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Abstract: Disease diagnosis represents a critical and arduous endeavor within the medical field.
Artificial intelligence (AI) techniques, spanning from machine learning and deep learning to large
model paradigms, stand poised to significantly augment physicians in rendering more evidence-based
decisions, thus presenting a pioneering solution for clinical practice. Traditionally, the amalgamation
of diverse medical data modalities (e.g., image, text, speech, genetic data, physiological signals)
is imperative to facilitate a comprehensive disease analysis, a topic of burgeoning interest among
both researchers and clinicians in recent times. Hence, there exists a pressing need to synthesize
the latest strides in multi-modal data and AI technologies in the realm of medical diagnosis. In this
paper, we narrow our focus to five specific disorders (Alzheimer’s disease, breast cancer, depression,
heart disease, epilepsy), elucidating advanced endeavors in their diagnosis and treatment through
the lens of artificial intelligence. Our survey not only delineates detailed diagnostic methodologies
across varying modalities but also underscores commonly utilized public datasets, the intricacies of
feature engineering, prevalent classification models, and envisaged challenges for future endeavors.
In essence, our research endeavors to contribute to the advancement of diagnostic methodologies,
furnishing invaluable insights for clinical decision making.

Keywords: multi-modal data; artificial intelligence; disease diagnosis; machine learning; deep
learning; large model

1. Introduction

The task of disease diagnosis holds significant importance within the medical domain.
Timely diagnosis not only facilitates the prompt implementation of therapeutic interven-
tions but also mitigates the risks associated with disease progression and complications,
particularly concerning global health challenges such as Alzheimer’s disease, breast cancer,
depression, heart disease, and epilepsy. Nonetheless, achieving this objective remains
challenging, particularly in developing areas and regions with limited medical resources.
The high incidence and growth rates of the aforementioned diseases further compound
the challenges confronting the healthcare system in terms of diagnosis. This challenge pri-
marily stems from two key factors: firstly, the low specialist-to-patient ratio, and secondly,
the time-consuming and labor-intensive nature of the manual diagnosis, which heavily
relies on specialized expertise. These issues often result in delayed treatment, exacerbating
illness severity, and escalating medical costs. Consequently, there exists an urgent need for
automated diagnostic approaches to address these pressing concerns.
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AI-driven healthcare, emerging as a transformative force in the medical landscape,
seeks to revolutionize clinical practices leveraging the capabilities of information technology.
It represents a promising avenue for addressing critical disease diagnosis challenges in
regions characterized by disparities in medical resources, garnering significant attention
from both scholars and practitioners [1]. AI-driven healthcare entails the integration of
medical data with intelligent technologies to enhance healthcare quality and productivity.

The clinical diagnostic process is inherently intricate, involving the generation and
analysis of diverse data types encompassing images, speech, text, and genetic information
(as depicted in Figure 1). This complexity stems from the synergistic interaction of multiple
data sources, including images capturing anatomical structures, speech elucidating patient
symptoms, textual descriptions of medical history, genetic information delineating inherent
susceptibility, and physiological signals acquired through electrocardiograms (ECGs) and
electroencephalograms (EEGs). Each modality furnishes unique and valuable insights that
collectively contribute to a holistic understanding of patients’ physiological states.

• Image. Medical imaging tools such as computed tomography (CT), X-rays, magnetic
resonance imaging (MRI), and digital pathology offer visual representations of internal
structures and anomalies. These images serve as foundational components of a
diagnosis, unveiling intricate details crucial for identifying and characterizing various
medical conditions.

• Text. Textual data encompassing electronic health records, clinical notes, and medical
literature constitute a narrative thread weaving through the patient’s medical journey,
history, and contextual information vital for precise diagnosis.

• Speech. Speech recordings provide a unique avenue for understanding patients’
experiences and symptoms. This modality captures nuances such as tone, pace,
and articulation, thereby adding a qualitative dimension to the diagnostic process.

• Genetic data. Genetic data introduce a molecular layer to elucidate inherent pre-
dispositions, susceptibilities, and genetic markers potentially influencing disease
manifestation.

• Physiological signals. Signal data offer real-time snapshots of cardiac and neural
activities. This dynamic modality effectively captures temporal variations, offering
critical insights into abnormalities and patterns associated with cardiac or neurologi-
cal diseases.
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Figure 1. The diverse data types including images, speech, text, and genetic information can be
produced in the clinical diagnostic process.
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Numerous experts and scholars have actively participated in the collection and inte-
gration of medical data for diagnostic tasks, as evidenced by their contributions to various
datasets [2–6]. Remarkably, these individuals not only curated and refined these datasets
but also advocated for their accessibility and openness. For instance, the ADNI dataset,
cited in references [7,8], has emerged as a cornerstone in neuroimaging and dementia re-
search. This dataset incorporates diverse modalities such as structural and functional MRI,
positron emission tomography (PET), and cerebrospinal fluid biomarkers, thereby offering
a comprehensive perspective on disease progression. The availability of such datasets
establishes a standardized framework for the development and evaluation of advanced
diagnostic algorithms, particularly those leveraging machine learning and deep learning
techniques. These methodologies play a pivotal role in extracting discernible features from
multi-modal medical data and have witnessed significant advancements in recent years.

• Machine learning approaches. Machine learning methodologies have emerged as
pivotal tools for medical diagnosis tasks, exemplified by techniques like Support Vector
Machines (SVMs) [9] and Random Forests (RFs). SVMs excel in establishing optimal
decision boundaries for classification, and are particularly adept at discerning intricate
patterns within multidimensional data. On the other hand, RFs harness the strength
of ensemble learning by amalgamating predictions from numerous decision trees,
thereby enhancing model performance. The deployment of such machine learning
techniques constitutes a substantial advancement in automated disease diagnosis,
particularly in handling structured and well-defined datasets.

• Deep learning models. Deep learning models, as referenced in the literature [10–12],
employ hierarchical neural networks to extract inherent patterns from medical data.
For instance, Convolutional Neural Networks (CNNs) specialize in spatial feature ex-
traction and prove beneficial in medical imaging applications, such as tumor detection
in radiological scans. Conversely, Recurrent Neural Networks (RNNs) are well suited
for sequence data analysis, enabling proficient performance in tasks like time series
analysis or monitoring disease progression over time.

• Large models. Large models are designed to learn intricate feature representations
from vast datasets [13–18]. In the field of medical data, large model approaches are ex-
pected to further improve the ability to capture and generalize complex features [19–25].

Existing reviews have offered insightful perspectives on research about automated
disease diagnosis utilizing either machine learning or deep learning methodologies. How-
ever, these reviews predominantly concentrate on a singular modality or a single disease,
whether focusing on a specific disease within multi-modal contexts, various disorders
within a specific modality, or a single disease with exclusive reliance on a particular data
type. In contrast, our review endeavors to explore the diverse modalities employed in the
automatic diagnosis of distinct diseases. Although medical datasets generated by different
disease diagnosis processes exhibit commonalities, distinct preferences for specific modal-
ities prevail across different diseases. Consequently, this paper emphasizes general AI
techniques applicable to different modalities and diseases, rather than solely focusing on a
single disease or modality. Additionally, the latest advancements in large model-based spe-
cific disease diagnosis are introduced herein. To elucidate, we initially delineate available
public datasets and the AI framework in automatic disease diagnosis, encompassing data
pre-processing, feature engineering, model selection, and performance evaluation metrics.
Subsequently, we expound upon reported works associated with various diseases. Lastly,
a comprehensive discussion and outline of future avenues of exploration are presented to
guide innovative solutions in this domain.

The remainder of this paper is structured as follows. In Section 2, we delve into the
utilization of multi-modal data and AI in disease diagnosis, encompassing an exploration
of public datasets and an overview of the overall processing framework. Section 3 provides
a detailed exposition of the reported work, elucidating the methodologies, findings, and in-
sights gleaned from recent research endeavors. In Section 4, we delineate the intricate
challenges encountered in this field and outline potential avenues for future research and
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development. Finally, we encapsulate our findings and insights in the conclusion of this
review in Section 5.

2. Multi-Modal and AI Used in Disease Diagnosis

Most diseases are typically only recognized by patients themselves after they manifest,
and continuous data collection and monitoring can assist patients in achieving effective
disease prevention. The advent of artificial intelligence has rendered the process of data
accumulation more intelligent and efficient, thereby holding significant implications for
disease prevention and control. This section elaborates on the comprehensive framework
of artificial intelligence technology in medical diagnosis applications, encompassing data
collection, model architecture construction, and model evaluation.

2.1. Datasets in AI-Based Disease Diagnosis Studies

Data collection plays a pivotal role in the development of machine learning models
for disease diagnosis, serving as the bedrock upon which these models are constructed and
trained. Many studies on AI-based disease diagnosis choose to utilize established open
datasets to augment the research’s credibility and scope. In this section, we concentrate on
the datasets employed in the research process across various diseases. For more detailed
information on the data, please consult Table A1 in the Appendix A.

Alzheimer’s disease. The Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database [7,8], established in 2003, is widely recognized as one of the most prominent
datasets for predicting AD. It encompasses various types of data, including brain imag-
ing data such as MRI and PET scans, clinical data, biospecimen information, and genetic
data. The patients in the ADNI database are categorized into different stages such as
AD, MCI (Mild Cognitive Impairment), and NC (Normal Cognition). Another typical
database is the longitudinal dataset called OASIS-3, which integrates multiple modal-
ities [2], including neuroimaging, clinical biomarkers, and cognitive assessment. This
dataset primarily investigates the progression of AD in 1378 individuals. Available at:
http://www.oasis-database.org (accessed on 29 November 2023). Additionally, since 2006,
the UK Biobank (UKB) [3–5] has amassed a substantial amount of data from participants,
encompassing various fields such as environmental factors, lifestyle choices, sociodemo-
graphic information, overall health and well-being, as well as cognitive and physical
assessments [6].

Breast cancer. The Cancer Genome Atlas (TCGA) [26] is a widely utilized dataset
for predicting breast cancer. It involves MRI and CT scans, clinical records and genetic
information. In the TCGA dataset, breast cancer is categorized into different subtypes,
including Luminal A, Luminal B, HER2+, Basel, etc. The SAFHS [27] is a large-scale
population-based natural language processing dataset developed by Harvard Medical
School. Available at: http://www.ncbi.nlm.nih.gov/ (accessed on 29 November 2023). The
Breast Ultrasound Images (BUSI) [28] was created in 2018 and contains normal, benign and
malignant breast ultrasound images. Available at: https://scholar.cu.edu.eg/ (accessed on
29 November 2023). In the gene domain, Gene Expression Omnibus (GEO) [29] collects
high-throughput functional genomics data for researchers, including microarrays, next-
generation sequencing, and other forms. Available at: https://www.ncbi.nlm.nih.gov/
geo/(accessed on 29 November 2023).

Heart disease. TLGS [30] is a long-term epidemiological research project for assess-
ing the risk factors for cardiovascular diseases among residents of Tehran, Iran. Avail-
able at: https://endocrine.ac.ir/page/Tehran-Lipid-and-Glucose-Study-TLGS (accessed
on 29 November 2023). In the text domain, the Acute Myocardial Infarction Dataset
of the World Health Organization (WHO) collects from medical institutions and public
health departments across various countries. Available at: http://www.who.int/ (ac-
cessed on 29 November 2023). It mainly studies the epidemiology, clinical characteristics,
treatment methods, and prognosis of acute myocardial infarction and includes patient
clinical information, diagnostic results, treatment measures, and other data. In the im-
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age domain, the Sunnybrook Cardiac Data (SCD) [31] dataset consists of 45 cine MRI
images from different patients with various pathological conditions, including healthy
individuals, hypertrophy, ischemic heart failure, and non-ischemic heart failure. Available
at: https://www.cardiacatlas.org/sunnybrook-cardiac-data/ (accessed on 29 November
2023). In addition, the Automated Cardiac Diagnosis Challenge (ACDC) [32] database
includes medical image data of normal subjects, ischaemic heart failure, dilated cardiomy-
opathy, hypertrophic cardiomyopathy, and right ventricular abnormalities. Available at:
https://www.creatis.insa-lyon.fr/Challenge/acdc/ (accessed on 29 November 2023).

Depression. The Distress Analysis Interview Corpus-Wizard of OZ (DAIC-WOZ) [33]
stands as one of the most popular speech datasets utilized for depression prediction.
Available at: https://dcapswoz.ict.usc.edu/ (accessed on 29 November 2023). Its objective
is to capture individuals’ verbal expressions of psychological distress and emotional stress
through simulated interactions with AI. The corpus encompasses a broad spectrum of
psychological disorders, including depression, anxiety, and post-traumatic stress disorder.
Each entry within the dataset includes emotional annotations to furnish quantitative
insights into the patient’s emotional state. The Multi-modal Open Dataset for Mental
Disorder Analysis (MODMA) [34] is a multi-modal dataset tailored for mental disorders,
featuring both clinically depressed patients and individuals from the normal population.
Available at: http://modma.lzu.edu.cn/data/index/ (accessed on 29 November 2023). It
comprises speech data and ECG data. Moreover, the Bipolar Disorder Corpus compiles
textual data pertinent to bipolar disorder, aimed at facilitating researchers’ comprehension
of the disorder’s characteristics, diagnosis, and treatment. The textual content within this
repository encompasses diaries, medical records, clinical assessment reports, and other
pertinent literature from individuals with bipolar disorder.

Epilepsy. The CHB-MIT [35] Database comprises EEG recordings collected from 22
pediatric subjects with intractable seizures and was established in 2010. Available at: http:
//physionet.org/ (accessed on 29 November 2023). The Bonn EEG time series database [36]
involves EEG data obtained from a 128-channel acquisition system, featuring recordings
from 5 patients identified as A, B, C, D, and E. Sets C and D encompass intracranial
EEG recordings taken during seizure-free intervals, with set C recorded from within the
seizure-generating area and set D from outside the seizure-generating area of epileptic
patients. Available at: http://www.ukbonn.de/epileptologie/ag-lehnertz-downloads/
(accessed on 29 November 2023). Set E contains intracranial EEG data captured during
epileptic seizures. Each set consists of 100 text files, each containing a single EEG time
series represented in ASCII code and comprising 4097 samples. This database is devoid of
artifacts, obviating the necessity for preprocessing prior to classifying the signals as healthy
(non-epileptic) or unhealthy (epileptic). The Temple University EEG corpus database [37]
represents an extensive collection of EEG data acquired between 2000 and 2013. Available
at: http://isip.piconepress.com/projects/tuh$_$eeg/ (accessed on 29 November 2023).
This repository encompasses diverse EEG clinical settings from approximately 10,874
patients. By incorporating a large cohort of patients and spanning a significant timeframe,
the Temple University EEG corpus database affords opportunities for multifaceted analyses
in EEG research. Researchers can exploit this invaluable repository to explore various facets
of EEG data and advance the understanding of neurological conditions.

2.2. Framework for AI in Disease Diagnosis Modeling

Up to now, AI models have been developed for a wide range of disease diagnoses.
These models have undergone architecture designing and fine-tuning by leveraging diverse
modalities of data such as medical images, medical texts, genetics, medical speeches, EEG,
and ECG. Their applications span diagnostic classification, phenotype discovery, and other
disease diagnosis tasks. In this section, we will focus on introducing well-known AI models
and their intricate framework designs, including data preprocessing, feature engineering,
and model selection (as shown in Figure 2).

https://www.cardiacatlas.org/sunnybrook-cardiac-data/
https://www.creatis.insa-lyon.fr/Challenge/acdc/
 https://dcapswoz.ict.usc.edu/
http://modma.lzu.edu.cn/data/index/
http://physionet.org/
http://physionet.org/
http://www.ukbonn.de/epileptologie/ag-lehnertz-downloads/
http://isip.piconepress.com/projects/tuh$_$eeg/


Bioengineering 2024, 11, 219 6 of 51

Data resources

Data analysis

Data cleaning

Data 

transformation

Data 

normalization

Data filtering

Pre-processing

Data 

standardization

Data scaling

Data sampling

Feature engineering

Feature 

representation

Feature 

selection

Feature fusion

Feature 

enhancement

Feature 

reduction

CRF

SVM

NB

DT

LR

LSTM

CNN

Transformer

Model selection

LM

ML

DL

...

...

Output:

Format data

Output:

Vector representations

Output:

Result labels

Medical images

Medical texts

Genetics

Medical speeches

EEG&ECG

Figure 2. The framework for AI in disease diagnosis modeling (ML and DL denote machine learning
and deep learning, respectively).

2.2.1. Pre-Processing

Pre-processing using machine learning and deep learning technologies is a crucial
step for disease diagnosis. By preprocessing raw data, inaccurate or irrelevant information
can be removed and key features relevant to disease diagnosis are extracted. Common
preprocessing operations include data research and analysis, data cleaning, data filtering,
data transformation, data normalization, data standardization, data scaling, data sampling,
etc. Specifically:

Data exploration. It involves analyzing the number of samples, features, and their
distributions of the dataset, which not only reveals the intrinsic properties of the dataset but
also provides a solid foundation for the subsequent selection of preprocessing techniques.

Data cleaning. It aims to handle noisy or erroneous data, including removing duplicate
entries, handling missing values, and correcting data errors or inconsistencies.

Data filtering. It is used to remove noise from a dataset, including low-pass filtering
and high-pass filtering.

Data transformation. It involves converting raw data into different representations
or forms.

Data normalization. It scales the data to a standard range or distribution, including
min–max normalization, clipping normalization, standard deviation normalization, and z-
score normalization.

Data standardization. Its primary function is to convert data from varying ranges
and scales into a uniform standard format, such as FHIR HL7 [38], SNOMED CT [39] and
DICOM [40], thus making data more suitable for machine learning and statistical analysis.

Data scaling. Data scaling enables data to map to specific ranges or intervals, en-
suring comparability at different scales and effectively mitigating biases caused by scale
differences.

Data sampling. The purpose of data sampling is to choose a subset of data from the
primary dataset, thus forming a representative sample for analysis. In the case of imbal-
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anced datasets, various sampling strategies can be utilized, including random sampling,
stratified sampling, or oversampling/undersampling. These strategies can effectively ad-
dress the issue of disparate class distributions in the dataset, ensuring accurate predictions
for each class.

The above preprocessing operations aim to address issues such as noise, missing
values, inconsistency, or specific data challenges. Facing different types of data (such
as medical imaging, medical texts, genetic data, audio, and electrocardiogram signals),
different preprocessing methods are usually required. Specifically:

Medical imaging data. Medical imaging data have a rich and complex spatial struc-
ture, consisting of a multidimensional matrix of pixels, each containing information about
color and brightness. The preprocessing of medical imaging data mainly focuses on image
resolution (number of pixels), color depth (color details in each pixel), and format (encoding
methods such as portable network graphics (PNG)). For example, in the imaging process
of medical images (such as X-rays, CT scans, and MRI), metal objects in the patient’s
body (such as implants, dental restorations, surgical screws, etc.) and natural movements
(appearing blurry or deformed in the image) can cause artifacts that affect the visualization
of surrounding tissues. Metal artifact correction and motion correction are designed to
handle such artifact situations. The imaging process is often susceptible to factors such
as long or insufficient exposure time, scanning speed, radiation dose, and environmental
interference, which can introduce random noise into the image. This requires the use of
denoising methods such as wavelet denoising and median filtering. The lesions in medical
images are often local abnormal changes, with some lesions having unclear boundaries and
no clear boundaries with surrounding tissues. Data filtering operations such as smoothing
filters and high-pass filters are needed to enhance the density, texture, and edge features
of the image. In addition, images typically have various spatial resolutions, coordinate
systems, and storage formats, so resampling techniques are needed to convert them to
standard formats, such as from Medical Digital Imaging and Communications (DICOM)
to PNG.

