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Abstract: The use of deep learning (DL) in civil inspection, especially in crack detection, has in-
creased over the past years to ensure long-term structural safety and integrity. To achieve a better
understanding of the research work on crack detection using DL approaches, this paper aims to
provide a bibliometric analysis and review of the current literature on DL-based crack detection
published between 2010 and 2022. The search from Web of Science (WoS) and Scopus, two widely
accepted bibliographic databases, resulted in 165 articles published in top journals and conferences,
showing the rapid increase in publications in this area since 2018. The evolution and state-of-the-art
approaches to crack detection using deep learning are reviewed and analyzed based on datasets,
network architecture, domain, and performance of each study. Overall, this review article stands as a
reference for researchers working in the field of crack detection using deep learning techniques to
achieve optimal precision and computational efficiency performance in light of electing the most
effective combination of dataset characteristics and network architecture for each domain. Finally,
the challenges, gaps, and future directions are provided to researchers to explore various solutions
pertaining to (a) automatic recognition of crack type and severity, (b) dataset availability and suitabil-
ity, (c) efficient data preprocessing techniques, (d) automatic labeling approaches for crack detection,
(e) parameter tuning and optimization, (f) using 3D images and data fusion, (g) real-time crack
detection, and (h) increasing segmentation accuracy at the pixel level.

Keywords: crack detection; civil inspection; deep learning; literature review; bibliometric analysis;
vision-based inspection

1. Introduction

Cracks are the initial signs of degradation of any civil infrastructure, which appear
due to various reasons, such as structural foundation shifting, shrinkage and expansion,
unbalanced blend, swollen soil, overloading, natural hazards, manmade disasters, and
so on. Crack detection and localization tasks can be performed by manually gathering
information, i.e., visually inspecting and assessing the structure by subjective human ex-
perts or automatically [1]. Manual inspection techniques are laborious, time-consuming,
inspector dependent, and easily vulnerable to the perspicacity of the inspector. To over-
come all the problems associated with manual assessment, automatic inspection techniques
provide an efficient solution that decreases subjectivity and can be used as an alterna-
tive to the human eye [2]. Additionally, the rate of designing and utilizing the computer
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vision-based civil infrastructure inspection and monitoring system has dramatically in-
creased [3]. Developing an efficient vision-based automated pavement crack detection
system has always been challenging due to the low contrast between the pavement surface
and cracks, irregular size and random shape of cracks, the intensity of variation in the
image, and multi-texture and shadowing in the images [4]. Computer vision approaches
include acquisition and analysis to find and classify the crack regions [5]. The results from
these approaches are used to (a) replace the manual detection and quantification of cracks,
(b) provide a reference for crack detection for future structure maintenance, and (c) enable
the automatic repair of crack regions by providing accurate positioning of the crack regions.
These approaches can be categorized into image-processing-based and machine learn-
ing approaches. Image processing methods for crack detection include edge detection [6],
thresholding and segmentation [7], region growing [8], and peculation-based techniques [9].
In image-processing-based approaches, the local information-based models use various
filters, such as the morphological filter [10], statistical filter [11], 2D matched filter [12],
median filter, multi-scale line filter with the Hessian matrix [13], and so on. The main issue
with image-processing-based techniques is the poor continuity and low contrast between
neighbouring crack pixels. Due to the evolution of machine learning, automated inspection
has reached an inevitable peak of advancement. Machine learning approaches can learn
deep features and perform statistical inference without tuning parameters manually, as
in other prior approaches [14]. Traditional machine learning approaches for pavement
crack detection consist of data acquisition, feature extraction, and classification. In data
acquisition, high-resolution images of the target structure are acquired and preprocessed to
remove noise and other forms of deformities. In feature extraction, the acquired features
are given to classifiers to determine their class. Various reviews have been proposed on
ML-based crack detection algorithms [3,15], which conclude that if the extracted features
do not represent the actual cracks, the classifier may not yield accurate results. Moreover,
these ML-based approaches cannot generate semantic features of the cracks. The capability
and robustness of traditional approaches have been greatly extended by deep learning
techniques [16]. In DL, the term “deep” refers to a large number of layers present between
the input and the output layers [17–19]. DL models are different from traditional machine
learning approaches in that they are capable of learning the representations of the data with-
out introducing any hand-crafted rules or knowledge and have shown great performance
in solving the crack detection problem [1]. Deep learning has the capability to classify, i.e.,
labeling the image patch as crack or non-crack; localize, i.e., determining the location of the
crack by drawing a bounding box around the crack region; and segment, i.e., segmenting
the image pixels into crack and non-crack pixels. A sample representation of the output
of the DL model is shown in Figure 1. Recently, various DL-based crack detection studies
were proposed in research environments. Therefore, to provide the researchers with suffi-
cient knowledge of available literature and maintain its intensity, a detailed study of deep
learning-based automatic approaches for crack detection in civil structure is carried out in
this article. The main contributions of the articles are as follows:
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• The article performs bibliometric analysis and a comprehensive review of the most
recent research articles from the last 11 years.

• In the comprehensive review, the relative finding of the latest studies in DL-based
crack detection is explained, and analysis is performed based on various factors, such
as the studied domain, deep learning architecture, architecture performance, and
datasets used.

• The paper provides an overview of DL-based crack detection approaches and cate-
gorizes them to simplify the current literature for better understanding and better
analysis of trends, gaps, and challenges in the field. The paper also provides future
directions to the readers to address the current challenges. The articles can be used as
a reference that will work for the researchers working in the field.

The remainder of this paper is organized as follows. Materials and methods are
described in Section 2. Section 3 summarizes DL-based crack detection approaches. Dis-
cussion and conclusions are presented in Section 4. Finally, future works are discussed in
Section 6.

Research Questions

The main questions that are addressed in this article are as follows:

1. Which datasets have been used for crack detection?
2. What is the impact of dataset characteristics on classification performance?
3. What are the different application domains in crack detection?
4. Which deep learning algorithms have been used for crack detection?
5. What are the gaps and challenges of deep learning for crack detection?
6. What are the future research opportunities?

2. Materials and Methods

The research methodology adopted in the proposed work consists of three main steps,
as depicted in Figure 2.
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The first step involves retrieving relevant literature from the Scopus and Web of Science
(WoS) search engines. In the second step, a different analysis is performed, which includes
analyses of keywords, affiliated organizations, citations, and the article’s country of origin.
The keyword scientometric mapping, listing of the top articles, and the yearly publication
trend of the retrieved articles are also observed in this section. Google trend analysis based
on the web, image, and news searches is also performed to visualize the search trend and
global focus of the keywords and terms in the proposed study. Furthermore, a detailed
review of DL-based crack detection approaches for civil infrastructure monitoring and
maintenance is presented. In the last section, discussions, conclusions, and implications are
given, and the proposed work is concluded by presenting the future work.

Literature Retrieval

In the current study, the literature is retrieved from Scopus and WoS search engines.
In the beginning, various research questions are formulated to identify the objectives of the
study. The relevant literature is retrieved from the search engines based on their keywords
and semantic search strings. The search strings are formed by using the keywords used in
previous relevant literature reviews [5,18,19] and conceptual terms that are comparable.
The keywords used for searching relevant papers include “crack detection” “deep learning”,
“crack detection” “Machine Learning”, “crack detection” “road” “pavement” “concrete”,
“crack detection” “manual inspection”, and “condition assessment” “computer vision”
joined by Boolean operators “OR” as depicted in Table 1. The total number of articles
that use the search string keywords in the title or abstract is 523 from Scopus and 367
from the Web of Science. Various restrictions are applied to keep relevant articles related
to the current study theme. In the Scopus search engine, the articles are restricted to
engineering, computer science, and material science. Similarly, in WoS, restrictions are
imposed differently, and the subject areas include civil engineering, construction building
technology, computer science interdisciplinary applications, engineering multidisciplinary,
computer science artificial intelligence, transportation, materials science multidisciplinary,
transportation science technology, computer science information systems, robotics, and
imaging science photographic technology. A few more restrictions, as shown in Table 2,
are applied to the retrieved articles; the period of publication is restricted from 2010 to
2021 (Criterion 1); the language is restricted to the English language only (Criterion 2); only
journals and conferences are considered in the article type (Criterion 3). Conferences and
journals with at least five publications in their outlets regarding the topic of interest are
included (Criterion 4). This comprehensive search results in 382 articles from both search
engines. A total of 99 duplicates found in both the search engines are removed, and a
total of 239 articles are selected after applying Criterion 5 (articles related to deep learning
only). At the end, the title, abstract, and full paper screening is performed, and 165 relevant
articles are selected for the current work.

Table 1. The search string, refinements, and results of the Scopus and WoS repositories.

Search Engine String and Refinement Results

Scopus

(TITLE-ABS-KEY (“crack detection” “deep learning”) OR TITLE-ABS-KEY (“crack detection”
“MachineLearning”) OR TITLE-ABS-KEY (“crack detection” “road” “pavement” “concrete”) OR
TITLE-ABS-KEY (“crack detection” “manual inspection”) OR TITLE-ABS-KEY (“condition
assessment” “computer vision”))
AND PUBYEAR > 2009
AND (LIMIT-TO (SUBJAREA, “ENGI”) OR LIMIT-TO (SUBJAREA, “COMP”) OR LIMIT-TO
(SUBJAREA, “MATE”))
AND (LIMIT-TO (DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE, “cp”))
AND (LIMIT-TO (LANGUAGE, “English”))

523
506
219
219
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Table 1. Cont.

