one.

2.2. Fault Attacks

Cryptographic primitives can be weakened using fault-injection attacks, which cause
physical disruptions during their operation. These attacks can be simple and can be
achieved through bit manipulation or clock frequency manipulation. When a cryptographic
operation produces a faulty result, it can be observed at the circuit’s outputs, and the
differences between the faulty and the fault-free results can be used to derive the secret
information, such as the secret cryptographic key or the plaintext. Fault attacks involve
physical fault injections on the circuit and the mathematical analysis of the observed
data. The physical fault injections can be carried out in several ways, from glitching and
underpowering to overheating [33], optical, and electromagnetic fault injections [34,35].
These attacks are invasive and active; for example, to shoot accurately at a specific location
with a laser, it may be necessary to decapsulate the chip.

The mathematical analysis consists of manual derivation to either obtain the cryp-
tographic key or reduce the keyspace to a size that allows a brute force search [14,16].
Statistical techniques like those discussed in [36,37] can also be employed. Algebraic fault
attacks (AFA) use an algebraic formula to map an attack, as described in [18,38]. Improving
the solving process can increase the scope of the suitable attacks. Algebraic cryptanalysis is
computationally intensive but does not require specific external data. At the same time,
fault attacks, on the other hand, are data-dependent and may demand many fault injec-
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tions to recover the secret key. Combining the two attacks can benefit from both of their
advantages. The main idea behind AFAs is to use the cipher description and some fault
injection data to retrieve the sensitive information. In order to launch a successful attack,
an appropriate fault model must first be selected. The cipher and the selected fault are then
expressed in their proper algebraic form. Finally, a solver is used to solve the algebraic
equations, and if necessary, the incorrect key candidates are eliminated.

2.3. Side Channel Attacks

Side channel attacks are a type of physical attack that aims to exploit vulnerabilities in
cryptographic circuits to gain access to sensitive information. Unlike invasive attacks that
involve tampering with the system, side-channel attacks monitor auxiliary outputs such
as power consumption or electromagnetic emissions. These attacks target the correlation
between the processed data and the secret cryptographic key.

Differential power analysis (DPA) is one of the most prominent types of side-channel
attacks. DPA, introduced by [39], targets the correlation between the electrical power
consumption of a cryptographic device and the operations it performs that depend on the
secret cryptographic key. Statistical methods are used to analyze the power consumption,
allowing the attacker to extract sensitive information.

The primary attack point of DPA is the dependence of power consumption on the
operation performed by the cryptographic device. Multiple power consumption traces
are measured for the fixed secret cryptographic key, and varying plaintexts are used.
The resulting data are stored, including the measured power and the applied plaintext.
With sufficient available traces, the first step of cryptanalysis is to specify a selection
function that divides the measured traces into two sets based on an assumption of the
secret cryptographic key. The average at each point in time is calculated and then compared
for both sets. However, a large number of power traces are needed due to the presence of
various hardware noises.

DPA has a critical advantage over brute force attacks because it allows the attacker to
guess the key one byte at a time, significantly reducing the effort required and making DPA
a highly effective tool for attackers seeking unauthorized access to sensitive information.

2.3.1. Test Vector Leakage Assessment (TVLA)

To evaluate the resilience of a cryptographic circuit against side channel threats, the
TVLA method, as proposed by [40], stands as an efficient tool. TVLA aims to detect potential
side channel vulnerabilities rather than explicitly extracting the secret cryptographic key.
The procedure involves examining the circuit using a consistent and known set of inputs.
Two distinct datasets are required to evaluate AES using TVLA to mitigate the risk of
false-positive results. The initial dataset comprises power traces from 2 ∗ n encryptions,
all employing a consistent, predefined cryptographic key, k, but varied random plaintexts.
In contrast, the second dataset employs the same cryptographic key, k, encrypting with a
static input n times.

The objective is to determine the possibility of distinguishing between traces of fixed
plaintext and the random counterparts, and is achieved through independent statistical
evaluations with separate datasets. The first n/2 measurements from both datasets are
compared for the initial test, while the subsequent test uses the latter n/2 measurements.
A t-score outside the range of −4.5 to 4.5, specifically during the middle phase of the AES
operation, indicates a failed test. In the context of the 4.5 threshold, [41] states it offers
“a confidence of >0.99999 to reject the null hypothesis”. This t-score corresponds to the t
-statistic in Welch’s t-test, where a significant deviation from zero suggests a discernible
difference between the two sets. Therefore, to meet the requirements of the TVLA, a small
absolute value of the t-statistic is desired. Notably, a system is more vulnerable to a side
channel attack if it fails the TVLA. However, passing the TVLA does not conclusively prove
that the circuit can resist side-channel attacks. Even with a successful test outcome, it is
essential to corroborate the findings through additional evaluation methodologies.
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2.3.2. t-Test

After collecting the traces, Welch’s t-test is conducted on the datasets—the t-test tests
whether two sets exhibit the same mean. Thus, a test failure would indicate that statistically
significant differences in mean are present between the datasets. In the context of TVLA,
the rejection of the null hypothesis—that the two datasets possess identical means—implies
security vulnerabilities within the device under inspection [42]. Contrarily, the acceptance
of the null hypothesis suggests an absence of discernible security vulnerabilities. How-
ever, it is crucial to note that the absence of evidence does not guarantee the device’s
intrinsic security.

For an implementation of TVLA, it is specified that two independent tests be executed
on mutually exclusive datasets. The first test is done with the initial half of the dataset,
while the second test evaluates the latter half. The t-statistic is meticulously calculated
for both tests. Let us denote X1 and X2 as the means of the random and fixed datasets at
any specified point within the set of sample points. Similarly, let S1 and S2 represent the
sample standard deviations of the random and fixed datasets, while N1 is the number of
traces used to test the random dataset and N2 is for the fixed dataset. The t-statistic is thus
expressed by:

t =
X1 − X2√

S2
1

N1
+

S2
2

N2

(1)

After the t-statistic computation across all sample points, whether these values reside
within the interval [−4.5, 4.5] is determined. Any deviation of the t-statistic from this
specified interval implies the rejection of the null hypothesis, indicating potential security
vulnerabilities. The choice of this interval, precisely [−4.5, 4.5], aligns with a confidence
level of 99.999%, thereby minimizing the probability that observed disparities between
datasets arise merely from stochastic variances [40].

3. Motivational Example and Attack Assumptions (Rephrased)

In this segment, our objective is to provide a clear explanation of the concept of locking-
enabled attacks. To achieve this, we will present an example of LEDFA that is based on a
basic but rather unrealistic scenario, which will help in understanding the idea in a simple
way. Following that, we will introduce our actual adversary and threat model in the next
section, providing a more practical perspective. We implemented a gate-level version of
the PRESENT SBox with a Boolean function S : B4 → B4, and locked it with a 4-bit locking
key using RLL-∧ to illustrate the concept. This changed the Boolean function of the SBox
to Sl : B8 → B4 and led to the addition of four new inputs, lk1, . . . , lk4. Only one lk among
the 16 potential locking keys is correct; in that instance, for all i ∈ B4, Sl(i, lk) = S(i).
The adversary can apply any other lk′ ̸= lk, which will change the SBox’s function, or the
correct lk = 0110 to use it normally.

