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Abstract: Purpose: Brain tumors are diagnosed and classified manually and noninvasively by
radiologists using Magnetic Resonance Imaging (MRI) data. The risk of misdiagnosis may exist due
to human factors such as lack of time, fatigue, and relatively low experience. Deep learning methods
have become increasingly important in MRI classification. To improve diagnostic accuracy, researchers
emphasize the need to develop Computer-Aided Diagnosis (CAD) computational diagnostics based
on artificial intelligence (AI) systems by using deep learning methods such as convolutional neural
networks (CNN) and improving the performance of CNN by combining it with other data analysis
tools such as wavelet transform. In this study, a novel diagnostic framework based on CNN and DWT
data analysis is developed for the diagnosis of glioma tumors in the brain, among other tumors and
other diseases, with T2-SWI MRI scans. It is a binary CNN classifier that treats the disease “glioma
tumor” as positive and the other pathologies as negative, resulting in a very unbalanced binary
problem. The study includes a comparative analysis of a CNN trained with wavelet transform data of
MRIs instead of their pixel intensity values in order to demonstrate the increased performance of the
CNN and DWT analysis in diagnosing brain gliomas. The results of the proposed CNN architecture
are also compared with a deep CNN pre-trained on VGG16 transfer learning network and with
the SVM machine learning method using DWT knowledge. Methods: To improve the accuracy of
the CNN classifier, the proposed CNN model uses as knowledge the spatial and temporal features
extracted by converting the original MRI images to the frequency domain by performing Discrete
Wavelet Transformation (DWT), instead of the traditionally used original scans in the form of pixel
intensities. Moreover, no pre-processing was applied to the original images. The images used are
MRIs of type T2-SWI sequences parallel to the axial plane. Firstly, a compression step is applied for
each MRI scan applying DWT up to three levels of decomposition. These data are used to train a 2D
CNN in order to classify the scans as showing glioma or not. The proposed CNN model is trained
on MRI slices originated from 382 various male and female adult patients, showing healthy and
pathological images from a selection of diseases (showing glioma, meningioma, pituitary, necrosis,
edema, non-enchasing tumor, hemorrhagic foci, edema, ischemic changes, cystic areas, etc.). The
images are provided by the database of the Medical Image Computing and Computer-Assisted
Intervention (MICCAI) and the Ischemic Stroke Lesion Segmentation (ISLES) challenges on Brain
Tumor Segmentation (BraTS) challenges 2016 and 2017, as well as by the numerous records kept in
the public general hospital of Chania, Crete, “Saint George”. Results: The proposed frameworks
are experimentally evaluated by examining MRI slices originating from 190 different patients (not
included in the training set), of which 56% are showing gliomas by the longest two axes less than
2 cm and 44% are showing other pathological effects or healthy cases. Results show convincing
performance when using as information the spatial and temporal features extracted by the original
scans. With the proposed CNN model and with data in DWT format, we achieved the following
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statistic percentages: accuracy 0.97, sensitivity (recall) 1, specificity 0.93, precision 0.95, FNR 0, and
FPR 0.07. These numbers are higher for this data format (respectively: accuracy by 6% higher, recall
by 11%, specificity by 7%, precision by 5%, FNR by 0.1%, and FPR is the same) than it would be, had
we used as input data the intensity values of the MRIs (instead of the DWT analysis of the MRIs).
Additionally, our study showed that when our CNN takes into account the TL of the existing network
VGG, the performance values are lower, as follows: accuracy 0.87, sensitivity (recall) 0.91, specificity
0.84, precision 0.86, FNR of 0.08, and FPR 0.14. Conclusions: The experimental results show the
outperformance of the CNN, which is not based on transfer learning, but is using as information
the MRI brain scans decomposed into DWT information instead of the pixel intensity of the original
scans. The results are promising for the proposed CNN based on DWT knowledge to serve for binary
diagnosis of glioma tumors among other tumors and diseases. Moreover, the SVM learning model
using DWT data analysis performs with higher accuracy and sensitivity than using pixel values.

Keywords: brain tumor diagnosis; MRI; T2-SWI; computer aided diagnosis; DWT; CNN

1. Introduction

The most frequent forms of brain tumors are meningioma, glioma, and pituitary.
Meningiomas are the most common non-glial tumor of the central nervous system

(CNS). Meningiomas are slow-growing tumors that arise from the meningothelial cells
of the arachnoid. Meningiomas may be found along any of the external surfaces of the
brain as well as within the ventricular system, due to arachnoid cap cells or meningocytes
trapped in the cranial sutures during remolding of the brain at birth. Some meningiomas
may display atypical imaging characteristics that may be diagnostically challenging. A
number of benign and malignant pathologies may also mimic some of the features of
meningiomas [1]. Rare cases of mixed angiomatous and microcystic meningioma are
multiple tiny intralesional cysts and entrapped peritumoral cyst formation [2]. The MRI
features of meningiomas are discussed in [3].

Pituitary tumors are noncancerous (benign) tumors grown in the pituitary gland. The
pituitary gland is located behind the back of the nose. Superiorly, its border is the optic
chiasm. Pituitary tumors do not spread to other parts of the body. The pituitary gland
controls most of the body’s endocrine functions by means of the hypothalamic–pituitary
axis. The pituitary tumors can cause the pituitary gland to make too few or too many
hormones, causing problems in the body. In [4] is discussed the various imaging modalities
for the pituitary gland.

Gliomas can be found in any region of the brain and are much harder to detect when
they are lower grade. Gliomas have highly heterogeneous appearance and shape, with
variable degrees of infiltration, atypia, and mitotic activity. Given the heterogeneous nature
of glioma cell populations, some areas of the tumor display an infiltrative growth pattern
and may not be enhanced. This tissue heterogeneity makes the current role of MRI on
glioma evaluation even more challenging [5].

The diagnosis and classification of a brain tumor usually involves brain MRI scans
in all three planes: axial, sagittal, and coronal, a neurological examination, and a biopsy
if it can be performed safely. Magnetic resonance imaging (MRI) offers more detailed
information on brain structure than computed tomography (CT) or ultrasound images.
MRIs do not require ionizing radiation like CT does. The MRI generates tissue contrast
based on differences in the magnetic properties of hydrogen atomic nuclei. MRI can easily
differentiate between solid and cystic lesions and between different soft tissues, such as
white and gray matter. Since one of the most important features of a healthy brain is its
image symmetry in the axial and coronal directions, MRI is an imaging tool for diagnosing
brain tumors, epilepsy, neurological diseases, etc. Asymmetry of pixel intensity along an
axial MR brain image indicates a pathological brain. In the MRI image, the non-healthy
area is segmented where pixel intensity is higher or lower both row-wise and column-wise
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in the image matrix. The differentiation in pixel intensities provides information about
disease burden and lesion load.