Search Engine String and Refinement Results

WoS

TOPIC: (“crack detection” “deep learning”) OR TOPIC: (“crack detection” “Machine Learning”) OR
TOPIC: (“crack detection” “road” “pavement” “concrete”) OR TOPIC: (“crack detection” “manual
inspection”) OR TOPIC: (“condition assessment” “computer vision”)
Timespan: 2010–2021.
Indexes: SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI.
Refined by: WEB OF SCIENCE CATEGORIES: (ENGINEERING CIVIL OR CONSTRUCTION
BUILDING TECHNOLOGY OR COMPUTER SCIENCE INTERDISCIPLINARY APPLICATIONS OR
ENGINEERING MULTIDISCIPLINARY OR COMPUTER SCIENCE ARTIFICIAL INTELLIGENCE
OR TRANSPORTATION OR MATERIALS SCIENCE MULTIDISCIPLINARY OR
TRANSPORTATION SCIENCE TECHNOLOGY OR COMPUTER SCIENCE INFORMATION
SYSTEMS OR ROBOTICS OR IMAGING SCIENCE PHOTOGRAPHIC TECHNOLOGY)
AND DOCUMENT TYPES: (ARTICLE OR PROCEEDINGS PAPER)
AND LANGUAGES: (ENGLISH)

367
292
163
163

Sum of the papers = 382
Duplicates = 99
Remaining 283
After applying Criterion 5 = 239
After abstract screening = 165
After full paper screening = 165
Total = 165

Table 2. Inclusion and exclusion criteria followed to extract relevant studies.

Criterion Inclusion Exclusion

C1: (Publication Year) 2010–2021 Paper published before 2010
C2: Language English Other languages such as Chinese, German
C3: Article Type Journal and conferences Books, conference review etc.
C4: Number of articles in the outlet At least 5 publications Less than five articles
C5: Deep Learning Based on DL Not based on DL

3. Bibliometric Analysis of the Retrieved Literature

The Google trend analysis, literature synthesis and bibliometric analysis of the re-
trieved articles are discussed below.

3.1. Google Trends Analysis

Google trends analysis of the keywords is performed to highlight the global search,
and attention is given to the considered keywords in the current work. The comparison
is performed based on three keywords: crack detection, convolutional neural network,
and deep learning. Figure 3 shows the web search, news search, and image search trends
plotted for the years 2010 to 2021. The web-based search for the keywords is shown in
Figure 3a. The graph shows that the keyword “deep learning” is most searched, followed
by “Convolutional Neural Network” and “crack detection”. A similar trend is observed in
the news search, as shown in Figure 3b, where deep learning dominates the other search
items. Few searches are also performed for “Convolutional Neural Network” and “crack
detection”, but the magnitude is negligible as compared to deep learning. Overall, the
news search in comparison with web-based search is very limited. When it comes to image-
based search, a similar pattern is observed, and deep learning is the top topic, followed by
“Convolutional Neural Network” and “crack detection”, as shown in Figure 3c.

3.2. Literature Synthesis

In the current study, bibliometric analysis is performed to investigate the retrieved
articles. The main steps followed in the literature synthesis are discussed in detail below.
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3.2.1. Retrieved Articles Classification

The retrieved articles are distributed into three various domains, i.e., computer science,
engineering, and material sciences. Most of the articles selected in the current study belong
to the field of engineering, followed by computer science and material science, respectively.
The statistics in Figure 4 shows that material science is the least explored field, and less
than 20% of the retrieved articles belong to this domain. On the other hand, most of
the retrieved articles belong to the technology-focused field, i.e., the engineering domain
followed by computer science. This also shows that the research environment is focusing
on the adoption of technologies and computer applications for civil infrastructure condition
assessment problems.
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3.2.2. Publication Trend (Yearly)

The publication trend of the retrieved studies from both repositories is shown in
Figure 5. The three different colour graphs represent the studies from Scopus and WoS
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repositories and the duplicates in both. As shown in the figure, there has been an increase
in the number of publications over the five years, where 90% of the publications have been
published in recent years. This highlights the fact that the focus on crack detection using
deep learning techniques was increased recently. The nascency of the current study theme
can also be verified by the fact that there is a smaller number of publications in the years
2010 to 2015.
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3.2.3. Article Types

After analyzing the yearly publication trend of the retrieved articles, the article’s type
is examined. In the current study, journal articles and conferences are selected as they
provide organized and quality research in comparison with other types of research outputs.
The quality of all the retrieved articles fulfils the modern systematic literature review
requirements. The articles retrieved from the WoS repository consist of 9% conferences and
91% articles, while in the case of the Scopus repository, the conferences contribute 33%,
while the journal articles contribute 67% of the overall articles. In comparison with WoS,
the Scopus repository shows a greater tendency toward index conference papers.

3.2.4. Top Sources

The sources of the retrieved articles are investigated. The top sources with the most
retrieved articles are shown in Table 3. In the inclusion criterion, the outlets in both reposi-
tories with a minimum number of three articles published are considered. In the case of the
Scopus repository, the top three contributors are the ACM International Conference Proceeding
Series, Proceedings of SPIE The International Society for Optical Engineering, and Advances in
Structure Engineering. Similarly, for the WoS repository, the top sources are Automation in
Construction, Computer-aided Civil and Infrastructure Engineering, and IEEE Access. Amongst
the top sources, two outlets, i.e., Automation in Construction and Computer-aided Civil and
Infrastructure Engineering, are common in both search engines. In the top sources, most of
the Scopus repository sources are conferences, while the WoS repository sources are mostly
journal articles. Overall, the outlets such as Automation in Construction, Computer-aided Civil
and Infrastructure Engineering, IEEE Access, Construction and Building Materials, ACM Interna-
tional Conference Proceeding Series, Journal of Computing in Civil Engineering, and Structural
Health Monitoring contribute to more than half of the retrieved articles.
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Table 3. Top Scopus and WoS contributors.

S/No Scopus
Source Name Documents Citations S/No Web of Science

Source Name Documents Citations

1 Automation in Construction 3 14 12 Automation in Construction 16 328

2 Proceedings of SPIE The International
Society for Optical Engineering 5 45 13 Computer-aided Civil and

Infrastructure Engineering 12 918

3 SHMII 2019—Conference Proceedings 3 6 14 IEEE Access 12 15

4 Computer-aided Civil and
Infrastructure Engineering 3 955 15 Journal of Computing in

Civil Engineering 7 86

5 IEEE Region 10 Annual International
Conference, Proceedings/TENCON 3 4 16 Structural Health Monitoring 7 26

6 ACM International Conference
Proceeding Series 7 8 17 Construction and

Building Materials 8 326

7

International Archives of the
Photogrammetry, Remote Sensing and

Spatial Information
Sciences—ISPRS Archives

3 15 18 International journal of
pavement engineering 3 6

8 Advances in Structure Engineering 4 13 19 Applied Science-Basel 7 22

9 Applied Sciences Switzerland 3 10 20 Materials 3 4

10 IOP Conference Series: Materials
Science and Engineering 3 1 21 Structure Control

Health Monitoring 5 103

11 Journal of Performance of
Constructed Facilities 2 7 22 Journal of Transportation

Engineering, Part B: Pavements 2 4

3.2.5. Keyword Analysis and Scientometric Mapping

In the current study, the keyword analysis and scientometric mapping of the retrieved
studies are performed by using VOS viewer. It is a literature analysis software that is used
in various fields to visualize the relationship between authors, fields, authors, organiza-
tions, countries, and keywords. The software is mostly used for quantitative analysis and
produces the results in a well-organized, meaningful, and easily interpretable way. The
co-occurrence analysis for the keywords of the retrieved articles is performed by using
VOS viewer, and the results are tabulated in Table 4. From the table, 666 keywords are
retrieved from the Scopus repository, which is then restricted to 39 after applying the
minimum occurrence criterion. For both repositories, the minimum occurrence criterion
is the existence of the keyword in at least five articles. From the WoS, 346 keywords are
retrieved, which are then restricted to 32 after applying the minimum inclusion criterion.

Table 4. Keyword’s co-occurrence analysis.

Assessment Consideration Scopus Outcomes WoS Outcomes

Analysis Type Co-occurrence 666 346
Counting method full counting -
Units of analysis all keywords -

Minimum Occurrence 5 for Scopus, 5 for WoS 39 32

In addition to the keywords co-occurrence analysis, the top retrieved keywords for
both the repositories are shown in Table 5. In the Scopus search engine, the top keyword
is “Crack Detection”, which appears in 57 articles, corresponding to nearly 22.5% of the
top keywords. “Deep learning” is the second top keyword with 55 appearances and a
21.6% share. Both the crack detection and deep learning keywords are used in search strings;
however, the contribution of both keywords shows the lack of literature on both keywords.
All the remaining keywords have less than 11% contribution individually. In WoS, both
keywords “Crack detection” and “Deep learning” lead the list with an individual share of
30%, and their appearances are 53 and 54 times, respectively. The top two keywords for
both the search engines are the same, regardless of their ranks. “Damage detection“is the
third-ranked keyword in the WoS repository, with 29 appearances (16.6%).
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Table 5. Top 10 keywords.