Now, we will show how logic locking can make the SBox and the cipher as a whole
more susceptible to differential cryptanalysis. The difference pairs (∆i, ∆S(i)) for the SBox
will be computed for this purpose. These are pairs of inputs (i′, i′′) that satisfy i′ ⊕ i′′ = ∆i
and S(i′)⊕ S(i′′) = ∆S(i) [43]. Table 1A displays the resulting difference distribution table
(DDT) for the standard SBox without any locking circuitry (or, equivalently, a locked circuit
unlocked with the appropriate locking key). For instance, entry 2 in row 7 and column 2
shows that S(i′)⊕ S(i′′) = 2 is equal to the number of input pairs (i′, i′′) with i′ ⊕ i′′ = 7.
Aside from the simple case ∆i = ∆S(i) = 0, this is also the largest number in the DDT.
Greater DDT entries suggest that the SBox is more vulnerable to differential cryptanalysis.
Since there is no such thing as a mathematically impossible “ideal” SBox, all differential
values would be 1, suggesting maximum resistance.
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Table 1. Function table of the standard (A) and the incorrectly unlocked (B) PRESENT SBox and
difference distribution tables for the standard (C) and the incorrectly unlocked (D) PRESENT SBox.
Here, ∆i and ∆S(i) stand for number of input pairs (i′, i′′) that satisfy i′ ⊕ i′′ = ∆i and S(i′)⊕ S(i′′) =
∆S(i), respectively.

Input i 0 1 2 3 4 5 6 7 8 9 A B C D E F

Output S(i) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

(A)

Input i 0 1 2 3 4 5 6 7 8 9 A B C D E F

Output Sl(i, lk′) 7 7 5 5 7 7 7 7 5 5 7 5 7 5 5 5

(B)

Output Difference ∆S(i)
0 1 2 3 4 5 6 7 8 9 A B C D E F

In
pu

tD
if

fe
re

nc
e

∆
i

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 4 0 0 0 4 0 4 0 0 0 4 0 0
2 0 0 0 2 0 4 2 0 0 0 2 0 2 2 2 0
3 0 2 0 2 2 0 4 2 0 0 2 2 0 0 0 0
4 0 0 0 0 0 4 2 2 0 2 2 0 2 0 2 0
5 0 2 0 0 2 0 0 0 0 2 2 2 4 2 0 0
6 0 0 2 0 0 0 2 0 2 0 0 4 2 0 0 4
7 0 4 2 0 0 0 2 0 2 0 0 0 2 0 0 4
8 0 0 0 2 0 0 0 2 0 2 0 4 0 2 0 4
9 0 0 2 0 4 0 2 0 2 0 0 0 2 0 4 0
A 0 0 2 2 0 4 0 0 2 0 2 0 0 2 2 0
B 0 2 0 0 2 0 0 0 4 2 2 2 0 2 0 0
C 0 0 2 0 0 4 0 2 2 2 2 0 0 0 2 0
D 0 2 4 2 2 0 0 2 0 0 2 2 0 0 0 0
E 0 0 2 2 0 0 2 2 2 2 0 0 2 2 0 0
F 0 4 0 0 4 0 0 0 0 0 0 0 0 0 4 4

(C)

Output Difference ∆S(i)
0 1 2 3 4 5 6 7 8 9 A B C D E F

In
pu

tD
if

fe
re

nc
e

∆
i

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 12 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
2 8 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0
3 8 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0
4 8 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0
5 8 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0
6 12 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
7 8 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0
8 4 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0
9 4 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0
A 8 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0
B 8 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0
C 8 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0
D 8 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0
E 4 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0
F 4 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0

(D)

We unlocked the PRESENT SBox with all possible locking key combinations, and then
we exhaustively computed the differential distribution table (DDT) for every resulting
function, Sl(·, lk′). Because the resulting function Sl(i, lk′) for lk′ = 0000 had the weakest
DDT against differential cryptanalysis among all the resulting functions, we decided to use
lk′ = 0000 for our motivational example. The corresponding DDT, shown in Table 1D, is
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susceptible to differential cryptanalysis because it contains multiple entries with a value of
12. Furthermore, there exist several input differences for which the resulting “SBox” is not
a bijective mapping, as evidenced by the fact that the output difference is 0.

Next, we attempted DFA on an implementation of PRESENT where four out of
16 SBoxes in round 28 were replaced by the locked version Sl(·, lk′) with lk′ determined
by the DDT analysis above. This is shown in Figure 4 (using three faults according to
the nibble fault model explained in detail further below). Four copies of the modified
PRESENT (one fault-free and three fault-affected circuits) were used to build a differential
model, which we then converted into conjunctive normal form and solved using the SAT
solver CryptoMiniSAT.

P

K1

pL
K28

pL
K31

pL
K32

C

pL pL
C ′

1F1

pL pL
C ′

2F2

pL pL
C ′

3F3

Figure 4. Faulty PRESENT encryption with 4 incorrectly unlocked SBoxes (in red) in round 29 (pLayer
denoted as pL).

The outcomes of this experiment, along with another using the same SBox and LED in
place of PRESENT, are displayed in Table 2. The percentage of attack attempts that yielded
the correct cryptographic key is indicated by the “success rate”. Once the remaining attack
attempts had been solved for 18,000 s, they timed out. It is observed that the complexity
of attacks was significantly lower for implementations with incorrectly unlocked SBoxes.
With LEDFA, attacks that were previously unfeasible for DFA become possible, and the run
time is drastically decreased. This is not surprising, as the DDT analysis shows that the
cryptographic strength of the SBoxes has been significantly diminished.

Table 2. Performance of DFA and LEDFA on motivational examples (50 repetitions).

Cipher

DFA LEDFA

Success Average Success Average

Rate [%] Time [s] Rate [%] Time [s]

PRESENT (3 faults) 0 – 100 5587.2

LED (1 fault) 100 793.2 100 75.9

The example in this section shows how LEDFA can be used, but more discussion is
needed to fully understand its viability. It is a realistic assumption that adversaries can
gain access to the circuit by using both the correct and the incorrect locking keys. The right
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locking key (lk) must be applied by legitimate users in order to confirm their authorization.
As a result, an externally accessible interface is required to provide locking keys. Given that
anyone purchasing the circuit can easily obtain the correct locking key, it is also conceivable
that adversaries are aware of it. However, the cryptographic key k is not accessible from the
outside as it is kept in a protected memory inside the circuit. Recovering this cryptographic
key k is the primary goal of LEDFA. Importantly, the adversary does not need to exert
any further effort in order to apply an incorrect locking key. Simply said, they can apply
various logical values to the circuit’s standard inputs.

