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Abstract: The internet of things (IoT) and industrial IoT (IIoT) play a major role in today’s world
of intelligent networks, and they essentially use a wireless sensor network (WSN) as a perception
layer to collect the intended data. This data is processed as information and send to cloud servers
through a base station, the challenge here is the consumption of minimum energy for processing and
communication. The dynamic formation of cluster heads and energy aware clustering schemes help
in improving the lifetime of WSNs. In recent years, grey wolf optimization (GWO) became the most
popular feature selection optimizing, swarm intelligent, and robust metaheuristics algorithm that
gives competitive results with impressive characteristics. In spite of several studies in the literature
to enhance the performance of the GWO algorithm, there is a need for further improvements in terms
of feature selection, accuracy, and execution time. In this paper, we have proposed an energy-efficient
cluster head selection using an improved version of the GWO (EECHIGWO) algorithm to alleviate
the imbalance between exploitation and exploration, lack of population diversity, and premature
convergence of the basic GWO algorithm. The primary goal of this paper is to enhance the energy
efficiency, average throughput, network stability, and the network lifetime in WSNs with an optimal
selection of cluster heads using the EECHIGWO algorithm. It considers sink distance, residual
energy, cluster head balancing factor, and average intra-cluster distance as the parameters in selecting
the cluster head. The proposed EECHIGWO-based clustering protocol has been tested in terms
of the number of dead nodes, energy consumption, number of operating rounds, and the average
throughput. The simulation results have confirmed the optimal selection of cluster heads with
minimum energy consumption, resolved premature convergence, and enhanced the network lifetime
by using minimum energy levels in WSNs. Using the proposed algorithm, there is an improvement
in network stability of 169.29%, 19.03%, 253.73%, 307.89%, and 333.51% compared to the SSMOECHS,
FGWSTERP, LEACH-PRO, HMGWO, and FIGWO protocols, respectively.

Keywords: IoT; IIoT; wireless sensor network; grey wolf optimizer; energy-efficient; improved grey
wolf optimizer

1. Introduction

WSNs became the backbone of all the smart IoT applications, and their reliable de-
ployment is very important for diverse real-time applications like the military, industry,
wide-area surveillance, environmental monitoring factors, and health monitoring. WSNs

Computers 2023, 12, 35. https://doi.org/10.3390/computers12020035 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers12020035
https://doi.org/10.3390/computers12020035
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0003-0450-8584
https://doi.org/10.3390/computers12020035
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers12020035?type=check_update&version=2


Computers 2023, 12, 35 2 of 17

play an important role in the Industry 4.0 revolution and they are essential in the percep-
tion/sensing layer of IoT systems for sensing the physical environment and collecting the
data using SNs. Due to the short span of battery life in the SNs of WSNs, optimal energy
consumption has been always a challenge. The energy efficiency of sensor nodes plays a
major role due to their constrained resources in terms of processing and communication.
Therefore, it is essential to propose efficient energy consumption algorithms to extend
the lifetime and stability of WSNs. Clustering is a prominent mechanism to achieve en-
ergy efficiency in WSNs. Clustering-based architecture in WSNs reduces the number of
data transmissions using intra-cluster and inter-cluster communications [1]. However, the
performance of clustering depends on the process of CH selection and the formation of
optimal number of clusters. In a cluster-based architecture, a random selection of CHs
causes poor connectivity, unexpected node failures, and reduces network lifetime. On the
other hand, optimal selection of CHs enhances the performance and lifetime in WSNs.
An optimized routing algorithm through an efficient CH selection process is essential for
larger-scale WSNs. Clustering-based routing supports load balancing, reliable communi-
cation, and fault tolerance to prolong the life time of a WSN. CH selection based on node
position, centrality of nodes, residual energy, number of neighbors, and node rank (rank is
assigned depends on number of links, link cost) overcomes the drawbacks of the LEACH
protocol [2]. Dynamic and on-demand CH selection based on the occurrence of events
minimizes the message and computational overhead, and also ensures energy balancing
among CHs [3]. Optimal clustering replaces one-hop communication between the CHs and
sink node by an optimal multi-hop distance in order to mitigate energy consumption and
enhance the network lifetime by 35% in WSNs [4]. Adaptive CH selection in heterogeneous
WSNs, based on residual energy and node location, ensures that the node which has higher
residual energy and is close to the BS becomes the CH with the highest probability [5].