Keywords Scopus Count Web of Science Count

Crack Detection 57 53
Deep Learning 55 54
Convolution 26 -
Convolutional Neural Network 20 14
Convolutional Neural Networks 20 6
Deep Neural Networks 17 -
Neural Networks 16 8
Structure Health Monitoring 15 5
Damage detection 13 29
Concretes 15 6

The scientometric mapping for the keyword of both Scopus and WoS repositories
is shown in Figure 6a,b. The inclusion criterion is the 10 and 5 keyword appearances
for the Scopus and WoS repositories. In the scientometric analysis of the Scopus search
engine as shown in Figure 6a, the top keywords highlighted as large bubbles are “crack
detection”, “deep learning”, “convolutional neural networks”, “convolution” and “deep
neural networks”. The large bubbles represent the high prevalence of the keywords in
the retrieved literature. Similarly, in the scientometric mapping of WoS, “crack detection”,
“deep learning”, Convolutional neural network”, and “damage detection” are the signif-
icant keywords, as shown in Figure 6b. The mapping clearly shows that crack detection
using deep learning algorithms is increasingly targeted in published articles as compared
to other keywords considered in the current study.
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3.2.6. Co-Authorship Analysis

The co-authorship analysis of the retrieved article as shown in Table 6 is performed
using a VOS viewer. The inclusion criterion for both search engines is set to two publications
by an author. In Scopus articles, out of 227 authors, only 24 authors fulfil the criterion and
are considered top contributors to the repository. On the other hand, WoS’s top contributors
include 45 authors out of 331.

Table 6. Co-authorship Analysis.

Assessment Consideration Scopus Results WoS Results

Analysis Type Co-authorship 227 331
Method of counting Full counting - -

Analysis units Authors - -
Minimum Occurrence Two for Scopus, two forWoS 24 45

3.2.7. Organizational Affiliation Analysis

The organizational affiliation of the authors is analyzed by setting the inclusion cri-
terion of two articles per organization as shown in Table 7. In the articles retrieved from
Scopus, a total of 122 organizations are affiliated, of which four organizations fulfill the
inclusion criterion. Similarly, for the WoS, 30 organizations out of 115 are shortlisted based
on the inclusion criterion.

Table 7. Organizational affiliation analysis.

Assessment Consideration Scopus Results WoS Results

Type of analysis Co-authorship 122 115
Counting method Full counting - -
Units of analysis Organizations - -

Minimum Occurrence 2 for Scopus, 2 for WoS 4 30
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3.2.8. Origin Country of the Articles and Citation Analysis

In the retrieved articles, the contribution of various countries in terms of the number
of contributed documents is also investigated as shown in Table 8.

Table 8. Origin countries analysis.

Assessment Consideration Scopus Results WoS Results

Type of analysis Co-authorship 22 18
Counting method full counting - -
Units of analysis Countries - -

Minimum Occurrence 3 for Scopus, 3 for WoS 5 7

The minimum inclusion criterion of three documents per country is kept for both
Scopus and WoS search engines. In the retrieved articles, 22 countries contributed to the
Scopus, of which only 5 countries satisfy the minimum inclusion criterion. In WoS, a total
of 18 countries contributed, and 7 were shortlisted after applying the limits. The number of
documents and citations of the top countries that contributed to the current study theme is
summarized in Table 9, and their world maps are shown in Figure 7.

Table 9. Number of documents and citations of the top countries contributing to the research theme.

Country No. of Doc Citations No. of Doc Citations

Scopus Web of Science

China 25 161 45 846
The United States 14 1018 25 1077

South Korea 10 135 15 81
Canada 6 964 10 313
Japan 2 1 4 130

The United Kingdom 2 8 1 0
India 1 0 1 2

Taiwan - - 1 2
Australia 2 8 2 3

The Russian Federation 2 0 2 130
Singapore 2 17 4 22
Vietnam 2 8 3 185

Iran 2 24 - -
Hong Kong - - 2 130

Italy - - 2 7
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4. DL Based Crack Detection Approaches

In deep learning architectures, CNN is widely used and has shown great performance
in crack detection tasks in various civil infrastructures. CNN is a feed-forward deep neural
network (DNN) consisting of input, middle, and output layers. The first layer is the input
layer, which, in combination with the middle layers, extracts features from the input images
and forwards them to the final layer for classification. The architecture of CNN has been
evolved, and several architectures are now available as shown in Figure 8.

Buildings 2022, 12, x FOR PEER REVIEW 12 of 36 
 

  
  

Figure 7. Country of origin (No. of documents and citations) analysis. 

4. DL Based Crack Detection Approaches 
In deep learning architectures, CNN is widely used and has shown great 

performance in crack detection tasks in various civil infrastructures. CNN is a feed-
forward deep neural network (DNN) consisting of input, middle, and output layers. The 
first layer is the input layer, which, in combination with the middle layers, extracts 
features from the input images and forwards them to the final layer for classification. The 
architecture of CNN has been evolved, and several architectures are now available as 
shown in Figure 8. 

 
Figure 8. CNN architecture evolution. 

4.1. Crack Detection Using DL Based on Classification and Localization Algorithms 
DL algorithms used for the classification and localization of crack are summarized 

below. 

4.1.1. DCNN and Pretrained Approaches 
In classification, the DL model extracts useful features and learns crack features from 

the input images. The crack regions are localized by convolving a sliding window of a 

Figure 8. CNN architecture evolution.

4.1. Crack Detection Using DL Based on Classification and Localization Algorithms

DL algorithms used for the classification and localization of crack are summarized
below.

4.1.1. DCNN and Pretrained Approaches

In classification, the DL model extracts useful features and learns crack features from
the input images. The crack regions are localized by convolving a sliding window of a
fixed size over a high resolution entire image. The image is divided into small patches
of specified dimensions, and a bounding box is drawn around the patch classified as a
crack patch by the CNN classifier. In the last few years, various efforts have been made to
apply the DL model for the classification and localization of cracks in different structures,
such as concrete, pavement, and so on. In [20], a CNN-based crack classification algorithm
was proposed for crack detection in the bridge surface, using custom data of evenly
distributed crack and non-crack 2000 images with a resolution of 96 × 96 and achieved a
predictive accuracy of 98.8% on noisy concrete crack images. Dorafshan [21] compared the
performance of common edge detectors (Roberts, Prewitt, Sobel, Laplacian of Gaussian,
Butterworth, and Gaussian) and CNN for image-based crack detection and localization
in concrete structures using 3420 images (319 with cracks and 3101 without). The best
edge detector method accurately detected 53–79% of cracked pixels with a residual noise
in the final binary images, while the DCNN network accurately detected 86% of cracked
images with finer cracks (0.04–0.08 mm). Although the results are not comparable, as
edge detection algorithms are pixel-based, while the CNN algorithms are patch-based, the
average variation in the F1 score (which is defined as the harmonic mean of the model’s
precision and recall) of the best deep learning model in comparison with the best edge
detector was recorded to be 0.23 and is 1.5 times faster than edge detector models. A CNN
model named ChaNet was proposed in [22] for crack identification in concrete structures
under lighting conditions using 40,000 images of resolution 256 × 256. The model achieved
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96% testing accuracy, 82% precision, 95% recall and 87% F1 score. Comparing the model to
the traditional, well-known edge detection methods (i.e., Canny and Sobel [6]), the edge
detection methods provided no meaningful crack information and might not be able to
treat nonhomogeneous concrete surfaces properly in terms of colour and texture.

The use of a pre-trained network can increase the crack detection capability of a model
trained on a small amount of data. A pre-trained DCNN model was trained in [23] for
automated pavement crack detection using 1056 images of size 224 × 224. The authors
employed and compared specific machine learning, such as neural networks (NN), support
vector machine (SVM), random forest (RF), logistic regression (LR), and extremely ran-
domized tree (ERT), and an average variation in F1 score of the TL-NN (transfer learning
neural network) classifier in comparison with the other classifier was recorded to be 4.17%;
however, the classifier failed to learn to distinguish cracks from joints in PCC-surfaced pave-
ments. Aliyari et al. (2021) [24] compared the performance of various transfer learning (TL)
models, namely VGG16 [25], Resnet50 [26], Resnet152-v2, Xception [27], InceptionV3 [28],
DenseNet210 [29], NASNetLarge [30], and EfficientNetB4 [31], using 19,023 UAV acquired
bridge images. EfficientNetB4 and DenseNet210 achieved the highest accuracy of 96%,
followed by ResNet50 and VGG16 with 95% accuracy. Similarly, a comparison of TL meth-
ods was performed for the detection of various crack anomalies such as delamination,
cracks, spalling, and patches in digital and thermographic images [32]. The MobileNetV2
and VGG16 models outperformed all the compared models and showed average F1 score
variations of 7.40% and 11.91%, respectively. Yang et al. (2021) [33] compared the perfor-
mance of three various deep learning models named AlexNet, VGGNet13, and ResNet18.
The ResNet 18 model outperformed the other two neural networks with 98.80% accuracy,
98.90% precision, 98.60% recall, and 98.80% F1 score. A two-step cracks detection and clas-
sification architecture by modifying the LeNet-5 model [34] and VGG-16 architecture [25]
was proposed in [35]. In the LeNet-5 architecture, the output dimensions of the FC2 (fully
connected) layer are modified, and the VGG-16 model is optimized for automatic crack
detection of concrete and pavement cracks. The proposed model was evaluated on various
publicly available datasets and achieved 91.20% precision, 89.10% recall, and 90.10% F1
score on Cracktree200. Żarski et al. (2021) [36] proposed the TL-based framework KrakN
for surface defect detection. The model was trained on 16144 images divided equally into
the background and crack categories of size 224 × 224 and achieved 98% accuracy and
97% recall on the KrakN dataset. To improve the accuracy of the crack detection model and
reduce the false alarm, the authors in [37] used hybrid (digital and infrared) as an input to
the AlexNet architecture. Using hybrid images, the accuracy, precision, and recall of the
model were improved by 1.11%, 68.43%, and 9.38%, respectively. Moreover, several TF
architectures were used in various works, GoogLeNet [38,39], ResNet-152 [40], Inception
V3 [40], Inception V4 [41], and GoogLeNet + ResNet [33,42–46], for crack detection in
various civil structures.