Medical text data. The first step in preprocessing medical text data is usually to
decompose them into smaller units based on tokenization. During this process, special
characters, punctuation, stopwords, and even spelling and morphological corrections will
be removed to reduce data noise and redundancy. Additionally, because text data typically
contain a large amount of vocabulary and semantic information, preprocessing typically
considers factors such as word frequency, text length, and semantic association to reduce
data dimensionality.

Genetic data. Genetic expression data usually include the expression levels of thou-
sands of genes under different conditions or at different time points, complex and mul-
tidimensional. Also, gene expression data typically have a right-skewed distribution:
most genes are concentrated at lower expression levels and a few genes have very high
expression. Therefore, in preprocessing, apart from basic steps like data cleaning and
normalization, logarithmic transformations (log), log base 10 (log10), square root transfor-
mations, etc., is required to convert the raw gene expression data into a form closer to a
normal distribution.

Medical speech data. Original Speech data involve the target speaker’s voice and
the other interference (e.g., background noise, voices of non-target speakers, reverberation,
silence). Endpoint detection, pre-emphasis, framing, windowing, and other techniques are
typically used to effectively suppress these interferences. Endpoint detection can detect
silent segments in audio signals and segment audio sentences by threshold and short-term
energy methods. Pre-emphasis technology is used to increase the importance of the high-
frequency part for uniform information since important information in audio signals is
often concentrated in the low-frequency part. Framing aims to slice the data to obtain
short-term stable audio signals. Moreover, windowing effectively improves the issue of
information leakage, with common window functions including the Hamming window,
Hanning window, and rectangular window.
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EEG and ECG data. Electroencephalogram (EEG) and electrocardiogram (ECG) sig-
nals are often interfered with by factors like blinking, movement of the body or electrodes,
environmental noise, heartbeat fluctuations, power interference, or baseline drift. The pre-
processing process is mainly to ensure signal purity. The Independent Component Analysis
(ICA) technique is used to eliminate the interference from blinking and eye movement.
Artifacts from cardiovascular and musculoskeletal system electrical activity can be re-
moved using band-pass filters or the Discrete Wavelet Transform (DWT). Noise from power
sources, harmonics, and movement of electrodes and wiring can be eliminated using filters
of different frequencies.

2.2.2. Feature Engineering

Feature engineering plays a crucial role in disease diagnosis using artificial intelligence
technologies. It involves extracting, selecting, and transforming important information
from original medical data to construct meaningful features for models. Specifically,
feature engineering typically encompasses feature representation, feature selection, feature
reduction, feature fusion, and feature enhancement.

Feature representation. Feature representation can transform raw input data into
numerical representations that can be utilized by the model.

Feature selection. The redundant features can confuse machine learning models, while
few features might not effectively and correctly classify data. Therefore, many researchers
adopt feature selection techniques to choose appropriate features from extracted features.
Common feature selection techniques include Information Gain, Chi-square Test, Mutual
Information, Recursive Feature Elimination (RFE), Regularization, etc.

Feature reduction. When the number of extracted features is huge or they have not
been properly normalized or scaled, feature reduction techniques are used to alleviate this
problem. The most commonly used feature reduction technique is Principal Component
Analysis (PCA), followed by other techniques such as Linear Discriminant Analysis (LDA),
Sparse Encoding, and Factor Analysis.

Feature fusion. Feature fusion can enhance the efficiency of classifiers in detection
tasks. It involves combining features extracted, selected, or reduced through different
methods into a single set of parameters. This integration of features from various per-
spectives and methodologies offers a more comprehensive and in-depth understanding
of the data. Typical feature fusion techniques include Topic Models, Multi-view Learning,
and Knowledge Graph Fusion, among others.

Feature enhancement. Feature enhancement can enhance the representation of im-
portant features in data while weakening or eliminating the influence of irrelevant or
noisy features. In disease diagnosis tasks, feature enhancement helps to more accurately
distinguish different disease categories, thereby improving the accuracy and robustness of
the model.

2.2.3. Model Selection

According to the diagnostic methods of various diseases, artificial intelligence models
are divided into two categories: traditional machine learning methods and deep learn-
ing methods.

In the era of rapid advancements in deep learning algorithms, traditional machine
learning algorithms continue to be favored in the development of AI diagnostic models due
to their unique advantages. They require fewer data points and offer better interpretability.
However, traditional machine learning algorithms have clear drawbacks. They often
require domain experts to pre-define the features to be learned before model training,
resulting in additional manual costs and increased resource expenses. In the following
sections, we will introduce commonly used machine learning methods in building AI
diagnostic models.

Conditional random fields (CRF). CRF [41] has found numerous applications in
disease diagnosis. It is a probabilistic graphical model that predicts labels by capturing
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contextual information of input sequences and considering the dependencies between
adjacent labels in the sequence. In the context of disease diagnosis, the CRF model utilizes
patient-specific input sequences (such as images, text, or genetic features) to model the
conditional probability of the output sequence, representing different disease classifications
or subtypes. This is achieved by defining feature functions and weights that represent
the relationship between input and output sequences. Feature functions can include
observation features (relating the current input to the output label) and transition features
(relating the current output label to the previous output label).

Support vector machine (SVM). The SVM [9] is another commonly employed algo-
rithm in disease diagnosis [42–44]. The SVM, introduced by Vapnik in 1990, operates on
labeled data. It begins with extracting meaningful features from the input data (e.g., shape
features, texture features, or local features for medical images; or disease-related features
like biomarkers or keywords for biological signals or clinical text data). Then, leveraging
the extracted features to train the SVM. The SVM seeks an optimal hyperplane that distin-
guishes different classes based on the position of input samples relative to the hyperplane
in the feature space. Finally, disease diagnosis is derived from the predicted labels.

Logistic regression (LR). LR [45] maps the results of linear regression to the range
(0, 1) using a logistic function, enabling the estimation of the probability of a sample
belonging to a particular class. LR has been widely applied in disease diagnosis. It adjusts
model parameters to maximize the likelihood function of the training data by learning the
relationship between patient features (such as images, text, signals, or genes) and disease
labels. Optimization algorithms like gradient descent are used to minimize the loss function
and find the optimal model parameters.

Naive Bayes (NB). NB [46] is a probabilistic algorithm that does not rely on networks
and performs well with high-dimensional features. In disease diagnosis tasks, the NB
classifier learns the relationship between patient data features (such as medical images,
clinical text, or biological signals) and disease labels, classifying patients into specific
disease categories [47]. Furthermore, NB simplifies learning by independently classifying
features within each class.

Decision tree (DT). The DT [48] is a commonly used data analysis algorithm [49]. It
consists of terminal and non-terminal nodes, with each non-terminal node describing a
condition or test for a data item. This technique is often employed in disease classification
and is beneficial for association and regression tasks. Decision trees facilitate easy visualiza-
tion and identification of various data aspects [1]. Numerous studies have utilized decision
trees for disease diagnosis [50].

In addition to the aforementioned methods, many other typical traditional machine
learning methods (e.g., K-means, RF, etc.) have been successfully applied to disease
diagnosis tasks.

Unlike traditional machine learning approaches, deep learning methods can leverage
all the information present in the data as features for training models, eliminating the need
for predefined features. This significantly reduces the resource requirements associated
with traditional machine-learning methods. Particularly in tasks such as AI diagnosis and
prediction, deep learning methods demonstrate a compelling advantage over traditional
machine learning methods, especially when abundant data are available. In the medical
domain, where high precision is paramount, traditional machine learning methods are
progressively being substituted by deep learning methods. The subsequent sections will
highlight several widely used deep learning methods.

Long short-term memory (LSTM). LSTM [12], an improved version of the recurrent
neural network (RNN), is composed of a series of fundamental units designed to address
the issues of gradient vanishing and exploding in RNN through the use of gates and con-
trolled features. Each unit includes an input gate, a cell state, a forget gate and an output
gate. The input gate decides which feature information to update, while the forget gate is
used to decide the amount of original feature information to discard. The cell state serves
as a storage unit for feature information, and the output gate determines which feature
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information to output. Notably, LSTM excels in capturing contextual relationships and pre-
dicting subsequent data based on the preceding sequence. In the realm of disease diagnosis,
LSTM finds utility in processing and modeling sequential data, including clinical texts and
speech. Furthermore, LSTM has several variants, such as Bidirectional Long Short-Term
Memory (Bi-LSTM) and Bidirectional Gated Recurrent Unit (BiGRU), which simultaneously
predict the current state based on both the previous states and the future states.

Convolutional neural networks (CNNs). A CNN [10] possesses parallelism charac-
teristics that LSTM does not have. Recently, the CNN has been widely applied in various
medical imaging, laboratory reports, pathology reports, etc., and has achieved remarkable
success in the field of AI-based diagnosis [51–58]. The concept of the “receptive field” in a
CNN is essential as it decides the time frame for the CNN to make predictions based on
contextual relationships. The window size and stride used in convolutions are parameters
used to control the receptive field. In a CNN, a larger window size generates a larger
receptive field, thus capturing more contextual relationships. However, this diminishes
the influence of words closest to the prediction target in terms of their positional impor-
tance. Setting a larger stride in the CNN ignores certain contextual relationships while
significantly increasing the overall computational speed.

Transformer. A transformer [11] is a deep learning model widely used for sequence-
to-sequence tasks, having garnered significant acclaim in the field of natural language
processing, particularly for machine translation, and subsequently finding broad research
applications in other domains, including image processing. In the realm of medical diag-
nosis, A transformer proves valuable for processing and modeling diverse modalities of
medical data, encompassing clinical texts, medical images, and time series data [59–61].
Primarily, leveraging the self-attention mechanism, the transformer computes relevance
scores between each position in the input sequence and other positions. These scores
facilitate weighted aggregation of input features, empowering each position to capture
both global and local contextual information.

Moreover, to bolster modeling capabilities, the transformer introduces a multi-head
attention mechanism, employing multiple self-attention sub-layers that focus on distinct
facets of relevant information, effectively extracting features at varying levels and perspec-
tives. Simultaneously, to retain positional information within the sequence, Transformer
incorporates positional encoding, embedding positional details into the input represen-
tation, enabling the model to discern between different positions. Lastly, employing an
encoder-decoder architecture, Transformer initially encodes the input sequence into high-
dimensional representations, adeptly capturing the input data’s features, and subsequently,
the decoder generates disease prediction outcomes based on the encoder’s output and
target labels.

Large model (LM). With the emergence of foundational models [62,63], researchers
have introduced a new paradigm that leverages deep learning methods, primarily relying
on the emerging capabilities of large models (LMs) to handle more complex tasks through
scale expansion. Unlike traditional specialized models trained for specific problems, a large
universal foundational model only requires one training session to acquire a wide range
of general knowledge and can subsequently adapt to various downstream tasks through
prompts. This approach was initially introduced by language models as few-shot learn-
ers [64] and has gained widespread recognition with the introduction of groundbreaking
models such as GPT-3.5 [13], GPT-4 [14], the LLaMA series (including LLaMA [15] and
Llama2 [16]), PaLM [17], FLAN-T5 [65], and Alpaca [18].

Alongside technological advancements, large models targeting different data types,
such as images (SAM [66]) and time series (TimeGPT-1 [67]), have also been developed,
demonstrating their powerful performance. While these LMs have proven effective in
various general domain tasks, they have yet to reach their full potential in specific med-
ical domain tasks. In comparison to specialized models, LMs still exhibit certain gaps
because specialized models are not only meticulously designed for specific tasks in terms
of architecture but also guided by medical knowledge to better understand and capture
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subtle differences and semantic features in the data. In contrast, LMs currently fall short in
this aspect. Consequently, there has been extensive research on LMs tailored for specific
medical domains to better fulfill the requirements. XrayGPT [68] and XrayGLM serve
as notable examples of large models applied in medical imaging. XrayGPT is an innova-
tive conversational medical visual language model capable of analyzing and answering
open-ended questions regarding chest X-rays. XrayGLM aims to become the first Chinese
multi-modal medical LM proficient in interpreting chest X-ray images, showcasing remark-
able potential in medical image diagnosis and multi-turn interactive dialogues. Available at:
http://github.com/WangRongsheng/XrayGLM (accessed on 29 November 2023). Several
LMs focused on medical text and speech have also emerged, including the Med-PaLM
series (Med-PaLM [19] and PaLM 2 [20]), HuaTuo Algorithm [21], ChatDoctor [22], Doctor-
GLM [23], BianQue [24], and BioGPT [25], which have demonstrated significant potential
in providing valuable assistance across various healthcare-related domains. In the realm of
genetic data, Yang et al. [49] introduced GeneCompass, the first knowledge-based cross-
species milestone foundational model, surpassing competitive state-of-the-art models in
multiple tasks within a single species.

2.3. Performance Evaluation Metrics

In disease diagnosis tasks using artificial intelligence technology, performance evalua-
tion metrics are commonly calculated based on the confusion matrix for binary classification
tasks [69], which include four types of classifications: True Positive (TP), False Positive
(FP), True Negative (TN), and False Negative (FN). As shown in Table 1, TP represents the
correctly identified positive instances, i.e., the positive class correctly classified as positive.
TN represents the correctly identified negative instances, i.e., the negative class correctly
classified as negative. FP represents the falsely identified positive instances, i.e., instances
of the negative class mistakenly classified as positive. FN represents the falsely identified
negative instances, i.e., instances of the positive class mistakenly classified as negative.
Total Positive refers to the sum of TP and FN, while Total Negative refers to the sum of TN
and FP. True Classification is the sum of TP and FP, and False Classification is the sum of
FN and TN. The definition of performance evaluation metrics is shown in Table 2.

Table 1. Definition of the confusion matrix in binary classification.

Actual Outcome

Positive Negative

Predicted Outcome Positive TP FP
Negative FN TN

Table 2. The definition of performance evaluation metrics (note that the N, pi and yi in equation Brier
score represent the number of samples, the predicted result for sample i, and the observed result
(true label) of sample i, respectively).

Metric Definition

Accuracy (ACC) ACC = (TP + TN)/(TP + TN + FP + FN)
Precision (P) P = TP/(TP + FP)

Recall (R) R = TP/(TP + FN)
F1-score (F1) F1 = 2 × P × R/(P + R)

Specificity (Sp) Sp = TN/(TN + FP)
Brier score Brier score = (1/N) × ∑[(pi − yi)]

2

In addition, other classification metrics such as the Area Under the ROC Curve (AUC-
ROC) are also commonly adopted. The ROC curve plots the True Positive Rate (TPR) on the y-
axis against the False Positive Rate (FPR) on the x-axis, where TPR = Recall(R) = TP/(TP + FN),
FPR = FP/(FP + TN). The ROC curve illustrates the relationship among TPR and FPR at
different classification thresholds. The AUC measures the area under the ROC curve,

 http://github.com/WangRongsheng/XrayGLM 
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ranging from 0 to 1. An AUC of 1 indicates a model with perfect classification ability,
while an AUC equals to 0.5 denotes that a model’s predictive performance is no better than
random guessing.

3. Reported Works
3.1. Diagnosis of Alzheimer’s Disease

Alzheimer’s disease constitutes a progressive neurodegenerative disorder, character-
ized by cognitive decline, memory impairment, and compromised communicative abilities.
In the realm of AI-driven diagnostic investigations for Alzheimer’s disease, medical imag-
ing modalities such as MRI and PET are universally recognized as indispensable tools.
They offer profound insights into the alterations of brain structure and functionality, thus
furnishing critical information for diagnosis. Concurrently, the analysis of speech patterns
has also surfaced as a promising domain. Changes in language and communication fre-
quently serve as precursors to cognitive deterioration, making them significant markers
for early detection. This section delves into and evaluates the pertinent literature on auto-
mated Alzheimer’s disease diagnosis, leveraging MRI, PET, speech, and other multi-modal
strategies. A consolidated synopsis of the model and its attributes is presented herein,
with detailed elaborations provided in Table 3.

Magnetic resonance imaging (MRI). MRI is pivotal in Alzheimer’s disease (AD)
diagnostics, offering a non-invasive modality that provides intricate images capturing
the brain’s structural and tissue details. There has been a substantial focus on harnessing
morphological attributes from MRI scans as the central criterion for facilitating automated
AD diagnosis. To illustrate, Li et al. [52] initiate the process by pinpointing the hippocampal
regions in structural MRI (sMRI) images that are productive for diagnosis, drawing on prior
knowledge. Subsequently, they deploy a deep learning architecture to distill distinctive
patterns pertinent to AD diagnosis. Building upon this, Lian et al. [70] amalgamate a
discriminative localization phase for brain atrophy with the subsequent stages of feature
extraction and classification framework development. They introduce a Hierarchical
Fully Convolutional Network (H-FCN) designed to autonomously and systematically
discern patch-level and region-level indicative sites within the entire brain MRI scan.
This model embraces a data-driven strategy that concurrently learns and amalgamates
feature representations spanning multiple scales—from patch to region to subject level—
to formulate a comprehensive AD diagnostic model. Addressing the nuances of brain
atrophy, which pose significant diagnostic challenges in MRI imaging, Zhu et al. [59] unveil
DA-MIDL, a novel deep learning framework endowed with a dual attention mechanism.
This mechanism is adept at singling out the most salient pathological locales for AD
diagnosis. DA-MIDL is composed of a patch network replete with spatial attention blocks,
an attention Multiple Instance Learning (MIL) pooling module, and an attention-aware
global classifier. The patch network is engineered to extract salient structural features from
myriad local sMRI patches disseminated throughout the brain. The attention MIL pooling
phase is adept at assigning variable weights to patch-level features, orchestrating them into
a holistic representation of the entire brain’s architecture. This global representation forms
the foundation for the subsequent AD diagnostic classifier.

Furthermore, the quantification of hippocampal volume attrition has been recognized
as a seminal marker for AD diagnosis. Uysal et al. leverage semi-automatic segmentation
software ITK-SNAP to calculate hippocampal volume metrics. They construct a dataset
incorporating parameters such as age, gender, diagnostic status, and volumetric data for
left and right hippocampal regions. Utilizing this dataset, they apply machine learning
algorithms to effectively differentiate between Alzheimer’s disease (AD), Mild Cognitive
Impairment (MCI), and cognitively normal (CN) cohorts.

Positron emission tomography (PET). While MRI images primarily yield extensive
data on brain structure, they fall short of providing insights at the molecular level. This is
where Positron Emission Tomography (PET) imaging gains its prominence. As a molecular
imaging technique, PET scrutinizes specific biological processes such as protein aggregation,
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metabolic rates, or receptor concentrations using radiolabeled tracers. PET imaging thus
offers an intricate depiction of biological and metabolic dynamics within the brain and is
routinely employed in diagnosing and monitoring Alzheimer’s disease (AD). In the study
by Chen et al. [60], a novel contrastive learning paradigm is introduced, utilizing brain
18F-FDG PET images to surmount the challenges associated with the paucity of data and
the low signal-to-noise ratio, which are typical in PET images pertinent to AD prediction.
They implement a data augmentation strategy to amplify the volume of training data,
and they apply the adversarial loss to expand the distances between features of different
classes while consolidating the similarities within the same class.

