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Abstract: Proteins need to be located in appropriate spatiotemporal contexts to carry out their diverse
biological functions. Mislocalized proteins may lead to a broad range of diseases, such as cancer and
Alzheimer’s disease. Knowing where a target protein resides within a cell will give insights into
tailored drug design for a disease. As the gold validation standard, the conventional wet lab uses fluo-
rescent microscopy imaging, immunoelectron microscopy, and fluorescent biomarker tags for protein
subcellular location identification. However, the booming era of proteomics and high-throughput
sequencing generates tons of newly discovered proteins, making protein subcellular localization
by wet-lab experiments a mission impossible. To tackle this concern, in the past decades, artificial
intelligence (AI) and machine learning (ML), especially deep learning methods, have made significant
progress in this research area. In this article, we review the latest advances in AI-based method
development in three typical types of approaches, including sequence-based, knowledge-based,
and image-based methods. We also elaborately discuss existing challenges and future directions in
AI-based method development in this research field.

Keywords: protein subcellular localization; machine learning; deep learning; artificial intelligence;
gene ontology; sequence analysis

1. Introduction

Within a cell, mature proteins must reside in specific subcellular structures to properly
perform their biological roles, as different cellular compartments provide distinct chemical
environments (e.g., pH and redox conditions), potential interacting partners, or substrates for
diverse functions [1,2]. Most cellular biological processes, such as the nucleocytosolic shuttling
of transcription factors [3], the relocalization of mitochondrial proteins during apoptosis [4],
and the endocytic uptake of cell-surface cargo receptors, all rely on precise protein localization.
Conversely, mislocalization is often associated with cellular dysfunction and diseases, such as
cancer [5,6], neurodegenerative diseases [7,8], and metabolic disorders [9,10].

Conventionally, identifying subcellular localization of proteins primarily relies on wet
lab experimental methods. Fluorescence microscopy imaging, which applies fluorescent
dyes or fluorescent protein tags to label target proteins, has commonly been used for
observing their distribution within cells [11,12]. This method has become one of the
preferred tools for studying protein subcellular localization due to its high resolution
and real-time observation advantages [13]. By using labeled antibodies against target
proteins, the immunoelectron microscopy technique is regarded as a gold standard to
provide the high resolution of electron microscopy [14]. Another method involves the use
of fluorescent biomarker tags [15] like the protein A-GFP tag, which fuses a fluorescent
protein with the target protein, allowing it to emit a fluorescent signal among different cell
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compartments [16]. These experimental methods yield high-resolution location of targeted
proteins for researchers, enabling direct observation to uncover biological processes and
metabolic mechanisms.

However, these wet lab experimental methods also have some significant drawbacks:
they often require expensive equipment and time-consuming steps, making them costly
for large-scale studies. These problems are exacerbated given that the number of newly
discovered proteins has increased exponentially in the post-genomic era. Take the UniProt
Database [17] as an example. The gap between the reviewed and unreviewed proteins
has significantly expanded during the past decade (Figure 1A). Specifically, as shown in
Figure 1B, in the latest 2024_01. version of UniProt, a notable majority of data entries are
unreviewed proteins in TrEMBL. In this case, implementing wet lab experiments alone for
subcellular localization determination for remarkably large amounts of data from different
species (Figure 1C) becomes an impossible mission. Moreover, the rich collection of accurately
annotated protein data in databases (Figure 1D) can facilitate the development of robust
prediction methods. It is noteworthy that, compared to TrEMBL, the smaller size of Swiss-
Prot can be attributed to the rigorous manual curation of proteins. Conversely, TrEMBL
comprises computationally analyzed records, leading to a plethora of protein sequences
awaiting annotation before being entered into Swiss-Prot. Fortunately, the necessity of manual
curation might be alleviated if transcript-translated sequences can be validated through
proteomics detection. An example of such an approach can be observed in the Human Protein
Atlas (HPA) [18,19], as we will elaborate in subsequent sections, where RNA-seq data were
employed to corroborate immunofluorescence subcellular localization findings. In this context,
leveraging computational models, particularly AI-assisted methodologies renowned for their
adeptness in handling large-scale datasets, can offer substantial benefits.

Figure 1. Statistical analysis of UniProtKB [17] (2024_01.version). (A) The trend of protein number
growth in TrEMBL (unreviewed proteins) and Swiss-Prot (reviewed proteins). The number of newly
discovered unannotated proteins far exceeds that of newly added experimentally validated proteins.
(B) The proportion of newly added protein counts between the two databases in the 2024_01.version.
(C) Taxonomic distribution of protein sequences. (D) Number of proteins in the top 10 subcellular locations.
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Recent decades have witnessed the booming of in silico methods for protein sub-
cellular location prediction. Based on features used for computational modeling, most
existing methods can be generally divided into three main categories: (1) sequence-
based methods, which only use the amino acid sequence of the query protein as inputs;
(2) knowledge-based methods, using protein annotations from multiple databases to cor-
relate the information with their subcellular locations; and (3) image-based methods,
extracting subcellular location features from bioimages and then identifying the likelihood
of proteins being located in various subcellular compartments. The primary sequence for a
protein is much easier to obtain with existing sequencing technologies. With remarkable
advances in machine learning and deep learning, coupled with an increasing number of
proteins with experimentally determined localization information as well as functional
annotations and imaging records in publicly available databases, accurate and efficient
computational frameworks provide a promising way for protein subcellular localization.

In this review, we will first present some remarkable progress in in silico models,
including the three major types of models mentioned above. In Section 2, we will introduce
common features and algorithms used in sequence-based methods and also for knowledge-
based and image-based frameworks in Sections 3 and 4, respectively. The simplified
flowchart for the prediction frameworks mentioned is illustrated in Figure 2. In Section 5,
we will give an overview of protein subcellular localization models that are specially
designed for different species. Lastly, we will explore the existing challenges and future
trajectories of this research domain and propose our expectations.

Figure 2. The flowchart of three major types of AI-based prediction methods. The procedures include
sequences or images as input, feature extraction, model prediction, and subcellular location output.
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(A) Key features extracted from sequences, annotations, and image inputs. Different classifiers
extract composition information, encompassing AA order and frequency, physicochemical properties,
and identifying signal peptide cleavage sites from sequence inputs. In addition to straightforward
data, evolutionary profiles are also considered through homology alignment with the Position-
Specific Scoring Matrix (PSSM) and the Position-Specific Frequency Matrix (PSFM). Knowledge-based
methods involve the establishment of Gene Ontology (GO) vectors, derived from GO terms collected
from specific databases with protein sequences or accession numbers as keywords. Other functional
annotations, such as protein–protein interaction (PPI) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway information, can also be fused as input features. Imaging features mainly consist of
morphological, Haralick data and information from different channels, namely hand-crafted features,
and deep features captured by deep learning algorithms. (B) Three types of algorithms used for
prediction modules in computational models. (C) Major subcellular locations in a plant cell as an
example of potential outputs for proteins with single or multiple locations.