In [47], the authors performed optimal hyperparameter selection and trained a DCNN
network for crack detection in road structures using 62,408 images with a dimension
of 256 × 256. The trained network achieved 99.70% precision, 99.50% recall, 99.60% F1
score, and 7.9 s testing time; in comparison with various ResNet [26] architectures, an
average variation of 0.18% variation was observed, while the algorithms were 6–18 times
faster than compared algorithms. Liang et al. (2018) [48] also performed hyperparameter
selection to address the overfitting problem of various pre-trained networks for system-
level failure classification. The VGG16 achieved the highest testing accuracy of 98.98%
on a small dataset of 492 images with a resolution of 224 × 224. Similarly, in [49], the
authors proposed a crack detection model by adjusting image processing parameters to the
optimized value to increase the accuracy of crack detection before using CNN. The proposed
model achieved a testing accuracy of 91% using 3000 images for each class. Moreover,
in [50], the authors explained the importance of parameter knowledge in addition to model
and data knowledge by training a DCNN to detect cracks in the concrete surface, using
three publicly available (CCIC [51], SDNET [52], and BCD [53]) datasets. The detection
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accuracy of the proposed end-to-end DCNN based transfer learning model was recorded as
99.3% for the CCIC dataset, 99.72% for the BCD dataset, and 97.07% for the SDNET dataset.

The performance of different optimizers for DL-based crack detection was evaluated
in [54]. Optimizers play a vital role in the training speed and performance of deep learning
models [55]. There are various optimizers available, such as Adam, stochastic gradient
descent (SGD), momentum and so on. Based on the comparison, the Adam optimizer
showed higher precision with the lowest false-negative rate and highest accuracy. The im-
portance of using the Adam optimizer for a crack detection DL model was also highlighted
by the authors in [1]. Rao et al. (2020 [40] evaluate the performance using 15 state-of-the-art
convolutional neural network models (Alex Net [56], VGG16 [25], VGG19 [25], ResNet-
50 [26], ResNet-101 [26], ResNet-152 [26], InceptionV3 [28], InceptionV4 [57], Inception-
ResNet-v2 [57], DenseNet121 [29], DenseNet169 [29], ResNeXt-50-32 × 4d [58], ResNeXt-
101-32 × 8d [58], Wide-ResNet-50-2 [59], Wide-ResNet-101-2 [59]) in terms of number of
parameters required to train the models, area under the curve, and inference time using
40,000. All the models provide over 95% accuracy and over 87% precision in detecting the
cracks. Kim and Cho 2018 [60] used the AlexNet architecture for crack detection in concrete
images acquired from an internet search. The softmax layers were modified by developing
a probability map to add robustness to the sliding window detection, and a parametric
study was performed to determine its threshold. The average accuracy, precision, recall,
and elapsed time of the proposed algorithm on various 40 test images were recorded to
be 97.02%, 92.36%, 89.28% and 2.02 s, respectively. Kamada and Ichimura 2020 [61] used
the restricted Boltzmann machine (Adaptive RBM) for fine-tuning in combination with the
deep belief network (Adaptive DBN) for image-based crack detection in concrete structure.
The fine-tuning method increased the inference time and accuracy of the model.

Additionally, the importance of training dataset integrity in DL crack classification
architecture was shown in [62]. The authors used sampling and training methods based on
cross-entropy ranking to address the training class imbalance issue. Three various Alexnet
architectures were trained on three various size datasets, namely D1, D2, and D3. The
networks trained on a sampled dataset (AlexNet 2 and 3) achieved validation accuracies of
97.46% and 97.55%, respectively, approximately 1.2% higher than that related to AlexNet
1, 96.34%, which indicated that the errors were reduced from 3.64% to 2.54% and 2.45%,
respectively. In [63], the authors proposed an external few-shot meta-learning module for
handling small and incomplete data size and the internal attribute-based transfer learning
module to extract features. The classification accuracy, average precision, recall, and F1
score for all the 10 damage types are 93.5%, 93.1%, 92.9%, and 92.9%, respectively. The
training data size, data heterogeneity, network complexity, and the number of epochs
have significant effects on the performance of the DL model as studied in [1]. The authors
compared a proposed customized CNN model pre-trained networks, i.e., the VGG-16 [25],
VGG-19 [25], ResNet-50 [26], and Inception V3 models [28], on eight datasets of different
sizes, created from two public datasets. The proposed model is 8–43 times faster than
other compared algorithms, and there is no significant change in F1 of the models. The
authors showed that the optimal amount of training samples with significant variations has
a positive influence on the efficiency of DL-based crack detection models. The effect of data
heterogeneity was also studied in [64] using intensity, range and filtered image data types
to train deep learning architectures, named Net A, Net B and Net C using 60,000 images
with a resolution of 256 × 256. To alleviate the need for post-processing techniques and
more training data, the authors in [65] used data augmentation to increase the number of
samples to identify the exact location. The proposed method achieved 98.50% accuracy,
1.5% error rate, 98.70% specificity, 13.10% precision, 57.20% recall and 21.40% F1 score. The
average variation in the F1 score of the proposed model in comparison with other compared
deep learning algorithms was recorded to be 4.32%, which is due to the inclusion of the
output function [66] to the encoder. The labeled image data can also be used in integration
with other data types, such as fuse 3D LiDAR data images to generate a colorized and
semantically labeled 3D map of a structure [67].
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4.1.2. Modified CNN Architecture

Moreover, DL models can also be used as a feature extractor and integrated with
traditional classifiers for crack detection and localization purposes. In [68], the authors
used CNN for extracting features from input images and SVM as an alternative classifier to
a softmax to enhance model performance. The proposed CNN-SVM model surpasses the
CNN model, and an increase of 7.4%, 2%, 10%, and 5% is observed in accuracy, precision,
recall, and F1 score, respectively. The same methodology was adopted in [69] for the
bridge crack classification algorithm, and the accuracy of the combined model is 91.9%
for horizontal, 93.10% for vertical, 91.70% for slope, and 92.30% for block cracks. In
comparison with CNN, the proposed model achieved an average variation of 6.76% for
various types of cracks. It is still challenging to decide on the architecture and parameters
of each model [2]. Individual models may perform well for one classification task but not
for another. The authors in [2] introduced a deep learning-based multi-model ensemble
approach by combining five different customized convolutional neural networks (CNN)
trained on data of 8400 crack and non-crack images with a resolution of 224 × 224.

Furthermore, detecting cracks in other structures, such as tunnels, dams, and masonry,
is of vital importance to avoid any unwanted situations. The crack patterns in these struc-
tures can be horizontal, vertical, or diagonal. Among all these structures, crack detection
in the masonry structure is a tedious task due to the similarity of crack regions with the
grout lines. In [39], the authors combined deep learning techniques with traditional image
processing algorithms for crack detection, localization, and measurement in tunnels. The
authors trained two pre-trained architectures, AlexNet [56] and GoogLeNet [38], on a
smaller dataset of 376 images to compare their performance. The AlexNet performed better
than GoogLeNet and obtained 93.90% accuracy, 72.40% precision, and 77.80% recall. A
ceiling crack detection and localization model, trained, validated, and tested on 1953 ceiling
images, was proposed in [70]; 86.22% testing prediction accuracy, 82.53% sensitivity, and
88.94% specificity were achieved. Features visualization was used to demonstrate the
classification correctness and provide a localization method for damaged ceiling regions.
The authors in [71] combined freeform surface modelling based on the maximum like-
lihood function and crack analysis based on Mask RCNN for the inspection of tunnel
structures using acquired images from a vision measurement unit consisting of camera
arrays. Wang et al. (2019) [72] proposed using the Faster R-CNN model based on the
ResNet101 framework to detect two categories of damage (efflorescence and spalling) for
historic masonry structures. An AP of 99.90% for efflorescence and 90% for spalling damage
was achieved by the model, with a 95% mean AP. Sewer pipe defect detection was proposed
in [73], using an improved version of a faster region-based convolutional neural network
(Faster R-CNN) using 3000 images; 83% mAP and 9.43 FPS speed were achieved. Li et al.
(2019) [74] used the YOLO-v3 object detection model for crack detection of dam surface
and achieved recall, precision, and F1 score of 0.85, 0.85, and 0.85, respectively.