In recent years, GWO became the most popular feature selection optimization, swarm
intelligent, and robust metaheuristics algorithm that gives competitive results in solving en-
gineering problems. In spite of several studies in the literature to enhance the performance
of the GWO algorithm, there is a need for further improvements in terms of the balance
between exploitation and exploration, lack of population diversity, and premature conver-
gence of the basic GWO algorithm. In this paper, we have proposed an energy-efficient
CH selection using an improved version of the GWO (EECHIGWO) algorithm to enhance
the energy efficiency, average throughput, network stability, and the network lifetime in
WSNs with an optimal selection of CHs. It considers sink distance, residual energy, CH
balancing factor, and average intra-cluster distance as the parameters in selecting the CH.
The simulation results have confirmed the optimal selection of the CH with minimum
energy consumption, resolved premature convergence, and enhanced the network lifetime
by using minimum energy levels in WSNs.

The definition of fitness functions plays a key role in selecting optimal CHs in WSNs.
In the existing literature, the fitness functions are defined with equal or random weight
values irrespective of the SN’s position and its available energy. The novelty towards the
proposed work include the computation of optimal fitness value for a given SN based on
the residual energy and its distance to BS. For optimal clustering and routing, objective
functions are considered where routing fitness is computed based on the minimum number
of hops, mean load, and distance between gateways and BS. In this paper, the minimum
value of all fitness functions of gateways is considered as clustering fitness function.

The remainder paper is organized as follows: the main contributions and literature
survey of this work are described in Sections 2 and 3, respectively. The clustering based
on the proposed EECHIGWO algorithm is explained in Section 4. Section 5 explains the
results and discussions of the proposed method and comparison with the recently proposed
GWO-based CH selection methods. Finally, the conclusions and future scope are made in
Section 6.
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2. Contributions
Motivation

Due to the limited resources of SNs in WSNs and applications where recharging or
replacing the battery is not a feasible solution, it is essential to design and implement energy-
efficient schemes to improve the key performance parameters. Even though clustering is
considered to be the most prominent technique to prolong the lifetime expectancy in WSNs,
the process of CH selection in order to enhance the network lifetime is still a challenge. The
conventional clustering-based routing algorithms support fault tolerance, load balancing,
and reliable communications at the cost of decreased lifetime of the CH. To overcome this,
there has been a continuous research on designing efficient CH selection techniques, data
acquisition, and routing optimization algorithms.

In this article, an improved version of the GWO algorithm is applied for an optimal CH
selection in WSNs to minimize the energy levels used for computation and communication.
The performance of the proposed protocol is evaluated in terms of the number of dead
nodes, energy consumption levels, the number of operating rounds, and the average
throughput. A rigorous statistical analysis and simulations are carried out by taking the
average of fifteen readings for each result to prove the proposed algorithm’s efficiency. In
addition, a comparative analysis is performed with the recently proposed GWO-based
algorithms. The simulation results prove that the proposed algorithm outperforms in terms
of energy preservation and an enhanced network lifetime.

The main contributions of this article are as follows:

(a) Rigorous literature study of algorithms and protocols are conducted that enhances
the WSN lifetime with an optimal CH selection and energy-efficient techniques.

(b) Study of the futuristic algorithms proposed based on the GWO algorithm for CH
selection and optimal energy utilization in WSNs.

(c) Proposed a novel method based on an improved GWO algorithm, distance between
BS and SN for CH selection, and efficient energy utilization.

(d) Defined the fitness function based on the IGWO algorithm that considers residual
energy at SN to avoid randomness in CH selection for energy-efficient data deliveries.

(e) Compared the performance of the proposed algorithm with existing GWO-based
algorithms in terms of the number of dead nodes, number of operating rounds, energy
consumption, and the average throughput.

(f) Proved that the proposed EECHIGWO algorithm outperforms the existing GWO-
based algorithms in WSNs.

3. Literature Survey

Efficient energy utilization is one of the primary goals to maximize the network
lifetime in WSNs. Clustering is known to be one of the efficient techniques in WSNs to
enhance energy efficiency by designing an energy-efficient protocol in CHs selection. There
are various techniques present in the literature for electing CHs in WSNs to enhance the
network lifetime, but this still remains a major challenge in WSNs.