For MRI scanning of the brain, different modalities of MRI scans respond to the
different biological information in the images. The different modalities of MRI are T1, T2, T2-
FLAIR, gradient imaging, diffusion weighted image (DWI), functional image, and diffusion
tensor imaging. The DWI exploits the random Brownian motion of water molecules within
a voxel. From DWI can be calculated the apparent diffusion coefficient (ADC), which is the
measure of the magnitude of water molecules. The ADC values less than thresholds are
indicating pathologies [6]. T1 MRI provides a clear view of brain anatomy and can reveal
damage in brain injury when the damage is extensive. Gadolinium-based contrast agents
shorten T1 relaxation time and increase tissue contrast by highlighting areas where contrast
has leaked from the blood–brain barrier into interstitial tissue, resulting in parenchymal
enhancement. This breakdown of the blood–brain barrier is an important feature that occurs
in both tumors and non-neoplastic diseases [7]. Blood products and mineralization cannot
be distinguished on T1 images, as both appear dark on magnitude images. In contrast to
T1-type MRIs, T2-type allows visualization of severe diffuse axonal injury, as expected after
severe traumatic brain injury. T1 images highlight fat tissue within the body and eliminates
water signals. T2 images highlight fat and water within the body. Abnormally low signal
relative to surrounding tissue on T1 images, or abnormal brightness on T2 images, suggests
a pathological process such as cancer, trauma, or infection. Low grade gliomas usually
present rather homogeneous structures with no contrast encashment or peritumoral edema,
high signal intensity in their T2 type, and no contrast enhancement in their T1 type. On the
other hand, high grade gliomas present heterogeneous or ring-shaped contrast or patterns
in their T2 type.

The manual inspection of MR images by eye specialists is a time-consuming routine.
The MRIs are diagnosed by radiologists, and the results are sent to the doctors. Since
radiologists are often faced with vast amounts of MRI data showing multiple complex
tumors or only few slices are affected, there is a higher risk of error diagnosis.

In the last decade, the computer aided diagnosis (CAD) tools based on AI for auto-
mated classification and grading of gliomas using MR images is one of the most challenging
tasks in medical image analysis. The ultimate goal of the automated medical detection
could be to assist the clinical decision-making process. Since 2018, the European Union
General Data Protection Regulation has required that AI or other systems’ CAD tools
should be able to explain their decisions. The future challenge will consist of finding the
best combination between human and automated intelligence, taking into account the
capacities and the limitations of both [8].

Since 1998, the Computer Vision, Virtual Reality and Robotics in Medicine (CVRMed),
Medical Robotics and Computer Assisted Surgery (MRCAS), and Visualization in Biomedical
Computing (VBC) have promoted the multidisciplinary research fields of clinicians, bioscien-
tists, computer scientists, engineers, and physicists who are contributing to medical image
computing, computer-assisted intervention, and medical robotics. Since 2004, CVRMed and
VBC have merged into the MICCAI Society. Since 2012, the Multimodal BraTS challenges
have been focusing on the evaluation of state-of-the-art methods for the segmentation of brain
tumors in multimodal MRI scans [9–12]. BraTS’19 intended to experimentally evaluate the
uncertainty in tumor segmentations. In 2021, [13,14] reported the results of the comparison be-
tween different methods that participated in 2012, 2013, 2015, 2016, and 2017 BraTS challenges.
The focus of BraTS 2022 is to identify the current state-of-the-art segmentation algorithms for
brain diffuse glioma patients and their sub-regions.

Researchers who are interested in review articles on brain tumor classification using
CNN can study the introduction and related works in [15,16]. Moreover, in [15,16] AI-based
approaches are proposed for brain tumor grading/classification. The authors in [15] are
using a combination of Deep Learning (DL) and six Machine Learning (ML) training models
(a total of seven AI models) and four CV protocols proving that DL methods outperform
ML. The highest classification accuracy (100%) was achieved for the two-class data (normal
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vs. tumorous) with all cross-validation protocols. The various CAD tools that have been
established to classify brain diseases using MRIs can be separated into two main groups:
(i) ML models and (ii) DL models.

Different kinds of network architectures, such as convolutional neural networks
(CNNs) [17,18], joint convolutional neural networks–recurrent neural networks (CNN-
RNNs) [19], and generative adversarial networks (GANs) [20] have been utilized for
classification systems for a multitude of computer vision tasks, i.e., cloud shape, brain
tumor, and intracranial hemorrhage identification. The embedding of these models has led
to significant performance gains in medical CAD.

CNN architecture including Transfer Learning (TL) of existing networks has the
purpose of building up CNN with higher classification performance of CAD systems.
Nevertheless, in the literature there are no in depth studies of CNN improvement in CAD
applications by applying TL. In [21] the author presents a review of research focusing
on different TL models classifying MR images of brain tumors, using TL of the existing
networks VGGNet, Alexnet, and Resnet. The authors of [22] propose a CNN for MRI
brain tumor classification and compare results with the most important literature studies
using transfer learning networks. The results of [22] show that the proposed approach
outperforms the deep neural networks based on existing TL networks. In general, the
DL models are improved when they are based on CNNs and Discrete Wavelet Transform
(DWT) [23–26]. The DL models based on CNNs with DWT kernels are a promising
combination for brain MRI classification [27].

In recent paper reviews between various ML models (from PubMed, MDPI, Springer,
IEEE, Science Direct, Hindawi) it has been observed that for medical diagnosis the tradi-
tional ML Support Vector Machines (SVMs) and Artificial Neural Networks (ANNs) are
superseding in most of the studies in all the frameworks [26–31]. The experimental results
in [31] show that traditional ML SVMs achieve higher performance on small sample data
sets compared to DL framework on large sample data sets.

In general, different potential variables may be used in image classification, including
spectral analysis, transformed images, textural information, etc. Designing wavelet-based
CNNs helps use high-frequency components essential for classifying images. Usually, the
MRI images are fed to the CAD models in the form of pixel values and in only a few studies
in the form of knowledge extracted by applying DWT MRI analysis [32–35]. In [33] the DWT
is combined to ANN and SVM classifiers. In [33,34] the DWT is used as input to an ANN and
CNN. More often, the DWT analysis is used as input data for time-continuous signal cases in
industrial diagnosis [36–38], for image restoration [39], image segmentation [40], and medical
diagnosis [41,42]. In [43] the DWT data are input in a genetic algorithm for MRI classification.
The authors of [44] studied how to embed wavelet transform into CNN architecture to reduce
the resolution of feature maps while at the same time increasing the receptive field in order
for object classification and image restoration. In [45], the wavelet transform is studied as an
auxiliary element in deep networks. In [46] a multilevel 2-DWT-based feature matrix has been
studied for classification of MR and CT images.

It is beyond this paper’s scope to provide a detailed review on comparison among
ML methods. The proposal of this work is mainly the assessment of the possible higher
performance of a CNN binary classifier tuned to diagnose glioma brain tumors by using
DWT data analysis as a reasoning-based method to control the loss of information in
the pooling layers of the CNN model. Moreover, a comparison between SVMs with and
without DWT data analysis, is introduced.