Furthermore, they develop a dual convolutional mixed attention module, fine-tuning
the network’s proficiency in discerning diverse perceptual fields. By aligning the predictive
outcomes of individual PET slices with clinical neuropsychological evaluations, they ad-
vance a diagnostic methodology conducive to refining AD diagnoses. Baydargil et al. [71]
deliver an unsupervised adversarial parallel model tailored for the anomaly analysis in
AD, sharply delineating AD, mild cognitive impairment (MCI), and normal control groups.
The model exhibits robust classification with rates and area under the curve (AUC) scores
reaching 96.03% and 75.21%, respectively, underscoring its effective discriminative per-
formance. Lu et al. lay the groundwork for a cutting-edge deep learning infrastructure,
utilizing FDG-PET metabolic imaging to pinpoint subjects with symptomatic pre-AD in the
MCI phase, setting them apart from other MCI cohorts (non-AD/non-progressive). They
pioneer a multi-scale deep neural network that reports a classification precision of 82.51%,
relying solely on a single-modal metric (FDG-PET metabolic data). Cheng et al. [53] present
an innovative classification scheme that amalgamates a two-dimensional Convolutional
Neural Network (CNN) with a Recurrent Neural Network (RNN). Their strategy is oriented
towards deconstructing 3D images into a succession of 2D slices to capture the features
inherent to 3D PET imagery. Within this framework, they architect a hierarchical 2D cellular
neural network tasked with the extraction of intra-slice features, while the Gated Recurrent
Unit (GRU) within the RNN is deployed to elucidate inter-slice features that contribute to
the final classification outcome.

Speech. The manifestation of Alzheimer’s disease (AD) in speech signals offers a
distinctive avenue for diagnosis, as individuals with AD exhibit notable speech pattern
alterations compared to those without the condition. Employing speech recognition tech-
nology for AD diagnostics is not only non-invasive and safe but also cost efficient, making
it an appealing methodology for widespread application. Before the infusion of deep
learning into the field, traditional approaches to speech analysis for AD diagnosis relied
heavily on manual feature extraction. Techniques such as analysis of static features, utiliza-
tion of feature sets like ComParE 2016 and eGeMAPS, as well as Mel-Frequency Cepstral
Coefficients (MFCC), were common practices. These extracted features were then ana-
lyzed using machine learning classifiers, including logistic regression, random forests,
and support vector machines, to distinguish between affected and healthy individuals.
Studies by Hason et al. [72], Hernández et al. [73], and Yu et al. [74] are examples of such
research efforts.

With the advent of deep learning, there has been a paradigm shift in research method-
ologies for AD diagnosis. Deep learning techniques have taken precedence, given their
ability to automatically extract complex patterns from raw data without the need for manual
feature selection. In this context, Lopez et al. [55] have made strides in early AD detection
by implementing classical Multilayer Perceptrons (MLPs) and Convolutional Neural Net-
works (CNNs), illustrating the potential of deep learning in enhancing diagnostic accuracy.
Further advancing the field, Liu et al. [75] leveraged an Automatic Speech Recognition
(ASR) model to derive speaker-independent bottleneck features, which are highly discrimi-
native and robust. They coupled this with a CNN for modeling local context and an RNN
for capturing the global context within speech. An attention mechanism was integrated
to selectively focus on the most salient features for AD detection, improving the model’s
interpretability and effectiveness. Additionally, Bertini et al. [76] introduced an end-to-end
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model for AD detection, innovatively applying SpecAugment [77] for data augmentation
to enhance the robustness and generalizability of the model against variability in speech
data. They then utilized the auDeep [78] autoencoder, followed by fully connected layers
for feature learning and classification, streamlining the process from raw speech input to
the diagnostic output. This end-to-end approach simplifies the pipeline and potentially
improves the model’s accuracy and applicability in clinical settings.

MRI-PET image fusion. The integration of MRI and PET imaging modalities has
yielded a synergistic approach in medical diagnostics, particularly for disorders such as
Alzheimer’s disease (AD). This technique of image fusion leverages the unique strengths
of each imaging method to offer a more holistic representation of the brain’s structure
and function. The pioneering work of Shi et al. [79] introduced the multi-modal Stacked
Denoising Predictive Network (MM-SDPN). This algorithm is structured in two phases
specifically tailored to merge and learn from the feature representations of multi-modal
neuroimaging data. This integration enhances the diagnostic process for Alzheimer’s
disease, offering a deepened insight into the complex interactions between different types
of brain changes associated with the disease. Sharma et al. [80] took a different approach,
utilizing wavelet packet transform as their method of fusing MRI and PET images. Their
methodology involves an eight-layer Convolutional Neural Network (CNN) that meticu-
lously extracts features across multiple layers. The extracted features are then processed
through an ensemble of non-iterative Random Vector Functional Link (RVFL) networks.
This ensemble strategy aims to robustly capture the intricate patterns from the fused data
for accurate AD diagnosis.

Further advancing the field, Zhou et al. [81] proposed a unique method for latent
representation learning that encompasses data from various modalities, including MRI,
PET, and genetic information. Their approach focuses on deducing latent representations
and then projects these representations into the label space for diagnostic purposes. This
technique underscores the potential of combining structural, functional, and biological
data to enhance the accuracy of Alzheimer’s disease diagnostics. Addressing the potential
issue of overfitting when dealing with the fusion of high-dimensional data, Ning et al. [72]
developed a relation-induced multi-modal shared representation learning approach. Their
model is an integrative framework that combines the processes of representation learn-
ing, dimensionality reduction, and classifier design. It operates by learning bidirectional
mappings between the original feature space and a shared representation space, thereby
distilling the essence of multi-modal inputs into a cohesive, shared format that is conducive
to diagnostic analysis. These studies illustrate a growing trend in leveraging sophisti-
cated computational models and algorithms to enhance the accuracy and reliability of
Alzheimer’s disease diagnostics by capitalizing on complementary information from multi-
ple imaging modalities.

Speech–Text fusion. The nuanced extraction of acoustic features from speech datasets,
coupled with the semantic analysis of textual data, fosters an enriched comprehension
of Alzheimer’s disease (AD). By amalgamating speech and text data, a more extensive
spectrum of AD-related features is captured, bolstering the diagnostic accuracy for this
condition. Historically, the nascent stages of AD research leveraged machine learning
techniques for analytical purposes. Shah et al. [42] focused on the extraction of word-level
duration features, datasets on pause rates, and measures of speech clarity. They explored a
variety of models, such as logistic regression, random forest, support vector machine (SVM),
extreme gradient boosting, and neural networks in isolation and in combination, targeting
both classification and regression tasks. Martinc et al. [43] commenced with spectrum
subtraction for noise abatement, progressing to the use of a bag-of-n-grams approach for
textual feature extraction. Concurrently, they extracted eGeMAPS features from speech
data. A suite of classifiers, including XGBoost, SVM, random forest, logistic regression,
and linear discriminant classifiers, was then deployed for classification tasks.

In the landscape of recent advancements, deep learning techniques have increasingly
been harnessed for the automated diagnosis of Alzheimer’s disease. Cai et al. [82] applied



Bioengineering 2024, 11, 219 15 of 51

Graph Neural Networks (GNNs) for the extraction of textual features and introduced audio
data by utilizing the WavLM model to extract salient audio features. They then integrated
these features with text features via various methodologies. Mei et al. [83] extracted a
plethora of features comprising static acoustic features, the ComParE 2016 feature set,
the eGeMAPS feature set, along with feature vectors from the wav2vec2 pre-trained model,
and the Hubert pre-trained model for AD detection. They meticulously fine-tuned the
wav2vec2.0 model on speech from assorted frequency bands, culminating in a remarkable
accuracy of 87% and an RSME of 3.727. Agbavor et al. [84] procured deep representation
features through data2vec and wav2vec2, subsequently refining an end-to-end model with
fully connected layers for enhanced AD detection efficacy.

Other models. A diverse array of molecular and multi-omics approaches, including
RNA-seq, single nucleotide polymorphisms (SNPs), protein sequences, and integrated
omics data, have been employed to unravel the complexities of Alzheimer’s disease diag-
nosis. For instance, groundbreaking work by Li et al. [84], Taeho et al. [85], Xu et al. [86],
Javier et al. [87], and Park et al. [88] has significantly contributed to the field by leveraging
these techniques. Further, Park et al. [88] have pioneered a deep learning approach tailored
for AD prediction that synergistically utilizes multiple heterogeneous omics data. In a
similar vein, Golovanevsky et al. [89] have devised a multi-modal Alzheimer’s Disease
Diagnostic framework (MADDi), ingeniously combining neural networks with attention
mechanisms to harness the power of imaging, genetic, and clinical data for enhanced AD
diagnostic precision. In addition to these genomic and proteomic strategies, electrophysio-
logical methods such as EEG have been instrumental in AD diagnosis. Notable research
by Djemili et al. [90], Pandya et al. [91], Kim et al. [92], along with studies cited as [93],
have demonstrated the utility of EEG in capturing the neurophysiological hallmarks of
Alzheimer’s disease, adding a valuable dimension to the diagnostic toolkit.

Table 3. Summary of different medical features for Alzheimer’s disease diagnosis.

Literature Feature Name Modality Dateset Results

Li et al. [52] Hippocampal morphology feature MRI ADNI 0.939 (AUC)

Lian et al. [70] Original MRI scan feature MRI ADNI 0.9 (ACC); 0.95 (AUC:AD vs. NC)

Zhu et al. [59] Patch proposals selected from the
MRI scans

MRI ADNI,
AIBL

0.9193 (ACC: AD vs. NC vs. MCI)
0.9287 (AUC)

Chen et al. [60] optimized anchor data from brain
18F-FDG PET slices

PET ADNI 0.9193 (ACC: AD vs. NC vs. MCI)
0.9287 (AUC)

Baydargil et al. [71] Original PET slices PET ADNI 0.9603 (ACC: AD vs. NC vs. MCI)
0.7521 (AUC)

Cheng et al. [53] a sequence of 2D slice groups from
3D PET

PET ADNI 0.9528 (AUC: AD vs. NC)

Shi et al. [79] high-level features of MRI and PET MRI, PET ADNI 0.9713 ± 0.0444 (ACC: AD vs. NC)

Sharma et al. [80] Fused image by wavelet packet
transform (WPT)

MRI, PET ADNI 0.9603 (ACC: AD vs. NC vs. MCI)
0.7521 (AUC)

Zhou et al. [81] magnetic resonance imaging (MRI),
positron emission tomography
(PET), and genetic data

MRI, PET,
Gene

ADNI -

Ning et al. [72] magnetic resonance imaging
(MRI) and positron emission
tomography (PET)

MRI, PET ADNI 0.976 (AUC: AD vs. NC) 0.969 (ACC:
AD vs. NC)

Li et al. [84] RNA-seq Gene-based GEO 0.859 (AUC), 0.781 (ACC)

Taeho et al. [85] SNP Gene-based ADNI 0.82 (AAUC)
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Table 3. Cont.

Literature Feature Name Modality Dateset Results

Xu et al. [86] protein sequence
Gene-based

UniProt 0.857 (ACC)

Javier et al. [87] genetic variation data Gene-based ADNI 0.719 (ACC)

Park et al. [88] Multi-omics data Gene-based GEO 0.823 (ACC)

Golovanevsky
et al. [89]

imaging, genetic, and clinical data Gene-based GEO 0.9688 (ACC)

Djemili et al. [90] statistical characteristics
(1. Maximum value in each IMF.
2. Minimum value in each IMF.
Mean of the absolute values in each
IMF. 4. Standard deviation in each
IMF.)

EEG Bonn
dataset

The classification accuracy for nor-
mal and abrupt cessation electroen-
cephalogram (EEG) signals is 1,
while the classification accuracy for
intermittent and abrupt cessation
EEG signals reaches 0.977

Pandya et al. [91] Amplitude, period and waveform
offset of K-Complex

EEG Private
dataset

-

Kim et al. [92] EEG segment with respect to
RP(Absolute power of EEG signals
in three different frequency bands)

EEG Private
dataset

0.75 (ACC)

Deepthi et al. [93] Frequency domain features
extracted by Fast Fourier
Transform (FFT)

EEG ADNI -

Hason et al. [72] MFCC speech ADReSS Accuracy: 0.822

Hernández et al. [73] Speech duration, descriptive statisti-
cal variables

specch private
dataset

Accuracy: 0.8

Yu et al. [74] Based on phoneme characteristics,
pronunciation coordination charac-
teristics, and pitch variance

speech private
dataset

Accuracy: 0.93

Lopez et al. [55] Linear features include spectral do-
main features and time domain fea-
tures, such as harmonicity, spectrum
centroid, formants, etc. Nonlinear
characteristics include fractal dimen-
sion, permutation entropy, multi-
scale permutation entropy, etc.

speech private
dataset

Accuracy: 0.89

Liu et al. [75] Bottleneck feature vector (depth rep-
resentation feature)

speech Dementia-
Bank Pitt

F1: 0.7802

Bertini et al. [76] spectrogram specch Dementia-
Bank Pitt

Accuracy is 0.933, F1 score is 0.885

Shah et al. [42] Word-level duration feature set,
pause rate data set, speech intelligi-
bility feature set

speech, text ADReSS-
M

Accuracy: 0.696, RMSE: 4.8

Martinc et al. [43] bag-of-n-grams features (text)
eGeMAPS feature set (voice)

speech, text Dementia-
Bank Pit

Accuracy: 0.9167

Cai et al. [82] GNN (text features) WavLM (voice
features)

Speech, text Dementia-
Bank Pit

Accuracy: 0.8484 ± 0.0544

Mei et al. [83] Silent characteristics ComParE 2016
feature set, eGeMAPS feature set
wav2vec2 pre-trained model feature
vector Hubert pre-trained model fea-
ture vector

Speech, text AADReSS-
M

Accuracy: 0.87, RMSE: 3.727

Agbavor et al. [84] data2vec, wav2vec2 Speech, text ADReSSo F1: 0.728, RMSE: 3.493
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3.2. Diagnosis of Breast Cancer

Breast cancer, originating in the breast cell tissue, stands as a pivotal health challenge
for individuals across the globe. The key to enhancing survival and ensuring a better
quality of life for those impacted by this disease lies in early detection and an integrated
approach to treatment, involving a diverse team of medical professionals. The conventional
diagnostic toolkit for breast cancer includes mammography, which is instrumental in
visualizing breast tissue and identifying any irregularities that may indicate the presence
of cancerous cells. Clinical breast exams conducted by healthcare professionals also play a
significant role in early detection, as they involve a thorough palpation of the breast tissue
to detect lumps or other changes. Additionally, gene screening is becoming increasingly
important in breast cancer diagnosis, particularly for women with a family history of the
disease, as it can identify inherited genetic mutations that may elevate the risk of breast
cancer, such as mutations in the BRCA1 and BRCA2 genes. In this section, the diagnostic
methodologies driven by the aforementioned modalities are rigorously explored and
demonstrated. To provide a clear and concise representation of the various models and
their attributes, reference is made to the details encapsulated in the accompanying tables,
labeled as Table 4. These tables present a summarized outlook of the models, delineating
their features, performance metrics, and other pertinent details that contribute to the
overarching domain of breast cancer diagnosis.

X-ray mammography. Breast Lesion Classification is a critical facet of breast cancer
diagnosis, as it aims to accurately differentiate between benign and malignant lesions
discovered during screenings. X-ray mammography remains the cornerstone of early
breast cancer detection, enabling physicians to spot minuscule masses or calcifications
that could indicate the presence of cancer cells within the breast tissue. To augment the
diagnostic efficiency for breast lesions, Al-antari et al. [94] have presented a comprehensive
Computer-Aided Diagnosis (CAD) system that harnesses the power of deep learning,
leveraging data from the DDSM and INbreast databases, which are prominent digital
mammography datasets. The innovation began with the utilization of a You Only Look
Once (YOLO) [95] deep learning detector specifically calibrated for the identification of
breast lesions across whole mammograms. Subsequently, Al-antari et al. assessed and
fine-tuned three deep learning classifiers—the standard feedforward CNN, ResNet-50,
and InceptionResNet-V2—for the nuanced task of breast lesion classification.

Furthering the advancement in this domain, Yeman et al. [96] introduced an inventive
approach employing a parallel deep Convolutional Neural Network (CNN) designed to
analyze and learn from the symmetrical deep features extracted from the bilateral views
of breast X-ray images. They innovatively computed the probability of pixels being part
of a lesion by examining the local line and gradient direction features distribution, which
then pinpointed the centers of suspected lesions. A global threshold was applied to these
likelihood images to discern potential lesion-bearing regions. Ensuring symmetry, right
and left breast X-ray images were horizontally flipped for congruent orientation, and the
analysis proceeded with patched images fed into two mirrored deep CNN structures.
The concatenated deep features from this twin-CNN setup were introduced into a Neural
Network (NN) classifier, which achieved a remarkable prediction accuracy rate of 93.33%.
In another groundbreaking work, Riyadh et al. [97] conceived a novel mixed deep learning
Computer-Aided Diagnosis system for breast lesions, which combined a backbone residual
deep learning network to generate profound features with a transformer that incorporates
self-attention mechanisms for the classification of cancer. This innovative model achieved a
perfect 100% accuracy rate for binary classification and an impressive 95.80% for multi-class
prediction tasks, a testament to the potential of mixed AI models in discerning between
benign and malignant breast tissues with high precision.

Magnetic resonance imaging. Breast MRI is a powerful diagnostic tool that excels in
providing detailed insights into breast cancer lesions, surpassing other imaging modalities
in delivering precise evaluations of lesion size, location, and type. The robust magnetic
field and non-ionizing radiation technique of MRI make it a choice modality for compre-
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hensive breast cancer assessment. Abunasser et al. [98] have made significant strides in
the realm of breast MRI by training six advanced deep learning models, each with the
capability to classify eight specific types of breast cancer, encompassing both benign and
malignant forms. Their study incorporated a diverse set of models including their own
proposed Breast Cancer Neural Network (BCNN), as well as Xception, InceptionV3, VGG16,
MobileNet, and ResNet50, all fine-tuned to analyze MRI images for this purpose. These
models demonstrated remarkable accuracy in their classification tasks, with rates of 97.54%,
95.33%, 98.14%, 97.67%, 93.98%, and 98.28% respectively, showcasing their potential to
serve as reliable diagnostic aides. Complementing these efforts, Huang et al. [99] embarked
on a comprehensive study involving the extraction of an extensive array of 4198 radiomic
features from pre-biopsy multiparametric MRI datasets, which included dynamic contrast-
enhanced T1-weighted images, fat-suppressed T2-weighted images, and apparent diffusion
coefficient maps. In their pursuit of optimal feature selection, they employed a suite of
methodologies such as the Least Absolute Shrinkage and Selection Operator (LASSO), Re-
cursive Feature Elimination (RFE), Maximum Relevance Minimum Redundancy (mRMR),
Boruta, and Pearson correlation analysis. Leveraging these strategically chosen features,
Huang et al. proceeded to construct 120 diagnostic models that varied by classification
algorithms, MRI sequence-segmented feature sets, and the employed selection strategies.
These models were adeptly designed to not just categorize breast cancer lesions but also to
predict cancer molecular subtypes and androgen receptor expression, potentially offering a
nuanced approach to personalized cancer care.