4.1.3. CNN Integrated with Other Modules

In [75], the authors integrated two pivotal attention modules with a very low com-
putational cost in a sequential manner with ResNet architecture to enhance the quality
of crack features. The model was trained with 3150 unique crack image samples, with
700 extra images for validation and testing, and achieved an average precision (AP) value
of 80.06%. Xu et al. (2019) [53] improved the CNN architecture by introducing the Astrous
Spatial Pyramid Pooling (ASPP) module and depth-wise separable convolution to extract
multiscale features and reduce computational complexity. The proposed model achieved
an accuracy, precision, recall, specificity, and F1 score of 96.37, 78.11, 100, 95.83, and 0.8771,
respectively. The model was compared with standard VGG [25] and ResNet [26] and was
shown to be 1.5–2 times faster with an average variation of 20.28% in F1 score than the
compared algorithms of the crack detection of the dam surface; it achieved recall, precision,
and F1 score of 0.85, 0.85, and 0.85.
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4.1.4. Object Detection Models

Recent strides in DL have enabled the deployment of object detection models for crack
detection and localization. The accuracy of these models is measured using mean average
precision (mAP), which is calculated by taking the mean of average precision (AP). The
AP calculates the detection results of the models by using precision and recall at different
threshold levels. The speed of these models is calculated by frames per second (FPS), which
is the number of frames that a model processes during a second. Qi et al. (2020) [76]
improved the architecture of SSD by removing the network layers that are not useful for
prediction and varying the aspect ratio while fixing the short side rather than the area
in the prior box setting. The authors used fine labelled 1300 industrial crack images and
achieved 81.06% mAP and 52.6 FPS. The proposed model outperformed the traditional SSD
and YOLOv3 model since its network is simplified, and priors were designed regarding
the crack characteristics. The authors in [77] introduced a receptive field module in the
SSD DL framework to enhance the feature extraction capability of the network for real-
time pavement crack detection. Similarly, Yan and Zhang [78] proposed a novel network
named deformable SSD by adding a deformable convolution to the backbone feature
extraction network VGG16. The model was trained and tested on 22,250 crack images
of size 562 × 562 and achieved an mAP of 85.11%. The precision of the SSD model for
road defect detection can be improved by using faster RCNN models [79]. In [80], the
authors trained a generic object detection model (an updated version of faster RCNN called
RetinaNet) for road damage identification using a quality-aware filter dataset consisting
of 18,340 images and 8 various classes. The proposed method was compared with the
state-of-the-art model [81,82] and achieved 91.55% accuracy for asphalt structural damages
detection from videos and low inference time. The regular convolution and pooling
operation with a deformable convolution operation and a deformable pooling operation
were improved in three different regular detectors (Faster R-CNN, region-based fully
convolutional networks (R-FCN), and feature pyramid network (FPN)-based Faster R-
CNN [83].

In Faster RCNN, hyperparameters, such as data size, network depth, number of
layers, filter dimensions, or stride values, have a significant effect on the detection ac-
curacy of the model [73,84]. Kalfarisi et al. [85] proposed FRCNN-FED by combining
FRCNN with SRFED (structured random forest edge detection) bridge structures using
1250 bridge images of sizes varying from 344 × 296 to 1024 × 796. The proposed FRCNN-
FED model is 10 times faster but less accurate than Mask RCNN. The authors in [86]
combined Faster RCNN with 2D digital image correlation (DIC) for concrete crack detec-
tion using 1058 images. In the prosed system, Faster RCNN helps in the detection and
localization of the crack region, while the DIC helps in the estimation of the deformation
field on the concrete surface and measurement of crack width. The architecture was able to
localize crack using FRCNN with a certainty of 98%. The accuracy of Faster RCNN was
improved by ad hoc YOLOv2 for concrete crack detection [87]. The model was trained on
3010 images of 448 × 448 size and is 2.5% more precise, 4.5 times faster in training, and
1.35 times faster in testing time than Faster RCNN on the same data. The accuracy and
inference speed of the YOLOv3 model is greater than Faster R-CNN and the SSD network
for classifying pavement and concrete distress types [88,89]. Zhang and Chang 2019 [90]
proposed an improved version of YOLOv3 for the detection of multiple types of concrete
defects. The model was trained on 2206 images (1280 × 960 and 4000 × 3000) labelled for
four types of concrete damages (crack, pop-out, spalling, and exposed rebar) and achieved
13% better precision than the traditional YOLOv3 model. An improved version of YOLOv3,
i.e., YOLOv3-tiny, was proposed in [91] for the crack detection task. The performance of
YOLOv3 was compared with the newest versions of YOLO, i.e., YOLO version 4 (YOLOv4)
and YOLO version 5 (YOLOv5) for concealed crack detection in asphalt pavement [92]. In
terms of processing, YOLOv4 performed better with the fastest detection rate of 10.16 FPS,
while in terms of mAP, YOLOv5 achieved the highest mAP of 94.39%. Yao et al. (2021) [93]
integrated SPP and PANet modules to the YOLov4 architecture to reduce the number of
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parameters for a concrete surface crack detection model. The model accuracy slightly de-
creased as compared to the traditional YOLOv4 model; however, the number of parameters
and inference time of the model decreased. The improved model achieved a mAP of 94.09%
with 8.04 M parameters and 0.64 GMacs (Flops). Similarly, the number of parameters of the
YOLOv4 model was reduced using the pruning algorithm YOLOv4-FPM. The model was
trained on 3487 images of 1000 × 1000, 2000 × 2000, and 3000 × 3000 dimensions and is
20–33 times faster than the traditional YOLOv4 model. Crack segmentation refers to the
classification of image pixels into the crack and non-crack pixels.

4.2. DL Based Segmentation Algorithms

Crack segmentation refers to the classification of image pixels into crack and non-crack
pixels. Various DL methods have been implemented for the detection and segmentation of
cracks in various structures [46,48,94–113]. A fully convolutional network (FCN) named
Ci-Net trained on two publicly available datasets (CFD [114] and TITS2016 [115] was
proposed in [103] for the identification and segmentation of structural cracks. The model
achieved 84% precision, 82% recall, 72% IoU, and 60.40% F1 score. Similarly, in [116],
FCN was trained for the segmentation of concrete cracks using pre-trained networks as a
backbone for the FCN encoders. An automatic pixel-level crack detection and measurement
algorithm was proposed in [117] to identify and segment pixel-wise cracks at different scales
and measure the morphological features of cracks, providing valuable crack indicators
for assessment in practice, such as crack topology, crack length, max-width, and mean
width. The architecture of FCN was modified in [118] for the detection of multiple types
of damages, such as spalling, efflorescence, cracks, and holes in concrete structures. The
architecture was compared with SegNet and the PA, and the MPA of FCN were lower than
SegNet, while the FCN achieved higher MIoU and FWIoU than the SegNet.

Moreover, U-net has also been extensively used in crack segmentation tas-
k [97,101,102,111,117,119–122]. The authors in [119] used U-net architecture for concrete
crack segmentation using a small number of images and achieved the highest IoU of 0.681 at
a threshold level of 80. Shokri et al. (2020) [101] also performed crack segmentation in con-
crete images by training a U-net architecture on a merged dataset consisting of 458 images
from CCIC [51] and 670 images from a custom dataset with a resolution of 512 × 512.
In [102], the authors introduced a self-attention mechanism, truncated expansion strategy,
and weighted classification to U-net architecture and compared its performance on various
publicly available road datasets, namely CrackTree200 [4], ALE [123], and CFD [114], and an
average variation in the F1 score of the model in comparison achieved 38.81%, 51.76%, and
43.66%, respectively. Similarly, a new loss function was introduced by Cheng [104] to the U-
net architecture and trained on two publicly available datasets (CFD [114], AigleRN [123]).
The average variation in the F1 score of the proposed algorithm in comparison with other
considered algorithms was recorded to be 17.58% on the CFD dataset and 8.84% on the
AigleRN dataset. SegNet, a novel pixel-wise deep convolutional semantic segmentation net-
work proposed by Zhang [124] has the capability to perform pixel-level classification and
has been used in various crack segmentation works [48,112,124–127]. A modified version of
SegNet called Seg-DCRF was proposed for crack binarization by combining SegNet and the
dense condition random field (DCRF) networks [125]. CrackSegNet for crack detection and
segmentation was proposed in [126] with architecture consisting of the backbone network,
dilated convolution, spatial pyramid pooling, and skip connection module. The model
showed average F1 score variations of 65.41% and 15.37%, in comparison with the tradi-
tional method and U-net method, respectively. Recently, Zheng et al. 2021 [127] used the
SegNet network for back-end processing for semantic segmentation in a lightweight bridge
concrete crack detection model. The proposed model was compared with state-of-the-art
algorithms, namely FCN [117], U-net [128], SegNet [129], DeepCrack [130] and CrackU-
Net [97] and achieved an average variation in F1 score, recorded to be 5.32%. A deep
learning algorithm based on U-Net and a convolutional neural network with alternately
updated clique (CliqueNet), called U-CliqueNet, were proposed to separate cracks from a
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background in the 60,000 tunnel sub-images with a resolution of 496 × 496 [83]. The model
achieved MIoU, precision, recall, and F1 score of 0.869, 0.863, 0.802, and 0.834, respectively.
The model was also compared with SegNet [129], U-net [131], FCN [117] and MFCD [132],
and an average variation of 6.58% was obtained based on the F1 score.