In the example, it is assumed that the four locking key gates of RLL-∧ have affected
the four SBoxes of the circuit in a particular way. If the locking scheme applied to the
entire PRESENT circuit includes four key gates in each of these four SBoxes at precisely
the same positions as determined by the DDT analysis, then such an effect of logic locking
could occur. This assumption, however, is improbable because the key gates are inserted
during the manufacturing process and may be positioned at random or in response to
the structural characteristics of the circuit. They can be placed in any of the other blocks
or within the SBoxes. It is crucial to remember that adversaries are limited to using the
provided locked circuit and cannot move or add new key gates. We therefore adhere to the
white-box assumption, which states that although the adversary is unaware of the values
of the cryptographic secret key k, they are aware of the gate-level implementation of the
cryptographic circuit, including the circuitry related to locking. It is also assumed that
there are no specific countermeasures included to thwart or impede fault attacks. Future
research, though, can address this in more detail.

The next section will include a more thorough description of the LEDFA attack steps
along with a more formal summary of the threat model.

4. Attack Overview and Threat Model (Rephrased)

A cryptographic function enc is assumed to have a logic-locked implementation
encl . Three inputs are provided to encl : plaintext p, cryptographic key k, and locking
key lk. The function computes a ciphertext c = encl(p, k, lk). An adversary can choose a
p to apply to the circuit’s inputs and then record the resulting ciphertext in accordance
with common assumptions about differential fault attacks. The adversary’s goal is to
recover the value of the cryptographic key k, which is safely stored within the circuit.
Adversaries also have the ability to apply various values to lk as an input. For any given
specification (encl(p, k, lk) = enc(p, k) ∀p, k), there is only one correct locking key lk fitting
the description. Incorrect behavior will arise from applying an incorrect lk′ ̸= lk; however,
tracking or detection is absent, i.e., the adversary can use the circuit with the wrong locking
keys, and it will not have any negative effects, like output randomization or blinding.

A physical disturbance represented by a fault f is injected into the circuit while
it is being used for the differential fault analysis (DFA). Generally speaking, an attack
can include several fault injections, i.e., repeatedly utilizing the cryptographic circuit
for encryption with faults f1, f2, . . . The behavior of the circuit under fi fault is given
by enc fi

l (p, k, lk). The adversary might not be completely aware of or in control of the
fault injection’s effect in most situations. Thus, it is unknown what intermediate values
are impacted. With the same inputs, p and lk, the adversary records the ciphertext C
generated by the fault-free circuit and the faulty ciphertexts C1, C2, . . . generated by the
same circuit, upon injection of the corresponding faults, f1, f2, . . . The cryptographic key is
then recovered by solving the equation

(encl(p, k, lk) = C) ∧ (enc f1
l (p, k, lk) = C1)

∧ (enc f2
l (p, k, lk) = C2) ∧ . . . (2)

after k. To build the equation, we assume that the adversary is aware of the gate-level
implementation of the circuit, including the locking circuitry. Reverse engineering [44] can
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be used to determine this information, even though it is not always available in practice; in
DFA literature, it is typically assumed that the attacked function is known.

The presence of input lk sets our proposed attack apart from other traditional fault
attack techniques. As was shown in the previous section, the function can be changed to a
cryptographically weaker version, encl(·, ·, lk′) ̸= enc, if an incorrect locking key lk′ ̸= lk
is used. If the incorrect locking key is used to mount the fault attack, Equation (2) may
become easier to solve.

To perform LEDA, we use fault-free encryptions; we generate multiple ciphertexts with
distinct locking keys: Cl

1 = encl(p, k, lk1), Cl
2 = encl(p, k, lk2), . . . Take note that lk1, lk2, . . .

need to be pairwise different; the correct locking key can be one of them, but it is not
required. Solving the equation

(encl(p, k, lk1) = Cl
1) ∧ (encl(p, k, lk2) = Cl

2) ∧ . . . (3)

after the cryptographic key, k becomes computationally tractable for at least some cases.
In this case, using the wrong locking key has a function that is comparable to fault injections
in DFA. There are, nevertheless, a few significant differences. Unlike many injection
techniques, LEDA does not suffer from inadequate spatial or temporal resolution and does
not require fault-injection equipment. Since there are no peculiar circuit conditions as
a result of the physical disturbances, it is rather challenging to detect using the built-in
sensors. On the downside, since the locking circuitry does not affect every location in the
circuit, LEDA cannot cause arbitrary faults (from the adversary’s perspective). Nonetheless,
we demonstrate that the areas impacted by the locking key are frequently adequate for
recovering the secret cryptographic key. Furthermore, it should be noted that Equation (3)
may not be computationally tractable for arbitrarily large values of lk1, lk2, . . .; in fact, we
found a less than 50% success rate in all cases that were examined. This is not a major
drawback for an adversary who can simply keep trying other locking key combinations
until one recovers k.

Remember that in order to illustrate LEDA and LEDFA, Figure 1 shows how the
attack is set up in general; recall specifically that logic locking is applied to a cryptographic
circuit is the first step. In an actual attack scenario, it is assumed that the locked circuit
already exists. The remaining steps of the procedure show how to use the AFA framework,
AutoFault, which is described in [38], to launch an algebraic fault attack against the locked
circuit. The ensuing subsections contain more specific information about each step.

4.1. Time-Frame Expansion

Two methods can be used for the hardware implementation of round-based ciphers:
one is to use a sequential circuit where the logic for one or more rounds generates interme-
diate outputs that are stored in registers, or one is to use a combinational (unrolled) circuit
that contains logic for each round. Propositional models, which are needed for the SAT
solvers at the core of the AFA framework used in this work, can be obtained by applying
the Tseitin transform [45] to combinational circuits in order to convert them into a Boolean
formula. Unrolling or time frame expansion must be used to create a functionally equiva-
lent combinational circuit for a sequential circuit. In essence, this procedure is a one-cycle
implementation of the circuit’s original description. It is important to remember that test
pattern generation for sequential circuits or sequential equivalency checking commonly
employs the time frame expansion technique.

4.2. Logic Locking

We used a publicly available synthesis program named Netlist Encryption and Obfus-
cation Suite (NEOS) [46] to generate the locked circuits. Random-logic locking variants com-
prise seven of the available schemes. For this work, we consider two of them, XOR/XNOR
and AND/OR insertions at random. Additionally, three logic locking schemes based on
point functions are supported by the tool. As an example of these, we take Anti-SAT and
SFLL. Furthermore, as noted in Section 2.1, we believe that the four cyclic locking schemes
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that NEOS supports are not suitable for use in cryptographic implementations. Universal
logic locking, the final supported scheme, maps the circuit to a structure resembling an
FPGA, with the configuration bits acting as the locking key once they are set after manufac-
turing. The adversary could easily prevail in our threat model, where users have the ability
to apply arbitrary locking keys, by setting up the FPGA to propagate the cryptographic key
to all of its outputs.