Ultrasound images. The field of medical imaging for breast cancer diagnosis has
been greatly enhanced by the incorporation of artificial intelligence, with ultrasound
imaging being a key focus due to its safety and non-invasive nature. Jabeen et al. [100]
introduced a cutting-edge classification framework specifically designed for ultrasound
images, which effectively combines the prowess of deep learning with optimal feature
selection techniques. This framework is composed of a structured five-step process: (i) Data
augmentation is applied to expand the dataset, thereby providing a more robust foundation
for training Convolutional Neural Network (CNN) models. (ii) The pre-trained DarkNet-
53 model is adapted by modifying its output layer to align with the categories of the
augmented dataset. (iii) Transfer learning is employed to train this modified model,
with feature extraction carried out from the global average pooling layer. (iv) Two enhanced
optimization algorithms, the Improved Differential Evaluation (RDE) and Improved Grey
Wolf (RGW), are utilized for the selection of the most discriminative features. (v) A novel,
probability-based sequential method is used to combine these optimally selected features,
followed by the application of machine learning algorithms for the final classification task.
The implementation of this framework on the Augmented Breast Ultrasound Images (BUSI)
dataset resulted in an impressive highest accuracy of 99.1%, demonstrating its potential to
significantly improve diagnostic processes.

Building on the momentum of innovation in the field, Ragab et al. [101] spearheaded
the development of an Integrated Deep Learning Clinical Decision Support System for
Breast Cancer Diagnosis and Classification (EDLCDS-BCDC). This innovative technology
is engineered to detect the presence of cancer through the analysis of ultrasound images.
The process involves an initial preprocessing stage using Wiener filtering and contrast
enhancement to prepare the images. Image segmentation is then carried out using the
Chaos Krill Herd Algorithm (CKHA) and Kapur Entropy (KE). The feature extraction
is performed through an ensemble of three sophisticated deep-learning models, namely
VGG-16, VGG-19, and SqueezeNet. The final stage of the classification process employs
the Cat Swarm Optimization (CSO) algorithm to optimize a Multi-Layer Perceptron (MLP)
model, ensuring precise categorization of the cancer images. Both these studies showcase
the innovative intersection of deep learning and optimization algorithms in improving the
accuracy and efficiency of breast cancer classification using ultrasound imaging.

Medical text data. The use of advanced natural language processing (NLP) techniques
to analyze and classify medical data, including patient self-reports and medical records,
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has become increasingly prevalent in breast cancer research. Leveraging the power of these
techniques can provide valuable insights and assist in the early detection and treatment
of breast cancer. Kumar et al. [102] tailored a BERT-based model to specifically address
the classification of breast cancer-related posts on Twitter, as described in Shared Task 8
of SMM4H-2021. Their approach was to employ BlueBERT [103], which is pre-trained
on a comprehensive biomedical corpus acquired from PubMed, enhancing the model’s
understanding of medical terminology and context. To bolster the model’s resilience against
adversarial inputs, they incorporated gradient-based adversarial training, which ultimately
resulted in the model achieving F1 scores of 0.8625 on the development set and 0.8501 on
the test set, reflecting high accuracy in the automatic classification of breast cancer mentions
in social media posts.

Further innovations in NLP, as seen in the works of Chen et al. [104] and Zhou et al. [105],
push the boundaries of model interpretability and domain-specific accuracy. Chen et al. [104]
took the capabilities of BERT further by integrating semantic trees into the model, thus con-
structing an interpretable neural network. They harnessed a capsule network with multiple
attention heads to refine the semantic representations, while backpropagation and dynamic
routing algorithms were implemented to provide local interpretability. This level of in-
terpretability is particularly important in medical applications where understanding the
reasoning behind a model’s prediction is as crucial as the prediction itself. Zhou et al. [105]
explored the benefits of pre-training BERT on a cancer-specific dataset, which aimed to
enhance the model’s ability to extract breast cancer phenotypes from pathology reports and
clinical records. Their findings underscore the significance of domain-specific pre-training,
as it substantially improved the performance of the model, making it more attuned to the
nuances of cancer-related data. Addtionally, Deng et al. [106] investigated the potential
assistance provided by advanced language models like GPT-4 in the context of breast cancer
diagnosis. The authors emphasized GPT-4’s capability to rapidly mine crucial information
from extensive medical records, which could potentially influence the diagnosis of breast
cancer. By automating the extraction of key data points, GPT-4 could enhance the accuracy
and efficiency of diagnostic procedures, supporting healthcare professionals in making
informed decisions. These studies collectively highlight the transformative impact that
state-of-the-art NLP models can have on the medical field, particularly in the realm of
breast cancer diagnosis and classification.

Genetic data. Human cancer is a heterogeneous disease caused by stochastic cellular
mutations and driven by various genomic alterations [107,108]. Currently, numerous re-
search efforts are focused on utilizing genetic data and artificial intelligence algorithms to
develop diagnostic models to enhance the clinical efficiency and accuracy of breast cancer
diagnosis [109–111]. Presently, artificial intelligence techniques in breast cancer diagnosis
research based on genomics primarily focus on RNA-seq data, single nucleotide polymor-
phisms (SNPs), protein sequences, and the integration of multi-omics data. (1) RNA-seq.
Xu et al. [112] proposed a multi-granularity cascade forest (gcForest) for predicting four sub-
types of breast cancer (Basal, Her2, Luminal A, and Luminal B). They compared the gcForest
classifier with three different machine learning methods (KNN, SVM, and MLP). The results
showed that gcForest showed a higher accuracy score of 92%. (2) MicroRNA. Sherafa-
tian et al. [50] employed three tree-based algorithms (Random Forest, Rpart, and tree
bag) to classify breast cancer subtypes (Luminal, HER2-enriched, basal) using miRNA
data from TCGA. The results showed that Rpart achieved the best classification perfor-
mance. For the Luminal subtype, the accuracy, sensitivity, and specificity were 88.9%,
82.4%, and 95.4%, respectively. For the HER2-enriched subtype, the accuracy, sensitivity,
and specificity were 90.2%, 93.9%, and 86.4%, respectively. For the basal subtype, the accu-
racy, sensitivity, and specificity were 84.5%, 75%, and 94%, respectively. (3) Multi-omics
data. Mohaiminul et al. [58] proposed a comprehensive deep-learning framework for
classifying molecular subtypes of breast cancer. The framework utilized copy number
alteration and gene expression data from the METABRIC. The results achieved an accuracy
of 76.7% and an AUC of 83.8%.



Bioengineering 2024, 11, 219 20 of 51

Table 4. Summary of different medical features for breast cancer diagnosis.

Literature Feature Name Modality Dateset Results

Al-Antari et al. [94] Original X-ray
mammographic data

X-ray CBIS-DDSM and DDSM 0.985 (ACC)

Yeman et al. [96] Breast lesion detection
from entire mammograms
by object detection model

X-ray DDSM and INbreast ACC of three
models: 94.50%,
95.83%, and 97.50%

Riyadh et al. [97] Extracted patches
centered on the points
from the original X-ray

X-ray General Electric, Siemens,
and Hologic

0.933 (AUC)

Abunasser et al. [98] Original MRI data MRI Kaggle depository 98.28 (F1-score)

Huang et al. [99] multi-parametric MRI MRI Private dataset Multilayer Perceptron
(MLP): 0.907 (AUC)
and 85.8% (ACC)

Jabeen et al. [100] Original ultrasound
images data

Ultrasound Images BUSI dataset 99.1% (ACC)

Ragab et al. [101] Segmented regions
from original

ultrasound images
Ultrasound Images

- 96.92% (ACC)

Kumar et al. [102],
Peng et al. [103]

Word embedding Text witter self-report F1: 0.8501

Chen et al. [104] Word embedding,
syntactic structure

Text Shanghai Ruijin Hospital
Molybdenum
Mammography
X-ray Report

Mi-P(%) = 91.58
Mi-R(%) = 91.58
Mi-F1(%) = 91.58
Ma-P(%) = 75.95
Ma-R(%) = 79.73
Ma-F1(%) = 77.14

Zhou et al. [105] mutil feature Text private dataset exact match and
lenient match,
macro-F1: 0.876, 0.904

Xu et al. [112] RNA-seq Gene-based Medical Records -

Sherafatian et al. [50] miRNA Gene-based TCGA 92% (ACC)

Mohaiminul Islam
M et al. [58]

Copy number alteration
(CNA), RNA-seq

Gene-based METABRIC 76.7% (ACC), 83.8%
(AUC)

Sun et al. [108] Clinical, CNV, RNA-seq Gene-based METABRIC 82% (AUC)

3.3. Diagnosis of Depression

Depression is a common mental health disorder characterized by persistent feelings of
sadness, hopelessness, and a lack of interest or pleasure in daily activities. It can affect a
person’s thoughts, emotions, and physical well-being, often leading to challenges in daily
functioning. Depression varies in severity, and its impact on individuals can range from
mild to severe. In the realm of diagnosis, text, speech, and EEG analysis have emerged as
crucial tools for assessing and understanding depression. These modalities offer valuable
insights into an individual’s mental state, providing a nuanced understanding of their
emotional well-being. This section aims to delve into various approaches and methodolo-
gies related to the diagnosis of depression using these modalities. This section provides
a summarized overview of the model and its features, as detailed in the accompanying
Table 5.

Medical text data. Aragon et al. [58] introduced a sophisticated deep emotional at-
tention model tailored for the detection of anorexia and depression. This model integrates
nuanced sub-emotion embeddings with the advanced architectures of Convolutional Neu-
ral Networks (CNNs), Gated Recurrent Units (GRUs), and attention mechanisms to attain
high predictive accuracy. Verma et al. [113] explored depression detection through the
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analysis of tweet data, utilizing four established machine learning models: Naive Bayes,
Support Vector Machines (SVMs), K-Nearest Neighbors (KNNs), and Random Forest.
Of these, the Random Forest model demonstrated superior performance, achieving an
impressive accuracy peak of 78%.

Furthering the field, Ghosh et al. [114] adopted a novel deep multi-task learning
strategy that simultaneously addresses emotion recognition and depression detection.
Their findings suggest that the multi-tasking framework significantly boosts the efficacy
of both tasks when learned concurrently. Xu et al. [115] ventured into the domain of psy-
chological health with the introduction of their Linguistic Landscape Model (LLM). This
model was rigorously tested across a spectrum of tasks, including psychological stress
classification, depression severity assessment, suicide ideation detection, and suicide risk
evaluation. The empirical results underscored the LLM’s robust performance, placing it on
par with the leading task-specific models in the field. Lastly, Qi et al. [116] presented an
all-encompassing benchmark that capitalizes on supervised learning techniques alongside
the LLM framework, with a specific emphasis on the capabilities of the GPT series. Their
research offers an in-depth analysis of these advanced LLMs, particularly in their applica-
tion to cognitive distortion diagnosis and suicide risk stratification. This study not only
highlights the models’ proficiency in capturing and interpreting complex emotional states
but also provides a critical examination of their inherent potential and current limitations
within the psychological domain.

Speech. From the initial forays into the realm of machine learning for depression
diagnosis, a vast array of approaches has emerged. Liu et al. [117] introduced a multi-task
ensemble learning technique that utilizes speaker embeddings to facilitate depression
classification. Long et al. [118] devised an innovative multi-classifier system dedicated
to depression recognition, distinguished by its synthesis of various speech types and
emotional nuances. Jiang et al. [119] developed the Ensemble Logistic Regression Model
for Depression Detection (ELRDD), representing a significant stride in predictive modeling.
Complementing this, Liu et al. [120] proposed an inventive decision tree-based method for
the fusion of speech segments, aimed at bolstering the accuracy of depression recognition.

As deep learning forges ahead, its methodologies are increasingly being adopted for
diagnosing depression. Yin et al. [121] presented a deep learning model that harnesses the
strengths of parallel Convolutional Neural Networks (CNNs) and Transformers, balancing
effective information extraction with computational tractability for depression detection.
Adding to this body of work, Tasnim et al. [122] examined the predictive utility of two
acoustic feature sets—conventional handcrafted features and those derived from deep
representations—in assessing depression severity through speech analysis. He et al. [123]
proposed a hybrid approach combining handcrafted elements with deep learning features
to precisely gauge depression severity from speech. Dubagunta et al. [124] conducted an
exploration into methods for modeling speech source-related information in the context of
depression, mindful of the potential neural physiological changes impacting vocal cord
function. Zhao et al. [125] sought to advance depression detection by tapping into inherent
speech information, advocating for a Long Short-Term Memory (LSTM) model augmented
with multi-head temporal attention. In a similar vein, Dong et al. [126] recommended
the application of pre-trained models for the extraction of deep Speaker Recognition (SR)
and Speech Emotion Recognition (SER) features. Their approach synergizes these two
profound speech features to capture the complementary data embedded within speaker
voice characteristics and emotional variances.

EEG. The field of depression diagnosis has witnessed the burgeoning integration of
electroencephalogram (EEG) and machine learning techniques, marking a pivotal research
trajectory. In the reported literature [127], a novel deep learning method named the
Asymmetry Matrix Image (AMI) is introduced, which constructs spatial distribution maps
from EEG signals by assessing the asymmetry between cerebral hemispheres. AMI has been
shown to outperform traditional methods, delivering superior classification accuracy and
enhancing the distinction between depression patients and healthy controls. Additional
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research [128] delves into the utilization of nonlinear EEG signal features, such as Higuchi’s
fractal dimension (HFD) and sample entropy (SampEn), which serve as indicators of signal
complexity and irregularity. These nonlinear metrics have proven efficacious in segregating
depression patients from healthy individuals, with high accuracy figures reported across a
range of machine learning classifiers. In a different approach, literature [129] focuses on
power spectral features and asymmetry measures within the alpha, beta, delta, and theta
frequency bands. Notably, findings suggest that asymmetries in the alpha2 and theta
bands, particularly when analyzed with a Support Vector Machine (SVM), lead to higher
diagnostic precision, with an accuracy rate of 88.33%. Explorations into the use of EEG
data for depression diagnosis have also extended to single-channel and multi-channel
formats [130]. By refining feature selection and classification models via genetic algorithms,
it has been discovered that single-channel analysis can effectively differentiate depression
patients, underscoring the potential for employing portable EEG devices in preliminary
depression screening despite a noted limitation in clinical generalizability due to small
sample sizes. The literature [131] investigates four feature selection techniques and five
classification algorithms for processing EEG data. Through rigorous data preprocessing
and feature extraction—identifying noise types and harnessing both linear and nonlinear
features—the critical role of the data preparation phase is emphasized for achieving optimal
classification accuracy.

A novel article [47] presents a multi-modal feature fusion method that integrates EEG
with eye movement (EM) signals, aiming to refine the identification of mild depression.
The application of deep learning to fuse these multi-modal data sets enables real-time
monitoring and detection of mild depression, with the fusion approach in the hidden layers
yielding improved recognition accuracy over single-feature methods, and showcasing the
benefits of combining diverse physiological signals. The melding of EEG and machine
learning has advanced the diagnostic and treatment prediction capabilities for depression.
Although challenges such as limited sample sizes and variability in feature extraction per-
sist, forthcoming research endeavors are expected to tackle these issues, thereby enhancing
the precision and utility of predictive models. Importantly, these advancements lay the
groundwork for tailored treatment modalities, contributing to the delivery of more accurate
and efficacious interventions for those suffering from depression.

Multi-modal. The landscape of depression diagnosis is rapidly evolving with the
advent of multi-modal approaches, harnessing the rich data from speech, text, and video to
create more nuanced and comprehensive diagnostic tools. Ehghaghi et al. [132] embarked
on an interpretable analysis to discern the distinct characteristics between dementia and
depression. They pinpointed a spectrum of differentiators such as auditory anomalies,
repetitive speech patterns, word retrieval struggles, coherence degradation, and variance
in lexical density and richness—all of which are pivotal in distinguishing these disorders.
Diep et al. [133] ventured further by proposing a model that synthesizes deep learning
features from both audio and text modalities, enriched with manually curated attributes
deriving from domain expertise. Mao et al. [134] introduced a novel approach using an
attention-based multi-modal framework to generate a joint speech and text representation,
specifically for the prediction of depression. Exploring the intersection of speech and
video modalities, Jan et al. [135] investigated the capability of cognitive machines and
robots to autonomously recognize psychological states. By analyzing gestures and facial
expressions, these intelligent systems aim to play a role in monitoring depressive states.
Uddin et al. [136] optimized the data processing workflow by segmenting audio and video
into fixed-length units for input into a spatiotemporal network. This network is tailored to
extract both spatial and temporal characteristics, with the introduction of dynamic feature
descriptors like the Volume Local Directional Structure Pattern (VLDSP) to capture the
nuances of facial dynamics.

Not content with dual-modal analyses, some studies have ambitiously integrated all
three modalities—speech, text, and video—to push the boundaries of depression detection.
Yang et al. [137] contributed to this growing body of work by discussing a multi-modal
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depression analysis framework comprising deep convolutional neural networks (DCNNs)
and deep neural networks (DNNs). This composite approach leverages the strengths of
each modality, offering a more robust and potentially accurate detection system. The con-
vergence of such diverse modalities represents a significant step forward in the field of
mental health diagnostics. By combining distinct but complementary data sources, these
integrated approaches aim to mirror the complex nature of depression more closely, offering
promising directions for future research and potential clinical applications. The ultimate
goal is to refine these tools for enhancing early detection and personalizing treatment
strategies, thus providing a beacon of hope for individuals grappling with depression.

Table 5. Summary of different medical features for depression disease diagnosis.

Literature Feature Name Modality Dataset Results

Aragon et al. [58] Word embedding, hashtag Text eRisk 2018 and 2019 0.79 (F1) for Anorexia,
0.58 (F1) for Depression

Verma et al. [113],
Ghosh et al. [114]

Word embedding Text Twitter data collected
by Twitter API

78% (ACC)

Xu et al. [115],
Qi et al. [116]

Multiple characteristics Text Dreaddit, DepSever-
ity, SDCNL, CSSRS-
Suicide

0.816 (ACC) for Dreaddit,
0.775 (ACC) and 0.756 (ACC)
for DepSeverity, 0.724 (ACC)
for SDCNL, 0.868 (ACC)
and 0.481 (ACC) for CSSRS-
Suicide

Liu et al. [117] MFCC, PLP, FBANK, TDNN × vec-
tor, Resnet × vector, I-vector

Speech CN-Celeb, Depression
speech database-20

accuracy: 74.72%

Liu et al. [118] Short-term energy (power), inten-
sity, loudness, zero crossing rate
(ZCR), F0, jitter, flicker, formants
and mel frequency cepstral coeffi-
cients (MFCC)), linear prediction co-
efficient (LPC), line spectrum pair
(LSP)), perceptual linear prediction
coefficient (PLP), etc.