2. Sequence-Based Methods

Sequence-based methods directly use the amino acid sequence of a query protein
as model inputs and attempt to find the correlations between protein sequences and
their subcellular locations. With the advent of high-throughput sequencing technologies,
large-scale genomic and proteomic data are easily obtained, allowing new big-data-based
models to be constructed. In addition, as proteins consist of sequences of amino acids,
they are fit for computational models that extract features for subcellular localization.
However, protein sequences might not capture full information for protein subcellular
localization, particularly in the cases of protein post-translational modifications or protein
dynamics processes within cells once the protein is synthesized, which may influence
where proteins reside.

2.1. Sequence-Based Features

In protein primary sequences, the 20 standard amino acids (AA) exert different bio-
chemical properties such as hydrophobicity, hydrophilicity, side-chain characters, etc.
Sequence-based methods intend to make predictions out of the correlations between pro-
tein subcellular locations and the information embedded in amino acid sequences. There
are three major types of features used for model construction: AA composition information,
sorting signal information, and evolutionary information.

The composition-based features, which include AA occurrences and order in the query
sequence, were commonly used in the earliest subcellular prediction methods. Moreover,
previous studies have confirmed a better performance of the model by combining AA
original sequence, gapped amino acid composition (GapAA) [20], and amino-acid-pair
composition (PairAA) [21]. Based on AA-composition features, Chou [22] proposed pseudo-
amino-acid composition (PseAA) using the sequence-order correlation factor for greater
biomedical property discovery when avoiding the high-dimensional vector formation.
The simplicity of composition features helps the generalization and interpretation of the
computational models since they capture the most basic trends in protein sequences associ-
ated with their locations. However, they may not provide sufficient resolution for a high
accuracy rate, since there is a loss of information about important sequences or structural
motifs highly related to proteins’ subcellular location.

The sorting signal sequences or signal peptides, including transit peptides like mito-
chondrial transit peptides (mTPs) and chloroplast transit peptides (cTPs) [23], are short
and cleavable segments of amino acid sequences added to newly synthesized proteins, de-
termining their destination in the transportation process. These short peptides possess the
directions mature proteins should be transported, reflecting the possible location event for
one protein [24]. Available approaches with signal peptides for protein localization mainly
refer to finding their cleavage sites [25]. As described in previous studies, sorting-signal
sequences vary in length and composition but have similar structures: the N-terminal
flanking region, also known as the n-region, the central hydrophobic region (h-region), and
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the C-terminal flanking region (c-region) [26]. The hydrophobicity in the h-region and a
large proportion of nonpolar residues in the c-region are used to label the cleavage sites by
computational methods [27,28]. According to the location signal embedded in those short
peptides, one can mimic the de facto information processing in cells and find the target
spot of the test protein.

In addition, based on the fact that homologous sequences are likely to share the same
subcellular location, the unknown protein can be assigned the same subcellular location
as its homologs generated from PSI-BLAST [29]. Moreover, the evolutionary similarity
profiles extracted from the position-specific scoring matrix (PSSM) and position-specific
frequency matrix (PSFM) derived from multiple sequence alignment results can contribute
as classification features providing valuable information such as conserved motifs or
targeting signals among different protein families. This representation can also be extended
by integrating pseudo-analysis [30]. Once aligned with known homologs in the database,
this method can achieve high accuracy. However, as one amino acid change can directly
influence the characters of one protein sequence, this method is more likely to be one of the
sources of the feature basis of prediction models.

2.2. Sequences-Based AI Approaches

Most computational frameworks include three major steps: feature extraction, feature
selection, and final classification. Considering common features discussed above, the
complexity of the models developed also increases with the amount of data processed and
the dimension of input features, from traditional machine learning classification to complex
deep learning analytical models. Besides the development of computational frameworks,
we will also introduce techniques that are used to improve the algorithms dealing with
multi-location proteins in the following.

For conventional classification, the Support Vector Machine (SVM) [31], K-Nearest
Neighbor (KNN) [32], and Random Forest (RF) [33,34] are widely chosen classifiers for train-
ing. Their simplicity makes them easy to use for prediction protocols with fast speed and
low computational cost, suitable for limited data and low-dimensional inputs. Combined
with highly efficient feature extraction methods, these frameworks will work well in most
cases [35]. For instance, Du et al. [36] proposed two novel feature extraction methods that
utilize evolutionary information via the transition matrix of the consensus sequence (CTM)
and PSSM before adopting SVM, which, in the end, reached an overall accuracy of 99.7% in
CL317 dataset. A feature-extraction-based hierarchical extreme learning machine (H-ELM)
introduced by Zhang et al. [37] can handle high-dimension feature inputs directly without
demanding dimension reduction for acceptable results. Alaa et al. [38] exploits an extended
Markov chain to provide the latent feature vector, which records micro-similarities between
the given sequence and their counterparts in reference models. These methods help extract
more abundant features of query sequences and provide better performance.

However, these conventional models may not perform well in complex scenarios [1],
especially multi-locational protein prediction [30]. Though many proteins only stay in
one subcellular space, studies have discovered many multi-location proteins that have
special functions or are involved in crucial biological steps [39]. Moreover, rather than
staying in one place, proteins move from one subcellular compartment to another or
simultaneously reside at two locations and participate in different cellular processes [40].
Recent studies have also shown the remarkable significance of multilocation proteins in cell
growth and development [41]. For instance, phosphorylation-related multilocation proteins
can function as a “needle and thread” via protein–protein interactions (PPI), thus playing
an important role in organelle communication and regulating plant growth [42]. Under
these circumstances, there are mainly two ways for predicting multi-location proteins based
on conventional classifiers: algorithm adaption and problem transformation. The former
method extends existing algorithms to deal with multi-label problems. Jiang et al. [43]
considers weighted prior probabilities with a multi-label KNN algorithm to increase the
model accuracy. Library of SVM (LIBSVM) toolbox [36,44], instead, uses a one-versus-one
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(OVO) strategy to solve multi-class classification problems. Customization of well-known
algorithms enhances their ability for specific requirements but there is a risk of overfitting
and it may require significant computational resources. The problem transformation
approach focuses on transforming the original problem into a different representation or
formulation that is solvable with existing algorithms [45,46], such as converting a multi-
location classification problem into multiple single-label classification problems [47]. Shen
et al. [30] introduces multi-kernel SVM by training multiple independent SVM classifiers
to solve single-label problems before combining their results, one classifier for each class.
Following this idea, an algorithm can be easily extended to solve multi-label classification.