NEOS creates a locked version of the given (in our case, cryptographic) circuit after
receiving a gate-level netlist of the circuit. We had to re-synthesize our circuits before
inserting them into NEOS since it can only process specific gates (Figure 1). The user can
specify the number of locking key bits in addition to the locking scheme to be used; in our
experiments, we generated circuits locked with 32, 64, 80, and 128 bits.

In our experiments, logic locking is applied after the circuit is unrolled using time frame
expansion. As a result, the matching locked cryptographic circuit is combinational, meaning
that key gates can be positioned anywhere in the circuit and that it is completely unrolled
and functional in a single clock cycle. On the other hand, in a sequential implementation,
the key gates would be positioned inside the combinational core and would, therefore,
appear in each frame. By applying the appropriate locking key bits to the key gates that are
not required in a given clock cycle, an attacker can activate or deactivate specific key gates
in each clock cycle, assuming that locking key inputs are regular circuit inputs. As a result,
there would always be an equality between the sequential case and the combinational cases.
This was done specifically in order to streamline the tool flow.

4.3. CNF Generation

Equations (2) and (3), which are represented by propositional (Boolean) formulae in
conjunctive normal form (CNF), serve as the foundation for the LEDA and LEDFA attacks.
A Boolean function that could be mapped to CNF is implemented by a combinational
circuit with n input and m output made up of logic gates; however, this mapping is not
very effective. For every logic gate in the circuit, the Tseitin transformation produces a
characteristic function. For consistent assignments to the inputs and outputs of the corre-
sponding gate, the characteristic function is 1. For instance, the characteristic function of an
AND gate with inputs a, b and output c is

χAND = (c ≡ (a ∧ b)) = (c ∨ a) ∧ (c ∨ b) ∧ (a ∨ b ∨ c).

The conjunction of the characteristic functions of each gate in a circuit is the circuit’s
characteristic function. It is satisfiability equivalent to the circuit’s Boolean function; how-
ever, it has additional variables for internal signal lines.

The characteristic function CNF can have unit clauses (si) or (si) added to it, respec-
tively, to force a chosen signal line si to 1 or 0. A SAT solver for such a formula can report
that the formula is unsatisfiable or yields a consistent assignment to the circuit’s inputs
and other variables where si has the desired value for the given assignment. The output
restrictions “= Cj” in Equations (2) and (3) are implemented using this technique, where Cj
is a constant vector made up of ciphertext bits that are physically observed on the outputs
of the circuit under. The Boolean variables or literals corresponding to the output bits
are found and added to the CNF as unit clauses, which are negated in the case that the
observed bit was 0 and non-negated in the case that it was 1.

4.4. Attack Construction and SAT Solving

The formula for LEDA (Equation (3)) or the fault-assisted LEDFA (Equation (2)) is
built using the AFA framework AutoFault [38]. The (time-frame-expanded) circuit for
LEDFA has k copies in the attack formula, along with k fault injections. To build CNF parts
for terms such as enc fi

l ((p, k, lk) = Ci), more details regarding injected faults are required.
Included in this is the fault model (e.g., stuck at fault, bit flip, delay-based glitch), the round
in which the fault is injected, the position of the fault within the round, and the number of
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faults injected concurrently. We employ a popular random byte fault model for DFA in this
work. An arbitrary subset of bits within that byte can be flipped; the attacker is oblivious to
which bits have been flipped. It is assumed that the injected fault affects one byte of the
cipher state.

An SAT solver was given the attack formulae that were created with the AFA frame-
work. We tested a number of SAT solvers, and since CryptoMiniSat [47] produced the
fastest solving times, we used it for all of our experiments. The attack formula typically
does not have a unique solution because of the random byte or nibble faults used, and it
may produce a key candidate that is not the correct cryptographic key. In order to confirm
these cryptographic key candidates, an encryption with a known plaintext/ciphertext pair
must be performed. A conflict clause is added to the CNF to remove the candidate from the
solution space and rerun the attack if it turns out not to be the correct cryptographic key.

Equation (3) describes the method used for the fault-free LEDA in the same way.
Nevertheless, rather than modeling fault injections as seen in Figure 5, the formula consists
of copies of the fault-free circuits with their locking key inputs and outputs fixed to different
lki and Cl

i , respectively. A considerable portion of LEDA cases were unable to extract the
cryptographic key in the allotted time. This makes sense since improper unlocking may
affect the underlying cryptographic construction’s ability to withstand attacks, but it might
not always. Again, keep in mind that lki is the circuit’s primary input. If an attacker’s initial
attack times out after 18,000 s, they can simply launch another one at no additional expense.

Plaintext (p)
Cryptographic Key (k)

Incorrect Locking Key (lkn)

Locked
Cryptographic

Circuit

Incorrect 
Ciphertext (Cln) 

SAT Solver
(CryptoMiniSAT) 

Cryptographic
Key Candidate 

Plaintext (p)
Cryptographic Key (k)

Incorrect Locking Key (lk1)

Locked
Cryptographic

Circuit

Incorrect 
Ciphertext (Cl1) 

Plaintext (p)
Cryptographic Key (k)

Incorrect Locking Key (lk2)

Locked
Cryptographic

Circuit

Incorrect 
Ciphertext (Cl2) 

Figure 5. Attack construction for locking enabled differential analysis (LEDA).

5. Experimental Results

In this study, we carried out three sets of experiments. Our first results correspond to
fault attacks (LEDFA) on locked cryptographic circuits. We used randomly generated faults
to attack four ciphers: PRESENT, LED-64, and AES-64, as well as the full-scale AES. In our
second experiment, we performed differential analysis on locked ciphers (LEDA) using
randomly generated incorrect locking keys. To ensure accuracy, we recorded the average
solve times taken by each attack on AMD Ryzen 9 3950X machines utilising 4 cores, 64 GB
memory, and CentOS 8 as the operating system. For repeatability, we used pseudorandom
plaintext, a cryptographic key, a locking key, and fault(s) generated from a recorded random
seed. It is essential to note that the cryptographic key was only used for calculating fault-
free and faulty ciphertexts and not during the attack itself. We set a timeout of 18,000 s and
used a suitable number of faults for each cipher to ensure the attack did not exceed this
timeout. Finally, for our third experiment, we conducted a test vector leakage assessment
of AES to conclude our testing.

5.1. Locking-Enabled Differential Fault Analysis (LEDFA)

In this section, we present the results of the fault attacks performed on the selected
ciphers: PRESENT, LED, and AES. We applied four different logic locking schemes—
RLL-⊕, RLL-∧, Anti-SAT, and SFLL—to secure the circuits. Table 3 provides an overview
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of the cipher parameters and the size of the SAT formulas before and after applying a
128-bit locking key to the circuit. As observed, the number of clauses in the formulas is
3–4 times greater than the number of gates. This is common for circuits with numerous
two-input gates. The addition of logic locking has led to a slightly reduced number of
clauses, as the CNF generation procedure has redundancy elimination built-in.