Speech private dataset 78.02% Accuracy

Jiang et al. [119] Prosodic, spectral, and glottal
features

Speech private dataset The accuracy was 75.00%
in women and 81.82%
in men, and the
sensitivity/specificity
ratio was 79.25%/70.59% in
women and 78.13%/85.29%
in men

Liu et al. [120] MFCC, LPC, Jitter, Fundamental Fre-
quency, etc.

Speech private dataset The recognition accuracy for
males and females was 75.8%
and 68.5% respectively

Yin et al. [121] MFCC Speech DAIC-WOZ, MODM F1: 92.7, Recall: 92.7,
Precision: 92.8

Tasnim et al. [122] Spectral features, depth representa-
tion features

Speech DAIC-WOZ F1: 69%

He et al. [123] eGeMAPS, MRELBP, raw waveform,
spectrogram

Speech AVEC2013,
AVEC2014

AVEC2013: RMSE 9.0000,
MAE7.4210; AVEC2014:
RMSE10.0012, MAE 8.201
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Table 5. Cont.

Literature Feature Name Modality Dataset Results

Dubagunta et al. [124] original speech signal, Low profile
filtered signal (LPF), Linear Predic-
tion Residual Signal (LPR), Homo-
morphically filtered speech source
signal (HFVS), Zero frequency fil-
tered signal (ZFF)

Speech AVEC2013,
AVEC2014

RMSE: 8.549, MAE: 6.650, F1:
0.824

Zhao et al. [125] ComParE, some frame-level features Speech DAIC-WOZ, MODM This model improves 2.3%
and 10.3% compared to
the LSTM model in public
databases

Dong et al. [126] Depth representation features Speech AVEC2013,
AVEC2014

MSE: 8.549, MAE: 6.650, F1:
0.82

Kang et al. [127] Matrix image of asymmetric feature
transformation of EEG

EEG Public dataset HUSM Accuracy 98.85%

Čukić et al. [128] HFD and SampEn of EEG signals EEG Private dataset
(23 patents)

average accuracy 90.24%
97.56%

Mahato et al. [129] Combined characteristics of alpha,
alpha1, alpha2, beta, delta and theta
power and theta asymmetry (delta,
theta, alpha, beta, alpha1, alpha2)
and theta asymmetry (average theta
asymmetry and paired theta asym-
metry)

EEG Public dataset average accuracy 88.33%

Wan et al. [130] The feature extraction methods of
time domain, frequency domain,
wavelet, and nonlinear analysis are
used to extract features from the sub-
band components corresponding to
the EEG samples.

EEG Private (Beijing
Anding Hospital,
12 normal people,
23 patients)

accuracy 86.67%

Cai et al. [131] The linear characteristics are as fol-
lows: peak, variance, dip, kurto-
sis, and Hjorth parameters. Nonlin-
ear characteristics include C0 com-
plexity, correlation dimension, Shan-
non entropy, Kolmogorov entropy,
and power spectral entropy.

EEG Private dataset: 152
depressed patients
and 113 healthy
subjects

accuracy 71.32%

Zhu et al. [47] 1760 features (22 EEG features × 5
frequency bands × 16 electrodes)

EEG Public dataset Ad-hoc accuracy 83.42%

Ehghaghi et al. [132] The acoustic features comprise spec-
tral and sound-related characteris-
tics, such as statistical functions
of Mel-frequency cepstral coeffi-
cients (MFCC), fundamental fre-
quency (F0), and zero-crossing rate
(ZCR). Text features include syntac-
tic complexity, semantic complexity,
and discourse coherence, among oth-
ers.

Speech,
text

Dementia- Bank,
Healthy Aging,
ADReSS, DEPAC+,
AD Clinical Trial

F1: 0.89 ± 0.03

Diep et al. [133] Handcrafted features provided by
domain experts include acoustic fea-
tures, semantic features, and lexical-
syntactic features.

Speech,
text

DEPAC F1: 63.0%
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Table 5. Cont.

Literature Feature Name Modality Dataset Results

Mao et al. [134] For speech, the features encompass
prosodic features (NAQ, QOQ, H1–
H2, PSP, MDQ, Peaklope, Rd), voice
quality features (F0, VUV), and spec-
tral features (MCEP, HMPDM, HM-
PDD). In the realm of text, GloVe
word vectors are utilized.

Speech,
text

DAIC-WOZg accuracy 95.80%

Jan et al. [135] Visual feature extraction includes
Local Binary Pattern (LBP), Edge
Orientation Histogram (EOH),
Local Phase Quantization (LPQ),
and deep feature extraction using
pre-trained models like VGG-face
and AlexNet. For audio feature
extraction, Mel-frequency cepstral
coefficients (MFCC) are employed.
Additionally, the feature dynamic
historical histogram involves MHH.

Speech,
video

AVEC2013,
AVEC2014

MAE: 6.14 RMSE: 7.43

Uddin et al. [136] raw wav, image Speech,
video

AVEC2013,
AVEC2014

AVEC2013: MAE 6.92, RMSE
8.54; AVEC2014: MAE 6.75,
RMSE 8.45

Yang et al. [137] For speech, statistical features are ex-
tracted.
In the domain of text, paragraph vec-
tors are utilized.
For video, the feature extraction
involves Displacement Range His-
togram (DRH).

Speech,
text, video

DAIC-WOZ RMSE: 5.974, MAE: 5.163

3.4. Diagnosis of Heart Disease.

Heart diseases, particularly Cardiovascular Diseases (CVD), stand as the leading cause
of death worldwide. Hypertrophic Cardiomyopathy (HCM) poses significant challenges
due to the thickening of the left ventricular walls of the heart. The modern era has seen a
paradigm shift in heart disease diagnosis, leveraging advanced technologies across various
modalities. This chapter will diagnostic methods for heart disease using hypertrophic car-
diomyopathy (HCM) as an example. We will gain a deeper understanding of HCM-assisted
diagnostic techniques based on echocardiography, medical text data, and electrocardio-
grams (ECG) and explore other heart disease diagnostic methods based on genetic data.
The comprehensive application of these diagnostic tools provides support for the early
identification and treatment of heart disease and is of great significance for improving
patient prognosis and quality of life. This section provides a summarized overview of the
model and its features, as detailed in the accompanying Table 6.

Echocardiography. Deep learning frameworks have shown remarkable promise
in enhancing the accuracy and efficiency of heart disease detection and classification.
Among these advancements, the work of Almadani et al. [138] stands out with the introduc-
tion of the HCM Dynamic Echo, an end-to-end deep learning framework designed for the
binary classification of echocardiography videos into hypertrophic cardiomyopathy (HCM)
or normal categories. This system includes two analytical components: Branch 1, dubbed
the Slow Path, which focuses on extracting spatial features, and Branch 2, known as the Fast
Path, which is dedicated to capturing temporal structure information, thereby improving
the accuracy of video recognition. They applied transfer learning and pre-trained HCM
Dynamic Echo on the large Stanford EchoNet Dynamic Echocardiography dataset, enabling
HCM detection in smaller echocardiography video datasets. In rigorous evaluations, HCM
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Dynamic Echo outperformed state-of-the-art baselines, with an accuracy of 93.13%, an F1
score of 92.98%, a Positive Predictive Value (PPV) of 94.64%, a specificity of 94.87%, and an
Area Under the Curve (AUC) of 93.13%.

Parallel to these developments, other researchers have also made significant contri-
butions to the field. For instance, Madani et al. [139] developed a high-efficiency deep
learning classifier for binary Left Ventricular Hypertrophy (LVH) diagnosis using echocar-
diography images. The core framework of their model included a U-Net for eliminating
auxiliary information from image and a series of convolutional neural networks, resulting
in an accuracy of 91.2%. To counter data scarcity, they proposed data augmentation using
semi-supervised Generative Adversarial Networks (GANs). GANs demonstrated superior
performance than traditional CNNs with limited data, attaining a test accuracy of 92.3%.
Nasimova et al. [140] introduced a deep convolutional neural network for classifying
echocardiography videos as Dilated Cardiomyopathy or Hypertrophic Cardiomyopathy.
Their study initially generated an Echo dataset from internet-sourced Echo videos and
EchoNet database videos. The team trimmed the collected videos to 2–5 s to remove unnec-
essary echo information and redundant frames before segmenting them into 112 × 112 × 3
images for manual feature extraction. These images and extracted features were input into
a six-layer CNN for classification, achieving a test accuracy of 98.2%.

Moreover, some studies have contributed to the field by applying deep learning
models to diagnose various cardiac conditions from echocardiography. Zhang et al. [141]
utilized the VGG-16 model to automatically detect three diseases from echocardiography:
Hypertrophic Cardiomyopathy, Pulmonary Arterial Hypertension, and Cardiac Amyloido-
sis. They trained separate networks for each disease, using three random images per video.
The images were processed through the VGG-16 model with a fully connected layer fea-
turing two output units, achieving an AUC of 93% and p-value of 0.23 for HCM detection.
Ghorbani et al. [142] analyzed 3312 consecutive comprehensive non-stress echocardiogra-
phy studies collected from June to December 2018. The process started with the first frame
of each video, sampling 20 frames at intervals of 100 milliseconds. The Inception-Resnet-v1
network processed each frame individually, and the final prediction was determined by
averaging the predictions from all individual frames. This method achieved an AUC-ROC
of 0.75 and an F1 score of 0.57.

Medical text data. Sundaram et al. [143] developed a Random Forest (RF) model to
automatically identify patients with Hypertrophic Cardiomyopathy (HCM) using features
extracted from Cardiac Magnetic Resonance (CMR) imaging reports. The Random Forest
(RF) model attained an accuracy of 86% using 608 features and achieved 85% accuracy with
30 features. Mishra et al. [144] introduced an innovative application within the medical
Internet of Things (IoMT) domain. They utilized a Recurrent convolutional neural network
(Rec-CONVnet) to accurately estimate the risk of heart disease. The system design compiles
various data points such as age, gender, symptoms of chest discomfort, blood sugar
levels, blood pressure (BP), and other relevant clinical factors. Through comprehensive
simulations and evaluations, the Rec-CONVnet demonstrated remarkable performance,
achieving an impressive F1 score of 97%. Jayasudha et al. [145] designed a Social Water
Cycle Driving Training Optimization (SWCDTO) ensemble classifier for heart disease
detection. The classifier showed outstanding performance across specificity, accuracy,
and sensitivity, reaching 95.84%, 94.80 and 95.36% in each metric. Levine et al. [146]
investigated the performance of a large model (GPT-3) in diagnosing and triaging diseases
like heart disease. The findings indicated that GPT-3’s performance nearly approached that
of professional medical practitioners.

Genetic data. Peng et al. [147] employed a Support Vector Machine (SVM), Random
Forest (RF), and Logistic Regression (LR) to develop a classification model for coronary
atherosclerosis heart disease (CAD). This model utilized datasets GSE12288, GSE7638,
and GSE66360 from the GEO database. The ROC curve analysis revealed for SVM, RF,
and LR in validation to be 75.58%, 63.57%, and 63.95%, respectively. Their respective areas
under the curve were 81.3% (95% CI 0.761–0.866, p < 0.0001), 72.7% (95% CI 0.665–0.788,
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p < 0.0001), and 78.3% (95% CI 0.725–0.841, p < 0.0001). Liu et al. [148] created a classifica-
tion model for Coronary Artery Disease (CAD) using LASSO logistic regression, random
forest, and SVM. They used data from the GEO dataset GSE113079, achieving an AUC
of 97.1% in the training set and 98.9% in the testing set. Zhang et al. [44] introduced the
Integration Machine Learning (IML) algorithm, incorporating a SVM, neural network (NN),
RF, gradient boosting machine (GBM), decision trees (DT), and LASSO. This algorithm was
applied to classify patients with Acute Myocardial Infarction (AMI) and stable coronary
artery disease (SCAD), using GEO datasets GSE60993, GSE62646, GSE48060, and GSE59867,
achieving an AUC over 90%. Hou et al. [149] utilized SVM for classifying CAD without
heart failure (CAD-non HF), CAD complicated with heart failure (CAD-HF), and healthy
controls, using GEO datasets GSE20681 and GSE59867. The study achieved an AUC of 0.944.
Finally, Samadishadlou et al. [150] applied SVM for classifying myocardial infarction (MI),
stable CAD, and healthy individuals, using datasets GSE59867, GSE56609, and GSE54475
from GEO. Their model demonstrated an AUC-ROC of 96% and an accuracy of 94%.

Electrocardiogram. The integration of Convolutional Neural Networks (CNN) into the
analysis of Electrocardiogram (ECG) data has marked a significant leap forward in detecting
Hypertrophic Cardiomyopathy (HCM) and other cardiovascular diseases (CVDs) [151].
Among the notable contributions, Tison et al. [152] developed an automated and highly
interpretable method for analyzing patient ECG features. This method processed and
analyzed 36,186 ECG datum from the University of California, San Francisco (UCSF)
database. Researchers utilized Hidden Markov Models (HMM) to extract ECG vector
representations containing 725 features, which were then trained using CNNs to estimate
cardiac structural and functional indices and classify diseases. Compared to traditional
neural network models, this vectorized processing approach better retained meaningful
features in ECGs, thus enhancing the interpretability and accuracy of diagnostic results.
Similarly, Dai et al. [151] used a deep CNN to classify five cardiovascular diseases (CVDs)
using standard 12-lead ECG signals. The study utilized the public Physiobank (PTB)
ECG database. The researchers have segmented ECG signals into different intervals—1 s,
2 s, and 3 s—without detecting individual waves, thus forming three distinct datasets.
They applied ten-fold cross-validation on one-second-long ECG signals and tested on the
other two datasets (two and three seconds long). The proposed CNN model achieved an
accuracy, sensitivity, and specificity of 99.59%, 99.04%, and 99.87%, respectively, for one-
second signals, demonstrating superior performance. For two-second signals using pre-
trained models, the system achieved an overall accuracy, sensitivity, and specificity of
99.80%, 99.48%, and 99.93%. For three-second signal detection, the accuracies were 99.84%,
sensitivity 99.52%, and specificity 99.95%. These results indicate that the proposed system
achieved high performance while maintaining simplicity and flexibility, suggesting its
potential for real-time application in medical settings.

Furthermore, Tison et al. [153] highlighted the application value of AI-enhanced
ECG (AI-ECG) in assessing disease states and treatment responses for obstructive HCM.
The study noted that AI-ECG could extract more physiologically and pathophysiologically
relevant information related to obstructive HCM from ECGs, surpassing traditional manual
interpretation methods. Moreover, the study mentioned the potential of AI-ECG for remote
monitoring through smartphone electrodes to assess disease states and treatment responses.
The authors also foresaw the future application of this technology in medication adjustment
and enhancing treatment safety.

Another impressive study is conducted by the Mayo Clinic [154]: they used digital
12-lead ECGs from 2448 diagnosed HCM patients and 51,153 age and gender-matched
non-HCM controls to train and validate a CNN. The algorithm performed impressively in
adult HCM patient ECG detection, with an AUC of 0.96, sensitivity of 87%, and specificity
of 90%. The algorithm’s performance in a test of 300 children and over 18,000 age and
gender-matched controls was equally impressive: the HCM detection model achieved an
AUC of 0.98, sensitivity of 92%, specificity of 95%, Positive Predictive Value (PPV) of 22%,
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and Negative Predictive Value (NPV) of 99%. The study found that the algorithm generally
performed better in the adolescent group than in the pediatric group.

Table 6. Summary of different medical features for heart disease diagnosis.

Literature Feature Name Modality Dataset Results

Almadani
et al. [138]

Echocardiography echocar-
diogram videos

Stanford EchoNet-
Dynamic echocardio-
gram dataset

ACC: 93.13%,
F1-score: 92.98%,
Positive Predictive Value
(PPV): 94.64%,
specificity: 94.87%,
AUC: 93.13%

Madani et al. [139] echocardiography Original
echocardiograms

Private dataset 92.3% accuracy: binary left
ventricular hypertrophy clas-
sification

Nasimova
et al. [140]

Echocardiography Clipped
echocardiogram
video frames

(1) EchoNet database;
(2) Echo videos from
the Internet

ACC: 98.2% (dilated
cardiomyopathy vs.
hyper-trophic
cardiomy-opathy (HCM))

Zhang et al. [141] Echocardiography Original
echocardiograms

Private dataset AUC: 0.93

Ghorbani
et al. [142]

Echocardiography Cropped
echocardiogram
regions (inside of
the scanning sector)

Private dataset AUC: 0.75

Sundaram
et al. [143]

Word Embedding, Part
of Speech (POS)

Text CMR 86% (ACC) for 608 features
and 85% (ACC) for 30 fea-
tures

Mishra et al. [144] Word Embedding Text Real clinical records
in hospital databases

97% F1 score, FPR of 64.6%,
accuracy of 96.4%, and accu-
racy of 76.2%

Levine et al. [146] Multivariate Features Text Recruited
participants

Brier score = 0.18 for disease,
Brier score = 0.22 for triage

Peng et al. [147] Gene-based RNA-seq GEO SVM: 81.3% (ACC); RF: 72.7%
(ACC); LR: 78.3% (ACC)

Liu et al. [148] Gene-based RNA-seq GEO Training: 97.1% (AUC), test:
98.9% (AUC)

Zhang et al. [44] Gene-based RNA-seq GEO 90% (AUC)

Hou et al. [149] Gene-based RNA-seq GEO 94.4% (AUC)

Samadishadlou
et al. [150]

Gene-based MicroRNA GEO 96% (AUC), 94% (ACC)

Dai et al. [151] End-to-end
Auto-learned Features

ECG Physiobank
(PTB) Public Dataset

Accuracy: 99.84%,
Sensitivity: 99.52%,
Specificity: 99.95%

Tison et al. [152] 725 Features Extracted
using Hidden Markov
Models

ECG UCSF Database AUR: Range 0.94 to 0.77

Tison et al. [153] End-to-end
Auto-learned Features

ECG UCSF Database -

Ko et al. [154] End-to-end
Auto-learned Features

ECG Public Mayo Clinic
Developed Database

AUC: 0.96, Sensitivity: 87%,
Specificity: 90%
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3.5. Diagnosis of Epilepsy

Epilepsy, a prevalent neurological disorder affecting approximately 60 million people
worldwide [155], poses significant diagnostic challenges. A range of symptoms charac-
terizes it, and an effective diagnosis requires a multidisciplinary approach. This article
explores various diagnostic methods employed in epilepsy detection, utilizing advanced
technology and medical imaging. This chapter will explore auxiliary diagnostic techniques
for epilepsy based on images, medical text data, and electroencephalography (EEG). These
methods play a crucial role in improving the accuracy and efficiency of epilepsy diagnosis,
providing us with a new perspective to understand this complex disease and bringing
better medical services to patients. This section provides a summarized overview of the
model and its features, as detailed in the accompanying Table 7.

Medical video. Using video data for computer-assisted diagnosis has become essen-
tial for the timely detection of epilepsy. Karácsony et al. [156] employed clinical Motion
Capture (MoCap) to quantitatively analyze seizure-related symptoms such as ictal head
turning and upper limb automatisms, marking a pioneering discovery in differentiat-
ing epilepsy syndromes, providing clinical localization and lateralization information.
Maia et al. [157] applied a threshold-based approach to first detect regions of interest
(beds) in video data, aligning them vertically for consistency, then utilized Convolutional
Neural Networks and Multilayer Perceptrons to classify epileptic seizures, achieving 65%
AUC. Achilles et al. [158] recorded 52 seizures at 15 frames per second using infrared and
depth imaging sensors, training distinct Deep Convolutional Neural Network architectures
(CNNs) on video frames (one CNN for infrared frames, another for depth frames). Combin-
ing outputs from both networks, they achieved the prediction of ictal or interictal epilepsy
phases, with their method demonstrating high sensitivity (87%) and specificity (81%) for
generalized tonic-clonic seizures.