In summary, traditional machine learning algorithms can achieve fast training times
and high accuracy in scenarios with well-organized feature spaces and clear decision bound-
aries; their performance may degrade quickly when faced with large-scale data inputs, even
with tailored classifiers featuring more selected features. Dimension reduction [48] and
parallel processing [49] can be applied to mitigate the challenges, allowing an improved
computational method scalability.

As multi-layered structure provides better performance compared to traditional ap-
proaches [33], more methods based on deep networks, especially neural networks, have
become increasingly popular in protein subcellular localization research [50,51]. Starting
as effective feature extractors which automatically obtain deep features embedded in se-
quences [52], convolutional neural network (CNN) is widely implanted in multi-locus
protein localization framework. Mining deeper, Kaleel et al. [53] ensemble Deep N-to-1
Convolutional Neural Networks that predict the location of the endomembrane system
and secretory pathway versus all others and outperform many state-of-the-art web servers.
Cong et al. [54] proposed a self-evolving deep convolutional neural network (DCNN)
protocol to solve the difficulties in feature correlation between sites and avoid the impact of
unknown data distribution while using the self-attention mechanism [55] and a customized
loss function to ensure the model performance. In addition, a long short-term memory
network (LSTM) which combines the previous states and current inputs is also commonly
used [56,57], with Generative Adversarial Network (GAN) [58] and Synthetic Minority
Over-sampling Technique (SMOTE) [59] used for synthesizing minority samples to deal
with data imbalance. Developing data augmentation methods by deep learning algorithms
has also made protein language model construction possible [60,61]. Through transfer
learning [62], pretrained models can be fine-tuned on different downstream tasks, reducing
the need for large amounts of labeled data for training. For example, Heinzinger et al. [63]
proposed Sequence-to-Vector (SeqVec) that embeds biophysical properties of protein se-
quences as continuous vectors by using the natural language processing model ELMo on
unlabeled big data. This represents a way to speed up the prediction process indepen-
dent of the size of inputs. As protein sequences can also be tokenized and coded with
a certain pattern as natural languages [64], some well-developed models (e.g., Univeral
Language Model Fine-tuning (ULMFiT)) [65] have also been repurposed to protein-related
questions, like AlphaFold [66] for protein 3D structure prediction and ProteinBERT [67]
for bidirectional sequence modeling and Gene Ontology annotation prediction. ESM2 [67],
the pretrained deep language model inspired by Bidirectional Encoder Representations
from Transformers (BERT) [68], allows fast training of localization predictors with limited
labeled protein sequence data [69]. Transformer-based architectures leverage self-attention
mechanisms, enabling the capture of key hidden vectors for subcellular localization from
sequences. This intrinsic ability facilitates information exchange across all positions with-
out necessitating pooling operations like CNN, greatly enhancing the ability of extracting
deeper information. However, this will take more time and larger computational resources
for training to gain higher model performance, since the results may be similar to simple
classifiers when the prediction scale is small [60]. Details of the computational models
mentioned above can be found in Table 1.
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Table 1. A summary of state-of-the-art sequence-based protein subcellular localization frameworks. S: Single-Location; M: Multi-Location; Pub: Publication Cited;
BERT: Bidirectional Encoder Representations from Transformers; XGBoost: Extreme Gradient Boosting; GAN: Generative Adversarial Network; CNN: Convolutional
Neural Network; LM: Language Model; MLP: Multilayer Perceptron; SP: Signal Peptide; PC: Physicochemical Properties; PSSM: Protein-Specific Scoring Matrix;
LSTM: Long Short-Term Memory; CTM: Consensus Sequence; AECA: Absolute Entropy Correlation Analysis; LDA: Linear Discriminant Analysis; SVM: Support
Vector Machine; MAM: Multi-Attention Mechanism; PseAAC: Pseudo Amino Acid Composition; SAAC: Split Amino Acid Composition; KNN: K-Nearest Neighbor;
AAF: Amino Acid Frequencies; GCF: Gene Co-expression Features; DNN: Deep Neural Network; AAC: Amino Acid Composition; Acc: Accuracy; Prec: Precision;
Rec: Recall; F1: F1 Score; GM: Grand Mean; MicroF1: MicroF1 Score; MacroF1: MacroF1 Score; MCC: Matthews Correlation Coefficient; Jaccard: Jaccard Value;
AUC: Area Under the Curve; Spec: Specificity; Sen: Sensitivity; FPR: The False Positive Rate; HL: Hamming Loss; RL: Ranking Loss; OE: One Error; CV: Coverage.

Method Features Algorithm S/M-Location Species Performance
Metrics 1 Pub Year

DaDL-SChlo Deep- and
Hand-crafted features

ProtBERT, XGBoost,
GAN, CNN M Plants

Acc: 0.86~0.94
Prec: 0.88~0.95
Rec: 0.86~0.94
F1: 0.86~0.95

GM: 0.84~0.94

[61] 2023

DeepLoc—2.0 Masked-LM Objective MLP, Protein LM M Eukaryotes

Acc: 0.39~0.73
MicroF1: 0.60~0.73
MacroF1: 0.46~0.66

MCC: 0.17~0.90
Jaccard: 0.53~0.69

[70] 2022

SignalP—6.0 SP Transformer
Protein LM M

Archaea, Gram-positive
Bacteria, Gram-negative
Bacteria and Eukaryotes

MCC: 0.65~0.89
Prec: 0.53~0.94
Rec: 0.50~0.88

[28] 2022

MULocDeep 2 PC, PSSM LSTM M Viridiplantae,
Metazoa, Fungi AUC: 0.74~0.95 [71] 2021

SCLpred-EMS 3 Sequence Motifs Deep N-to-1 CNN S Eukaryotes

MCC: 0.75~0.86
Spec: 0.89~0.97
Sen: 0.75~0.89
FPR: 0.02~0.05

[53] 2020

CTM-AECA-PSSM-LDA CTM, AECA-PSSM LDA, SVM S Apoptosis Proteins on
CL317 and ZW225 datasets

Acc: 0.95~0.99
MCC: 0.90~1.00
Spec: 0.94~1.00
Sen: 0.91~0.95

[36] 2020
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Table 1. Cont.