Table 4 presents the results of the experiment. It is clear from the table that LEDFA
outperforms the conventional DFA technique (row “None”). Among the LEDFA variants,
RLL is the fastest for PRESENT and LED lightweight ciphers, while Anti-SAT and SFLL are
significantly slower. However, for the larger full-scale AES, the trend is reversed. It is worth
noting that interpreting the run time of a SAT solver is tricky due to the NP-completeness
of the problem and various built-in speed-up heuristics of modern solvers. We believe
that the run time differences are due to two opposing trends. On the one hand, the RLL
techniques employ multiple key gates, and the extent of perturbation caused by an incorrect
unlocking is related to the ratio of locking key gates to “regular” gates within the circuit.
The likelihood that RLL will disrupt or weaken the algebraic properties of the cipher to
such a degree that the resulting formula is easier (faster) to solve is higher for smaller
circuits because an incorrect key bit is more likely to “hit” a critical part of the circuit.

Table 3. Numbers of gates #G and clauses #C before and after locking using a 128-bit locking key B
and #R indicate the block size in bits and the number of rounds of the respective cipher.

Analyzed Cipher (B, #R) No Locking RLL-⊕ RLL-∧ Anti-SAT SFLL
#G #C #G #C #G #C #G #C #G #C

AES (128, 10) 190,807 615,450 190,935 590,983 190,935 590,855 191,064 591,368 175,570 591,753
LED (64, 32) 26,104 94,786 26,232 84,643 26,232 84,515 26,361 85,028 23,426 85,413
PRESENT (64, 31) 34,087 110,056 34,215 102,264 34,215 102,136 34,344 102,649 31,162 103,034

Table 4. Average LEDFA run times in seconds for PRESENT (100 repetitions, faults injected after
round 29), LED-64 (100 repetitions, faults injected after round 30), “AES-64” (50 repetitions, faults
injected into round 8), and full-scale AES (30 repetitions, faults injected into round 8).

Locking Locking PRESENT LED “AES-64” AES-128
Method Key Size 10 Faults 5 Faults 2 Faults 1 Fault 1 Fault 2 Faults

None – 31.550 1378.940 17.136 793.198 9564.60 15,684.00

RLL-⊕

32 2.028 93.757 12.818 596.197 1513.96 –
64 1.159 95.821 9.557 136.984 2219.56 10,927.30
80 1.014 1.827 15.066 691.485 2998.38 12,765.20
128 0.790 1.028 11.602 312.700 1932.39 11,876.21

RLL-∧

32 1.722 56.892 9.062 368.305 12,271.90 –
64 1.010 22.384 15.361 222.264 7505.51 11,876.20
80 0.879 12.252 11.351 260.450 5041.83 13,732.37
128 0.751 5.936 29.261 218.757 4489.41 10,896.32

Anti-SAT

32 6.881 57.050 8.344 232.000 3149.90 –
64 6.913 550.466 8.974 288.200 2312.07 2537.10
80 11.910 623.625 9.336 381.490 3510.11 3501.56
128 6.473 1369.525 8.978 196.687 2717.83 3487.98

SFLL

32 9.566 83.984 10.769 314.879 5423.79 –
64 10.578 264.300 11.246 344.279 3453.09 10,768.37
80 14.876 328.134 12.454 389.564 3097.10 11,287.75
128 15.473 211.970 12.568 225.674 2344.09 9978.19

It is important to note that post-SAT locking methods can introduce an additional
attack path. This is because a subcircuit generates the signals used for locking, and bits
of the cryptographic key can be input into this subcircuit. The impact of this mechanism
is evaluated in the context of LEDA attacks in Section 6.2. For easy-to-solve instances,
propagating the cryptographic key bits through the regular cipher logic (weakened by
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incorrect unlocking) is sufficiently fast, and the alternative propagation mechanism does
not play a significant role. However, for full-scale AES that is on the limit of the SAT solver’s
capabilities, the presence of a further propagation path through a subcircuit that was not
designed to be cryptographically strong can lead to a measurable speed-up. The findings
for LEDA in Section 6.2 are consistent with the fact that Anti-SAT facilitates LEDFA more
than SFLL. One reason for this is the higher density of cryptographic key bits among the
subcircuit’s inputs.

All the attack runs in Table 4 were carried out within the given timeout of 18,000 s,
resulting in a 100% success rate. We tried to identify the boundary condition when LEDFA
starts to fail. In order to determine this, we conducted an experiment with PRESENT, using
only three faults and increased the timeout to 25,000 s to determine the failure point of
LEDFA. The results showed that LEDFA had a success rate of 0.55, with an average solve
time of 18,827.87 s out of 20 repetitions when PRESENT was locked using Anti-SAT with
an 80-bit key. On the contrary, DFA on PRESENT with three faults had timed out without
exception, resulting in a 0% success rate. Therefore, it is evident that while the LEDFA
attack enables key recovery, the DFA attack does not.

5.2. Locking-Enabled Differential Analysis (LEDA)

In this section, we will discuss the findings of the LEDA attack on three lightweight
ciphers, namely LED, PRESENT, and small-scale “AES-64” (as shown in Figure 5). Table 5
presents the success rates and average solving times in seconds for each cipher. We locked
each circuit using a 64-bit locking key using multiple schemes, including RLL-⊕, RLL-∧,
Anti-SAT, and SFLL. For LED and AES 4-4-4, we performed two encryption operations
using the same plaintext and cryptographic key. For PRESENT, we performed ten encryp-
tion operations using the same plaintext and cryptographic key. Algebraic equations were
then generated for each case according to Equation (3), which were converted into their
corresponding Boolean formulae using the Tseitin transform and given to a SAT solver.

Table 5. Success Rates and average LEDA run times in seconds for successful attacks on PRESENT,
LED-64, and “AES-64”, locking key size of 64-bits, 30 repetitions.

Cipher
#Incorrect RLL-⊕ RLL-∧ Anti-SAT SFLL
Locking Success Solve Success Solve Success Solve Success

Keys Rate Time [s] Rate Time [s] Rate Time [s] Rate

PRESENT 10 0.567 2143.79 0.767 2348.12 0.867 3596.20 0

LED 2 0.367 698.05 0.267 869.34 0.533 1018.66 0

“AES-64” 2 0.433 9864.20 0.700 10,923.78 0.733 13,923.30 0

Based on the results depicted in the table, we can see that the success rate of attacks
on the ciphers under consideration ranges from 27% to 87%, implying that an attacker
may need to make multiple attempts before succeeding. The multiple attempts are clearly
feasible, especially given that the locking keys are simply applied to the inputs, which is
easier than performing a fault injection in DFA. It is important to note that LEDA was only
effective for lightweight ciphers within the framework used and consistently timed out
for full-scale AES with random locking keys on fixed locations. However, in Section 6.2,
when exploring alternative locking circuitry constructions, we discovered that LEDA could
break an AES-128 implementation locked by Anti-SAT and even by SFLL. It is evident
that this attack is at the limit of what a modern SAT solver can do. Ultimately, LEDA can
effectively break lightweight ciphers that are deemed secure without requiring any physical
manipulations or measurements beyond regular access to the circuit’s inputs and outputs.