Building upon these advancements, Ahmedt-Aristizabal [159] unveiled an innovative
network approach that integrates 3D facial reconstruction with deep learning. The design
of this approach aims to detect and measure orofacial semiotics in a collection of 20 seizure
videos, featuring recordings from patients with temporal and extra-temporal lobe epilepsy.
The developed network demonstrated its capability to differentiate between two types of
epileptic seizures, achieving an average classification accuracy of 89%. It marks a significant
advancement in computer vision and deep learning within non-contact systems, particu-
larly for identifying common semiotics in real-world clinical environments. Significantly,
this method departs from earlier epilepsy monitoring techniques by moving beyond the
reliance on single-angle image information. In contrast, Kunekar et al. [160] proposed
improving accuracy by utilizing information from multiple modalities instead of relying
solely on features from a single viewpoint. Ahmedt-Aristizabal et al. [161] proposed a new
modular, hierarchical, multi-modal system aimed at detecting and quantifying semiotic
signs recorded in 2D monitoring videos. This method combines computer vision with deep
learning architectures to learn semiotic features from facial, body, and hand movements.

MRI. MRI-generated 2D or 3D images enable a better understanding of the brain’s
internal structure, pinpointing brain issues associated with epileptic seizures. fMRI has
become indispensable tools in the detection and understanding of epileptic seizures by
providing detailed images of the brain’s internal structure. Garner et al. [162] applied a
machine learning approach using a Random Forest classifier, trained with resting-state
functional MRI (fMRI) data, to predict epilepsy outcomes. The model achieved a 69%
accuracy rate in predicting epilepsy outcomes on the test set after 100 stratified cross-
validation rounds, using 70% of resting-state fMRI scans for training and 30% for testing.
Similarly, Sahebzamani et al. [163] employed the Gram-Schmidt orthogonalization method
alongside a unified tissue segmentation approach for segmenting brain tissues in MRI
images. They calculated first-order statistical and Gray Level Co-occurrence Matrix (GLCM)
texture features and trained SVM classifiers using features from either the entire brain or
the hippocampus to diagnose epilepsy. This comprehensive segmentation and whole-brain
analysis methodology yielded a 94% accuracy rate.
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In the quest for early and accurate diagnosis, researchers like Si et al. [164] have turned
to diffusion MRI techniques to detect subtle brain changes in conditions such as Juvenile My-
oclonic Epilepsy. They emphasized the importance of early diagnosis in Juvenile Myoclonic
Epilepsy (JME), a disorder that predominantly affects adolescents and poses significant
developmental challenges. They utilized two advanced diffusion MRI techniques—High
Angular Resolution Diffusion Imaging (HARDI) and Neurite Orientation Dispersion and
Density Imaging (NODDI)—to create connectivity matrices that capture subtle white matter
changes. By adopting transfer learning, they trained sophisticated Convolutional Neural
Network (CNN)-based models for JME detection. Pominova et al. [165] explored various
deep 3D neural architecture building blocks for epilepsy detection, using both structural
and functional MRI data. They experimented with 12 different architectural variants of
3D convolution and 3D recurrent neural networks. Santoso et al. [166] proposed a novel
integrated Convolutional Neural Network approach for classifying brain abnormalities
(epilepsy vs. non-epilepsy) using axial multi-sequence MR images. The model comprised
base learners with distinct architectures and lower parameter counts. By aggregating
the outputs and predictions of these base models (through methods like majority voting,
weighted majority voting, and weighted averaging) and feeding them into a meta-learning
process with a SVM, they significantly enhanced the final classification performance.

Medical text data. Hamid et al. [167] showcased the potential to differentiate epileptic
patients from those with psychogenic non-epileptic seizures (PNES). They developed an
NLP tool based on an annotator modular pipeline to analyze electronic medical records,
identifying grammatical structures and named entities. This algorithm was proficient in
detecting concepts indicative of PNES and those negating its presence. Taking a different
approach, Pevy and colleagues [168] utilized written records of conversations between
patients and doctors to distinguish between epileptic seizures and PNES. They employed
an NLP toolkit to extract specific features of speech formulation efforts, such as hesitations,
reformulations, and grammatical repairs, from these transcripts. The algorithm then trained
machine learning classifiers with these features, enabling it to distinguish patients based on
their verbal expression patterns. Connolly et al. [169] further affirmed the effectiveness of
NLP in differentiating among various epilepsy types, including partial epilepsy, generalized
epilepsy, and unclassified epilepsy. By analyzing text features extracted from electronic
medical records, their algorithm successfully classified different subtypes of epilepsy with
remarkable accuracy.

EEG. Researchers frequently use CNN (Convolutional Neural Network) architectures,
which can extract features automatically, unlike traditional machine learning classifiers
that require manual extraction of features for detecting and classifying epileptic seizures
effectively. Clarke et al. [170] developed a deep Convolutional Neural Network (CNN) for
detecting epileptic seizure discharges, trained using a dataset comprising over 6000 marked
events from a group of 103 patients diagnosed with Idiopathic Generalized Epilepsy (IGE).
This newly proposed automatic detection algorithm showcased exceptional performance
in identifying epileptic seizures from clinical EEGs. The system achieved an impressive
average sensitivity of 95% and kept the average false positive rate to just one per minute.
These results indicate that AI-powered computer-assisted EEG analysis could significantly
improve the speed and precision of EEG assessments, thereby potentially enhancing treat-
ment outcomes for epilepsy patients. Fürbass et al. [171] employed the Fast R-CNN method
for object detection, using deep regression for localization estimation of EDs (negative
peaks) and the UDA training process to handle noise and artefacts in EEG. The authors
used EEG data from 590,000 epochs of 289 patients for unsupervised training and tested it
against 100 proprietary datasets. The experimental results indicated that the DeepSpike
algorithm attained a sensitivity of 89%, a specificity of 70%, and an overall accuracy rate
of 80%, showcasing its high effectiveness in identifying EEG discharges. Thara et al. [172]
used a two-layer stacked bidirectional Long Short-Term Memory (LSTM) technique for
detecting epileptic seizures. The researchers built a model with two LSTM layers, dropout
and dense layers, and trained and optimized it using activation functions such as sigmoid
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and softmax, achieving good results with an accuracy of 99.89% on the training set and
99.08% on the test set. Yao et al. [173] experimented with ten different and independently
improved RNN (IndRNN) architectures, achieving the best accuracy with a 31-layer Dense
IndRNN with attention (DIndRNN).

Multi-modality. Torres-Velázquez et al. [174] evaluated the performance of multi-
channel deep neural networks in Temporal Lobe Epilepsy (TLE) classification tasks under
single and combined datasets. They trained, validated, and tested several multi-channel
deep neural network models using brain structural indices from structural MRI, MRI-based
region of interest correlation features, and personal demographic and cognitive data (PDC).
Results indicated that PDC alone provided the most accurate TLE classification, followed
by the combination of PDC with MRI-based brain structural indices. These findings affirm
the potential of deep learning methods, like mDNN models, in TLE classification when
combined with multiple datasets.

Table 7. Summary of different medical features for epilepsy diagnosis.

Literature Feature Name Modality Dataset Results

Karácsony et al. [156] Medical video 2D + 3D video feature Neuro- Kinect -

Maia et al. [157] Medical video Original Infrared video fea-
ture

Private data 0.65 (AUC)

Achilles et al. [158] Medical video infrared and depth video
frames

ADNI, AIBL sensitivity (87%)
specificity (81%)

Ahmedt-
Aristizabal et al. [159]

Medical video Regions of interest by 3D face
reconstruction from the origi-
nal video sequences

Private dataset 0.89 (ACC)

Ahmedt-
Aristizabal [161]

Medical video 2D monitoring videos Private dataset 83.4 % (ACC: face); 80.1%
(ACC: body) body; 69.3%
(ACC:hand)e

Garner et al. [162] MRI functional magnetic
resonance imaging
(fMRI) data

REDCap 0.69 (ACC)

Sahebzamani et al. [163] MRI first-order statistical and
volumetric gray-level
co-occurrence matrix (GLCM)
texture features from
structural MRI data

Private dataset 0.94 (ACC)

Si et al. [164] MRI the connectivity matrix
which can describe tiny
changes in white matter

Private dataset 75.2% (ACC) and the
0.839 (AUC)

Pominova et al. [165] MRI 3D + 4D MRI data Private dataset 0.73 (AUC)

Santos et al. [166] MRI axial multi-sequences of MRI Private dataset 86.3% (ACC)
90.75% (F1-score)

Hamid et al. [167] stemming features,
POS, bag of concepts

Text VA national clinical
database

The accuracy, sensitivity,
and F-score are 93%, 99%,
and 96%

Pevy et al. [168] Word embedding Text Recording,
transcribing, and
writing records of
interview corpora

71% (ACC)
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Table 7. Cont.

Literature Feature Name Modality Dataset Results

Connolly et al. [169] N-gram Text DrWare- house
(DrWH)

0.708 (F1) for partial
epilepsy (PE),
generalized epilepsy
(GE), and unclassified
epilepsy (UE), 0.899 (F1)
for PE and GE

Clarke et al. [170] End-to-end
Auto-learned

EEG Public Ad-hoc Average Sensitivity: 95%

Fürbass et al. [171] End-to-end
Auto-learned

EEG Private Dataset (Test);
590,000 Epochs from
289 Patients in Tem-
ple University’s Pub-
lic EEG Corpus (Train-
ing)

Sensitivity: 89%,
Specificity: 70%,
Overall Accuracy: 80%

Thara et al. [172] End-to-end
Auto-learned

EEG Private Dataset Accuracy: 99.89%

Yao et al. [173] End-to-end
Auto-learned

EEG CHB-MIT Dataset Average Sensitivity:
88.80%, Specificity:
88.60%, Precision:
88.69%

Torres-
Velázquez et al. [174]

Multi-modality brain structure metrics from
structural MRI, MRI-based
region of interest correlation
features, and personal demo-
graphic and cognitive data
(PDC)

Private Dataset Acc = 69.46% ± 20.82%,
AUC = 70.00% ± 26.00%

3.6. Discussion

Modality distinction. In our comprehensive review, we examine the different methods
used to automatically diagnose five specific diseases: Alzheimer’s disease (AD), breast
cancer, depression, heart disease, and epilepsy. The medical data produced from different
disease diagnosis processes has commonalities, mainly encompassing image, text, genetic,
signal, and voice modalities. Distinctive preferences for specific modalities exist across
different diseases. Even within the realm of single medical imaging, nuanced differences
become apparent. For Alzheimer’s disease diagnosis, Magnetic Resonance Imaging (MRI)
and Positron Emission Tomography (PET) images emerge as the predominant modalities,
supplemented by the inclusion of voice data. The widespread use of MRI and PET stems
from their effectiveness in capturing the structural and functional brain changes associated
with Alzheimer’s disease (AD). The unique characteristics of neurodegenerative alterations
make these imaging modalities particularly suitable for early detection and monitoring of
disease progression.

Contrastingly, in breast cancer diagnostics, a multifaceted approach involves genetic
data, X-ray imaging, ultrasound, and a notable amount of textual information. The ratio-
nale behind this approach lies in the heterogeneity of breast cancer itself, necessitating a
comprehensive analysis of genetic predispositions, coupled with various imaging tech-
niques and textual data to enhance diagnostic accuracy. Each modality contributes valuable
insights into different aspects of breast cancer pathology, collectively enhancing the overall
diagnostic efficacy. In the context of depression diagnosis, the emphasis shifts toward
textual data and Electroencephalogram (EEG). The reliance on text data could be attributed
to the subjective nature of depression symptoms, requiring a nuanced analysis of linguistic
patterns and sentiment. EEG captures brain wave activity and complements textual data
by providing physiological markers that indicate depression.
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For heart disease diagnosis, the prevalent modalities include echocardiography, elec-
trocardiography, and medical texts. The dominance of ultrasound-based echocardiography
comes from its ability to provide real-time images of the heart’s structure and function,
which is essential for assessing cardiac health. Electrocardiography contributes information
on the heart’s electrical activity, while medical texts further contextualize the diagnostic
process. For epilepsy diagnostics, a comprehensive strategy incorporates Magnetic Res-
onance Imaging (MRI), video data capturing patient movements, Electroencephalogram
(EEG), and relevant textual information. The utilization of these diverse modalities is
driven by the intricate nature of epilepsy itself, demanding a thorough examination of
various aspects. MRI provides structural insights, video data offers observations of seizures
and associated movements, EEG captures electrical activity in the brain, while textual
information contributes contextual details.

In conclusion, the selection of modalities for automated diagnosis is intricately tied to
the unique characteristics and pathological features of each disease. Understanding the
rationale behind the prevalence of specific modalities facilitates a targeted and effective
approach to automated disease diagnosis.

Modality fusion. Contemporary diagnostic methodologies increasingly favour the
integration of multi-modal approaches. The advantages of the multi-modal paradigm lie
in its ability to provide a more comprehensive and accurate understanding of complex
phenomena by integrating diverse data modalities. This approach enhances robustness,
improves interpretability, and allows for personalized and optimized solutions across
various domains.

In diagnosing Alzheimer’s Disease (AD), where subtle but significant changes in
language patterns and cognitive function are markers, combining speech and text analysis
is extremely valuable. This multi-modal approach adeptly captures the intricate linguistic
nuances and potential confusion in communication exhibited by AD patients. Integrating
genetic data and electroencephalogram (EEG) as supplementary information enriches the
diagnostic process, addressing the multifaceted nature of AD symptoms and facilitating
a more accurate and holistic understanding. In cancer research, there is a significant
emphasis on combining imaging and genetic data. Since genetic mutations play a pivotal
role in the development and progression of various types of cancer, identifying specific
genetic alterations associated with different types of cancer can provide insights into their
molecular mechanisms and potential therapeutic targets.

Besides, specific genetic mutations may present as unique visual patterns. For exam-
ple, specific genetic alterations in breast cancer, such as those in the BRCA genes, may
result in characteristic radiographic features observable in mammograms or other imag-
ing modalities. Therefore, combining genetic data with medical imaging enhances our
molecular-level understanding of cancer and supports the creation of tailored, accurate
methods for its diagnosis and treatment. Depression diagnosis predominantly relies on
speech modalities, with supplementary integration of text or video data. This emphasis
on speech is justified by the distinct changes in vocal patterns and tone often exhibited by
individuals with depression. Adding text or video data enhances the diagnostic process by
providing extra information on the patient’s emotional and behavioural conditions.

For diagnosing heart disease, it’s common to combine ultrasound imaging with medi-
cal texts. The rationale behind this lies in the need to comprehensively assess both structural
and functional aspects of the heart. Ultrasound provides real-time visualizations of cardiac
anatomy, while medical texts offer additional clinical context, creating a synergistic diagnos-
tic approach. Epilepsy diagnosis currently benefits from the mutual utilization of various
imaging modalities, such as Magnetic Resonance Imaging (MRI) and Positron Emission To-
mography (PET) images. This approach acknowledges the diverse epileptic manifestations
and leverages the strengths of multiple imaging techniques to achieve a more compre-
hensive and accurate diagnosis. In essence, the choice of modalities for fusion explicitly
correlates with the diverse manifestations of patients’ conditions. The reasonable multi-
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modal fusion approach can capture the intricacies of symptoms, ensuring a more nuanced
and effective diagnostic outcome tailored to the specificities of each medical condition.

Performance improvement. The evolution of research in automated disease diag-
nosis is accompanied by the continual improvement of performance. This progression
has transitioned from machine learning dominance to primary reliance on deep learning,
complemented by innovative techniques such as attention mechanisms and transfer learn-
ing. Initially, disease diagnosis methods focused on developing feature engineering within
machine learning studies, where manually identifying and selecting pertinent features was
vital for the model’s performance. However, this process had limitations, often requiring
domain expertise and not fully exploiting the richness of complex datasets. In response to
these challenges, the subsequent embrace of deep learning has become a transformative
force in medical diagnostics. The distinctive advantage of deep learning lies in its capabil-
ity to automatically extract hierarchical and intricate features from raw data, eliminating
the need for explicit feature engineering. This automated feature extraction significantly
enhances the diagnostic model’s performance by allowing it to discern intricate patterns
and relationships within the data.

Deep learning has improved the accuracy and efficiency of disease detection. Within the
domain of deep learning for medical diagnostics, scholars have proposed innovative tech-
niques to elevate model performance. Inspired by how we humans see, attention mecha-
nisms in deep learning models allow a focus on areas within the data for better analysis. It
mimics the human ability to prioritize relevant information, improving the model’s ability
to capture subtle or critical features. Attention mechanisms have shown effectiveness in
different medical imaging tasks, leading to diagnoses that are more precise and aware
of the context. Transfer learning has also become a technique to overcome the issue of
scarce medical data samples. In transfer learning, a model pre-trained on a large dataset,
often from a related domain, is fine-tuned on a smaller target dataset, which is typically
scarce in medical applications. This approach leverages the knowledge gained from the
source domain to enhance the model’s performance on the target task, even when training
samples are limited. Transfer learning has proven effective in scenarios where acquiring a
large, labeled medical dataset is impractical, thus facilitating the development of robust
diagnostic models. The evolution from traditional machine learning, reliant on explicit
feature engineering, to deep learning, with its automated feature extraction capabilities,
has significantly improved disease diagnosis models. Combining attention mechanisms
with transfer learning highlights scholars’ dedication to enhancing model performance,
improving interpretability, and tackling the problem of limited data in medical contexts.
These advancements collectively contribute to the ongoing refinement and enhancement of
state-of-the-art diagnostic systems.

Large model application. The emergence of large models in AI has revolutionized
many industries, particularly in healthcare. These models, often trained on vast datasets,
can analyze complex patterns that lead to more accurate and efficient disease diagnosis.
With the increasing use of electronic health records and the integration of various data
sources, medical institutions now have access to more information. This dataset comprises
patient histories, symptomatology, and genetic profiles, among other details, offering a
rich reservoir. Large models can analyze this data to discern patterns and correlations.
Currently, most large-scale models in healthcare focus on text, analyzing medical records,
discharge summaries, and other types of written data. However, there is potential for
models to analyze additional forms of medical data, including images, voice recordings,
genetic data, and physiological signals.

As technologies improve and datasets grow, we can expect to see more diverse ap-
plications of large models in healthcare. For example, image analysis models can process
medical images such as X-rays or CT scans to detect diseases or lesions more accurately.
The speech analysis model can process the patient’s speech records and extract useful
information from them, such as the severity of symptoms or the development trend of the
condition. Genetic analysis models can predict a patient’s response to specific drugs or
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disease risks based on their genomic data. The physiological signal analysis model can
track the patient’s vital signs, like heart rate and blood pressure, identify any irregularities
swiftly, and take appropriate action. Notably, some challenges need to be solved. One major
challenge is data privacy. Training and refining large models necessitates significant data
volumes, yet it is essential to safeguard the privacy and security of medical information.
Creating strong encryption and access management systems is crucial for patient data. It’s
imperative to address ethical considerations when integrating AI into healthcare practices.
It is essential to ensure that AI algorithms do not discriminate against any particular group
and that their use complies with ethical standards. Overall, the rise of large models in
healthcare can contribute to improving patient outcomes and reduce the burden on the
healthcare system in the future.