Method Features Algorithm S/M-Location Species Performance
Metrics 1 Pub Year

TargetP—2.0 SP LSTM, MAM S Plants and Non-plants

Prec: 0.75~0.98
Rec: 0.75~0.98
F1: 0.75~0.98

MCC: 0.75~0.97

[27] 2019

Javed and Hayat PseAAC, SAAC ML-KNN,
Rank-SVM M Bacteria, Virus

Acc: 0.80~0.85
Prec: 0.88~0.90
HL: 0.07~0.09
RL: 0.07~0.08
OE: 0.17~0.20
CV: 0.26~0.51

[35] 2019

MU-LOC 4 AAF, PSSM, GCF DNN, SVM S Plants (Mitochondrian)

Acc: 0.74~0.94
Prec: 0.74~0.82
MCC: 0.50~0.67
Spec: 0.88~0.97
Sen: 0.60~0.70

[72] 2018

MultiP-SChlo PseAAC SVM M Plants (Subchloroplast)

Acc: 0.55~0.60
Prec: 0.64~0.65
Rec: 0.66~0.71
F1: 0.65~0.67

[73] 2015

SlocX AAC, Gene
Expression Profile SVM S Plants

Prec: 0.83
MCC: 0.48
Sen: 0.33

[74] 2011

1 The entries in this column are directly collected from the respective original publications. 2 Web server available at http://mu-loc.org. 3 Web server available at
http://distilldeep.ucd.ie/SCLpred2/. 4 Available at http://mu-loc.org.

http://mu-loc.org
http://distilldeep.ucd.ie/SCLpred2/
http://mu-loc.org
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Deep learning will demonstrate exceptional outcomes dealing with high-dimensional
inputs with deep feature extraction, eliminating the need for manual feature engineering
and capturing intricate patterns in sequences. However, large, labeled, and high-quality
datasets are still needed for original model training, which results in too many hyper-
parameters and makes it hard to interpret the model itself [33].

3. Knowledge-Based Methods

There is a strong correspondence between annotations and subcellular locations of
proteins. Knowledge-based methods for protein localization prediction mainly extract
information from annotation databases and convert them into numeric features as model
inputs. Since the annotations are generated based on biological processes, functions,
or protein interactions within cells, models can provide more interpretable results for
subcellular localization. But knowledge data are limited and only applicable to well-
curated proteins, which limits the predictive power of this kind of method for novel or
newly discovered proteins. In recent studies [75–77], different kinds of information are
fused together for better model performance, given that computational methods excel with
high dimensional data as inputs.

3.1. Legitimacy of Using Gene Ontology (GO) Features

Knowledge-based methods tend to dig into the correlation between the annotation of
one protein and its subcellular location to establish predictors. Compared to Swiss-Prot
keywords [78,79] or PubMed abstracts [80,81], Gene Ontology (GO)-terms-based methods
are more attractive for the following reasons.

GO terms describe reviewed knowledge of the biological domain in three aspects:
(1) Molecular Function, representing activities that can be performed by individual or by
assembled complexes of gene products at the molecular level; (2) Cellular Component,
labeling locations relative to cellular compartments; and (3) Biological Process, describing
the events achieved by one or more ordered assemblies of molecular functions. This well-
organized information can be used for protein subcellular localization because, (1) instead
of table-lookup, which is dependent on cellular component GO terms, they perform deeper
mining into items to accumulate every related GO category to improve prediction results;
(2) the methods outperform previous sequence-based methods without compromising ei-
ther inputs or outputs [82]. Mining deeper, the GO term itself is structurally organized but
loosely hierarchical, consisting of cellular components, biological processes, and molecular
functions of gene products. The relationship between GO terms can be “part-of” (part
and whole), which may embed some similarity information, and “is-a” (parent and child),
which may result in more than one parent term. Starting from semantic similarity measure-
ment, SS-Loc [83] incorporates a richer source of homologs and generates more features
for prediction. Making use of the loosely hierarchical structure, relevance similarity (RS)
considers the “distance” between the parent and child nodes. Take HybridGO-Loc [2],
for example; it combines the frequency of occurrences of GO terms and semantic simi-
larity between extracted GO terms to form a hybridized vector as input features, giving
outstanding performance.

Mapping AA entries of a query protein or accession number (AC) of its homologs to
the GO database [84] will result in a list of GO items representing the possible functions and
biological metabolism process this protein is involved in. For further computational method
implementation, reorganizing and transferring the list of data into numerical vectors is of
high significance. Gneg-mPLoc [85], Euk-pLoc [86], and Hum-pLoc [87] consider GO terms
as the basis of forming a Euclidean space, which only consists of 0 or 1 for co-ordinates.
ProLoc-GO [43], on the other hand, represented the hit of annotated GO terms mined
from Gene Ontology Annotation (GOA) with an n-dimensional binary feature vector. The
constructed GO vectors are used for the following training.
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3.2. Knowledge-Based AI Approaches

Originally, most machine learning methods used GO terms as the only input sources in
a simple classification model [88,89]. Given the growing richness of comprehensive protein
annotation like related metabolism pathways and structural information, the integration of
various input sources, including annotations, interaction networks, and pathway enrich-
ment knowledge, contributes to a multi-view foundation for model improvement [75,90,91].
Applying deep learning algorithms enables a more comprehensive understanding of these
high-dimensional and complex features and furthers the combination of sequence and
knowledge as input sources. According to the number of input sources, the methods can
be roughly divided into GO terms only and fusion methods.

For a single input source, mGOASVM [92] introduces a new decision scheme in SVM
multi-class classifiers to collect all the positive decisions, enabling both single- and multi-
label localization. AD-SVM [93] enhances the binary relevance methods by integrating
an adaptive decision scheme, thereby transforming the linear SVMs into piecewise linear
SVMs, reducing the over-prediction instances. By using the frequency of the appearance of
one protein in different places, Euk-mPLoc 2.0 [94] creates a virtual sample counting the
appearance of protein to separate the total sequence input and the number of locations.
However, a large number of proteins, especially newly discovered proteins, have not been
functionally annotated yet and directly using homologs cannot guarantee the availability
of enough GO terms to be found in the GOA Database. Moreover, the GO is not related to
the representation of dynamics or pathway dependencies for protein, which will result in
the risk of noise and overestimation of the novel proteins [95]. More details of the methods
mentioned can be found in Table 2.

To improve the interpretability of the proposed model, Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways is also considered as a functional annotation that can
be incorporated in the computational approaches [96]. Since in vivo protein interaction
is likely to reside within the same subcellular locations, it is possible to reveal protein
subcellular localization with protein–protein interaction (PPI) networks [97–99], which
is sensitive to mislocalization events [100]. The BioPlex network [101,102], which sys-
tematically explores the human interactome developed from affinity purification–mass
spectrometry analyses, has also reflected protein function and localization information.
As a multi-scale map (MuSIC 1.0) with 69 subcellular systems of human cells generated
from BioPlex and Human Protein Atlas (HPA) data integration by Qin et al. [103], pro-
tein interactions can be observed from a spatial dimension, providing rich features for
knowledge-based model development.