Zhang [133] proposed an efficient architecture based on the convolutional neural
network (CNN) called CrackNet for detecting pavement surface distresses at the pixel level.
The authors modified the architecture and proposed CrackNet II [134] to make the model
more robust, eliminate local noises and detect fine or hairline cracks. The architecture was
further modified, and CrackNet-V was introduced in [135]. CrackNet-V has small filters
in the convolutional layers for reducing the number of parameters and a new activation
function called “Leaky Rectified Tanh” for accurate detection. CrackNet-V only takes
0.33 s on average for pixel-level crack detection, which is roughly 3–4 times faster than
CrackNet. In [136], the author’s proposed a three-phase architecture for crack detection
and segmentation in concrete structures. The first and second phases use 2D CNNs for the
classification and segmentation of cracks. In the third phase, the crack length and width
are estimated. The crack classification algorithm achieved an accuracy of 98.98%, and the
segmentation network achieved an accuracy of 100% with an IoU value of 0.87. The model
can measure crack length and width of 401.33 mm and 2.2 mm, respectively. Similarly,
a two-stage DL architecture was used for the segmentation and identification of distress
types on road surfaces using images acquired from a UAV [137]. In the defect segmentation
task, the VGG model outperformed the other considered models and achieved IoU of 89.2,
66.2, and 85.7 in detecting path holes, rutting, and wash-boarding. Pan et al. (2020) [94]
proposed a pixel-level crack detection and segmentation system by using a hybrid deep
learning approach called SCHNet (spatial–channel hierarchical networks) on a portion of
publicly available datasets [24]. The average variations in the means IoU of the proposed
algorithm on the test data in comparison with U-Net [131], Deep-Labv3 [138], PSPNet [139],
and Ding [140] is 15.48%. The authors in [95] created a dataset named EdmCrack600
consisting of 600 annotated images of 1920× 1080 resolution and a DL-based new algorithm
ConnCrack by combining the conditional Wasserstein generative adversarial network with
connectivity maps for crack detection and the segmentation of road cracks. The average
variation of the algorithm in comparison with other machine learning approaches on
CFD [114] and the proposed EdmCrack600 dataset was recorded to be 9.37% and 33.67%.
The proposed algorithm is 1.2–4 times faster than other compared algorithms.

Crack segmentation based on object detection models have been performed in various
studies [107,110,111,141]. Zhang et al. [98] added semantic segmentation to the Mask RCNN
model to extract more information about the crack to improve the prediction accuracy of the
model. The architecture exhibits 13.18%, 4.52%, variations in the mask AP and AP box on
GDPH (Guangdong Provincial Highway) custom dataset in comparison with Mask RCNN
and PANet (Path Aggregation Network). The authors in [142] combined Faster region
proposal convolutional neural network (Faster R-CNN), modified tubularity flow field
(TuFF), and modified distance transform method (DTM) crack detection, segmentation, and
quantification. The hybrid network achieved an average precision of 95% in crack detection,
83% IoU in crack segmentation, and 93% accuracy in the crack quantification process for
crack length and thickness of a 2.6-pixel root mean square error. Majifarid et al. 2020 [143]
also creates a hybrid model by combining YOLO and U-net architecture for classifying and
segmenting nine road distress types using a dataset consisting of 7237 images extracted
from Google Street-view. Various pre-trained architectures are used as encoders for U-
net [131], FCN [117], FPN [144], a generic pyramid representation to perform pixel-level
crack segmentation in masonry structures [145]. The average variation of the combined
models i.e., U-net-MobileNet and FPN-InceptionV3 in comparison with other networks is
recorded to be 2.85%. Crack detection and segmentation algorithm (CDDS is proposed) for
dam surface in [146] using images collected from a drone. The proposed network achieved
recall, precision, F1 score, Crack IoU, and Background of 80.45, 80.31, 79.16, 66.76, and
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99.76. On comparison with SegNet [129], Unet [131], FCN [117] and ResNet152 [147], an
average variation of 9.53% is observed in F1 score due to integration multi-level features.

5. Analysis and Discussion

The analysis of the retrieved articles is performed based on the dataset, its size, the
domain in which the study was performed, the architecture and precision of the model, as
explained in detail below.

5.1. Dataset Based Analysis

Before the development of a vision-based crack detection system, dataset acquisition
is performed for training the models. The selection of a feasible dataset for model training
remains a great challenge that needs to be resolved. In the retrieved articles, 72.12% of
articles are based on a custom dataset among which 64.71% used less and 10K images for
model training while the remaining used more than 10K images. The custom dataset is
preferred by most researchers due to the lack of a standard dataset for crack detection tasks
and enables them to capture specific requirements of the crack detection algorithm being
used. In the custom dataset-based articles, 62.73% of studies are conducted for concrete
crack detection while 28.87% are performed for crack detection in pavement surfaces. It
can be inferred that the majority of the custom datasets consisting of less than 10K image
samples are used for training concrete crack detection models. In 8.40% of articles, the
researchers built their datasets for crack detection in different types of materials namely
dams, glasses, masonry, ceiling, rock cliffs, and nuclear plants.

Moreover, 17.57% of the retrieved studies are based on publicly available datasets
in which 74.41% of datasets consists of more than 10K images while 25.59% of the public
dataset have less than 10K images. The pre-built datasets are available online and are used
as a standard for the training and testing of the crack detection models. Among these
studies, concrete crack detection is performed in 58.13% of articles while pavement crack
detection is performed in 41.85% of studies. The analytics shows that public datasets such
CFD [114], AigleRN [123], Crack500 [148], AEL [148] are frequently used for pavement
crack detection while for concrete crack detection SDNet, CCIC [51], and Özgenel’s [51]
are commonly used for crack detection. From the above analysis, it can be inferred that
there is no public crack detection dataset available for other structures such as masonry,
dams, sewage pipes, tunnels, and so on. Therefore, this points towards the need to create
a publicly available dataset for such structures to solve the inspection problem efficiently.
The overall distribution of the articles is shown in Figure 9 and the articles are shown in
Table 10.
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Table 10. Image datasets on crack detection.

Dataset Type Domain Works

Custom
Concrete [2,20–22,32,33,36–39,43–45,48,49,60,62,63,67,69,71,73,75,84,85,87,89–

91,93,97,105,107,108,110,112,117–119,121,126,127,130,133,141,142,146,149–171]

Pavement [20,40–42,47,65,77–80,88,92,100,109,113,125,131,133,135,137,143,172–183]

Other structures [46,54,68,70,74,76,145,164,184,185]

Domain Dataset Name Works

Public

Concrete

FCD [161]
CCIC‘ [1,106,136,186]
Xu’s dataset [187]
DIV2K [188]
SDNET [35,60,65,97,119,189,190]
Özgenel’s [65,97,119,189,191,192]
KrakNet [69,100,133,190,193,194]
CCIC + SDNET + BCD [50]
CFD + TITS2018 [103]
CFD + Online search [195]
SDNET + CCIC [1]
LTPP + GAPS + APRDC [196]
SDNET + Özgenel’s [189]
KITTI + Cityscapes + CFD [111]
CFD + AigleRN [197]

Pavement

AEL [123,190]
Crack500 [120,190,193]
CFTD [124]
CLS [96]
CFD Llamas [103,198]
Stone331/GAPs384 [193]
TRIMMD [124]
CCD861 [35]
CrackTree260 [193]

EdmCrack1000 [194]
Cracktree200 [35,102,190,199,200]
EdmCrack600 [95]
CFD [35,44,99,102,124,151,193,194,200–203]
AigleRN [27,40,49,104,203]
MCD [204]

AIMCrack [199]
CCD1500/CCD861/CCD861 [35]
DeepCrack [35]
PCD19/CRKWH1000/ [193]

Dataset Type Domain Works

Custom and Public Concrete and Pavement [24,35,83,97,98,101,164,168,170,188,197,200,205–209]

5.2. Domain-Based Analysis

In the reviewed articles, every study is conducted to perform crack detection in a
specific civil structure as depicted in Table 11. The majority of the articles are focused
on detecting cracks in concrete and pavement and contribute approximately 85% of the
reviewed articles as shown in Figure 10.

The reason is that concrete and pavement cover many infrastructures elements, such as
roads, bridges, buildings, walls, and so on. Several studies are present on crack detection in
other structures namely tunnels, dams, sewage pipes, masonry structures, industry, ceilings,
nuclear plant, glass, dam, and rock cliffs, which cover 15% of the articles reviewed in the
current study. Hence, there is a need to focus on developing crack detection algorithms for
these structures also.
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Table 11. Published articles on crack detection (domain wise).