4. Challenges and Future Works

Despite the commendable achievements in artificial intelligence (AI) technology within
the realm of disease diagnosis and analysis, it is crucial to acknowledge that notable limita-
tions still prevail in many other facets. Exploring solutions to overcome these limitations
emerges as a pivotal concern for the future trajectory of this field. Consequently, herein, we
delineate the extant constraints and proffer potential resolutions to these challenges.

4.1. Medical Multimodality Data Imbalance

Typically, data imbalance encompasses two dimensions: the imbalance within classes
in a single modality, and the distributional imbalances across different modalities. This
aspect describes the unequal representation of various classes within a single data category.
For instance, in an MRI dataset, there might be a notable discrepancy in the number of scans
illustrating Alzheimer’s disease compared to scans indicative of normal conditions. For the
latter, there is a disproportionate representation of data from one modality compared
to others: There could be a surplus of imaging data yet a scarcity of genetic or textual
data about Alzheimer’s diagnosis. Some strategies are needed to solve the problem of
imbalanced samples:

Transfer learning: Leveraging pre-existing labelled datasets from related medical
domains and applying transfer learning techniques can partially address the data scarcity.
One can refine pre-trained models by fine-tuning them on smaller, specialized datasets that
cater to specific diagnostic challenges.

Synthetic data generation: Employing techniques for generating synthetic data, where
new data points are artificially created based on existing labelled samples, can augment
the available dataset. This approach helps address limitations arising from insufficient
data volume.

Ensemble methods: You can enhance the accuracy of a model by combining predic-
tions from multiple weakly supervised models or by incorporating different sources of
weak supervision. Ensemble methods help compensate for the lack of detailed annotations
by aggregating diverse model outputs.

4.2. Weak Model Generalization Ability

The core technologies and algorithms of AI models designed for different diseases are
typically general. For instance, a Convolutional Neural Network (CNN) has been widely
applied in the diagnosis of AD [80], breast cancer [96], depression [121], heart disease [140],
and epilepsy [158]. However, deploying AI models developed for specific diseases to
other disease predictions often demonstrates limited generalization ability. The primary
reason lies in the fact that AI diagnostic models tailored for a specific disease tend to focus
exclusively on the features unique to the particular disease, overlooking broader patterns.
Some state-of-the-art techniques can address this issue:

Considering multi-centre cross-institutional data collection: Encouraging healthcare
institutions to collaborate on data collection is to create more diverse and representative
datasets. Such collaborative efforts involve pooling data from various sources, encompass-



Bioengineering 2024, 11, 219 36 of 51

ing different geographical locations, demographic profiles, and medical practices. Models
trained on datasets with this heightened diversity are more likely to generalize effectively
across a spectrum of patient populations and healthcare scenarios.

Adversarial training: Adversarial training involves the introduction of adversarial
examples during model training. By exposing the model to perturbed or deceptive samples,
it learns to become more robust and exhibits improved generalization performance when
faced with unseen or unexpected data. This technique can fortify the model against varia-
tions in the input space, enhancing its adaptability to a broader range of medical scenarios.

Reinforcement learning: Reinforcement learning is a paradigm where an agent
interacts with an environment to learn optimal decision-making strategies. In medical
diagnosis, one can use reinforcement learning to develop policies that help the model make
more generalized decisions across diverse contexts. Through trial and error, the model
hones its ability to navigate complex environments and adapt its behaviour to new and
varied scenarios.

4.3. Lack of Model Interpretability

AI has demonstrated tremendous potential in health and medicine, yet research on the
interpretability of AI decision outcomes is limited. This review found that only 28 of the
included studies directly or indirectly tackled the crucial aspect of interpretability. These
studies sought interpretability through methods like logistic regression, decision trees,
naive Bayes, and support vector machines, known for their inherent clarity, or by applying
techniques such as incorporating prior knowledge and using attention mechanisms to
improve model interpretability. However, regrettably, the majority of studies did not
adequately consider this crucial factor. Future research directions urgently need to delve
into the interpretability of artificial intelligence models, utilizing interpretable models to
enhance trust in AI and assist clinical practitioners in making informed decisions [175,176],
thereby promoting the better integration of these models into clinical practice. Some
solutions may be leveraged to enhance model interpretability:

Combining inherently interpretable model architectures. Several models such as de-
cision trees or linear models, can be integrated with machine and deep learning frameworks
thus enhancing transparency. These models provide explicit rules and feature importance,
making their decision-making process more understandable.

Visual heatmaps generation. Generating heatmaps is a common technique for visual-
izing the importance or activation of specific regions in data. For instance, gradient-based
methods like guided backpropagation or gradient-weighted class activation mapping
(Grad-CAM) can identify influential regions, revealing which parts of the input most
significantly contribute to the output.

4.4. Data Privacy and Security

Ensuring data privacy and security has always been a critical issue awaiting resolution
in medical artificial intelligence. The development of robust AI models relies on extensive
training and validation datasets. Because local data is often scarce, it’s usually necessary
to centralize the data. However, centralized solutions come with inherent drawbacks,
including concerns about data ownership, confidentiality, privacy, and security, as well as
the potential for data monopolies biased towards data aggregators [177]. Means to mitigate
these pitfalls include:

Anonymization and de-identification. This method is primarily achieved by remov-
ing or blurring information in the data that identifies individuals, thereby reducing the link
between the data and specific persons. This method is widely employed in current research
to safeguard patient privacy. However, studies indicate that even desensitized data may
still be re-identifiable through sophisticated analysis methods [178].

Federated learning. Federated Learning [179] is a decentralized learning approach
that pushes the model training process to local devices, forming a global model through
local updates, thereby preventing sensitive data from leaving the original devices. This
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method of decentralized learning emerges as a progressive approach to tackle the challenges
of data anonymization and de-identification, offering a proactive strategy for maintaining
data privacy and security.

Swarm learning. Swarm learning [180] extends the principles of federated learning to
scenarios involving multiple participants, facilitating the integration of data from various
sources through collaborative learning. This approach ensures a more comprehensive and
accurate learning outcome while safeguarding privacy.

4.5. Ethical and Moral Considerations

From an ethical and moral standpoint, it is vital to guarantee that developed models
mitigate “bias” and “inequality” across individuals and demographic categories. It is
particularly crucial to address disparities linked to gender, age, race, income, education,
and geographic location to promote fairness. In most studies reviewed, the persistence of
differences often stemmed from not having enough data to achieve mitigation. However,
for the deployment of AI models in clinical practice, ensuring fairness and generalizabil-
ity [181,182] is also essential to guarantee the ethical and effective implementation of these
technologies in a clinical setting [183].

There are at least two common scenarios where ethical issues arise in medical data.
The first scenario is when the data source itself cannot reflect the true epidemiological situ-
ation within a given population, such as population data bias resulting from overdiagnosis
of schizophrenia in African Americans [184]. The second scenario is when the dataset used
for algorithm training lacks members from specific demographic groups. For example,
an algorithm primarily trained on data from elderly white males might yield poor predic-
tions for young black females. If algorithms trained on datasets with these characteristics
are adopted in healthcare, they may exacerbate health disparities [185]. Effective solutions
include:

Balanced data sampling. When constructing the training dataset, employ methods
such as undersampling, oversampling, adaptive sampling, etc., to ensure a relatively
balanced number of samples from different groups. This helps prevent the model from
overly focusing on a specific population, thereby reducing data bias.

Removal of sensitive attributes. Eliminate potentially sensitive attributes (e.g., gender,
race, age, etc.) from the data to ensure that the training dataset for the model does not
contain direct or indirect ethical information.

Establishment of best practices by scientific societies and regulatory bodies. Scien-
tific societies and regulatory bodies should develop data assessment standards, allowing
datasets to comprehensively and accurately represent the societal, environmental, and eco-
nomic factors impacting health [186]. The aim is to identify and minimize bias in training
datasets, thereby fostering the development of algorithms that mitigate bias and promote
fairness. As a notable example of bias reduction, the U.S. Food and Drug Administra-
tion (FDA), within the context of its Digital Health Innovation Action Plan, initiated a
pre-certification pilot program. They evaluate developing medical software based on five
established excellence principles, including quality standards and other similar regulatory
criteria [187]. These standards can be extended to encompass the risk of bias in training
datasets, thereby addressing issues related to data “bias” and “inequality”.

4.6. Future Works

Application of AI on mobile devices. Integrating AI programs on mobile devices
injects a more efficient and intelligent element into the management of patient diseases,
early warnings, and promotion of healthy behaviours [188,189]. Equipping various sensors
and AI programs on devices such as watches and smartphones enables real-time moni-
toring, recording, and analysis of patients’ vital signs (such as heart rate, blood pressure,
oxygen levels, etc.), medication usage, dietary habits, and exercise data. This capability
facilitates patients’ current physical conditions and future trends, enabling timely responses
to potential health risks and offering personalized treatment recommendations.
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Brain-machine interfaces. Brain-machine interfaces (BMIs) [190] are poised to play a
crucial role in the diagnosis of neurological disorders in the future. BMIs, through direct
interaction with signals from the brain, hold the potential to identify diseases related to the
nervous system, such as Parkinson’s disease or stroke. BMIs are anticipated to advance
brain diagnostics, particularly in the field of neuroimaging.

Collaboration of diverse teams. The application of AI in the health and medical
field involves three types of parties, i.e., healthcare professionals, researchers, and AI
experts. Facilitating collaboration among these three parties contributes to the advancement
of AI in the health and medical domain. Healthcare professionals possess rich clinical
experience and specialized medical knowledge, providing profound insights into the
pathology, physiology, and other aspects of diseases. They can offer unique perspectives
and high-quality annotated data for researchers and AI experts, thereby contributing to
more interpretable and accurate AI models for disease diagnosis. Secondly, healthcare
professionals recognize the significance and delicate nature of medical data, as well as
the need to maintain its privacy and security. They can ensure the privacy protection and
compliance of data, ensuring that researchers and AI experts, in the process of refining
AI models, mitigate bias and promote fairness. Reciprocally, researchers and AI experts
possess proficient technical development experience, enabling them to provide healthcare
professionals with adaptive AI models for the ever-evolving medical environment. These
models assist healthcare professionals in clinical diagnosis, achieve early disease warning
and prediction, and alleviate their workload.

5. Conclusions

In this paper, we thoroughly investigate the applications of artificial intelligence in
diagnosing five distinct disorders: Alzheimer’s disease, breast cancer, depression, heart
disease, and epilepsy. We describe commonly used datasets to illustrate the data founda-
tion, considering numerous multimodality data sources. Subsequently, we demonstrate
the data pre-processing, feature engineering process, classification model establishment,
and performance evaluation metrics. These methods automatically transform original data
into valuable information highly relevant to disease lesions, representing key steps for
AI-based diagnosis tasks.

We report and analyze detailed efforts on different modality-driven diagnoses, high-
lighting diverse strategies employed to address the complexities of each disorder. For
Alzheimer’s disease, we scrutinize the integration of multi-modal data such as neuroimag-
ing, genetic markers, and cognitive assessments, emphasizing the intricate interplay be-
tween various diagnostic modalities. In the field of breast cancer, we explore imaging
data from mammograms and genetic information, offering a nuanced understanding of
the disease at both structural and molecular levels. Regarding depression, we investigate
textual and speech data, revealing the potential of linguistic and acoustic cues in enhancing
diagnostic accuracy. For heart disease, we focus on physiological signals and imaging data,
providing a holistic approach to cardiovascular health assessment. Additionally, in the case
of epilepsy, we meticulously examine the integration of electroencephalogram (EEG) data,
showcasing the significance of real-time monitoring and data-driven insights.

Finally, we acknowledge that while AI technology has made certain achievements
in the medical field, significant limitations remain in disease diagnosis applications. We
describe challenges such as medical multimodality data imbalance, weak model generaliza-
tion ability, and lack of model interpretability, providing corresponding solutions to guide
future work. Overall, this review aims to offer a valuable resource for clinicians, researchers,
and stakeholders involved in the dynamic landscape of AI in healthcare by providing a
comprehensive overview of advances in multi-modality-driven AI disease diagnosis.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial intelligence
AD Alzheimer’s disease
HCM Hypertrophic cardiomyopathy
ECG Electrocardiogram
EEG Electroencephalograms
CT Computed tomography
MRI Magnetic resonance imaging
PET Positron emission tomography
SVM Support vector machine
RNN Recurrent neural network
CNN Convolutional neural network
ADNI Alzheimer’s disease neuroimaging initiative
UKB United kingdom biobank
TCGA The cancer genome atlas
BUSI Breast ultrasound images
GEO Gene expression omnibus
HCM Hypertrophic cardiomyopathy
WHO World health organization
SCD Sunnybrook cardiac data
ACDC Automated cardiac diagnosis challenge
DAIC-WOZ Distress analysis interview corpus-wizard of OZ
MODMA Multi-modal open dataset for mental-disorder analysis
WHO World health organization
DICOM Digital imaging and communications in medicine
PNG Portable network graphics
ICA Independent component analysis
DWT Discrete wavelet transform
RFE Recursive feature elimination
PCA Principal component analysis
LDA Linear discriminant analysis
CRF Conditional random fields
LR Logistic Regression
NB Naive bayes
DT Decision tree
LSTM Long short-term memory
LM Large Model
GPT Generative re-trained transformer
PaLM Pathways Language Model
SAM Segment Anything Model
GLM General Language Model
TP True Positive
FP False Positive
TN True Negative
FN False Negative
ACC Accuracy
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Sen Sensitivity
Sp Specificity
P Precision
AUC-ROC Area Under the ROC Curve
TPR True Positive Rate
FPR False Positive Rate
H-FCN Hierarchical Fully Convolutional Network
MIL Multiple Instance Learning
MCI Mild Cognitive Impairment
CN Cognitively normal
GRU Gated Recurrent Unit
MLP Multilayer Perceptrons
ASR Automatic Speech Recognition
MM-SDPN Multi-modal Stacked Denoising Predictive Network
RVFL Random Vector Functional Link
SNP Single nucleotide polymorphism
MAADf Multi-modal AD diagnostic framework
CAD Computer-Aided Diagnosis
NN Neural Network
BF Benign Fibroadenom
BPT Benign Phyllodes Tumor
BTA Benign Tubular Adenoma
MDC Malignant Ductal Carcinoma
MLC Malignant Lobular Carcinoma
MMC Malignant Mucinous Carcinoma
MPC Malignant Papillary Carcinoma
LASSO Least Absolute Shrinkage and Selection Operation
RFE Recursive Feature Elimination
mRNA Maximum Relevance Minimum Redundancy
BUSI Breast Ultrasound Images
EDLCDS-BCD Integrated Deep Learning Clinical Decision Support System
USI Ultrasound image
CKHA Chaos Krill Herd Algorithm
CSO Cat Swarm Optimization
LLM Large Language Model
ELRDD Ensemble Logistic Regression Model for Depression Detection
SR Speaker Recognition
SER Speech Emotion Recognition
AMI Asymmetry Matrix Image
HFD Higuchi’s fractal dimension
SampEn sample entropy
EM Eye movement
VLDSP Volume Local Directional Structure Pattern
DCNN Deep convolutional neural networks
DNN Deep neural network
Bi-LSTM bidirectional long short-term memory
ZCR Zero crossing rate
MFCC mel frequency cepstral coefficient
LPC linear prediction coefficient
LSP line spectrum pair
PLP perceptual linear prediction coefficient
LPF Low profile filtered signal
LPR Linear Prediction Residual Signal
HFVS Homomorphically filtered speech source signal
ZFF Zero frequency filtered signal
PTB Physiobank
CVD Cardiovascular Diseases
HCM Hypertrophic Cardiomyopathy
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IoMT Internet of Things
Rec-CONVnet Recurrent CONVolutional neural network
SWCDTO Social Water Cycle Driving Training Optimization
SCAD Stable coronary artery disease patients
CAD-non HF CAD without HF
CAD-HF CAD complicated with HF
MI Myocardial infarction
UCSF University of California, San Francisco
HMM Hidden Markov Model
PTB public Physiobank
AI-ECG AI-enhanced ECG
PPV Positive Predictive Value
NPV Negative Predictive Value
POS Part Of Speech
MoCap Motion Capture
fMRI functional MRI
GLCM Gray Level Co-occurrence Matrix
JME Juvenile Myoclonic Epilepsy
HARDI High Angular Resolution Diffusion Imaging
NODDI Neurite Orientation Dispersion and Density Imaging
PNES psychogenic non-epileptic seizures
IGE Idiopathic Generalized Epileps
DIndRNN Dense IndRNN with attentio
IndRNN Independently improved RNN
TLE Temporal Lobe Epileps
PDC Personal demographic and cognitive data
PE Partial epilepsy
GE Generalized epilepsy
UE Unclassified epilepsy
TCGA The Cancer Genome Atlas
ADNI Alzheimer’s Disease Neuroimaging initiative
OASIS-3 Open Access Series of Imaging Studies-3
AIBL Australian Imaging, Biomarker and Lifestyle
SCD Sunnybrook Cardiac Data
SAFHS San Antonio Family Heart Study
BUSI Breast Ultrasound Images
GEO Gene Expression Omnibus
TLGS Tehran Lipid and Glucose Study
SCD Sunnybrook Cardiac Data
ACDC Automated Cardiac Diagnosis Challenge
DAIC-WOZ Distress Analysis Interview Corpus-Wizard of OZ
MODMA Multi-modal Open Dataset for Mental-disorder Analysis

Appendix A

Table A1. Multi-modal datasets of diagnosis task for different disease.

Dataset Year Disease Modality Link

Alzheimer’s Disease Neuroimaging
initiative (ADNI)

2003 AD Image-based https://adni.loni.usc.edu/ (accessed on 29
November 2023)

Open Access Series of Imaging Studies-3
(OASIS-3)

2019 AD Image-based https://www.oasis-brains.org/ (accessed
on 29 November 2023)

Australian Imaging, Biomarker and
Lifestyle (AIBL)

2006 AD Image-based https://aibl.org.au/ (accessed on 29
November 2023)

Sunnybrook Cardiac Data (SCD) 2009 AD Image-based https://www.cardiacatlas.
org/sunnybrook-cardiac-data/
(accessed on 29 November 2023)

https://adni.loni.usc.edu/
https://www.oasis-brains.org/
https://aibl.org.au/
https://www.cardiacatlas.org/sunnybrook-cardiac-data/
https://www.cardiacatlas.org/sunnybrook-cardiac-data/
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Table A1. Cont.