The fusion methods can basically be divided into two categories: feature-level fu-
sion [77,104,105] and decision-level fusion [106]. Feature-level fusion is mostly based
on average pooling, weighted combination [107], serial combination, or concatenation
of selected values. Liu et al. [77] utilized the latent semantic index method to represent
multi-label information, while Yu et al. [49] constructed a novel parallel framework of
attribute fusion to avoid the impact of duplicated information. This fusion level enhances
the information from multiple sources and allows flexibility in fusion techniques, such
as early integration, intermediate integration, and late integration [108]. But low data
quality and difficulty in feature selection will affect building one efficient computational
model. At the decision level, basic classifiers are used for different data sources, first for
selecting the suitable ones; then, the results of each chosen method are ensembled as part
of the determination protocol [109], as for the decision voting process [106]. Though the
integration strategy is simple, this method can help create various decision-making systems
that lead to more robust and accurate predictors. For instance, a multi-view model like ML-
FGAT [76] incorporates most of the feature types (e.g., sequence, evolutionary information,
physicochemical property, etc.), which minimizes the perturbation of extraneous data in
predictive tasks while concurrently enhancing the descriptive capability.
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Table 2. A summary of state-of-the-art knowledge-based and fusion models for protein subcellular localization prediction. S: Single-Location; M: Multi-Location;
Pub: Publication Cited; PsePSSM: Pseudo Position-Specific Scoring Matrix; PC: Physicochemical Properties; CT: Conjoint Triad; DE: Differential Evolution;
wMLDAe: Weighted Linear Discriminant Analysis; F-GAN: Feature-Generative Adversarial Networks; GAT: Graph Attention Networks; KNN: K-Nearest Neighbor;
CNN: Convolutional Neural Network; RF: Random Forest; CDD: Conserved Functional Domain; PseAAC: Pseudo Amino Acid Composition; PSSM: Position-
Specific Scoring Matrix; NN: Nearest Neighbor; PPI: Protein-Protein Interaction Network; KEGG: KEGG (Kyoto Encyclopedia of Genes and Genomes) Pathway;
mRMR: Minimum Redundancy Maximum Relevance; MCFS: Monte Carlo Feature Selection; LightGBM: Light Gradient Boosting Machine; IFS: Incremental Feature
Selection; SVM: Support Vector Machine; SMOTE: Synthetic Minority Over-sampling Technique; EBGW: Encoding Based on Grouped Weight; RPT: Residue Probing
Transformation; EDT: Evolutionary Distance Transformation; MCD: Multiscale Continuous and Discontinuous; MLSI: Multi-Label Information Latent Semantic
Index; IRWLS: Newton-Weighted Least Squares Iterative Method; MLFE: Multi-Label Learning with Feature Induced Labeling Information Enrichment; DT: Decision
Tree; DC: Dipeptide Composition; BR: Binary Relevance Method; CC: Classifier Chain; ECC: Ensemble Classifier Chain; SCF: Self-consistency Formulation;
ML-KNN: Multi-Label K-Nearest Neighbor; FunD: Functional Domain; OET-KNN: Optimized Evidence-Theoretic K-Nearest Neighbor; SwissSCL: Swiss-Prot
Subcellular Location Annotation; Acc: Accuracy; Prec: Precision; F1: F1 Score; HL: Hamming Loss; RL: Ranking Loss; OE: One Error; CV: Coverage; AT: Absolute
Ture; AF: Absolute False; MCC: Matthews Correlation Coefficient; AUC: Area Under the Curve; OLA: Overall Location Accuracy; Rec: Recall.

Method Features Algorithm S/M-Location Species Performance
Metrics 1 Pub Year

ML-FGAT GO, PsePSSM, PC, CT, DE, wMLDAe, F-GAN,
GAT, KNN, CNN M

Human, Virus,
Gram-negative Bacteria,

Plants, SARS-CoV-2

Acc: 0.91~0.96
Prec: 0.92~0.99
F1: 0.94~0.98
HL: 0.01~0.04
RL: 0.02~0.06
OE: 0.04~0.07

[76] 2024

PMPSL-GRAKEL GO RF, Random k-label sets
algorithm M Human, Bacteria,

Animal

Acc: 0.89~0.97
CV: 0.92~0.98
AT: 0.82~0.95
AF: 0.01~0.02

[89] 2024

Wang et al. GO, CDD,
PseAAC, PSSM NN M Human Acc: 0.84

F1: 0.76 [75] 2023

Zhang et al. PPI, KEGG, GO
mRMR, MCFS,

LightGBM, IFS, RF,
SVM, SMOTE

M Human Acc: 0.75~1.00
MCC: 0.80~0.85 [105] 2022
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Table 2. Cont.

Method Features Algorithm S/M-Location Species Performance
Metrics 1 Pub Year

ML-locMLFE GO, PseAAC, EBGW,
RPT, EDT, MCD MLSI, IRWLS, MLFE M Bacteria, Plants, Virus

Acc: 0.94~0.99
Prec: 0.99~1.00
AUC: 0.98~0.99
OLA: 0.99~1.00
HL: 0.00~0.01
CV: 0.07~0.08

RL: 0.00

[77] 2021

Chen et al. GO, KEGG, PPI, PC RF, mRMR, IFS, SVM,
KNN, DT, SMOTE S Human Acc: 0.56~0.80

MCC: 0.49~0.76 [96] 2021

Gpos-ECC-mPLoc GO, DC BR, CC, ECC, SVM M Gram-positive Bacteria Acc: 0.90~0.93 [110] 2015

mGOASVM GO SVM M Virus, Plants Acc: 0.87~0.89 [92] 2012

iLoc-Euk GO, PseAAC, PSSM, SCF ML-KNN M Eukaryotes Acc: 0.79 [111] 2011

Gneg-mPLoc 2 GO, FunD, PSSM OET-KNN M Gram-negative Bacteria Acc: 0.85~0.98 [85] 2010

PSORTb 3.0 SwissSCL SVM S Eukaryotes, Prokaryotes

Acc: 0.97~0.98
Prec: 0.97~0.98
Rec: 0.93~0.94

MCC: 0.79~0.85

[112] 2010

1 The entries in this column are directly collected from the respective original publications. 2 Web server available at http://www.csbio.sjtu.edu.cn/bioinf/Gneg-multi/.

http://www.csbio.sjtu.edu.cn/bioinf/Gneg-multi/
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4. Bioimage-Based Methods

Imaging data show direct visual evidence of protein localization within different cell
components, allowing precise and accurate location determination. Through imaging pro-
cessing, computational models can analyze the spatial distribution of proteins at the single
cell level and quantify their localization patterns. The complexity of images offers different
levels of features, which also requires multiple preprocessing steps, deep classification
models, and a longer running time to deal with for better performance.