5.3. Test Vector Leakage Assessment of Logic Locked AES

In this work, we aim to examine the effect of logic locking on the vulnerability of
cryptographic circuits against side-channel attacks. We chose to use the hardware imple-
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mentation of AES and apply two different logic locking schemes, Anti-SAT and SFLL,
to lock it. We then conducted a comprehensive power analysis of the circuit’s power
consumption by performing multiple encryptions with both the AES circuits locked using
a 128-bit Anti-SAT locking key and the AES circuits locked with a 128-bit SFLL locking
key. By doing so, we can compare the leakage with that of an AES circuit with no logic
locking applied.

To evaluate the impact of leakage, we used the general fixed vs. random data method,
as mentioned in [40]. This method allows us to determine the differences in power consump-
tion when applying different data to the underlying design and whether these differences
can potentially be exploited for side-channel attacks. In this case, we collected measure-
ments for two different datasets: one with fixed input and the other with randomized input.
We then carried out a statistical test on these datasets to determine whether they showed a
statistically significant difference in mean or variance. If the test was successful, this would
indicate that the design leaks information about the processed data.

The following sections will discuss the measurement setup, collection of traces, and the
results. We will also present the results of the TVLA and explain how the leakage was deter-
mined. Overall, this study aims to demonstrate the increased vulnerability of cryptographic
circuits to side-channel attacks in the presence of logic locking.

5.3.1. Measurement Setup

We implemented logic-locked cryptographic circuits on the Sakura-G FPGA board,
equipped with two Xilinx Spartan-6 FPGAs. The primary FPGA, Spartan-6 LX-75, han-
dled cryptographic computations, while the secondary FPGA, Spartan-6 LX-9, acted as
a controller, providing a USB interface for external communication. To ensure precise
measurement of the primary FPGA’s power consumption, the board provides an amplifier
and a dedicated connection point for oscilloscope interfacing. For data collection, we
used Teledyne LeCroy’s HDO6104A-MS oscilloscope, which provides a bandwidth of up
to 1 GHz. To adhere to the recommended sampling rate of five times the oscilloscope’s
bandwidth, we adopted a 5 GHz sampling rate, as suggested by [40], for accurate results.

5.3.2. Collection of Traces

Let us consider the data collection for AES logic locked with a 128-bit Anti-SAT locking
key. The encryption function then depends on three inputs: the plaintext p, the locking key
lk, and the secret cryptographic key k and is represented as AESAS(p, lk, k). The application
of TVLA requires the collection of at least n traces for each of the two datasets. The random
dataset contains the randomized inputs, while the fixed dataset contains the fixed inputs.
For both experiments, the secret cryptographic key on the device is set to the same fixed
value k for all encryptions. For the fixed dataset, the inputs plaintext and locking key are
set to the values p f ixed and lk f ixed for each encryption. The fixed dataset only contains
measurements for AESAS(p f ixed, lk f ixed, k).

Random plaintexts and random locking keys are used for the randomized dataset.
The locking keys are randomly generated 128-bit values. The next plaintext pi is generated
by encrypting the last plaintext p(i−1) using a separate cryptographic key kgen. The en-
cryption to generate the next plaintext is done using a software implementation. Then,
a power measurement is recorded for AESAS(pi, lki, k). The values for p f ixed, lk f ixed, k,
and kgen are randomly generated, while the initial plaintext p0 is set to all zeros. A total of
n = 50,000 power traces were collected for each dataset. A warm-up phase for the circuit
was conducted before starting the measurements. Ten thousand encryptions for all ran-
domly generated values were executed. After the warm-up phase, the measurements were
started. The collection was interspersed, i.e., for each iteration, it was randomly decided
whether the subsequent encryption should be for the fixed dataset or the random dataset.
The process is then run until both sets contain at least 50,000 traces.
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5.3.3. Results

In order to analyze the data collected, we performed TVLA and two t-tests for each
experiment. To perform the t-tests, we divided the collected datasets into two groups,
with the first half being used for the first test and the second half being used for the second
test. After dividing the data, we calculated the mean and standard deviation for each point
in time and used these values to determine the t-statistic for Welch’s t-test. The resulting
test data is displayed in Figure 6, with subfigures (a), (b), and (c) representing the results
for AES, AES with a 128-bit Anti-SAT key, and AES with a 128-bit SFLL key, respectively.
The encryption process for all the graphs can be observed between the two dotted red lines.
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Figure 6. (a) TVLA results on AES. (b) TVLA results on AES locked using 128-bit Anti-SAT locking
key (#CKB = 64). (c) TVLA results on AES locked using 128-bit SFLL locking key (#CKB = 29).

The circuits locked using Anti-SAT and SFLL were chosen based on the number of
cryptographic key bits fed into the locking subcircuit. The Anti-SAT circuit had 64 bits,
while the SFLL circuit had only 29 bits. For both locked circuits, we observed significantly
higher leakage during the encryption process compared to the unlocked AES implementa-
tion. However, the t-values were slightly lower for the SFLL circuit. This can be attributed
to the lower number of cryptographic key bits processed by the locking subcircuit, i.e., the
29 bits for SFLL vs. the 64 bits for Anti-SAT.
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We investigated how logic locking affects the resilience of cryptographic circuits
against side-channel attacks. Our results show that using logic locking schemes can
potentially lead to the leakage of sensitive data in such circuits. Countermeasures such
as masking can be implemented to prevent the leakage. If the high t-values are still
observed even when masking is applied, this would further support our analysis. However,
additional research is required to determine the effectiveness of these countermeasures in
mitigating the issue.

6. LEDA: Attack Success Analysis

In this section, we explored why the proposed attacks are effective and under what
conditions they produce the best results. We started by examining the pre-SAT RLL methods
and their relationship with fault attacks. Both the considered methods induce perturbations
into a cryptographic circuit. Our findings lead us to a constructive strategy for selecting the
best incorrect locking key for our LEDFA attacks. All of the previous results were obtained
using random-logic-locking keys. Following that, we looked into why LEDA performs well
on circuits locked by post-SAT schemes compared to circuits locked using RLL. We have
identified that the propagation of cryptographic key bits through the locking subcircuits
added during logic locking is a crucial factor for successful attacks.