The following contributions are achieved: (i) A robust CNN architecture is developed
for automated binary classification of the glioma brain tumor among other tumor types and
other diseases. (ii) Reduction of information loss in the pooling layers (at the expense of
our CNN target) by using as input the MRIs of type T2-SWI sequences parallel to the axial
plane, compressed into DWT form, thus achieving higher performance in glioma binary
classification compared to a CNN that is based on pixel intensities. (iii) Lower performance
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of the traditional ML SVM by using DWT data instead of pixel intensities, as well as lower
performance compared to a CNN.

The rest of the manuscript is organized as follows: In Section 2, materials and meth-
ods have been described. The results and the discussion of this study are in Section 3.
Conclusions and future scope are mentioned in Section 4.

2. Materials and Methods

This section describes the materials and methods used in this study. Figure 1 sum-
marizes the proposed approach. The proposed CNN is named CNN2, while CNN1 is a
conventional CNN for the performance comparison. Because the application of transfer
learning is based on CNNs pre-trained on images different than MRIs we propose a CNN
architecture where its training is not based on transfer learning. We compare our CNN’s
performance as the data used for training are DWT data instead of pixel intensities. The
proposed CNN2 accepts as input the concatenate of all the frequency components’ outputs
from 3 level DWTs of the original images; in contrast, the CNN accepts as input the original
images (pixel intensities). Section 2.1 describes the data used, and Section 2.2 describes the
proposed CNN architecture and the baseline methods for DWT of MRIs.
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Figure 1. The proposed approach.

T2-type MR images are used instead of other types (i.e., T1) because MR signal values
in T2 imaging have a larger dispersion compared to the very narrow dispersion in T1,
giving us a statistical advantage in the process of the training algorithm. Moreover, T2
images enable higher resolution due to the signal creation process.

2.1. Data

The MRIs of type T2-SWI sequences parallel to the axial plane scans used in this study
were selected manually from two datasets by our team’s expert doctors, in order to include
visible pathological legions. The diagnosis of each pathological scan is independently
evaluated by the experienced neurosurgeon author. All are MRIs are from different male
and female adult persons, with a mean age of 34 years (range 19–65 years). One dataset
originated from the Greek public St. George General Hospital, and the other from BraTS
and ISLES challenges from2016 and 2017 [45]. All the MRI scans that are showing healthy
cases and various diseases (other than tumorous) were generated at the Greek public St.
George General Hospital, available in jpeg format, 240 × 240 isotropic pixels, where all
are not skull-stripped. A skull-stripping tool, based on a combination of edge detections,
morphological functions, and thresholds, is applied to these pictures. The BraTS dataset
describes a collection of brain tumor MRI scans acquired from 19 different centers under
different equipment and imaging protocols, all available in NIfTI format, of 512 × 512
isotropic pixels, pixel size was 0.69 mm × 0.69 mm, where all are skull-stripped. The scans
used were acquired in different MR systems but all operating at a 1.5 T field strength.

The MRIs show tumors of different types, shapes, and dimensions, are heterogeneous
in appearance, and show various other diseases, as shown in Table 1. A total of 572 images
T2 MRI of the axial plane are collected, originating from 572 different patients. Each of
the selected images shows one or more of the following—healthy tissue, hemorrhagic foci,
edema, ischemic changes, non-enhancing tumor, necrosis, enhancing tumor, etc. All of our
MRI scans of tumors were acquired from the multimodal segmentation challenge of BraTS.
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As shown in Table 1, the testing set, named as Set2, includes original data of balanced
190 cases. For the performance evaluation, each feature scenario used the Set2 of T2 MRIs.
The total scans (one of each patient) are divided into five folders, out of which the four
with 382 scans are used for training and the remaining one with 190 scans is used for
testing. All the details about the data used can be seen in Table 1. The MRIs used have
been fully anonymized, converted in the same format and pixels’ size, and all have been
skull-stripped.

Table 1. Presentation of the used data from 572 T2 MRIs separated into two subsets: Set1 with 382
scans and Set2 with 190 scans.

Set1 (Training Set): Selected 382 T2 MRIs from 382 Patients 3*

Diagnosis Patients Augmented Scans (×2)

Non-pathologica l 1* 168 2 × 168
Other disease (not tumor) 1*, 2*

151 2 × 151

Widened perivascular spaces in 11 cases,
Foci most probably associated with brain aging 12 cases,
Hemorrhagic foci 9 cases,
Ischemic changes and necrosis 32 cases,
Hypoxic-ischemic changes 7 cases,
Lesions associated with neurometabolic diseases 12 cases,
Eclampsia 2 cases,
Vasculitis 15 cases,
Central pontine myelinolysis 9 cases,
CNS degenerative diseases 12 cases,
Multiple sclerosis 30 cases
Tumor Glioma (Grade II, III, IV) 2* 34 2 × 34
Tumor Meningioma (Grade II, III, IV) 2* 20 2 × 20
Tumor Pituitary 2* 9 2 × 9

2* Set2 (Testing Set): Selected 190 T2 MRIs from 190 Patients

Diagnosis Patients

Non-pathological 1* 10
Other disease than tumor 1*, 2* 90
Tumor Glioma (Grade II, III, IV) 2* 30
Tumor Meningioma (Grade II, III, IV) 2* 30
Tumor Pituitary 2* 30

1* scans come from BraTS challenge, 2* scans come from Greek public St. George Hospital. 3* mean age: 34 years
old (19–65).

A total of 39.5% of the training data are scans showing various diagnosed brain patholo-
gies. Furthermore, 16.5% of the training data are scans showing glioma tumors, where the
pathological areas of longest axis range from 1.4 mm (2 pixels) to 71.5 mm (105 pixels). Of the
group, 10% of the tumor scans are selected to indicate the presence of tumors in ambiguous
cases. Lastly, 44% of the training data are scans showing non-pathological scans.

Our data augmentations were applied using TorchIO [47].

Preprocessing

Since the scans are 2D images represented by different image matrix sizes, we adjusted the
images’ matrix [48]. The images’ matrix and the annotation metadata of each scan are saved in
files of DICOM format. The images are reproduced using a data augmentation technique.
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2.2. Data Prevalence

In order to control the evaluation procedure, to ensure that precision does not depend
on prevalence, the precision is normalized to a prevalence of around 50%. Prevalence is
defined as in Equation (1):

Prevalence = ∑ contition positive/∑ total population (1)

Thus, we have introduced the ratio 56% for the number of cases in the disease control
group and the ratio 44% for the number of other cases in the “healthy” control group, in
order to establish the Negative Predictive Value (NPV) and the Positive Predictive Value
(PPV) equal to the Prevalence of the diseases in the studied datasets. Scans from the same
patient are not used for both sets, and there is no overlap in content between the training
and the testing sets.