4.1. Bioimage-Based Features

Compared to amino acid sequences, representing proteins with 2D images is more
interpretable and concise when determining the subcellular localization. With the rapid
improvement in microscopic imaging technology, scientists have paid more attention
to bioimage-based methods. Computer hardware improvement, especially in graphics
processing units (GPUs), makes it possible to deal with more complex calculation problems.
The development of neural network structure also accelerates deep learning algorithm
architecture improvement for image analysis significantly. For high-quality data, with the
mission of mapping all human proteins in cells, tissues, and organs, the Human Protein
Atlas (HPA) program [113] was initialized in 2003 as an open-access database that consists
of imaging data, mass-spectrometry-based proteomics data, transcriptomics data, etc. The
subcellular section of HPA shows detailed expressions and spatial distribution conditions of
proteins encoded by 13,147 genes. As it recently updated to version 23, it is one of the most
powerful training data sources for computational method development [19,114]. According
to most recent studies, immunofluorescence (IF) images and immunohistochemistry (IHC)
images are commonly selected as benchmark training and testing data sources.

The subcellular location features (SLF) collected can be divided into two categories,
namely, global features and local features [115]. Composed of DNA distribution informa-
tion and global textures, the global features such as morphological features, local binary
patterns (LBP) [116] and Zernike features [117] mainly describe the spatial structure of the
whole image. The Haralick [118] texture feature, which obtains statistical features including
contrast, correlation, and entropy from the gray-level co-occurrence matrix of input images,
is one well-known global image descriptor in pattern recognition. Local features, instead,
can describe the micro-patterns ignored in global features. Take scale-invariant feature
transform (SIFT) [119] as an example. SIFT was originally used for salient point detection
and is suitable for fluorescence object description, which guarantees good performance in
fluorescence image studies, especially when combined with global features.

4.2. Bioimage-Based AI Methods

Image-related methods can be roughly organized into three phases based on the
algorithms and the number of data types used, namely conventional or traditional machine
learning methods, deep learning methods, and complex fusion methods, respectively.
Figure 3 shows the development of these models from simple to complicated.

Traditional machine learning methods construct the prediction models with the afore-
mentioned hand-crafted features for classification [120–122]. For instance, Li et al. [123]
extended a logistic regression algorithm with structured latent variables for underlying
components in different image regions for further classification. With two-layer deep-
learned feature selection, Ulah et al. [124] established an SVM model based on both radial
basis function and linear kernel for location prediction. However, these convolutional
methods can be sensitive to noise and variability of imaging data collected, resulting in
decreased model robustness. Spatial relationships embedded in images are rarely detected
as well, due to manual feature engineering. As deep learning predictors are employed and
have achieved high performance on various image-based tasks, recent advances in protein
subcellular location rely more on deep learning methods [120].

Deep neural network implementation is the starting point, which increases the inner
feature extraction power and the model’s learning ability for large and complicated datasets.
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In addition to selecting and integrating key features during the image preprocessing steps,
most of the deep neural networks consider processed image segmentation as inputs for
multi-layer convolutional neural networks (ML-CNN) [125]. Moreover, some predictors
can integrate both low- and high-level features embedded in bioimages for a more in-depth
view. For multi-label prediction, traditional CNN is extended with a criterion learning
strategy to leverage label–attribute relevancy and label–label relevancy to determine the
final location [126,127].
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Figure 3. Three primary categories of computational methodologies for processing imaging data.
The red arrow depicts the progressive complexity of prediction models, reflecting advancements
toward more sophisticated computational frameworks. Blue rectangle: features used for model
training; green rectangle: algorithms for location prediction. (A) Conventional Machine Learning
Methods. Hand-crafted figures representing global and local information of images are extracted
and trained for simple models. (B) Deep Learning Methods. Coupled with hand-crafted features,
deep image features are obtained by deep neuro networks. (C) Complex Fusion Models. This
method integrates multi-modality data like sequence, annotation texts, and imaging data as model
inputs to gain a more comprehensive and interpretable model for protein subcellular localization.
SURF: Speeded Up Robust Features. SIFT: Scale-Invariant Feature Transform. SVM: Support Vec-
tor Machine. KNN: K-Nearest Neighbor. RF: Random Forest. LASSO: Least Absolute Shrinkage
and Selection Operator. CNN: Convolutional Neural Network. DNN: Deep Neural Network.
GAN: Generative Adversarial Network. LSTM: Long Short-Term Memory.