6.1. Locking Key Propagation for RLL

RLL inserts key gates at multiple locations within a circuit. Applying an incorrect
locking key bit lki to any of the new inputs has a similar effect as a fault injection. While
locking-enabled perturbation is easier to control, it is also more challenging than a fault
attack at the same time. The equipment used for fault injection has limited spatial and
temporal precision. Hence, an adversary who wants to inject a fault at a specific location
may end up injecting a fault in another location or no fault at all. In contrast, by applying
an incorrect locking key bit (or multiple bits), the corresponding key gate outputs will flip
with certainty and perfect repeatability. On the other hand, perturbations on a desired
circuit location are only possible if there is a locking key gate at that location. Even if a fault
attack is unsuccessful, it can be repeated until it succeeds. However, the effects of locking
circuitry are entirely deterministic.

In practice, an adversary can use the known fault attacks to apply LEDA. For instance,
a well-known single-fault attack against AES-128 [14] can only work if the flipped bits are
limited to one byte in the cipher state after round 7. If there are faults elsewhere in the
circuit, this attack would be invalidated. Since locking can easily flip multiple key gates, it
is essential to consider the relationship between such simultaneous perturbations. Figure 7
shows how two simultaneous bit flips can cancel out the effects of each other altogether,
resulting in an unperturbed ciphertext that is useless for LEDA. The figure shows a part of
“AES-64” that has locking key bits lk′0 and lk′1 driving key gates at the round 8 SBox input
and ShiftRows output, respectively. If incorrect values are applied to both these locking
key bits, the second induced change will fully compensate for the first one.

8th
SBox

8th
ShiftRows

2 → 6 7 7 → 5

SBox input 2 = (0010)2
XOR with lk′0 = 1 on the 3rd LSB

XOR with lk′1 = 1 on the 2nd LSB
Cancellation of the previous effect

Figure 7. Propagation of wrong logic-locking key bits over two AES operations. The introduced
errors are shown in red to demonstrate the effect of a wrong logic-locking key bit canceling out the
effect of another.
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In general, it is unlikely for multiple incorrect logic-locking key bits to cancel each other
out due to the nature of cryptographic schemes and their inherent diffusion properties.
For example, with AES variants, it is improbable that an incorrect locking key bit will
be fully canceled out after a MixColumns operation, as the effects are then propagated
throughout an entire column of the intermediate state. The larger the operations, the lower
the probability of this effect, but it cannot be ruled out entirely. However, from the attacker’s
perspective, this is not a significant issue since the logic-locking key is a primary input of
the circuit and can be easily changed for another incorrect logic key. In this work, the lower
success rate of some LEDA attacks might be explained by the fact that the logic-locking
keys were randomly selected.

On the other hand, let us consider the impact of the locking key bits placed in the
most favorable positions for an adversary who can control the locking key bit values.
As mentioned earlier, an incorrect cryptographic operation will affect the subsequent
operations in the same way as a fault injection does. For example, suppose a collection of
logic-locking key bits affects the operations of round 29 of LED. In that case, it will produce
an incorrect intermediate output for LED round 29, which will impact the succeeding
operations, similar to a fault injection at the start of round 30 of LED [16].

We analyzed the gate-level netlist of an LED implementation that was logic locked
using an 80-bit RLL-∧ locking key lk = (lk0, . . . , lk79). Our analysis led us to identify
five locking key bits (lk11, lk24, lk27, lk47, lk62) that affect the operation of round 29 of LED.
Suppose an adversary can control the locking key bits as primary inputs of the circuit. It
implies they can easily choose a specific incorrect locking key lk′ that flips the five locking
key bits mentioned above. In our experiment, we performed one correct encryption and
two incorrect encryptions using the correct locking key lk and two incorrect locking keys
lk′ and lk′′, respectively. Finally, we solved Equation (4) (a special case of Equation (3)) in
order to obtain the cryptographic key k.

(encl(p, k, lk) = C) ∧ (encl(p, k, lk′) = C1)

∧(encl(p, k, lk′′) = C2) (4)

Table 6 presents the results of running LEDA attacks on this logic-locked LED imple-
mentation with specific incorrect locking keys. For comparison, the table also includes
the solve time and success rate of experiments with random incorrect locking keys from
Table 5. These results indicate that the success rate has improved from roughly one quarter
to perfect. Moreover, while the average run time improvement may not seem significant, it
includes instances that were hard to solve and timed out for random locking keys but were
solved successfully for the handcrafted locking keys.

Table 6. Performance of LEDA on LED-64 locked with 80-bit RLL-∧ locking key. The difference from
the correct locking key, lk, is shown in red.

lk = AB1AE459F55087BD868D Random lk

lk’ lk” Solve Success Solve Success
Time [s] Rate [%] Time [s] Rate [%]

AB1AA45975508EBD8E8D AB1AE459F5508EBD8E8D 725.398 100 869.34 26.7
AB1AE45975508EBD868D AB1AA459F55087BD8E8D 784.163 100

6.2. Cryptographic Key Bit Propagation in Post-SAT Locking

To explain the better performance of LEDA for post-SAT methods in Table 5, we first
note that they tend to introduce only one source of perturbation into the circuit. This
eliminates the interference between different key gates, as discussed previously for RLL,
and prevents the cancellation effect from occurring. The source is driven by the locking
subcircuit, which is composed of functions g and g for Anti-SAT and the restore unit for
SFLL, as shown in Figure 3. As explained in Section 2.1.2, the inputs to this subcircuit are
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known as the “tree input set”, and the location where the subcircuit is inserted into the
locked circuits is referred to as the “root”. When the tree input set is randomly determined,
the algorithm tends to insert the root closer to the end of the circuit. A parallel can be
drawn between LEDA and fault attacks since the substitution–permutation networks are
most vulnerable to fault injections in their last 2–3 rounds. Therefore, post-SAT locking
techniques have a slightly higher chance of introducing a well-controllable perturbation in
a location that is critical for cryptanalysis.

A further explanation is that during cryptanalysis, the locking subcircuit plays an
important role. It is simpler and much smaller compared to the actual cryptographic
circuit. For instance, in the case of Anti-SAT with a 64-bit locking key, a logic-locking
block consisting of only 67 gates is inserted into an LED implementation that otherwise has
26,104 gates. The subcircuit has 32 inputs selected from the primary inputs of the circuit,
which include bits of the plaintext and the cryptographic key. This creates a new path
between selected bits of the cryptographic key and the circuit outputs passing through the
locking subcircuit, the root and the remaining logic between the root and the outputs. This
path will usually be much shorter than the existing paths between the cryptographic key
and the outputs, and it goes through circuitry that was not designed with any cryptographic
properties in mind. LEDA incorporates the new path in the CNF, and as a result, the SAT
solver will be more effective.

In order to test our hypothesis, we ran NEOS multiple times to generate different
locked circuits for Anti-SAT and SFLL. We used a 64-bit and a 128-bit locking key for both
schemes. It is important to note that we deviated from our threat model in this experiment—
the adversary was given a locked circuit and did not have the ability to influence the
location where the locking circuitry would be added. For each run, we determined the
number of cryptographic key bits in the tree input set, denoted by #CKB. The results are
presented in Table 7. We discovered a clear trend: cases with more cryptographic key bits
in the tree input set were consistently and systematically faster, while cases with only a few
#CKB timed out. In some cases, the run time of successful attacks increased exponentially
with #CKB. This is intuitive if we assume that LEDA can easily recover the key bits from
the tree input set, and the remaining bits must be brute-forced. However, this effect is not
universal; there may still be cryptographic key bits in the tree input set that are difficult
to recover.