2.3. The CNN Base Model Architecture

Many DL-based computer-aided diagnosis systems have been recently developed for
the automatic diagnosis of brain tumors in MR images. Because of the rapid growth of
DL algorithms in computer vision, DL methods have improved. Convolutional neural
networks (CNNs) are a powerful tool within DL that can learn from experience and achieve
a significant performance improvement in image classification and 2D object detection.
They can classify data/images, identify image features anywhere in the image, and can
provide accurate results in diagnosing medical images. Using CNN, it automatically learns
the features that are important for making correct predictions on its own. A CNN trained
with a large amount of data can achieve comparable accuracy to experienced physicians.

The learning processes of CNNs are still not transparent. CNNs are considered black-
box models due to their nonlinear mapping and unclear working mechanisms [49]. CNNs
adaptively learn spatial hierarchies of characteristics from gridded input information (i.e.,
signals, images). Two sets of network variables should be carefully tuned, namely, network
parameters and hyperparameters. Network biases and weights are network parameters
that are tuned by minimizing the error between network outcome and data labels during
the training stage. Hyperparameters are the selected values of learning rate, the number of
neural network hidden layers, the number of neurons, the activation functions, and the
number of training epochs. They have a direct impact on the training behavior as well as
the CNN model’s performance. However, there is a limitation in exploring hyperparameter
space, the manual tuning of DL network’s hyperparameters is a common practice in the
literature. Hyperparameter optimization has shown to be promising in improving the
performance of DL networks for classifying images [50,51].

Each of the CNN’s hidden layers adaptively performs feature extraction from the
input information by performing computations. These layers include the convolutional
layer, pooling layers, and dense layers. The role of the convolutional layer is to convolve the
input information and extract feature maps. The number of convolutional layers that need
to be added to a neural network to achieve the desired learning level can be determined
using theoretic information quantities such as entropy, inequality, and mutual information
among with the inputs to the network. The information convolving is carried out by sliding
a group of small-sized filters (kernels)—each of which contains a sufficient number of
adaptively learnable weights—over the input information, implementing elementwise
multiplication at each possible position of the image. The kernel size of convolutional
layers only affects the learning speed of the network. The number of generated feature
maps is called convolutional layer depth and is defined by the number of kernels. Then,
a pooling layer is used to minimize the size of the feature maps. The classification and
identification of objects are done by the last dense layer. Although the pooling operation of
the CNN reduces the size of the features on each layer for steps of more than one, it results
in a loss of information that can affect the recognition performance. As evidenced in the
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literature, the CNNs fail to attain accuracy comparable to near-perfect. In [52], the wavelet
pooling is studied as an alternative to traditional neighborhood pooling.

The transfer learning method is very commonly and successfully used for first-round
CNN training, where the CNNs use a deep CNN model that has been previously trained
as a basic framework. Pre-trained models, e.g., ResNet50 and VGG19, are pre-trained on
a large dataset (e.g., ImageNet). In our case we did not use Transfer Learning because
the MRI scans should have been adjusted according to the pre-trained model’s input size.
Moreover, the pre-trained models have been trained on different target images, not similar
to MRIs. When the initial and target problems are not similar for the first training round,
then the Transfer Learning is ineffective for the first training [53].

The CNN’s input information can be any type of signal (i.e., original audio signal,
DWT of an audio signal, Fourier transformation of an audio signal, pixel intensities of
an image, etc.). In the literature review it is observed that untraditionally, the CNNs for
image analysis are using as input the pixel intensities of the images, which are labeled at
the image level. In our study, the proposed CNN extracts its knowledge from the DWT
analysis of the MRIs.

CNN1 Model Architecture

The topology of our proposed CNN1 (as shown in Figure 2) was found to be the
best fit for this classification task through trial and error. In Figure 3, the input layer
holds the augmented images as pixel intensities reshaped and normalized from 0–255
to 0–1, in the dimensions of (240,240,1). In the data extraction phase of the CNN1, a
total of six convolutional layers with same kernel size of 3 × 3 and different filter number,
including 32, 64, and 128, were used in this 28-layer CNN1 architecture. Dropout layers
were using during both the feature extraction phase of the CNN1 and the classification
phase in order to prevent the case of overfitting. The hyperparameters are set before the
training operation. The hyperparameter optimization used for this training is presented in
Table 2. Our CNN1 configuration is shown in Table 3.

Table 2. Hyperparameters setting of CNN1.

Hyperparameters Setting

Loss function ReLU, sigmoid
Optimizer function Root Mean Square Propagation (RMSprop)

Metrics binary_crossentropy
Epochs 30

Learning rate 0.0001
Dropout Rate 0.3

Number of Dense Nodes 2 to 1024

2.4. DWT and CNN MRI Feature Extraction

Our enhanced CNN2 binary classifier accepts as input the spatial features obtained from
two-dimensions (2D) by using the Haar wavelet decomposition features up to three levels.

A discrete wavelet transformation of any signal can be viewed as passing the original
signal through a quadrature mirror filter (QMF) that consists of a pair of a low-pass filter (H)
and of a high-pass filter (G). Wavelet functions are mathematical functions that decompose
data into different frequency components and then study each component with a resolution
matched to its scale. The wavelet function has the properties of time shift and scalability.
Notations about discrete wavelet theory are referred to in [54].
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Table 3. CNN1 configuration.

Layer Name Layer Type Layer Configuration Output Shape Number of Parameters

Conv2D_1 Convolution Number of Filters = 32—Kernel Size =
(3 × 3)—Activation function = ReLU (240,240,32) 320

Dropout_1 Dropout Possibility = 0.3 (240,240,32) 0

Conv2D_2 Convolution Number of Filters = 32—Kernel Size =
(3 × 3)—Activation function = ReLU (240,240,32) 9248

MaxPool2D_1 MaxPooling Kernel size = (2 × 2) (120,120,32) 0
Dropout_2 Dropout Possibility = 0.3 (120,120,32) 0

Conv2D_3 Convolution Number of Filters = 64—Kernel Size =
(3 × 3)—Activation function = ReLU (120,120,64) 18,496

Dropout_3 Dropout Possibility = 0.3 (120,120,64) 0

Conv2D_4 Convolution Number of Filters = 64—Kernel Size =
(3 × 3)—Activation function = ReLU (120,120,64) 36,928

MaxPool2D_2 MaxPooling Kernel size = (2 × 2) (60,60,64) 0
Dropout_4 Dropout Possibility = 0.3 (60,60,64) 0

Conv2D_5 Convolution Number of Filters = 128—Kernel Size =
(3 × 3)—Activation function = ReLU (60,60,128) 73,856

Dropout_5 Dropout Possibility = 0.3 (60,60,128) 0

Conv2D_6 Convolution Number of Filters = 128—Kernel Size =
(3 × 3)—Activation function = ReLU (60,60,128) 147,584

MaxPool2D_3 MaxPooling Kernel size = (2 × 2) (30,30,128) 0
Dropout_6 Dropout Possibility = 0.3 (30,30,128) 0