Implementing attention mechanisms is another successful attempt for image classifica-
tion tasks [128]. With a conventional neural network backbone, Long et al. [129] introduced
self-attention and multi-head attention layers as encoders to aggregate multiple feature
vectors to construct a combined representation of all immunohistochemistry images input
for subsequent analysis. Wang and Wei [126] applied Vision Transformer (ViT) [128] to
learn multi-scale feature representations and integrate them globally before entering into
the fully connected network. Through different types of transformers (e.g., vision, graph,
resolution, etc.), Zhao et al. [130] optimizes the full extent of information embedded in the
imaging data. However, there is still a lack of protein subcellular localization studies from
this perspective, partly because it lacks efficiency compared to convolutional architectures
at large-scale analysis.
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In addition, the diversity in input data types across various dimensions shapes the
complexity of the entire model. To be more specific, from image datasets, DeepPSL automat-
ically learns meaningful features and their correlations for prediction improvement [131].
Xue et al. [132] unmixed the IHC images into protein and DNA channels for representation
construction while segmenting the images into patches for fine-tuning network training.
Ding et al. [133] ensemble different classification models using different depths of feature
vectors constructed from images as inputs to achieve high-accuracy outputs. By collecting
different imaging types, Wei et al. [134] built another parallel integrative deep network for
label-free cell optical images. More details about the models can be found in Table 3. Though
further techniques can be applied during the pretraining step [129,135–138], image-only
methods still lack generalization capability and external validation. When incorporating
greater modality of data that are not directly observable from imaging alone but related to
protein subcellular localization during model establishment, it will take more contextual
information into consideration and overcome the limitations in model performance.
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Table 3. A summary of state-of-the-art image-based methods for protein subcellular localization prediction. S: Single-Location; M: Multi-Location; Pub: Publication
Cited; LBP: Local Binary Pattern; PSSM: Position-Specific Scoring Matrix; PseACC: Pseudo Amino Acid Composition; PC: Physicochemical Properties; LASSO: Least
Absolute Shrinkage and Selection Operator; BR: Binary Relevance; SDA: Stepwise Discriminant Analysis; CNN: Convolutional Neural Network; MSA: Multihead
Self-attention; Swin: Swin Transformer; CAFE: Cross Attention Feature Enhancement; DNN: Deep Neural Network; CLH: Cell-level Hybrid Model; CLA: Cell-level
Actnet; VID: Visual Integrity Detector; ResNet: Residual Network; SE: Squeezeand-Excitation; DenseNet: Dense Convolutional Network; MIL: Multi-instance
Learning; SRS: Stimulated Raman Scattering; MPFNet: Multiple parallel Fusion Network; MLP: Multi-Layer Perceptron; SLFs: Subcellular Location Features;
CLBP: Completed Local Binary Pattern; LETRIST: Locally Encoded Transform Feature Histogram; RICLBP: Rotation Invariant Co-occurrence Among Adjacent Local
Binary Patterns; GDA: Generalized Discriminant Analysis; DCF: Deep-cascade Forest; IF: Immunofluorescence Microscopic; GNT-Xent: The Gradient-Stabilized
and Normalized Temperature-Scaled Cross-Entropy Loss; Acc: Accuracy; Prec: Precision; Rec: Recall; MAE: Mean Absolute Error; NRMSE: Normalized Root
Mean Square Error; SSIM: Structural Similarity Index; PCC: Pearson’s Correlation Coefficient; R2: Coefficient Determination; F1: F1 Score; MicroF1: MicroF1 Score;
MacroF1: MacroF1 Score; Dice: Dice Similarity Coefficient; mIOU: The Mean Intersection Over Union (IOU); MCC: Matthews Correlation Coefficient.

Method Features Algorithm S/M-Location Species Performance
Metrics 1 Pub Year

Zou et al. Haralick, LBP, PSSM,
PseAAC, PC LASSO, BR, SDA, CNN S Human

Acc: 0.75~0.86
Prec: 0.80~0.85
Rec: 0.74~0.85

[122] 2023

ST-Net Low- and High-Level features MSA, Swin, CAFE, CNN, S Human

MAE: 0.15~0.23
NRMSE: 0.30~0.31

SSIM: 0.78~0.89
PCC: 0.94~0.95
R2: 0.87~0.88

[139] 2023

HCPL Cell- and
Image-Level Information DNN, CLH, CLA, VID M Human Prec: 0.55~0.57 [140] 2023

Ding et al. Features Generated from
ResNet

ResNet-34, SE,
GAP-net, DNN M Yeast

Acc: 0.91
Prec: 0.89
Rec: 0.90
F1: 0.89

[133] 2023

Muti-task
Learning Strategy

Features Generated from
ResNet and DenseNet

ResNet, DenseNet,
MIL, CNN M Human MicroF1: 0.78

MacroF1: 0.71 [135] 2022

MPFnetwork SRS and Fluorescence Signal MPFNet, CNN, MSA, MLP M Human

NRMSE: 0.19~0.20
SSIM: 0.89~0.92
PCC: 0.90~0.91
Dice: 0.93~0.94

mIOU: 0.87~0.88

[134] 2022
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Table 3. Cont.

Method Features Algorithm S/M-Location Species Performance
Metrics 1 Pub Year

PScL-DDCFPred SLFs, LBP, CLBP,
LETRIST, RICLBP SDA-GDA, DNN-DCF M Human

Acc: 0.88
Rec: 0.88
Prec: 0.89
F1: 0.88

MCC: 0.86

[141] 2022

PLCNN Image block structure CNN M Human, Yeast Acc: 0.91~1.00 [142] 2022

SIFLoc IF images GNT-Xent,
RandAugment, ResNet18 M Human

Acc: 0.67~0.73
Prec: 0.77~0.81
Rec: 0.69~0.74
F1: 0.73~0.77

[137] 2022

DeepYeast Haralick, Gabor,
Zernike Features CNN, DNN M Yeast

Acc: 0.97~0.99
Prec: 0.70~0.95
Rec: 0.65~0.92

[125] 2017

1 The entries in this column are directly collected from the respective original publications.
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5. Protein Subcellular Localization in Different Species

Analyzing species separately allows a more accurate model generalization, since
specific proteins and their subcellular localization patterns may differ in various cell
organizations and organelle structures. Take bacteria as an example. As prokaryotes, they
exhibit significant structural differences from eukaryotic organisms, like lacking common
cellular organelles such as mitochondria, endoplasmic reticulum, and Golgi apparatus.
However, within bacteria, a notable class of self-assembling microstructures, known as
bacterial microcompartments (BMCs), consist of a protein shell encapsulating an enzymatic
core [143,144], creating an internally enclosed space for protein to reside. Furthermore,
bacteria possess special cell walls that can be classified as Gram-positive and Gram-negative
bacteria [145], which are closely associated with different protein localization modes. For
real-world application [146], the subcellular localization changes in host cells, like plants
that need precise localization after viral infection, can give insights into the interactions of
host cells and viruses, which helps in genetic resistance target identification [147].

Many models have been specially designed for distinct species (e.g., iLoc-Euk [111],
iLoc-Virus [148], iLoc-Plant [149], and mPLR-Loc [150]). Gram-LocEN [151] is a predictor
for large-scale datasets of both single- and multi-location proteins in bacteria. It cre-
ated two databases called ProSeq and ProSeq-GO for query protein from Swiss-Prot and
GOA databases [152], respectively, to guarantee the effectiveness and decrease storage
complexity. After defining GO space and constructing GO vectors, the model demon-
strated elastic net (EN) to enable automatic feature selection and further classification.
DeepYeast [125], on the other hand, is a neural network trained specially for classifying flu-
orescent protein subcellular localization in yeast cells with images. As benchmark dataset
construction is the foundation of building precise AI-based models, new methods tend
to use datasets that have been collected and tested by previous models [28,92], like the
Gram-positive and the Gram-negative bacteria dataset [153], the virus dataset [148,154],
the plant dataset [149,155], the SARS-CoV-2 dataset [156], the animal cell lines [157], etc.
Like Zou et al. [122], some models obtain the data directly by a manual literature search
from UniProt and HPA database [70,112]. Multi-species database Compartments [158],
fungal database FunSecKB2 [159], plant database PlantSecKB [160], and human and an-
imal database MetazSecKB [161] mostly obtained and arranged from UniProt have also
provided efficient searches for each organism and high-quality protein subcellular location
annotation datasets across species.