3.1. Energy Efficient Techniques for WSNs

The energy efficiency is a critical parameter to be addressed in WSNs, as the individual
SNs operate with limited energy sources and optimizing the energy consumption of SNs
has been a challenging design issue in WSNs. Energy-efficient WSNs compromise with
network stability as a crucial factor in ensuring long lasting and reliable network cover-
age. Clustering and routing are essential aspects to be considered for the efficient energy
consumption of SNs in WSNs [6]. An adaptive hierarchical routing and hybrid clustering
based on the fuzzy C-means method, residual energy, BS location, and Euclidean dis-
tance improves coverage and lifetime of the network [7]. Fuzzy-based clustering provides
energy-efficient routing capabilities that enhances the network lifetime [8].

Equalized CH election routing ensures the energy conservation in a balanced fashion
and enhances the network lifetime [9]. A neuro-fuzzy-based energy-aware clustering
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is proposed in WSNs that consist of neural networks and a fuzzy subsystem to achieve
energy-efficient clusters and CHs. The performance of these systems are measured based
on residual energy, transmission range, and trust factor (for security) [10]. Multi-level route-
aware clustering minimizes routing control packets and moderates the energy consumption
at relay nodes present near the BS [11]. Formation of clusters in WSNs based on the Voronoi
diagram minimizes the energy consumption for communication. This method can enhance
the FND by 14.5% compared to SEP [12].

3.2. Energy Aware Clustering and Performance Optimization Using Metahueristic Approach

In this section, the importance of metaheuristic algorithms to solve the engineering
problems and the role of GWO in enhancing the performance of WSNs are highlighted.
The energy constraints in measuring network lifetime pose a challenge in a widely spread
applications of WSNs. Network stability and energy efficiency are two typical trade-off
parameters in WSNs. There have been continuous efforts by researchers in achieving the
energy efficiency in WSNs that includes state-of-the-art metaheuristic algorithms [13].

In recent years, swarm intelligence metaheuristic optimization techniques have proved
the outstanding performers in solving a wide range of engineering and science problems.
GWO is one such technique, and it became popular due to the involvement of only few
parameters and no derivation information. It provides right balance between exploita-
tion and exploration that leads to favorable convergence. It has applications in the fields
of networking, image processing, machine learning, bioinformatics, global optimization,
environmental applications, etc. [14]. For enhancing the efficient usage of computational re-
sources, an adaptive GWO tunes the exploitation and exploration parameters automatically
based on fitness function, and this reduces the number of iterations needed [15].

There have been many energy-efficient clustering protocols based on the GWO algo-
rithm proposed in the recent times towards optimal CH selection [16,17]. GWO-based meth-
ods are proposed for energy optimizations in WSNs by finding the optimal positions of SNs
to achieve maximum connectivity and coverage. It has been shown that the GWO-based
CH selection algorithm performs better than PSO, GA, and Greedy approaches [18,19].
Precision improvement of the SN positions improves the data transmission among SNs in
the network, saves the node’s energy, and also enhances the network lifetime [20].

The GWO algorithm is used to define a connected dominating set based on distance
and it is used to achieve energy efficiency and stability in cluster-based WSNs [21]. A
GWO algorithm-based approach enhances the energy efficiency compared to ABC and
AFS algorithms [22]. The GWO-based game theoretical approach gives better solutions
in selecting optimal aggregation points to improve the SN’s battery lifetime [23]. The
SMO algorithm is proposed based on the sampling population for energy efficient CH
selection [24]. Multi-object-based SMO is an energy efficient clustering and routing algo-
rithm that balances the load at gateways for an improved network lifetime compared to
PSO and GWO algorithms [25]. A combination of using GWO and whale optimization
algorithms for clustering and dynamic CH selection increases the capabilities in terms of
exploitation and exploration [26]. A whale optimization-based algorithm improves the
rate of utilization of SNs and coverage in heterogeneous WSNs [27]. To reduce the energy
consumption in CH selection, an objective function in GWO is defined based on residual
energy, intra-cluster distance, CH balancing factor, and sink distance [28]. Topology control
based on binary GWO introduces a fitness function that reduces the number of active nodes
and enhances the network lifetime [29].

In the literature, the state-of-the-art metaheuristic algorithms like ACO, BA, GA,
PSO, WOA, MFO, etc., are proposed to solve the optimization problems in engineering
applications. COA integrated with a dimension learning-based hunting strategy maintains
diversity and enhances the balance between exploration and exploitation. It effectively
provides the optimization of energy constraints in WSNs [30]. CSA is used to select
the optimal CHs in heterogeneous WSNs in order to improve the energy efficiency and
network lifetime compared to PSO, GA, and LEACH algorithms [31]. A BSO swarm-based
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algorithm helps in selecting best possible CHs for enhancing the coverage, data rate, and
energy efficiency in WSNs [32]. An ARSH-FATI-based CH selection dynamically (at run-
time) switches between exploitation and exploration of the search process. It enhances the
network lifetime by 25% compared to a PSO algorithm [33]. Network coverage optimization
in heterogeneous WSNs using a sine-cosine-based WOA balances the local and global search
capabilities, speeds up the search process, and enhances the optimization accuracy. It also
maximizes the utilization rate of nodes, thereby mitigating the network cost.