Flatten Flatten - 115,200 0
Dropout_7 Dropout Possibility = 0.3 115,200 0

Dense_1 Dense Neurons = 1024—Activation function = ReLU 1024 117,965,824
Dropout_8 Possibility = 0.3 1024 0

Dense_2 Dense Neurons = 512—Activation function = ReLU 512 524,800
Dropout_9 Possibility = 0.3 512 0

Dense_3 Dense Neurons = 512—Activation function = ReLU 512 262,656
Dropout_10 Possibility = 0.3 512 0

Dense_4 Dense Neurons = 128—Activation function = ReLU 128 65,664
Dropout_11 Possibility = 0.3 128 0

Dense_5 Dense Neurons = 64—Activation function = ReLU 64 8256
Dropout_12 Possibility = 0.3 64 0

Dense_6 Dense Neurons = 2—Activation function = sigmoid 2 130
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+ 2n − 1, and then the two approximation coefficients are down-sampled denoted by 1 (down arrow) 

Figure 3. (a) 1D DWT decomposition level 3 of a signal s, of length N: cA1 represents the DWT
approximation coefficients of level 1, cD1 represents the DWT detail coefficients of level 1. (b) The
signal of N data, after passing the first DWT level High filter (H) is analyzed to a vector of length
N + 2n − 1, and then the two approximation coefficients are down-sampled denoted by 1 (down
arrow) to (N− 1)/2 + n~N/2, cD1. The next step splits the cA1 coefficients applying the same scheme
to N/4 approximation coefficients, cD2 (down-sampling means throwing away every second data
point). The signal can be composed by the coefficients cA2, cD1, cD2.
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The basic 2D objects are shown in Table 4. The original image is convolved along
two vertical directions by low pass and high pass filters. The images obtained are down-
sampled by columns indicated by 2. Down-sampled columns means that only even-indexed
columns are selected. The resultant images are then convolved again with high pass and
low pass filters, so now down-sampled by rows are denoted by 1; this ultimately yields
four sub-band images of half the size of original image. Image analysis based on wavelets
is typically implemented by memory-intensive algorithms with high execution time. In
the usual DWT implementation, the image decomposition is computed by means of a
convolution filtering process and so its complexity rises as the filter length increases.

Table 4. The basic two-dimensional DWT objects.

Objects Description

Image in original
resolution

s
A0

Ak, 1 ≤ k ≤ j
Dk, 1 ≤ k ≤ j

Original image
Approximation at level 0
Approximation at level k

Details at level k

Coefficients in
scale-related resolution

cAk, 1 ≤ k ≤ j
cDk, 1 ≤ k ≤ j

[cAj, cDj,..., cD1]

Approximation coefficients at level k
Detail coefficients at level k

Wavelet decomposition at level j
(where Dk stands for [Dk(h), Dk(v), Dk(d)] are the horizontal, vertical, and diagonal details at level k. The same
holds for cDk which stands for [cDk(h), cDk(v), cDk(d)]).

In the regular DWT computation, the image is transformed at every decomposition
level first row by row and then column by column.

In our study, the wavelet decomposition is done using the simplest wavelet Haar-1
up to 3 levels. The Haar wavelet transform preserves the energy of a signal. Similar to the
other wavelets transforms, it decomposes the discrete signal into two subsignals of half
length. One subsignal is a running average (approximation sub-band), the other subsignal
is a running difference (detail sub-band).

Equation (2) calculates the case of an image being decomposed into a first level
approximation component Y1

A (Y1
A contains low frequency components of the image) and

detailed components Y1
horizontal , Y1

vertical , and Y1
diagonal , corresponding to horizontal, vertical,

and diagonal details (they contain high frequency components):

Y = Y1
A + Y1

horizontal + Y1
vertical + Y1

diagonal (2)

Equation (3) calculates the case when the image decomposition is repeated up to P
levels, the export of image Y can be written in terms of Nth approximation components as
in Equation (3):

Y = YP
L +

P

∑
k=1
{Yk

horizontal + Yk
vertical + Yk

diagonal} (3)

Hence the size of the approximation component obtained from the first level decom-
position of an N × N image is N/2 × N/2, second level is N/4 × N/4 and so on.

The MR images level 3 decomposition by DWT creates 10 sub-bands, see Figure 4.
Because approximation sub-bands provide more information than detailed coefficients,
we use the approximation image for the next level analysis. As Figure 4 illustrates, the
result is four sub-band (LL: low–low, LH: low–high, HL: high–low, HH: high–high) images
obtained at each level. Among them, three sub-band images LH (Dhj), HL (Dvj), and HH
(Ddj) are the detail images along horizontal, vertical, and diagonal directions, respectively.
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Figure 4. Each MR image decomposition creates 10 sub-bands in the third level. The LL (Aj) sub-band
is the approximation image which is used for 2D DWT calculations in the next level.

DWT mathematically involves four fixed convolution filters with stride 2 to implement
the down-sampling operator. Given an image Y, the (i, j)th value of YLL, YLH, YHL, and
YHH after 2D Haar transform can be written as in Equations (4)–(7):

yLL(i, j) = y(2i − 1, 2j − 1) + y(2i − 1, 2j) + y(2i, 2j − 1) + y(2i, 2j) (4)

yLH(i, j) = −y(2i − 1, 2j − 1) − y(2i − 1, 2j) + y(2i, 2j − 1) + y(2i, 2j) (5)

yHL(i, j) = −y(2i − 1, 2j − 1) + y(2i − 1, 2j) − y(2i, 2j − 1) + y(2i, 2j) (6)

yHH(i, j) = y(2i − 1, 2j − 1) − y(2i − 1, 2j) − y(2i, 2j − 1) + y(2i, 2j) (7)

For our 2D DWT analysis, the DWT is applied to each dimension separately, i.e., the
rows and columns of the image are separately undergone through the 1D DWT to build up
the 2D DWT.

In the present work, we have computed the approximation coefficients of level 3
decomposition and these coefficients are fed to the CNN as the primary feature vector
for each MR image. We selected as mother wavelet algorithm the simplest wavelet Haar,
Since the Haar wavelet is orthogonal and symmetric in nature, it gives good results in
the presence of noise. Moreover, it is very fast and can be used to extract basic structural
information from an image.

Figures 5–10 visualize the sub-bands of each decomposition level by plotting each
sub-band as a 2D image.
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Our MR images analysis by DWT is calculated using Equations (10) and (11). We
applied zero padding to coefficients of level 2 and 3 because we wanted equal size to all
the coefficients (120,120).

2.4.1. CNN2 Architecture

The MRI features obtained by the 2D Haar 3 level DWT are fed into a CNN binary
classifier. The topology of our CNN2 is shown in Figure 11 (as it is shown in the proposed
approach in Figure 1); it was found to be the best fit for this classification task through
trial and error. As shown in Figure 11, the input layer holds the augmented images as
transformed to all the frequency components output from 3 level DWT in the dimensions
of (1320,15,32).