Area/Domain Number of Works References

Pavement/Roads 59
[23,35,41,42,47,64,65,77–80,88,92,95,96,98–
100,102,103,109,111,113,120,125,130,133–135,137,143,168,172–183,190,193–
196,198–203,205,207,208]

Concrete 65
[1,2,22,24,32,33,37,38,40,43–45,50,53,60–62,75,80,83,86,87,91,93,97,101,106–
108,110,112,116–119,121,124,130,133,135,136,141,142,146,150,152–
154,156,158,161,164,166,167,169,171,186,189–192,197,204,206,209–212]

Bridges 18 [20,21,36,48,63,65,67,69,85,89,90,94,127,149,162,170,187,188]

Sewage Pipes 5 [73,75,84,159,163]

Tunnels 9 [39,41,71,105,126,155,157,160,165]

Masonry 4 [68,72,145,185]

Industry/Ceiling/
Nuclear Plant/

Glass/Dam/Rock Cliffs
6 [46,59,70,76,84,184]
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5.3. Architecture Based Analysis

Each article reviewed in this work is based on a specific DL architecture. As sum-
marized in Table 12, DCNN is mostly used for crack classification in various structures
followed by CNN TL models, such as MobileNetV2, AlexNet, VGG-16, GoogLeNet, and
so on. Performing crack detection using CNN, some of the authors have trained the
model from scratch, while most of them opted for pre-trained models because of their
capability to achieve better crack classification performance on large training datasets. The
remaining CNN-based architectures are either hybrid, or some modules are integrated
with them. In the object recognition-based DL models, Faster RCNN and YOLO are the
most implemented architectures for the recognition and localization of the crack regions.
The reason behind the abundant use of FRCNN is the architecture’s ability to localize
small cracks. However, these approaches have the limitation of treating the whole crack
as a single object. These models are also integrated with other modules for crack seg-
mentation tasks to locate the crack region more precisely [85,142]. In crack segmentation,
Unet is the most adopted DL learning architecture in the reviewed literature followed
by the SegNet model. The segmentation of cracks is a tedious task and require a power-
ful architecture to accurately segment cracks in the images. U-net has shown promising
performance in various applications, including crack segmentation. In comparison with
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other segmentation networks, the encoder–decoders network architecture (U-net) requires
a small amount of data to train and provide crack location information precisely. Various
authors have also improved state-of-the-art DL models and named their architectures as
APLCNet [98], RetinaNet [80], [172], SCHNet [94], Ci-Net [103], Cls-GAP Net [96], Ef-
ficientNet [168], ProposedNet [109], CMDNet [161], TernausNet [185], Spiral Net [166],
LDCC-Net [189], RRCE-Net [170], RAO-UNet [181] and so on. From the above analysis,
it can be inferred that crack segmentation can be performed by implementing a simple
lightweight encoder–decoder network that can be trained with less data and resources.

Table 12. Published articles on crack detection (domain wise).

Architecture Works Precision

DenseNet201 [24] NA
LeNet-5 + VGG16 [35] 91.20
KrakN [36] NA
Inception V3/Inception V4 [40]/[41] NA/90.00
GoogLeNet/GoogLeNet + CDN/GoogLeNet + ResNet [38,39]/[99]/[45] 98.72, 35.30/84.35/93.50
ResNet/ResNet-152 [33,40,42–44]/[46] 98.90, NA, NA, NA, NA/90.0
DBN [61] NA
R-FCN [83] 90.01
2D DIC + FRCNN [86] NA
YOLOv5x [92] 74.00
ConnCrack [95] 96.79
DenseCrack [99] 92.17
RPN [105] NA
FCN [46,100,105,106,116,117] NA, 98.33, NA, 91.30, 89.30, 97.60
U-Net/UNet-EB [97,101,102,104,111,119,121,122]/[120] 98.23, NA, 87.48, 40.44, 92.12, 96.52, NA, NA/57.50
SegNet Bottleneck Depth-Separable Convolution
With Residuals [127] 97.95

Deep Crack [130] 86.60
YOLO/YOLO + U-Net [87]/[143] 77.00/93.00
CDDS [146] 80.31
CrackNet/CrackNet II/CrackNet-v/CrackPix [133]/[134]/[135]/[151] 90.13/90.20/92.58/92.55
SSD/SSDLite-MobileNetV2 [76–79]/[154] 81.06, 78.69, 19.45, 95.05/52.00
ANet-FSM [156] 99.10
MobileNet-v1 + ASPP [160] NA
YOLO-v3/YOLOv3-tiny [33,74,88–90]/[91,92,163] NA, 85.00, 73.64, 76.50, 66.20/98.00, 64.00, 85.37
SegNet/CrackSegNet/SegNet-DCRF/FL-SegNet [48,112,124]/[126]/[125]/[164] , NA, NA, 82.0 /63.85/97.26
Multilayer ELM-based crack detector MECD [167] 97.80
RetinaNet/ SCHNet/ Cls-GAP Net APLCNet/Ci-Net/
ProposedNet /EfficientNet.

[80,172]/[94]/[96]/[98]/[103]/[109]
[168]

NA, 85.80/NA/93.20/92.20/NA/
NA/82.30

ResNet18 + YOLO_v2 [171] 89.00
Edge detection + CNN-CDM [176] 1.00
CAE [178] NA
FCN + GCRF + Uncertainty framework +
probability-based rejection net [179] NA

RNN [180] NA
CNN (MobileNetV2)/CNN (AlexNet)/CNN (VGG-16)/
CNN (VGG-19) [32]/[33,37,39,60,62,192]/[32,33,46,48]/[40,181] 66.70/97.60, 98.72, 72.40, 92.36, 92.0, 99.0/55.60,

98.60, NA, NA, NA/90.0, 1.00
PointCrack3D [184] 5.00

Faster RCNN [48,72,73,79,83,84,153,158,174,186] 80.00, 95.00, 91.58, 26.45, 83.0 83.0, NA, 87.80, 66.89,
NA,

SSENets/CrackU-Net/U-CliqueNet [155]/[175]/[187] 86.30/NA/95.45
SrcNet [188] NA
CMDNet/TernausNet/Spiral
Net/LDCC-Net/RRCE-Net/RAO-UNet [161]/[166]/[170]/[181]/[185]/[189] 98.90/78.44/99.28/98.32/81.90/NA

Xception [191] NA
CCapFPN [193] 91.40

DCNN [20,21,23,39,47,49,50,54,62–
65,67,70,75,136,137,162,165,180,182,183,194]

NA, 97.90, 90.0, 88.30, 99.70, NA, NA, 89.60, 92.0,
93.10, 99.60, 13.10, NA, NA, 80.60, NA, NA, NA, NA,
NA, NA, NA, 91.00.

Mask R-CNN using Detectron2′s /Mask RCNN [113]/[71,85,107,110,111,141,173,195] 95.00/ NA, 66.0, 90.40, 90.0, NA, NA, 96.32, NA
YOLOV4/YOLOV4-FPM [93,149]/[196] 94.09, 97.60/78.00
CCA + CRA [197] 83.40
Encoder-decoder + SWM [199] 67.20
ICGA [198] 89.33
SSGN [200] 33.55
U-HDN [201] 94.50
Deep Residual Net [202] 93.57
CNN + ASPP CDDS / CNN + SVM/ CNN with U-Net
and FPN/ CNN with PAN [53,69,145,204] 78.11, NA, 95.30, 81.30

RCNN + CNN [205] NA
GAN [207,208] 89.70, NA
FRCNN + FPN/FRCNN + TuFF +
DTM/FRCNN-FED/FRCNN-Inception-ResNet-v2 [83]/[85]/[142]/[209] 92.11/78.00/95.00/60.80

Customized CNN [1,2,22,68,177,190,210] 97.30, 99.60, 98.90, 82.00, NA, NA.
MALSSS [211] 98.17
FF-BLS [212] 99.90
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5.4. Precision Based Analysis

The effectiveness of a crack dataset can be assessed by reviewing its performance
outcomes for crack detection. In the reviewed studies, researchers used various evaluation
metrics, such as accuracy, precision, recall, and F1 score for the validation of their proposed
crack detection systems. In the proposed articles, precision is considered for dataset-based
performance analysis, as it is mostly used in the reviewed articles. The precision values of
studies based on the custom dataset are summarized in the table. The majority of concrete
and pavement surfaces achieved a precision of more than 75%; however, the articles using
less than 10,000 images achieved more precision than articles based on a dataset consisting
of more than 10,000 images. The distribution of the articles based on precision is depicted
in Table 13. The precision based comparative analysis of the algorithms is not provided in
the paper, as the majority of the works are based on a custom dataset, and it is impossible
to provide a fair comparison of the algorithms unless all the models are evaluated in a
unified setup.

Table 13. Distribution of the published articles on crack detection (precision wise).

Structure Dataset Size Precision (%) References

Concrete <10,000

95–100 [2,97,127,142,149,156,161,170,187]

90–95 [63,83,91,98,106,107,110,150]

85–90 [74,89,101,157,158,163,171,207]

80–85 [48,73,75,84,106,117,130,146,168,197]

75–80 [53,85,87,164,206]

<75 [32,39,90,126,154,169]

Concrete >10,000

95–100 [1,33,37,38,121,167,192,212]

90–95 [21,35,45,60,62,93,116,151]

85–90 [103,204]

80–85 [22,152,165]

75–80 [178]

<75 NA

Pavement <10,000

95–100 [95,113,175,176,181,193,201,203]

90–95 [23,35,92,134,135,143,194,199,201]

85–90 [130,133]

80–85 [124,135,174,178]

75–80 [77,196]

<75 [65,79,102,120,123,199,200]

Pavement >10,000

95–100 [47,64,78,100,125,173]

90–95 [40,180]

85–90 NA

80–85 NA

75–80 NA

<75 [88]

Other structures < & >10,000

95–100 [72,185]

90–95 [96]

85–90 NA

80–85 [68]

75–80 NA

<75 [184]
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6. Gaps, Challenges, and Future Research Opportunities

Crack detection using DL approaches has seen exponential growth over the past few
years. Since cracks are irregular in form with no specific shape or size, it therefore becomes
difficult for a DL to perform a crack recognition task. Additionally, the considered domain
poses further challenges that need to be addressed to enable the DL algorithms to replicate
human perceptions.