Out of all the existing well-known metaheuristic algorithms (such as PSO, GSA, DE,
EP, and ES), GWO has proved to be a powerful swarm-intelligent algorithm introduced to
handle continuous and discrete optimization problems in the field of engineering. It is a
unique metaheuristic algorithm that mimics the leadership hierarchy and attacking strategy
of grey wolves. It is used for solving classic, real engineering design problems in unknown
search spaces [34]. It improves the deterministic approach of a stochastic optimization for
multi-robot exploration in the given space [35].

The GWO algorithm can be applied effectively in various fields of engineering and
has many applications. It is applied in the image processing domain that includes image
segmentation, image compression, image classification, and medical imaging to enhance
efficiency and robustness [36]. GWO is used to enhance the accuracy of the IDS by 81%
in detecting anomalous traffic in the network [37–39]. It improves the task allocation
process and minimizes runtimes of the serverless frameworks for cloud applications at
varied load conditions [40]. It is used for the secure transfer of data in IoT applications
in which the GWO-based security algorithms offer lower memory and time for encryp-
tion/decryption [41]. GWO is useful for text clustering in text mining application to
improve convergence rate and avoid trapping into local minima. The combination of
GWO and GO algorithms give 87.6% efficiency in terms of precision, accuracy, recall, and
sensitivity compared to individual algorithms [42].

3.3. Role of GWO Algorithm in Optimal CH Selection

The optimal CH selection using GWO greatly enhances network performance in
terms of coverage, throughput, energy consumption, and network lifetime in WSNs [43].
It formulates the objective function and its weights based on intra-cluster distance, CH
balancing factor, residual energy, and sink distance [44–46]. GWO addresses clustering
and routing issues by formulating an optimal fitness function so that the number of hops
and overall distance traversed are minimized, and also load balancing is achieved. The
fitness functions for routing and clustering give higher values compared to GA and PSO
algorithms [47]. A hybrid approach of GWO and WOA provides effective cluster formation,
dynamic CH selection, and an optimal number of CHs in WSNs. It has better exploration
and exploitation capabilities than the individual optimization approaches. CH selection
based on the combination of GWO and CSO algorithms avoids premature convergence in
exploring the search space. It gives a trade-off between the exploration and exploitation in
CH selection to enhance the network lifetime expectancy more than FFO, ABCO, FGGWO
algorithms [48].

Distance-based stable CDS along with GWO provides an enhanced performance of
70.5% over the GA-based algorithms in terms of energy efficiency and network stability. A
three-level hybrid clustering is proposed for WSNs using the GWO algorithm. At level 1,
BS selects the CHs; in level 2, there is GWO-based optimal data routing; and in level 3, dis-
tributed clustering takes place. This hybrid clustering enhances the network performance
in terms of residual energy, stability, and lifetime [49]. The network coverage optimization
using a minimal distribution of redundant nodes can enhance the stability and lifetime in
WSNs. The GWO algorithm embedded with SA can achieve better coverage optimization
than PSO in terms of optimization speed, energy consumption, and network lifetime [50].
The coverage optimization in WSNs using a Virtual Force Levy-embedded GWO algorithm
performs better than CSA and Chaotic PSO techniques in terms of scalability, adaptability,
uniformity, and coverage rate [51].



Computers 2023, 12, 35 6 of 17

GWO is used to compute the threshold levels of sensor decision rules at the fusion
center without depending on initial values and provides lower complexity in WSNs [52]. It
is used to localize the SNs with minimal position errors, and with a quicker convergence
than PSO and MBA algorithms [53]. The quantum computing with a clone operation in the
GWO algorithm avoids falling it into a local optimal solution. The optimal design of the
sensor duty cycle in industrial WSNs using the quantum clone GWO improves convergence
speed and network lifetime compared to GA and SA algorithms [54].