In this 17-layer CNN architecture, there are 2 Convolutional layers with kernel size
3 × 3 and filter number 32 and 64. Each convolutional layer is followed by a MaxPooling
layer of size 2 × 2 and before the classification phase begins there is a Dropout layer which
is dropping out nodes with a possibility of 0.2. In the classification phase, there are 6 Dense
layers of sizes 512, 128, 64 and 2. After each Dense layer a Dropout layer with 0.2 possibility
of dropping a node follows. Dropout layers serve as allies in overfitting prevention.

Our CNN2 configuration is shown in Table 5. The hyperparameters are set before
the training operation by us. The hyperparameter optimization used for this training is
presented in Table 6.

Table 5. CNN2 configuration.

Layer Name Layer Type Layer Configuration Output Shape Number of
Parameters

Conv2D_1 Convolution Number of filters = 32—Kernel Size =
(3 × 3)—Activation function = ReLU (1320,15,32) 320

MaxPool2D_1 MaxPooling Kernel size = (2 × 2) (660,7,32) 0

Conv2D_2 Convolution Number of filters = 64—Kernel Size =
(3 × 3)—Activation function = ReLU (658,5,64) 18,496

MaxPool2D_2 MaxPooling Kernel size = (2 × 2) (329,2,64) 0
Dropout_1 Dropout Possibility = 0.2 (329,2,64) 0

Flatten Flatten - 42112 0
Dense_1 Dense Neurons = 512—Activation function = ReLU 512 21,561,856

Dropout_2 Dropout Possibility = 0.2 512 0
Dense_2 Dense Neurons = 512—Activation function = ReLU 512 262,656

Dropout_3 Dropout Possibility = 0.2 512 0
Dense_3 Dense Neurons = 128—Activation function = ReLU 128 65,664

Dropout_4 Dropout Possibility = 0.2 128 0
Dense_4 Dense Neurons = 64—Activation function = ReLU 64 8256

Dropout_5 Dropout Possibility = 0.2 64 0
Dense_5 Dense Neurons = 64—Activation function = ReLU 64 4160

Dropout_6 Dropout Possibility = 0.2 64 0
Dense_6 Dense Neurons = 2—Activation function = sigmoid 64 130

Table 6. Hyperparameters setting of CNN2.

Hyperparameters Setting

Loss function ReLU, sigmoid
Optimizer function Root-Mean-Square Propagation (RMSprop)

Metrics binary_crossentropy
Epochs 80

Learning rate 0.0001
Dropout Rate 0.2

Number of Dense Nodes 2 to 512
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approximation coefficients of level 3 decomposition of MRIs, using as mother wavelet algorithm the
simplest wavelet Haar.

2.4.2. SVM Classifier Creation

Moreover, the MRI features obtained by the 2D Haar 3 level DWT are fed into a
SVM binary classifier. The SVM is a supervised ML algorithm for binary classification by
separating data points into two classes. An image classification problem can be solved
by using the SVM. The objective of the SVM is to find a hyperplane that maximizes the
separation of the data points to different classes in multidimensional space. We created
our SVM by inputting our CNN2 conversion into an SVM by using the import l2 of
tensorflow.keras.regularizers.
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3. Evaluation Measures
3.1. Performance Metrics of a Single ML Model

To evaluate the performance of each of our binary classifiers, we compared the overall
performance over the same data set, using accuracy, specificity, sensitivity, FPR, FNR, and
precision metrics [55].

Accuracy (ACC) computes the probability of correctly recognizing a slice showing
tumor as True Positive (TP) or True Negative (TN) among the total number of cases
examined. It is calculated by Equation (8):

Accuracy =
TP + TN

TP + FP + TN + FN
(8)

Sensitivity (SE) (also called the true positive rate, the recall, or probability of detection
in some fields) measures the proportion of actual positives that are correctly identified
as such (e.g., the percentage of tumor slices that are correctly identified as having the
condition). It is calculated by Equation (9):

Sensitivity =
TP

TP + FN
(9)

Specificity (also called the true negative rate) measures the proportion of actual nega-
tives that are correctly identified as such (e.g., the percentage of slices showing other than
tumor diseases (or healthy slices) that are correctly identified as not showing tumor). It is
calculated by Equation (10):

Specificity =
TN

TN + FP
(10)

False Negative Ratio (FNR), False Positive Ratio (FPR), and Precision are calculated by
Equations (11) to (13):

FNR =
FN

TP + FN
(11)

FPR =
FP

TN + FP
(12)

Precision =
TP

TP + FP
(13)

where TP is the state when a slice showing tumor was correctly predicted as tumorous, TN
is the state when a slice not showing tumor was correctly predicted as not tumorous, FP is
the state when a slice not showing tumor was falsely predicted as tumorous, and FP is the
state when a slice not showing tumor was falsely predicted as tumorous.

3.2. Comparing Performance of Two Binary ML Models

In the present study we compared the performances of pairs of models with the
Edwards variant of the McNemar Test, the within-subjects chi-squared test, in order to
examine if their variations are statistically significant or due to randomness. The chi-
squared test compares the predictions of two binary (correct, incorrect) ML models to each
other, paired through using the same test set. Instead of the list of false positive, true
positive, false negative, and true negative counts of a single model, it is based on the layout
of a the suiTable 2 × 2 confusion matrix (first row cells: A,B, second row cells: C,D). The C
cell counts where model 1 is wrong and model 2 is correct. The B cell counts where model
2 is wrong and model 1 is correct. The discordant pair B,C, is a pair in which the outcomes
differ for the pair A,D.

Our null hypothesis is that the two models do not differ, which means that cell B
probability is equal to cell A probability. None of the two models performs better than the
other. Thus, the alternative hypothesis is that the performances of the two models are not
equal. Rejecting the null hypothesis, the performances of the two models are not equal.
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We set the significance threshold to a = 0.05, and compared a’s p-value by assuming
that the null hypothesis is true. The p-value is the probability of observing the given
empirical x2 squared value. When the sample size in our scenario is relatively big (when n
(=incorrect of model 1 + incorrect of model 2) is bigger than the recommended 25, n > 25),
then x2 has a chi-squared distribution with 1 degree of freedom. However, in order to
quantify if there is a significance between our models, we applied the corrected McNemar’s
test as recommended by Edwards correction, [56] as follows:

x2 =
(|“incorrect” of model 1− “incorect of model” 2| − 1) 2

(“incorrect” of model 1 + “incorect” of model 2)
(14)

where x2 is the corrected McNemar statistic, “incorrect” are the off-diagonal cells B and
C from the contingency table. B is the number of MR images that were detected correctly
by model 2 and incorrectly by model 1. C is the number of MR images that were detected
correctly by model 1 and incorrectly by model 2. For small sample sizes where B + C is
smaller than the recommended 25, the chi-squared value may not be well-approximated
by the chi-squared distribution. In case B > C, the two-sided p-value can be computed by
Equation (15):

p = 2
n

∑
i=b

(
n
i

)
0.5i(1− 0.5)n−1 (15)

where n = B + C, factor 2 is used to compute the two-sided p-value. The basic format for
reporting a chi-squared test result is as follows:

X2 (degrees of freedom, N = sample size) = chi-squared statistic value, p = p-value.
Loss is defined as the cost of inaccurate predictions in the classification task. The

Categorical Crossentropy Loss Function is employed for loss calculation. It computes the
difference between target values and predicted values.