6. Current Challenges and Future Directions
6.1. Challenges

Despite the significant advances, challenges still exist for AI-based method develop-
ment in the protein subcellular localization field. The interpretability of the model will
be one of the big concerns. Actually, we have developed a series of interpretable machine
learning approaches [162–165] for protein subcellular localization and membrane protein
function prediction. However, most of them are based on linear models. As deep learning
algorithms have complicated training processes that generate high dimensional and nonlin-
ear deep features for prediction, it is of great importance to interpret the decision-making
procedures of the model for a better understanding of the essential factors that influence
protein localization. SHAP [166], DeepExplainer [167] based on DeepLift [168], and other
methodologies major in capturing the importance of features for overall prediction tasks
have been implemented in recent studies for increasing model interpretability. Luo et al. [69]
have also reduced the dimensionality of feature vectors by constructing autoencoders to
obtain a better feature representation for downstream analysis. In ML-FGAT [76], the
interpretability is strengthened by analyzing the attention weight parameters. Explainable
and understandable frameworks will give more reliable predictions that benefit further
studies from a biological perspective.

Moreover, protein subcellular location is influenced by multiple factors. AI-based
methods mostly rely on original sequences or images as inputs, which lack the information
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after protein biosynthesis. There is also a chance that the prediction model provides the
same subcellular location when the mutant protein resides in a different place [147]. Post-
translational modifications (PTMs), which refer to amino acid side-chain modification
after the synthesis of some proteins, can contribute significant changes to their subcellular
location [169]. There are many kinds of PTMs, such as phosphorylation, glycosylation, and
acetylation, which dynamically regulate the protein within the cell simultaneously [170],
resulting in sparse and incomplete experimental data for model training. As more post-
translational positions are discovered [170], AI-based predictions that consider PTMs as
key features can also be further investigated [170,171].

Establishing models to leverage both annotated and unannotated proteins for local-
ization can also be a challenge, with a large proportion of unreviewed data reported each
year (Figure 1A,B). Though data augmentation methods like SMOTE and GAN are widely
used to handle data imbalance, semi-supervised learning can also be established to solve
the problem [138,172]. To be more specific, EnTrans-Chlo [173] incorporates multi-modal
features and converts them into sample-to-sample similarity features with assigned weights
for feeding a highly efficient learning model. LNP-Chlo [174] extended the previous ap-
proach by adopting a quadratic programming algorithm to optimize the weights of nearest
neighbors. These semi-supervised models remarkably outperformed state-of-the-art super-
vised methods when integrating different data modalities and dimensionalities with less of
a requirement for sufficient labeled data.

6.2. Future Directions

Currently, cutting-edge research directions in subcellular localization mainly lie in
spatial proteomics [9] and RNA subcellular localization.

With the blooming of single-cell research, it is possible to gain a full understanding
of disease from cell and tissue heterogeneity. Since the exact location of proteins at the
subcellular, cellular, or tissue levels directly links to their functions, it is essential for protein
localization with a single-cell and spatial resolution [18]. Zhu et al. [175] have created
cell-based methods with a pseudo-label assignment to discover protein subcellular localiza-
tion results across distinct cells with heterogeneity among single cells. Husain et al. [140]
presents the Hybrid subCellular Protein Localiser (HCPL) that robustly localizes single-cell
subcellular protein patterns. Wang’s work with mass spectrometry (MS)-based spatial
proteomics [176] shows the possibility of larger dimensional feature maps and higher
learning ability of computational models.

System-wide studies of RNA subcellular localization (e.g., mRNA [177]) have also
paved the way for a more comprehensive analysis of the cellular dynamics [178,179], as
proteins are usually transcribed by RNA molecules. Moreover, except for RNA transcripts
for protein, other RNAs, like long noncoding RNAs (lncRNAs), may also be involved
in many biological functions [180]. Predicting their subcellular locations with AI-based
methods [180] can significantly reduce costs and time expenditure, enabling the investi-
gation of their functionalities with limited data [178]. In addition, common [181] and rare
cellular-compartment-specific prediction models can be further explored [182]. As for the
data imbalance issue, most of the prediction models mainly focus on some of the subcellular
components, since they have more manually adjusted records for model construction.

In addition, other promising future directions in this field include web server or
tool/software development for protein subcellular localization. Though accurate and
efficient models are continuously published, only a few are freely available to the public.
Moreover, since models are getting complex with multiple processing blocks, develop-
ing methods and/or algorithms into a web-based platform [53] or software service [183]
would greatly facilitate experimental research and interdisciplinary collaboration. For
downstream applications, Wang et al. [100] have detected mislocated proteins under
drug treatments with established models. Xue et al. [132] developed a machine-learning
model and validated its ability by identifying biomarker proteins related to colon cancer.
Pang et al. [52] proposed the CNN-XGBoost model for Alzheimer’s Disease and achieved
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competitive performance among general methods. As model accuracy and consistency
have been greatly increased, it will be more beneficial to apply complete models for different
biomedical scenarios.

7. Conclusions

In this review, we have reviewed three types of computational methods using machine
learning or deep learning models to construct predictors for protein subcellular localization.
For different kinds of inputs, such as protein sequence, GO terms, or IHC images, the
predictors will first convey the biological data to numerical or mathematical representa-
tions of essential features embedded in the source and apply widely used classifiers for
single or multi-class tasks. Traditional machine learning methods can combine various
features and manage the high-dimensional data by dimensionality reduction techniques
like random projection [184] to avoid the curse of dimensionality and achieve interpretable
outcomes under large data scales. Alternatively, they can combine the results of different
classifiers, which run the calculation parallelly, to improve the overall performance. Deep
learning methods that are mostly based on neural networks will learn and extract high-level
features and their correlations from the inputs before the classification. When dealing with
large-scale datasets, prediction with a language model is also available with deep learning.
For future direction, in addition to faster and more effective algorithm development, we
also assume that the localization prediction will incorporate more biochemical interactions
like protein–protein interaction networks (PPI), metabolic networks, gene co-expression
interaction, etc., into consideration, since proteins intricately engage in complex physiologi-
cal reactions within the cellular space. Above all, we are confident that the computational
methods will raise more and more attention for (1) systematic research like proteomics and
metabolomics, (2) provide dynamic insights into cells and reveal what the influence will be
when the target protein is muted; and (3) assist the experimental side with data analysis,
experimental design, and so on. In the long run, this research area will benefit clinical drug
development and contribute to disease detection, diagnosis, prognosis, and treatment.
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