3.4. Enhanced Versions of GWO Algorithms for WSNs

The conventional GWO algorithm may give sub-optimal/local optimal solutions
because of its minimal exploration at early stages. An improved GWO aims to enhance the
optimization accuracy, accelerating the convergence of the GWO algorithm, and balancing
between exploration and exploitation. There are various attempts that have been made to
address the limitations of the GWO algorithm in terms of convergence speed, convergence
accuracy, and instability [55]. The improved versions of the GWO algorithm are applied to
WSNs for enhancing the convergence speed and precision. The features of these algorithms
are presented in Table 1, and they attempted to overcome the issues of slow convergence,
falling into local minima, and low search precision of the GWO algorithm [56].

Dimension-based learning in GWO addresses the drawbacks of the conventional GWO
algorithm, i.e., a lack of population diversity, premature convergence, and the imbalance
between exploration and exploitation. It demonstrates applicability and efficiency in
solving engineering design problems in a superior way compared to the conventional GWO
algorithm [57]. Weighted GWO enhances the convergence rate with higher exploration
and exploitation in the searching space. A weighted GWO algorithm with an MLP neural
network further enhances the classification accuracy with optimal weights [58]. Binary
GWO with SVM is used to improve the intrusion detection rate and accuracy in WSNs.
It improves the intrusion detection rate and detection accuracy, and at the same time it
minimizes the processing time, number of features, and false alarm rates [59]. “Differential
evolution” is introduced to update the wolf pack at each iteration based on the fitness
value. ‘R’ wolves with the least fitness values are eliminated and new set of (randomly
generated) wolves are introduced. It gives better optimization accuracy and convergence
speed than CSA, PSO, and ABCO algorithms [60]. An improved version of the GWO
algorithm supports an energy-efficient, balanced CH structure in WSNs based on fitness
values, and it extends the network stability period and throughput by 31.5% compared to
the SEP algorithm. Behavior-based GWO performs better in terms of population diversity
and convergence. The objective function for this algorithm is defined by considering the
connectivity rate, coverage rate, and total energy consumption in WSNs [61]. A fuzzy-
extended, GWO algorithm-based, threshold-sensitive, energy-efficient clustering protocol
enhances the network stability. A modified GWO algorithm for heterogeneous WSNs
selects the initial clusters depending on the values of the fitness functions for energy nodes.
The fitness values are considered as initial weights in GWO and these weights are updated
dynamically based on the distance between the wolves and their prey. It ensures the
selection of optimal CHs and enhances the network lifetime by 55.7% and 31.9%, compared
to SEP and the distributed energy-efficient clustering algorithm, respectively [62].

Table 1. Comparison of the relevant algorithms and their features.

Protocol Nodes Type Inter-Cluster
Topology

Need of Energy
Awareness

CH
Selection

Heuristic
Approach

SSMOECHS [24] Homogeneous Single-hop No Probabilistic No

GWO-C [43] Homogeneous Single-hop No Probabilistic Yes

GWO-based
clustering [44] Homogeneous Dual-hop No Probabilistic Yes
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Table 1. Cont.

Protocol Nodes Type Inter-Cluster
Topology

Need of Energy
Awareness

CH
Selection

Heuristic
Approach

GWO [47] Heterogeneous Multi-hop Yes Probabilistic Yes

HGWCSOA [48] Homogeneous Single-hop Yes Probabilistic Yes

QCGWO [54] Homogeneous Not applicable No Not
applicable Yes

BGWO [61] Homogeneous Single-hop No Probabilistic Yes

FGWSTERP [62] Homogeneous Single-hop Yes Fuzzy based Yes

LEACH-PRO
[63] Homogeneous Single-hop Yes Probabilistic No

HMGWO [64] Heterogeneous Single-hop Yes Probabilistic Yes

FIGWO [65] Homogeneous Single-hop Yes Deterministic Yes

4. Methodology

In this section, the proposed EECHIGWO algorithm is presented with details to
enhance the network lifetime using an optimal CH selection process. This network model
is meant mainly for industrial applications where the different manufacturing segments of
a plant are located at different geographical places and the assumptions are as follows:

1. The SNs are randomly deployed in a two-dimensional geographical space.
2. The BS is located at the center of the network terrain and there is multi-hop communi-

cation from CHs to the BS.
3. The SNs are divided into approximately equal groups, and they are randomly dis-

tributed within the group.
4. The SNs are homogeneous within the group and their mobility is limited to 0.2 m/s.
5. BS and the nodes who participate in multi-path communication only will have unin-

terrupted power supply.
6. BS executes the algorithm for CH selection and also it collects the aggregated data

from all CHs.