For the training procedure we used a balanced dataset of 764 scans originated by
applying augmentation technique on the dataset of 190 non-tumorous cases and 190
selected patients with scans showing tumors.

We trained the models using ‘binary cross entropy’ as loss function and ‘RMSprop’
with learning rate 0.0001, as optimizer. The Loss function is calculated by Equation (16) [57]:

H(t, p) = −
2

∑
i=1

til log(pi) = −[t log(p) + (1− t) log(1− p)] (16)

where ti is the truth value taking a value of 0 or 1 and pi is the Softmax probability for the
ith class. The gradient of the weight associated with the loss function is obtained by the
back propagation algorithm, and the weight is updated by the stochastic gradient descent.

The performance of the proposed CNNs is evaluated using fivefold cross-validation
procedure for a Classification 1 task. The dataset is divided into five sets, out of which four
sets are used for training and the remaining one is used for validating. The experiments
are repeated five times. Classification performance for the task is evaluated for each set,
and the average classification performance of the model is calculated.

The performances of our CNN1 and CNN2 are studied and compared: (i) case where
CNN1 is fed by gray scale intensity pixel values, of each whole or from each quarter of each
MRI, (ii) case where CNN2 is fed by the coefficients of two-dimensional 3 level DWT, of
each MRI. Variations were tested using the original dataset or extended dataset by applying
the augmentation technique. Moreover, the case is studied where PCA is applied or not on
our input data. Here we mention only the best of our CNNs and they are compared with
our SVM classifier. The tests of our models on unseen data are illustrated in Table 7.
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Table 7. Models and classification reports.

Models Report

Proposed Classifier TP TN FP FN Total Correct Total Wrong

Model 1: CNN-DWT 100 78 6 6 178 12
Model 2: CNN 95 84 0 11 179 11

Model 3: SVM-DWT 84 61 0 45 145 45
Model 4: SVM 67 106 17 0 173 17

Model 5: CNN-TL VGG16 74 92 17 7 166 24

Classification Report

Proposed Classifier Accuracy Sensitivity Specificity FPR FNR Precision

Model 1: CNN-DWT 0.97 1.00 0.93 0.06 0.00 0.95
Model 2: CNN 0.97 0.94 1.00 0.00 0.05 1.00

Model 3: SVM-DWT 0.91 1.00 0.80 0.20 0.00 0.86
Model 4: SVM 0.79 0.63 1.00 0.00 0.36 1.00

Model 5: CNN-TL VGG16 0.87 0.91 0.84 0.14 0.08 0.86

The accuracy and loss curves obtained while training and validating the network are
demonstrated in Figures 12–15.
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Figure 15. Accuracy (calculated by Equation (8)) of the CNN1 model during training and testing of
the CNN1 network.

4. Results

The CNN’s training and execution ran entirely in the cloud using Google Colaboratory,
also known as Colab [58]. The Keras API Python library ran on top of the Tensorflow numerical
platform in Python. The back propagation is automatically generated by TensorFlow.

4.1. CNN2 Down-Sampling Utilizing DWT

We analyzed our MRIs to DWT. Because we wanted equal size for all the coefficients
(120,120), we applied zero padding to coefficients of levels 2 and 3 of DWT and next we
standardized their values. The DWT coefficients as input data were fed to the CNN2 that
was trained for 25 epochs, achieving an accuracy of 0.92. The model’s loss and accuracy
while training are shown in Figures 12 and 13.

4.2. CNN1 Down-Sampling Utilizing Average Pooling

We loaded our images (240,240) from the balanced dataset, next we normalized pixel
values from 0–255 to 0–1. The pixel values as input data were fed to the CNN1. We trained
the CNN1 model for 10 epochs, achieving an accuracy of 1.0. The model’s loss and accuracy
while training are shown in Figures 14 and 15.
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4.3. SVM Classifier

We reshaped the pixel values matrix for each image, from (240,240) to a vector of
57,600 elements. After that, our dataset was in the form (57,600 pixels values in each row,
Target). Next, we standardized our training set and we created a 10-fold split, in order to
perform a grid search to find the optimal values of parameters ‘C’ and ‘kernel’ for the Support
Vector Machine algorithm. We found out that optimal values were 0.7 for ‘C’ and ‘sigmoid’
for ‘kernel’. We applied the Support Vector Machine with those values to the training dataset,
then we evaluated the algorithm on the test set, and we got an accuracy of 0.95.

4.4. Models Comparison

The results of the comparison using x2, chi-squared, test are presented in Tables 8 and 9.
In both cases, DF box (df = (NColumns − 1) ∗ (NRows − 1) = 1.

The chi-squared and p-value are computed as follows:

Table 8. Contingency table for classifier comparisons on a sample of 190 MRI scans.

Contingency Table
Model 4/Model 3

Model 3: SVM
Correct TP

Model 3: SVM
Wrong FN Row Total

Model 4: SVM-DWT Correct TP 84 0 84
Model 4: SVM-DWT Wrong FN 45 67 112

Column total 129 67 196
X2 (1, N = 196) = 73.5302, p-value < 0.00001

The result is significant at p < 0.05

Calculating a chi-squared independence test on the Tables 8 and 9, will verify if there
is a significant difference in the performance of the two models.

The findings of the computed 2 × 2 contingency table of Model CNN–DWT and
Model CNN, show that the x2, chi-square, from Equation (14), is equal to 149.7861, which
yields the p-value p = 0.00001 and is smaller than the chosen significance level of α = 0.05.
Thus, the null hypothesis is rejected. This means that there is a significant difference in the
performance of the two models.

Similarly, the 2 × 2 contingency table of Model SVM-DWT and SVM shows that the
x2, chi square, is equal to 73.5302, which yields the p-value p = 0.00001. This is smaller than
the chosen significance level of α = 0.05; therefore, the null hypothesis is rejected.

Therefore, based on the accuracy and recall on comparison results, the CNN-DWT has
significantly better performance compared to the CNN, and the SVM-DWT has significantly
better performance compared to the SVM. CNN-DWT has significantly better performance
compared to the SVM-DWT.

Table 9. McNemar’s test for classifier comparisons on a sample of 190 MRI scans.