6.1. Automatic Recognition of Crack Type and Severity

The current approaches focus on the detection and segmentation of cracks; however,
there is limited literature available focusing on the nature and severity of cracks, concerning
various structural components. A few of the available studies based on crack width and
topology considered in this review article are [117,119,125,136,150,154,155,183,184]. To the
best of the author’s knowledge, crack types, namely meandering and crescent-shaped,
have not yet been considered in any article. It is therefore imperative to carry out research
studies that consider classification and other factors to make the task of crack detection
more efficient. Moreover, efforts have been put forth to convert crack pixel values to a
physical length and width [117,213–215], which can be calculated by using a conversion
scale (mm/pixel). To convert the crack width from pixel units to millimeters, the camera
sensor’s physical size (in millimeters) and image resolution (in pixels) are required [216].
However, the transition of pixels to geometric properties still needs a lot of improvement.

6.2. Dataset Availability and Suitability

From the review, the majority of the DL-based crack detection models are based on cus-
tom datasets consisting of small image patches acquired in a close range using a digital cam-
era [36,172], moving vehicle with a mounted camera [71,95,173,180], smartphone [81,99]
and UAV [24,119,154]. There are limited studies available on crack detection using compos-
ite view of the structure by creating a continuous mosaic. To provide a global view of the
crack density of the structures, the drone, aerial and satellite images in combination with
close-range images must be taken into consideration to provide a better view of the struc-
ture’s cracks to the inspectors. In the areas where image acquisition cannot be performed
by using a drone or handheld cameras due to high traffic flow or other environmental
factors, aerial and satellite images can provide a cost-effective solution.

The performance of the DL model depends on the various factors of the input data,
such as variation among the samples, textures, noises, samples resolution, illumination,
and so on. Additionally, there is a lack of a public dataset for structures such as masonry,
dam, etc. Therefore, it is necessary to make a standard dataset from various civil structures.
The dataset must ensure variation among the data samples, and the data collection should
be performed in various lighting conditions to validate the performance of various DL-
based approaches. The dataset must be made publicly available to the research community
with specified samples in the training, cross-validation, and testing, which in return will
enable researchers to validate their approaches on a single data for a fair comparison. In
situations where the data availability is limited, data augmentation approaches can be used
to increase the dataset samples to achieve better performance; however, the selection of the
data augmentation approach is still not considered in the literature. Similarly, the need for
larger datasets can also be addressed by using ensemble modelling.

6.3. Efficient Data Preprocessing Techniques

In addition to data, researchers use various preprocessing approaches to address
the presence of noises, blemishes, and shadows in the images while performing crack
detection using DL techniques; however, more efforts are required to build automatic and
efficient algorithms to address the removal of noise and irregularities from the images
before being given to DL models. Additionally, sometimes the quality of images acquired
from UAVs is adversely affected by the camera vibrations due to inadequate operator
skills and atmospheric factors, such as wind direction and speed [217]. The blur caused
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due to the moving camera reduces the image sharpness and makes the crack detection
task difficult. Various DL-based deblurring approaches have been proposed in the past to
address the issue in various applications [218–221]; therefore, it can also be considered to
deblur the images containing cracks to improve the detection accuracy.

6.4. Automatic Labelling Approaches for Crack Detection

Currently, very little effort is made to perform crack segmentation using a weakly
supervised or unsupervised manner. In the supervised segmentation approaches, the
dataset labelling for crack detection is performed manually, which is laborious and time-
consuming. To minimize these human interventions, either the crack segmentation task
should be performed in an unsupervised manner or an automatic labelling method, which
can automatically perform the manual labelling of the cracks. The speed of the CNN-
based crack detection methods highly depends on various factors, such as the selection of
hyperparameters, network depth, and fine-tuning of the architecture.

6.5. Parameter Tuning and Optimization

In the review, most of the algorithms adopted to noise and image variations have expe-
rienced longer processing time; therefore, it is required to necessarily explore the network
depth and perform parameter tuning to achieve better performance with less computa-
tional time and cost. Moreover, numerous approaches have demonstrated optimization
techniques for the fast convergence of deep learning models with minimum iterations. To
the best of the author’s knowledge, there is a lack of studies that take the selection and
combination of various optimization algorithms to help DL models. Therefore, there is
a serious need to perform studies on different optimizers and their combination (hybrid
optimizers) and examine the strength and weaknesses of each optimizer to set the stage for
future research.

6.6. Integrating New Features beyond RGB Images

The last few years have also seen various DL-based crack detection studies using 3D
images [222,223]. The state-of-the-art DL approaches can also be improved to adapt the
3D imaging technologies to improve model generalization ability and consider new crack
features, such as crack dimensions. Finding the crack dimensions will not only help in
determining the severity of the crack but will also help the authorities in deciding on the
structure usage. Crack detection focuses on capturing the current state of the structures
using vision-based techniques. Regression models may help to predict and quantify the
number of cracks on structures using multiple features, such as (a) time since last main-
tenance, (b) type of last maintenance (i.e., surface or major), (c) environmental factors
(freeze-thaw cycles, temperature, depth of water table beneath, humidity and precipita-
tion [224,225]), (d) deterioration measure (road rutting [226], international roughness index
(IRI) [226], deflection and pavement condition index (PCI [227])), and (e) traffic factors
(lane, traffic volume) [228]. The advantage of data fusion is two-fold: (a) to predict the
progression of cracks within the coming years and (b) to improve the accuracy of the
state-of-the-art crack detection models. Further research is needed to assess the advan-
tage of blending these features to improve the accuracy of RGB-based automatic crack
quantification methods.

6.7. Realtime Crack Detection

Additionally, the DL model does not perform well in real-time scenarios as the model
is trained offline. There is a need to address the issue by proposing a robust model and
evaluating the model in real-time under various environmental conditions.

6.8. Improving the Pixel Level Segmentation Accuracy

For the semantic segmentation task, U-net and FCN are widely used in the literature
for crack classification at the pixel level. However, the segmentation of hairline crack
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remains a challenge for the researchers, and straight networks usually require more time to
train. The improvement in the architecture of U-net, such as removing pooling layers and
introducing objective and loss functions, might enhance the performance and reduce the
computational cost of the crack segmentation task. The segmentation is also performed by
integrating CNN with other modules, such as crack delineation network (CDN), pyramid
attention network (PAN), and so on. However, it still requires more attention from the
researcher working in the field to increase the accuracy of crack detection at the pixel level.
The DL model consists of millions of parameters with large memory and high computing
devices; therefore, implementing DL for various problem challenges still requires research.

7. Conclusions

This paper provides an extensive review of deep learning-based crack detection
approaches developed in the last 11 years and published in top-quality journals and
conferences. A detailed review of 165 articles retrieved from Scopus and WoS after applying
five different criteria is performed. A detailed summary of the developments of CNN-
based structural crack detection architectures is presented in this paper. The analysis of
the articles is performed based on the used dataset, its characteristics, algorithms, their
performances, and application domain. The paper also provides a discussion on the gaps,
challenges, and future research opportunities in the field of crack detection using deep
learning approaches. From the analysis, it can be inferred that most researchers prefer to
use custom datasets when it comes to crack detection since there are no standard datasets
available. Moreover, there is limited work available on structures, such as masonry, dams,
sewage pipes, tunnels, etc. As a result, an efficient algorithm and open dataset for such
structures would solve the inspection problem more efficiently. It can also be inferred
that collecting an optimal amount of data at various lightning conditions and providing
variation among data samples can increase the performance of deep learning models. For
concrete and pavement surfaces, more than 75% precision was achieved in the reviewed
articles; however, those using datasets containing fewer than 10,000 images achieved more
precision than those using datasets containing more than 10,000 images.

In the reviewed articles, CNN is widely used for crack detection tasks and its per-
formance heavily relies on various factors, such as the selection of hyperparameters and
fine-tuning of the architecture. For the crack localization, sliding window techniques have
shown promising results; however, it is difficult for the sliding window approach to localize
crack pixels. It is possible to segment fine cracks using crack segmentation algorithms, such
as U-net. Moreover, the U-net architecture can be enhanced for improving the performance
and reducing the computational cost of crack segmentation, removing pooling layers and
introducing loss functions. Another observation is that the crack property, nature, and
severity for the diverse structural components should be considered while performing
crack detection using DL approaches. Using 3D imaging techniques, the ability to gener-
alize the model and find new crack features, such as crack depth, can be enhanced. The
articles also highlight various research gaps and challenges that need to be addressed, such
as common publicly available datasets having specified training, validation and testing
samples, automatic data labelling software, pre-processing methods for handling noises
and irregularities, and so on. Overall, the proposed review provides a solid knowledge of
various DL-based crack detection approaches and will work as benchmarks for researchers
working in the field to assist them. The limitations of the proposed study are that (a) articles
written in the English language were chosen from both libraries, while papers written in
any other language were excluded; (b) to cover the majority of the related articles and
minimize the bias caused by the keyword search, most commonly used keywords were
included, but some research studies may have used synonyms that were not included in
the keyword search; however, we think this risk is low because of the adapted methodology.
In the future, the authors are planning to include different comparison criteria, such as the
inference time of algorithms, network depth, and implementation, for reviewing DL-based
crack detection approaches.
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