Figure 1 shows the radio energy model of an SN using two different channel models:
free space path loss (d2) model for a single-hop communication and multipath propa-
gation fading (d4) model for the multi-hop path communication. Therefore, the energy
consumption for transmitting an n-bit packet over distance ‘d’ is computed as

ETX(n, d) =
{

nEelec + n e f s d2 d < d0
nEelec + n emp d4 d ≥ d0

(1)

where

efs → energy dissipation coefficient of free-space attenuation model
n→ packet length
emp → energy dissipation coefficient of multipath attenuation model
d→ distance between sender and receiving node

d0 =
√

e f s /emp → threshold distance

Eelec → energy needed to transmit/receive 1-bit data.
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At Rx, the amount of energy consumption for receiving n-bit data packet is com-
puted as

ERX(n) = n× Eelec (2)

There are three parameters that contribute to the energy consumption at CH: number of
data packets received from SNs which are members of a particular cluster, data aggregation
performed by CH, and number of aggregated packets transmitted from CH to BS. Therefore,
the energy consumption at CH is given as

ECH = ERX(n, d)× SNnum + EDF × n × (SNnum + 1) + ETX(n, d) (3)

SNnum→ SN’s number in a particular cluster EDF → data fusion energy/bit.
For all SNs other than CHs, the energy consumption is ETX (n, d).
The total remaining energy during the kth round is computed as:

ER(k) = ER(k− 1)− (
CHnum(l)

∑
l=1

ECH(l) +
SNalive(k)−CHnum(k)

∑
m=1

ESN(m)) (4)

ER(k − 1)→ total remaining energy at (k − 1)th round
CHnum(k)→ number of CHs in the kth round
SNalive (k)→ total number of alive nodes in the kth round
ECH(l)→ energy consumed by lth CH
ECH(m)→ energy consumed by mth SN

Proposed EECHIGWO Algorithm

To overcome the randomness in CH selection, BS performs CH selection based on the
proposed EECHIGWO algorithm. The information about the selected CHs are broadcasted
to all SNs through the multi-hop communication nodes. The total number of SNs are
divided into four subsets (approximately) based on fitness value and out of which the
location of sixteen SNs are declared as fixed to support multi-hop paths. The SNs are
considered as grey wolves and CH is the prey. The EECHIGWO algorithm is defined in
terms of rounds, and each round consists of CH formation stage and data transmission
stage. The fitness value of an SN is computed based on the residual energy and its distance
to BS.

F =

 0.8 ×
(

Eresidual
Einitial

)
+ 0.2 ×

(
dmax − d

dmax−dmin

)
, Eresidual < 0

0.2 ×
(

Eresidual
Einitial

)
+ 0.8 ×

(
dmax − d

dmax−dmin

)
, Eresidual ≥ d0

(5)

where

Einital → initial energy of SN,
Eresidual → residual energy at SN after each round,
d→ distance between SN and BS,
dmax →maximum distance between SN and BS,
dmin →minimum distance between SN and BS.
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The Equation (5) represents the fitness function in which 80% weightage is given to
residual energy at SN and 20% weightage is given to the distance between the SN and BS.

The initial position of BS is computed as

→
XCH =

∣∣∣∣ωα

→
Xα + ωβ

→
Xβ + ωδ

→
Xα

∣∣∣∣ (6)

whereωα,ωβ,ωδ are the initial weights and they are calculated as follows:

ωα =
Fα

Fα + Fβ + Fδ
, ωβ =

Fβ

Fα + Fβ + Fδ
, ωδ =

Fδ

Fα + Fβ + Fδ
(7)

Fα, Fβ, Fδ are the first three optimal fitness values of the SNs.
To enhance the capabilities of global search using the GWO algorithm, the weights

ωα, ωβ, ωδ are dynamically updated using the vectors
→
D,
→
A and at the ith iteration, the

weights are calculated as:

ωi+1
α =

→
Di+1

α ×
→

Ai+1
α

→
Di+1

α ×
→

Ai+1
α +

→
Di+1

β ×
→

Ai+1
β +

→
Di+1

δ ×
→

Ai+1
δ

(8a)

ωi+1
β =

→
Di+1

β ×
→

Ai+1
β

→
Di+1

α ×
→

Ai+1
α +

→
Di+1

β ×
→

Ai+1
β +

→
Di+1

δ ×
→

Ai+1
δ

(8b)

ωi+1
δ =

→
Di+1

δ ×
→

Ai+1
δ

→
Di+1

α ×
→

Ai+1
α +

→
Di+1

β ×
→

Ai+1
β +

→
Di+1

δ ×
→

Ai+1
δ

(8c)

During the CH selection process, the location of the CH is computed using α, β, ω
wolves, and the other SNs compute their distances with respect to BS as shown in Figure 2.