Contingency Table Model 2: CNN
Correct TP

Model 2: CNN
Wrong FN Row Total

Model 1: CNN–DWT Correct TP 100 6 106
Model 1: CNN–DWT Wrong FN 11 95 106

Column total 111 101 212
X2 (1, N = 212) = 149.7861, p-value = 0.00001

The result is significant at p < 0.05

5. Discussion, Conclusions, and Future Work

Although T1 images are considered the foundation of MR imaging, due to the fact
that they are those from which we derive structural information for pathology recognition,
there is a kill switch in them; it is either there or not. You cannot pinpoint the type of
pathology, despite the fact you know it is pathological, because the signal declines in the



Brain Sci. 2023, 13, 348 21 of 25

vast majority of cases (even though in rare cases it raises). Conversely, the T2 images
show signal alterations due the presence or lack of fluids, and thus they can be used to
better visualize edemas, tumor boundaries, presence of diaphragms, fusions, etc. All
pathognomonic signs of tumors are related with the pathophysiology of the disease. In T2
imaging, MRI signal values have larger dispersion compared to the very narrow dispersion
in T1, giving us a statistical advantage in the process of the training algorithm, due to the
easier pattern recognition process. Moreover, T2 images are acquired in higher matrices
enabling higher resolution, due to the signal creation process, which allows us to take
advantage of the latest imaging techniques.

Direct comparison between T1- and T2-type MRI data, as input data to our CNN,
could not be performed, because we did not have two series of images (T1, T2) belonging
to the same family (FSE, SE, etc.) and holding constant imaging parameters for each series.
The only way to be sure could be the creation of a tailor-made dataset.

The performance of the proposed DWT-CNN binary classifier of brain tumor T2
MRIs in two distinct classes, scans showing glioma tumors and scans showing other brain
diseases or no diseases at all, is higher than the traditional CNN and SVM. Similarly, the
SVM utilizing DWT instead of pixel intensities as inputs is higher.

Our DWT-CNN achieves 100% success in examining cases of non-tumorous people
who are correctly identified as not having an ill condition, losing only 7% of the truly patho-
logical slices showing illness. Our traditional CNN achieves 100% success in examining
cases of sick people who are correctly identified as having an ill condition and 93% success
in case of non-tumorous scans, who are correctly identified as not having this condition.

Although the CNNs and the DL models focus on automatic feature extraction from images,
we claim that the use of functions for image transformation enhances the CNN training and
can improve CNN performance in image processing. This claim is evaluated by comparing the
performance of the CNN trained by images decomposed by DWT instead of raw images. As
the images transformed by DWT functions are compressed, their capacity store is reduced. The
negative point is that DWT of MRI decomposition increases the computational load.

The comparison of our results with other publications could be validated in the aspect
of utilizing the same test data. The scans used for testing herein are mostly not distinct
cases of tumors (as it is difficult to obtain information of positive malformations), for which
our team’s radiologist felt that a lot time of careful observation and a lot of professional
experience is required to obtain a diagnosis.

In case of MRIs with large and sharp tumor volumes, which were easy to recognize,
we achieved 100% accuracy. Generally, the results obtained by the proposed CNN are
characterized by very high performance values: our glioma classification accuracy is 97%, a
little lower (−2.6%) than the best, 99.64% published by [22]. Recent results can be obtained
from [22,59], where tabular references of recent relevant publications on the matter of
classification of brain tumors based on CNNs are gathered.

In [60], Cinar et al. proposed a CNN from scratch, achieving accuracies of 99.64% for
detecting glioma tumors, 96.53% for meningioma tumors, 98.39% for pituitary tumors, and
98.32% on average. Moreover, their results are better than those of deep CNN models based
on transfer learning, such as ResNet50, VGG19, DensetNet121, and InceptionV3. In [61], Raaz
et al. proposed a hybrid DL model for three types of brain tumors (glioma, meningioma, and
pituitary tumor) by adopting a basic CNN architecture based on the GoogLeNet architecture.
The proposed model obtained 99.67% accuracy, 99.6% precision, and 100% recall. In [62],
Ozyurt et al. segmented the tumors using a Super Resolution (SR) Fuzzy-C-Means (FCM) ap-
proach for tumor detection from brain MR images, and then performed feature extraction and
used pre-trained SqueezeNet architecture from smaller CNN architectures and a classification
process with extreme ML. They obtained 98.33% accuracy, which is 10% higher than the rate of
recognition of brain tumors segmented with FCM without SR. In [63], Deepak et al. classified
three types of brain tumors using a pre-trained GoogLeNet to extract features from brain
MR images with deep CNN and achieved 98% accuracy compared with the state-of-the-art
methods. In [64], Cinar et al. proposed a hybrid ResNet50 CNN architecture by removing
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the last five layers of ResnNet50 and adding eight new layers; they obtained 97.2% accuracy,
instead of the 92.53% accuracy obtained with the single ResNet50 model. In [65], Sajjad
et al. proposed a CNN with the transfer learning method to detect brain tumor types by
applying data augmentation and obtained 96.14%, 94.05%, and 93.21% accuracy for glioma,
meningioma, and pituitary tumors, respectively. In [66], Ozyurt et al. proposed a detection
method by segmenting the MRI tumor images using the NS-EMFSE method and by extracting
features from the segmented images using AlexNet and then the ML model, KNN and an
SVM, achieving 95.62% accuracy. In [67], Kaplan et al. extracted the nLBP and αLBP features
and performed classification with KNN, random forest, ANN, A1DE, and linear discriminant
analysis, achieving a highest accuracy of 95.56%. In [68], Swati et al. used the fine-tuned
VGG-19 for the block-wise fine-tuning technique, achieving 94.84% classification accuracy in
less training time than the hand-crafted features. Table 10 presents some of the latest relative
studies in comparison to the present work.

Table 10. Comparison of the proposed model with other recent studies.

Authors Classification Type Technique MRI Type Data Accuracy (%)

Cinar et al., 2022 [60] CNN Multi-class T1-W 99.64
Raza et al., 2022 [61] Deep CNN Multi-class T1-W 99.67

Ozyurt et al., 2020 [62] SR-FCM-CNN Multi-class T1-W 98.33
Deepak et al., 2019 [63] GoogLeNet Multi-class T1-W 98
Çinar et al., 2020 [64] Hybrid ResNet50 Multi-class T1-W 97.2
Sajjad et al., 2019 [65] CNN–TL Multi-class T1-W 96.14

Ozyurt et al., 2019 [66] NS-EMFSE AlexNet SVM KNN Multi-class T1-W 95.62
Kaplan et al., 2020 [67] LBP SVM KNN Multi-Class T1-W 95.56
Swati et al., 2019 [68] Deep CNN VGG-19 Multi-Class T1-W 94.84

Present work CNN-DWT Binary (glioma) T2 97

Our next goal is to replace the end pooling layer by inverse DWT (IDWT) as an
approach to recover the data details for image segmentation. Moreover, our plan is to add
a next task, of another binary CNN classifier to discriminate the tumorous scans between
low grade glioma and high grade glioma (under development by our team). Our future
work focuses on the development of a set of ten binary CNNs in series, where each one
will detect one of ten different diseases. The first CNN in the series will be yielding a
very unbalanced binary problem, the 10th in the series will be yielding a balanced binary
problem, and the intermediate ones are less unbalanced.
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