Table 7. Numbers #CKB of cryptographic key bits among the tree input set and LEDA run times in
seconds (“–” indicates a timeout).

Cipher Anti-SAT SFLL
64-bit 128-bit 64-bit 128-bit

#CKB Time [s] #CKB Time [s] #CKB Time [s] #CKB Time [s]

8 – 11 – 0 – 0 -
PRESENT 13 – 24 1839.27 2 - 23 -
5 incorrect lk 19 – 33 493.81 4 – 45 837.32

29 824.25 51 105.34 23 1273.85 56 211.68

6 2780.63 15 1977.18 0 – 3 –
LED 12 2295.21 31 116.75 5 – 16 –
2 incorrect lk 19 1023.20 34 89.12 12 – 21 –

25 582.43 57 23.47 23 1294.32 48 289.12

2 – 12 – 0 – 8 –
AES-128 13 – 23 – 10 – 4 –
2 incorrect lk 22 – 31 – 27 – 29 –

30 – 64 8563.64 42 14,681.83 65 10,426.53

One notable aspect that stands out from the findings presented in Table 7 is the
remarkable effectiveness of LEDA against SFLL, which previously exhibited poor results as
demonstrated in Table 5. When comparing Anti-SAT and SFLL, we observe similar timeout
behavior and run times for comparable #CKB. However, in this case, LEDA appears also
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to be effective against SFLL, particularly when a sufficient amount of #CKB is present.
The vital distinction between Anti-SAT and SFLL is that the former only allows the primary
inputs of the circuit in the tree input set, while the latter permits intermediate wires as
well. Consequently, the likelihood of encountering a cryptographic key bit among the
primary inputs is significantly higher than among all the signals, resulting in a much higher
average #CKB for Anti-SAT. Therefore, we can conclude that the ineffective performance of
LEDA against SFLL, as shown in Table 5, was most likely due to a low #CKB in randomly
generated locking instances.

7. Proposed Countermeasure for LEDA

In Section 6.2, we evaluate attack success rates for LEDA, and based on it, we propose
a strategy to prevent the propagation of cryptographic key bits to the primary outputs
through the smaller locking subcircuits. The results of our experiments, presented in Table 7,
indicate that the success rate of LEDA is highly dependent on the presence of cryptographic
key bits in the tree input set. To achieve better security levels, circuit designers utilizing
logic locking schemes for cryptographic circuits must carefully consider the placement of
cryptographic key bits and avoid introducing them directly into the locking subcircuits.

In order to evaluate the effectiveness of our proposed method, we conducted a series of
experiments where we modified the post-SAT logic locking schemes in NEOS. Specifically,
we excluded cryptographic key bits from the set of eligible primary inputs for the tree input
set. Instead, we derived the tree input set exclusively from plaintext bits or intermediate
wires. We then generated a set of locked cryptographic circuits using Anti-SAT and SFLL
schemes. We verified that none of these circuits contained any cryptographic key bits
within the tree input set.

Afterwards, we proceeded to conduct LEDA attacks on each circuit and compared the
results to those obtained from previous experiments. As indicated in Table 8, our proposed
countermeasure proved to be highly effective, reducing the success rate to nearly zero
in most cases. These results are in stark contrast to the 100% success rate observed in
Table 7. However, we did observe a few successful attacks in certain scenarios, such as five
successful attacks on PRESENT locked using a 64-bit Anti-SAT locking key when the attack
formula was constructed using 10 incorrect logic-locking keys.

Table 8. Success rates and average LEDA run times in seconds for successful attacks on circuits with
modified logic locking schemes, 30 repetitions (“–” indicates a timeout).

Cipher Anti-SAT SFLL

#Incorrect 64-bit 128-bit 64-bit 128-bit

Locking Success Solve Success Solve Success Solve Success Solve

Keys Rate Time [s] Rate Time [s] Rate Time [s] Rate Time [s]

PRESENT
10 0.167 10,284.62 0.033 16,579.37 0 – 0 –

5 0 – 0 – 0 – 0 –

LED 2 0.033 8271.09 0.067 11,843.30 0 – 0 –

“AES-64” 2 0 – 0.033 17,542.89 0 – 0 –

AES-128 2 0 – 0 – 0 – 0 –

Furthermore, we also noted that the average solve time for these successful attacks was
significantly longer compared to the results observed in both Tables 5 and 7. Overall, these
findings suggest that our proposed method is a highly effective countermeasure against
LEDA attacks, although further improvements may still be possible in specific scenarios.
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8. Conclusions and Future Work

We proposed two attacks that utilize the presence of logic-locking circuitry for fault-
based (LEDFA) and classical (LEDA) cryptanalysis. The reason the attacks are effective
is that the improperly unlocked circuits retain access to the cryptographic key while
implementing functions that may have less cryptographic strength. Furthermore, new
propagation paths that are introduced by the locking circuitry can make cryptanalysis
significantly simpler. The attacks continued to work in our experiments even when random
selections of incorrect locking keys were made. The success rate dramatically increased
when optimized locking keys that caused disturbances in the vicinity of circuit locations
susceptible to known fault attacks were used. We suggest prohibiting the direct feeding of
cryptographic key bits into locking subcircuits. Our findings demonstrate how the circuits
locked using the modified logic locking schemes are much more resistant to LEDA.

In addition, we investigated side-channel leakage of multiple logic-locked AES im-
plementations. This first assessment using TVLA methodology, as shown in Section 5.3.3,
showcases interesting leakage patterns compared to a standard AES implementation. Our
results suggest that locking has a non-negligible influence on information leaked from the
implementation. Dedicated SCA countermeasures are necessary in the case of locked and
unlocked cryptographic circuits alike. Such protections must be verified to be effective
under different locking keys. This is, however, out of scope for this paper, but investigating
protected circuits would be interesting as a continuation of this work.

Despite not being created with cryptographic circuits in mind, no previous work has
explicitly excluded logic-locking techniques from its purview. Because of this, critical
system designers might wish to use logic locking to add an extra degree of security, which,
unfortunately, would weaken the systems. This work is the first to use quantitative analysis
to both identify and validate the vulnerability introduced by such schemes. The results of
this work suggest that using logic locking in cryptographic circuits is not safe. The designer
must avoid adding key gates to crucial locations where fault attacks could occur (e.g.,
the last 3–4 rounds in substitution–permutation networks). Furthermore, future locking
schemes can be expanded with the ability to identify an extended use of incorrect locking
keys, in a manner similar to identifying fault attacks or attempted tampering.
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