The updated position of SN in the (i + 1)th iteration is computed as:

→
Xi+1 =

→
Xi

CH −
→
A×

→
D (9)

where
→
A is the convergence vector and it is given as

→
A = 2

→
α × →r1 −

→
α ,

→
Xi

CH is the CH
position in the previous iteration, i.e., ith iteration.
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Figure 2. Flow diagram of the proposed EECHIGWO Algorithm.

5. Results and Discussions

The performance of the proposed EECHIGWO algorithm is evaluated by conducting
extensive simulations in MATLAB 2022B. Each simulation reading is considered by taking
an average of fifteen simulation runs and the results are compared with the existing state-of-
the-art literature in enhancing the energy efficiency of WSNs using GWO-based techniques.
With the same experimental parameters as shown in Table 2, the EECHIGWO algorithm’s
performance is compared with the SSMOECHS [24], FGWSTERP [62], LEACH-PRO [63],
HMGWO [64], and FIGWO [65] algorithms. For ease of comparison, the number of SNs are
considered as 100 in the network terrain of 100 m2. The metrics considered for analyzing
the performance of the proposed algorithm include average energy consumption, number
of dead nodes to define the network stability, and average throughput which defines the
number of data packets delivered to BS. During the operation of WSNs, the SNs send
the sensed information to their respective CHs and each CH forwards the aggregated
information from various SNs to BS through fixed intermediate nodes.
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Table 2. Initial parameters of EECHIGWO protocol for simulations.

Parameter Value

Network Terrain 100 m2

Network size 100
Initial Energy (E0) 1 J

Probability to become CH (P) 0.1
Number of CHs P × 100
Efs, Eelec, Eamp 10 pJ/bit/m2, 50 nJ/bit, 0.0013 pJ/bit/m4

Dcritical, Dmax 20 m, 100 m
Data Packet size 500-Bytes

BS Position (50, 50)

Network lifetime can be defined based on stable and unstable periods. The stable
period is the time at which network starts operating till the FND. The unstable period
is the time duration between the FND and LND. In Figure 3, the FND, HND, and LND
are observed at 5940th, 6604th, 7908th operating rounds, respectively. The reason for this
enhanced lifetime of the proposed EECHIGWO protocol is that it eliminates the random
selection of CH. The BS selects the CHs based on the optimal fitness values of the SNs,
and the CHs’ selection information is broadcasted to all SNs through only the multi-hop
communication nodes, which are placed in the fixed locations with an uninterrupted power
supply. Therefore, the SNs with lower residual energy levels have a lower probability of
being elected as CH. It enhances the network lifetime by avoiding the sudden death of SNs
who have lower residual energies.
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The global optimization capabilities of the proposed protocol give balanced energy
consumption among SNs and leads to minimal average energy consumption at each round,
as shown in Figure 4. The energy consumption is minimized due to optimal intra-cluster
communication, uniform distribution of clusters, and multi-hop routing based on the
distance between CH and BS. The multi-hop communication feature of the proposed
algorithm enhances the load balancing capabilities and mitigates the energy consumption
at CHs located far away from BS. From Figure 4, it can be seen that the first SN’s death was
much later than the other protocols. Similarly, in the given network size of 100 SNs, the 50%
SNs death, 100% SNs death was significantly increased compared to other protocols. The
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overall observation is that the proposed EECHIGWO protocol gives superior performance
in terms of network lifetime compared to other protocols shown in Figure 4.
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The throughput is measured in terms of the number of data packets delivered to BS
from the SNs. The proposed EECHIGWO protocol provides higher throughput than other
protocols as shown in Figure 5. This is due to the fact that it adopts an optimal CH selection
and the SNs have the highest survival time. The even distribution of energy consumption
at SNs improves the network throughput as well as prolongs the network life. At the given
number of rounds, the number of alive SNs in the network are higher than that of the other
algorithms; therefore, more data groups are generated, and the number of data packets
delivered at the BS also increases. At a higher number of operating rounds, particularly
after the round number 1600, the throughput using EECHIGWO is much higher than other
protocols where more data packets are generated towards the BS.