Dataset Year Disease Modality Link

Automated Cardiac Diagnosis
Challenge (ACDC)

2018 HCM Image-based https://www.creatis.insa-
lyon.fr/Challenge/acdc/
(accessed on 29 November 2023)

Cardiac CT Segmentation Challenge 2020 HCM Image-based https://www.ub.edu/mnms/ (accessed on
29 November 2023)

Congenital Heart Disease (CHD) 2013 Heart disease Image-based https://www.data.gov.uk/dataset/f1
3fbd0e-fc8a-4d42-82ef-d40f930e4b70/
congenital-heart-disease-chd (accessed on
29 November 2023)

AMRG Cardiac Atlas - Heart disease Image-based https://www.cardiacatlas.org/amrg-
cardiac-atlas/ (accessed on 29 November
2023)

Multi-Ethnic Study of Atherosclerosis 2002 Heart disease Image-based https://www.cardiacatlas.org/mesa/
(accessed on 29 November 2023)

Breast Ultrasound Images (BUSI) 2018 Breast cancer Image-based https://scholar.cu.edu.eg/?q=afahmy/
pages/dataset (accessed on 29 November
2023)

Breast Cancer Coimbra Dataset 2013 Breast cancer Text-based https://archive.ics.uci.edu/ml/datasets/
(accessed on 29 November 2023)

Oncoshare Breast Cancer Database 2016 Breast cancer Text-based https://med.stanford.edu/oncoshare.
html (accessed on 29 November 2023)

I2B2 NLP Research Database 2014 Breast cancer,
Heart disease,
Depression

Text-based https://www.i2b2.org/NLP/DataSets/
Main.php (accessed on 29 November 2023)

MIMIC-III Critical Care Database 2012 Heart disease,
Depression

Text-based https://github.com/MIT-LCP/mimic-
code (accessed on 29 November 2023)

eDiseases Dataset 2018 Breast cancer,
Heart disease,
Depression,
AD

Text-based https://zenodo.org/record/1479354#.Y8
P4kexBy3I (accessed on 29 November 2023)

National Alzheimer’s Coordinating
Center (NACC)

1999 AD Text-based https://naccdata.org/ (accessed on 29
November 2023)

UK Biobank database 2010 Breast can-
cer, Heart
disease, AD,
Depression

Text-based https://www.ukbiobank.ac.uk/ (accessed
on 29 November 2023)

DementiaBank 2003 AD Text-based https://dementia.talkbank.org/ (accessed
on 29 November 2023)

SAHS 2020 Breast cancer,
Heart disease

Text-based https://www.ncbi.nlm.nih.gov/projects/
gap/cgi-bin/study.cgi?study_id=phs00121
5.v3.p2 (accessed on 29 November 2023)

TLGS 1999 Heart disease Text-based https://endocrine.ac.ir/page/Tehran-
Lipid-and-Glucose-Study-TLGS (accessed
on 29 November 2023)

Acute Myocardial Infarction Dataset of
World Health Organization (WHO)

2023 Heart disease Text-based http://www.who.int/ (accessed on 29
November 2023)

UCI machine learning repository 2023 Heart disease Text-based https://archive.ics.uci.edu/dataset/45
/heart+disease (accessed on 29 November
2023)

https://www.creatis.insa-lyon.fr/Challenge/acdc/
https://www.creatis.insa-lyon.fr/Challenge/acdc/
https://www.ub.edu/mnms/
https://www.data.gov.uk/dataset/f13fbd0e-fc8a-4d42-82ef-d40f930e4b70/congenital-heart-disease-chd
https://www.data.gov.uk/dataset/f13fbd0e-fc8a-4d42-82ef-d40f930e4b70/congenital-heart-disease-chd
https://www.data.gov.uk/dataset/f13fbd0e-fc8a-4d42-82ef-d40f930e4b70/congenital-heart-disease-chd
https://www.cardiacatlas.org/amrg-cardiac-atlas/
https://www.cardiacatlas.org/amrg-cardiac-atlas/
https://www.cardiacatlas.org/mesa/
https://scholar.cu.edu.eg/?q=afahmy/pages/dataset
https://scholar.cu.edu.eg/?q=afahmy/pages/dataset
https://archive.ics.uci.edu/ml/datasets/
https://med.stanford.edu/oncoshare.html
https://med.stanford.edu/oncoshare.html
https://www.i2b2.org/NLP/DataSets/Main.php
https://www.i2b2.org/NLP/DataSets/Main.php
https://github.com/MIT-LCP/mimic-code
https://github.com/MIT-LCP/mimic-code
https://zenodo.org/record/1479354#.Y8P4kexBy3I
https://zenodo.org/record/1479354#.Y8P4kexBy3I
https://naccdata.org/
https://www.ukbiobank.ac.uk/
https://dementia.talkbank.org/
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001215.v3.p2
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001215.v3.p2
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001215.v3.p2
https://endocrine.ac.ir/page/Tehran-Lipid-and-Glucose-Study-TLGS
https://endocrine.ac.ir/page/Tehran-Lipid-and-Glucose-Study-TLGS
http://www.who.int/
https://archive.ics.uci.edu/dataset/45/heart+disease
https://archive.ics.uci.edu/dataset/45/heart+disease
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Table A1. Cont.

Dataset Year Disease Modality Link

Depression text dataset 2023 Depression Text-based https://www.Depression-texts.com/
(accessed on 29 November 2023)

The Cancer Genome Atlas (TCGA) 2006 Breast cancer Gene-based https://www.cancer.gov/ccg/research/
genome-sequencing/tcga (accessed on 29
November 2023)

Gene Expression Omnibus (GEO) 2000 Breast cancer Gene-based http://www.ncbi.nlm.nih.gov/geo
(accessed on 29 November 2023)

Online Mendelian Inheritance in Man
(OMIM)

1966 Breast cancer Gene-based https://omim.org/ (accessed on 29 Novem-
ber 2023)

GenBank 1982 Breast cancer Gene-based https://www.ncbi.nlm.nih.gov/genbank/
(accessed on 29 November 2023)

Human Gene Mutation Database
(HGMD)

1996 Breast cancer Gene-based http://www.hgmd.org/ (accessed on 29
November 2023)

Genome Aggregation Database
(genoAD)

2016 Breast cancer Gene-based https://gnomad.broadinstitute.org/
(accessed on 29 November 2023)

Chinese Millionome Database (CMDB) 2017 Breast cancer Gene-based https://db.cngb.org/cmdb (accessed on 29
November 2023)

University of California, Santa Cruz
(UCSC)

2000 Breast cancer Gene-based http://www.genome.ucsc.edu/ (accessed
on 29 November 2023)

Distress Analysis Interview Corpus-
Wizard of OZ (DAIC-WOZ)

2014 Depression Speech-based https://dcapswoz.ict.usc.edu/ (accessed
on 29 November 2023)

Multi-modal Open Dataset for Mental-
disorder Analysis (MODMA)

2020 Depression Speech-based,
ECG-based

http://modma.lzu.edu.cn/data/index/
(accessed on 29 November 2023)

Depression and Anxiety Crowdsourced
corpus (DEPAC)

2023 Depression Speech-based https://www.mturk.com (accessed on 29
November 2023)

Bipolar Disorder Corpus 2018 Depression Speech-based,
ECG-based

https://www.aconf.org/conf_153173.html
(accessed on 29 November 2023)

AVEC2014 2014 Depression Speech-based,
Image-based

http://avec2014-db.sspnet.eu/ (accessed
on 29 November 2023)

AVEC2013 2013 Depression Speech-based,
Image-based

http://avec2013-db.sspnet.eu/ (accessed
on 29 November 2023)

ADReSS 2020 AD Speech-based https://luzs.gitlab.io/adress/ (accessed on
29 November 2023)

AVEC2019 2019 Depression Speech-based https://www.ihp-lab.org/resources/ (ac-
cessed on 29 November 2023)

ADReSS-M 2023 AD Speech-based,
Text-based

https://2023.ieeeicassp.org/ (accessed on
29 November 2023)

ADReSSo 2021 AD Speech-based https://luzs.gitlab.io/adresso-2021/ (ac-
cessed on 29 November 2023)

The Carolinas Conversation Collection
(CCC)

2011 AD Speech-based,
Image-based

https://www.degruyter.com/how-access-
works (accessed on 29 November 2023)

ERP Core 2016 AD EEG-based https://osf.io/thsqg/ (accessed on 29
November 2023)

EEG Epilepsy Datasets 2016 Epilepsy EEG-based https://www.researchgate.net/
publication/308719109_EEG_Epilepsy_
Datasets (accessed on 29 November 2023)

https://www.Depression-texts.com/
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
http://www.ncbi.nlm.nih.gov/geo
https://omim.org/
https://www.ncbi.nlm.nih.gov/genbank/
http://www.hgmd.org/
https://gnomad.broadinstitute.org/
https://db.cngb.org/cmdb
http://www.genome.ucsc.edu/
https://dcapswoz.ict.usc.edu/
http://modma.lzu.edu.cn/data/index/
https://www.mturk.com
https://www.aconf.org/conf_153173.html
http://avec2014-db.sspnet.eu/
http://avec2013-db.sspnet.eu/
https://luzs.gitlab.io/adress/
https://www.ihp-lab.org/resources/
https://2023.ieeeicassp.org/
https://luzs.gitlab.io/adresso-2021/
https://www.degruyter.com/how-access-works
https://www.degruyter.com/how-access-works
https://osf.io/thsqg/
https://www.researchgate.net/publication/308719109_EEG_Epilepsy_Datasets
https://www.researchgate.net/publication/308719109_EEG_Epilepsy_Datasets
https://www.researchgate.net/publication/308719109_EEG_Epilepsy_Datasets
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Dataset Year Disease Modality Link

CHB-MIT Scalp EEG Database 2010 Epilepsy EEG-based https://physionet.org/content/chbmit/1.
0.0/ (accessed on 29 November 2023)

Kaggle 2018 Epilepsy EEG-based https://www.kaggle.com/code/
harunshimanto/machine-learning-
algorithms-for-epileptic-seizures (accessed
on 29 November 2023)

EEG_128channels_ERP_lanzhou_2015 2015 Depression EEG-based http://modma.lzu.edu.cn/data/
application/ (accessed on 29 Novem-
ber 2023)

ECG-ID Database 2014 Heart disease EEG-based https://physionet.org/content/ecgiddb/
1.0.0/ (accessed on 29 November 2023)

Common Standards for Electrocardiog-
raphy (CSE) database

1980 Heart disease EEG-based http://www.escardio.org/Pages/index.
aspx (accessed on 29 November 2023)

European ST-T Database 2009 Heart disease EEG-based https://physionet.org/content/edb/1.0.
0/ (accessed on 29 November 2023)

Sudden Cardiac Death Holter Database 2004 Heart disease EEG-based http://physionet.org/physiobank/
database/sddb/ (accessed on 29 November
2023)

Bonn EEG time series database 2001 Epilepsy EEG-based https://www.ukbonn.de/epileptologie/
ag-lehnertz-downloads/ (accessed on 29
November 2023)

Temple University EEG corpus 2000 Epilepsy EEG-based https://isip.piconepress.com/projects/
tuh_eeg/html/downloads.shtml (accessed
on 29 November 2023)

References
1. Anto, S.; Chandramathi, S. Supervised machine learning approaches for medical data set classification—A review. Int. J. Comput.

Sci. Trends Technol. 2011, 2, 234–240.
2. Marcus, D.S.; Wang, T.H.; Parker, J.; Csernansky, J.G.; Morris, J.C.; Buckner, R.L. Open Access Series of Imaging Studies (OASIS):

Cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J. Cogn. Neurosci. 2007, 19, 1498–1507.
[CrossRef]

3. Allen, N.; Sudlow, C.; Downey, P.; Peakman, T.; Danesh, J.; Elliott, P.; Gallacher, J.; Green, J.; Matthews, P.; Pell, J.; et al. UK
Biobank: Current status and what it means for epidemiology. Health Policy Technol. 2012, 1, 123–126. [CrossRef]

4. Littlejohns, T.J.; Sudlow, C.; Allen, N.E.; Collins, R. UK Biobank: Opportunities for cardiovascular research. Eur. Heart J. 2019,
40, 1158–1166. [CrossRef] [PubMed]

5. Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK biobank:
An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015,
12, e1001779. [CrossRef] [PubMed]

6. Wilkinson, T.; Schnier, C.; Bush, K.; Rannikmäe, K.; Henshall, D.E.; Lerpiniere, C.; Allen, N.E.; Flaig, R.; Russ, T.C.; Bathgate, D.;
et al. Identifying dementia outcomes in UK Biobank: A validation study of primary care, hospital admissions and mortality data.
Eur. J. Epidemiol. 2019, 34, 557–565. [CrossRef] [PubMed]

7. Mueller, S.G.; Weiner, M.W.; Thal, L.J.; Petersen, R.C.; Jack, C.; Jagust, W.; Trojanowski, J.Q.; Toga, A.W.; Beckett, L. The
Alzheimer’s disease neuroimaging initiative. Neuroimaging Clin. 2005, 15, 869–877. [CrossRef]

8. de Vent, N.R.; Agelink van Rentergem, J.A.; Schmand, B.A.; Murre, J.M.; Consortium, A.; Huizenga, H.M. Advanced Neuropsy-
chological Diagnostics Infrastructure (ANDI): A normative database created from control datasets. Front. Psychol. 2016, 7, 1601.
[CrossRef] [PubMed]

9. Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural Netw. 1999, 10, 988–999. [CrossRef] [PubMed]
10. O’Shea, K.; Nash, R. An introduction to convolutional neural networks. arXiv 2015, arXiv:1511.08458.
11. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.

Adv. Neural Inf. Process. Syst. 2017, 30, 1–11.
12. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
13. Ouyang, L.; Wu, J.; Jiang, X.; Almeida, D.; Wainwright, C.; Mishkin, P.; Zhang, C.; Agarwal, S.; Slama, K.; Ray, A.; et al. Training

language models to follow instructions with human feedback. Adv. Neural Inf. Process. Syst. 2022, 35, 27730–27744.

https://physionet.org/content/chbmit/1.0.0/
https://physionet.org/content/chbmit/1.0.0/
https://www.kaggle.com/code/harunshimanto/machine-learning-algorithms-for-epileptic-seizures
https://www.kaggle.com/code/harunshimanto/machine-learning-algorithms-for-epileptic-seizures
https://www.kaggle.com/code/harunshimanto/machine-learning-algorithms-for-epileptic-seizures
http://modma.lzu.edu.cn/data/application/
http://modma.lzu.edu.cn/data/application/
https://physionet.org/content/ecgiddb/1.0.0/
https://physionet.org/content/ecgiddb/1.0.0/
http://www.escardio.org/Pages/index.aspx
http://www.escardio.org/Pages/index.aspx
https://physionet.org/content/edb/1.0.0/
https://physionet.org/content/edb/1.0.0/
http://physionet.org/physiobank/database/sddb/
http://physionet.org/physiobank/database/sddb/
https://www.ukbonn.de/epileptologie/ag-lehnertz-downloads/
https://www.ukbonn.de/epileptologie/ag-lehnertz-downloads/
https://isip.piconepress.com/projects/tuh_eeg/html/downloads.shtml
https://isip.piconepress.com/projects/tuh_eeg/html/downloads.shtml
http://doi.org/10.1162/jocn.2007.19.9.1498
http://dx.doi.org/10.1016/j.hlpt.2012.07.003
http://dx.doi.org/10.1093/eurheartj/ehx254
http://www.ncbi.nlm.nih.gov/pubmed/28531320
http://dx.doi.org/10.1371/journal.pmed.1001779
http://www.ncbi.nlm.nih.gov/pubmed/25826379
http://dx.doi.org/10.1007/s10654-019-00499-1
http://www.ncbi.nlm.nih.gov/pubmed/30806901
http://dx.doi.org/10.1016/j.nic.2005.09.008
http://dx.doi.org/10.3389/fpsyg.2016.01601
http://www.ncbi.nlm.nih.gov/pubmed/27812340
http://dx.doi.org/10.1109/72.788640
http://www.ncbi.nlm.nih.gov/pubmed/18252602
http://dx.doi.org/10.1162/neco.1997.9.8.1735


Bioengineering 2024, 11, 219 45 of 51

14. Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L.; Akkaya, I.; Aleman, F.L.; Almeida, D.; Altenschmidt, J.; Altman, S.; Anadkat, S.;
et al. Gpt-4 technical report. arXiv 2023, arXiv:2303.08774.

15. Touvron, H.; Lavril, T.; Izacard, G.; Martinet, X.; Lachaux, M.A.; Lacroix, T.; Rozière, B.; Goyal, N.; Hambro, E.; Azhar, F.; et al.
Llama: Open and efficient foundation language models. arXiv 2023, arXiv:2302.13971.

16. Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.; Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.; Bhosale, S.; et al.
Llama 2: Open foundation and fine-tuned chat models. arXiv 2023, arXiv:2307.09288.

17. Chowdhery, A.; Narang, S.; Devlin, J.; Bosma, M.; Mishra, G.; Roberts, A.; Barham, P.; Chung, H.W.; Sutton, C.; Gehrmann, S.;
et al. Palm: Scaling language modeling with pathways. J. Mach. Learn. Res. 2023, 24, 1–113.

18. Taori, R.; Gulrajani, I.; Zhang, T.; Dubois, Y.; Li, X.; Guestrin, C.; Liang, P.; Hashimoto, T.B. Stanford Alpaca: An Instruction-
Following Llama Model (2023). Available online: https://github.com/tatsu-lab/stanford_alpaca (accessed on 29 November
2023).

19. Singhal, K.; Azizi, S.; Tu, T.; Mahdavi, S.S.; Wei, J.; Chung, H.W.; Scales, N.; Tanwani, A.; Cole-Lewis, H.; Pfohl, S.; et al. Large
language models encode clinical knowledge. arXiv 2022, arXiv:2212.13138.

20. Singhal, K.; Tu, T.; Gottweis, J.; Sayres, R.; Wulczyn, E.; Hou, L.; Clark, K.; Pfohl, S.; Cole-Lewis, H.; Neal, D.; et al. Towards
expert-level medical question answering with large language models. arXiv 2023, arXiv:2305.09617.

21. Wang, H.; Liu, C.; Xi, N.; Qiang, Z.; Zhao, S.; Qin, B.; Liu, T. Huatuo: Tuning llama model with chinese medical knowledge. arXiv
2023, arXiv:2304.06975.

22. Yunxiang, L.; Zihan, L.; Kai, Z.; Ruilong, D.; You, Z. Chatdoctor: A medical chat model fine-tuned on llama model using medical
domain knowledge. arXiv 2023, arXiv:2303.14070.

23. Xiong, H.; Wang, S.; Zhu, Y.; Zhao, Z.; Liu, Y.; Wang, Q.; Shen, D. Doctorglm: Fine-tuning your chinese doctor is not a herculean
task. arXiv 2023, arXiv:2304.01097.

24. Chen, Y.; Wang, Z.; Xing, X.; Xu, Z.; Fang, K.; Wang, J.; Li, S.; Wu, J.; Liu, Q.; Xu, X.; et al. BianQue: Balancing the Questioning and
Suggestion Ability of Health LLMs with Multi-turn Health Conversations Polished by ChatGPT. arXiv 2023, arXiv:2310.15896.

25. Luo, R.; Sun, L.; Xia, Y.; Qin, T.; Zhang, S.; Poon, H.; Liu, T.Y. BioGPT: Generative pre-trained transformer for biomedical text
generation and mining. Brief. Bioinform. 2022, 23, bbac409. [CrossRef]
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