Table 3 shows the network stability in terms of FND, HND, and LND of the proposed
protocol and compares with various existing protocols. From the readings shown in
Table 3, the rapid death of SNs is reduced from the round where FND occurs using the
proposed algorithm. This is because of the criteria that the SN with lower residual energies
become CH with very minimal probability. There is an improvement in network stability of
169.29%, 19.03%, 253.73%, 307.89%, and 333.51% compared to the SSMOECHS, FGWSTERP,
LEACH-PRO, HMGWO, and FIGWO protocols, respectively.

Table 3. Network stability comparison in terms of number of rounds.

Algorithm FND FND
Improvement (%) HND HND

Improvement (%) LND LND
Improvement (%)

Overall
Improvement (%)

SSMOECHS
[24] 2190 171.23 2600 154 2798 182.63 169.29

FGWSTERP
[62] 5500 8 5807 13.72 5841 35.38 19.03

LEACH-PRO
[63] 1159 412.5 1720 283.95 4800 64.75 253.73

HMGWO [64] 1450 309.65 1675 294.27 1884 319.75 307.89

FIGWO [65] 1248 375.96 1612 309.68 1906 314.9 333.51

EECHIGWO
[Proposed] 5940 —- 6604 —- 7908 —- —-
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6. Conclusions

In this paper, an energy-efficient CH selection using an improved version of the GWO
algorithm is proposed which considers sink distance, residual energy, balancing factor,
and average intra-cluster distance as the parameters in selecting the CH. The proposed
EECHIGWO protocol has multi-hop features and provides optimal fitness function values
to improve the WSN’s lifetime. The design of fitness function for CH selection is based on
both the amount of residual energy at SNs and their Euclidean distance to BS. It supports
deterministic and even selection of CHs in each round that leads to balanced energy
consumption and avoids premature deaths of SNs. The performance of the protocol is
tested in terms of number of dead nodes to define the network stability, average energy
consumption, number of operating rounds, average throughput, and network lifetime.
The simulation results have confirmed the optimal selection of CH with minimum energy
consumption. It is proved that the network throughput, stability, and the network lifetime
are enhanced compared to the existing state-of-the-art energy-efficient routing protocols
for WSNs such as FGWSTERP [62], FIGWO [65], LEACH-PRO [63], SSMOECHS [24],
and HMGWO [64], which are single-hop protocols with higher energy consumption and
provide lower network lifetime. Using the proposed algorithm, there is an improvement
in network stability of 169.29%, 19.03%, 253.73%, 307.89%, and 333.51% compared to the
SSMOECHS, FGWSTERP, LEACH-PRO, HMGWO, and FIGWO protocols, respectively. As
a future scope of the current research, the performance of the proposed algorithm can be
tested for heterogeneous WSNs with larger number of SNs and higher node densities.
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Glossary

ABC artificial bee colony optimization
ACO ant colony optimization
AFS artificial Fish Schooling
BA bat algorithm
BGWO behavior-based grey wolf optimizer
BS base station
CDMA code division multiple access
CDS connected dominating set
CH cluster head
COA chimp optimizer algorithm
CSA cuckoo search algorithm
CSO crow search optimization
DEEC distributed energy efficient clustering
DE differential evolution
DLH dimension learning-based hunting
EP evolutionary programming
ES evolution strategy
FCGWO firefly cyclic grey wolf optimization
FFO firefly optimization
FGWSTERP fuzzy GWO based stable threshold sensitive energy efficient

cluster based routing protocol
FIGWO fitness value based Improved GWO
FND first node death
GA genetic algorithm
GOA grasshopper optimization algorithm
GSA gravitational search algorithm
GWO grey wolf optimization
GWO-C GWO with clustering
HGWCSOA hybrid grey wolf and crow search optimization algorithm
HMGWO modified GWO for heterogeneous WSN
HND half node death
HWGWO hybrid whale and grey wolf optimization
IDS intrusion detection system
IGWO improved grey wolf optimization
IIoT industrial IoT
IoE internet of everything
IoT internet of things
LEACH low-energy adaptive clustering hierarchy
LND last node death
MBA modified bat algorithm
MFO moth-flame optimization
MLHP multilayer hierarchical routing protocol
MLP multi-layer perceptron
PRO probabilistic cluster head selection
PSO particle Swarm Optimization
QCGWO quantum clone grey wolf optimization
SA simulated annealing
SEP stable election protocol
SMO spider Monkey Optimization
SN sensor node
SSMOECHS sampling based spider monkey optimization and

energy efficient cluster head selection
WOA whale optimization algorithm
WSN wireless sensor network
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