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Abstract: The 3D reconstruction of an accurate face model is essential for delivering reliable feed-
back for clinical decision support. Medical imaging and specific depth sensors are accurate but not 
suitable for an easy-to-use and portable tool. The recent development of deep learning (DL) models 
opens new challenges for 3D shape reconstruction from a single image. However, the 3D face shape 
reconstruction of facial palsy patients is still a challenge, and this has not been investigated. The 
contribution of the present study is to apply these state-of-the-art methods to reconstruct the 3D 
face shape models of facial palsy patients in natural and mimic postures from one single image. 
Three different methods (3D Basel Morphable model and two 3D Deep Pre-trained models) were 
applied to the dataset of two healthy subjects and two facial palsy patients. The reconstructed out-
comes were compared to the 3D shapes reconstructed using Kinect-driven and MRI-based infor-
mation. As a result, the best mean error of the reconstructed face according to the Kinect-driven 
reconstructed shape is 1.5 ± 1.1 mm. The best error range is 1.9 ± 1.4 mm when compared to the 
MRI-based shapes. Before using the procedure to reconstruct the 3D faces of patients with facial 
palsy or other facial disorders, several ideas for increasing the accuracy of the reconstruction can be 
discussed based on the results. This present study opens new avenues for the fast reconstruction of 
the 3D face shapes of facial palsy patients from a single image. As perspectives, the best DL method 
will be implemented into our computer-aided decision support system for facial disorders. 

Keywords: 3D morphable model; 3D pre-trained model; deep learning; fast 3D face reconstruction; 
Kinect-driven reconstruction; MRI; single image 
 

1. Introduction 

The patients, who are involved in facial palsy or facial transplantation, experience 
facial dysfunctionalities and abnormal facial motion due to altered facial nerves and facial 
muscle systems [1,2]. This leads to unwanted facial movements, such as dysfunctionalities 
of speaking, eating, and the unnatural relaxation of mouth corners drop, eyelid closure, 
and asymmetrical facial expressions [3,4]. Recently, computer-aided decision systems 
have been developed to provide objective and quantitative indicators to better diagnose 
and to optimize the rehabilitation program [5]. The 3D reconstruction of an accurate face 
model is essential for providing reliable feedback. This is currently achieved by using 
medical imaging [6] and different sensors, such as Kinect or 3D scanners [7,8]. Thus, this 
allows for the analysis of the face with external (i.e., face deformation) and internal (i.e., 
facial muscle mechanics) feedback for the diagnosis and rehabilitation process of facial 
palsy and facial transplantation patients [9].In the past few decades, facial analysis has 
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attracted great attention due to its numerous exploitations in human-computer interaction 
[10,11], animation for entertainment [12–14], and healthcare systems [15,16]. Facial analy-
sis from images remains a challenge due to variation poses, expressions, and illumination. 
3D information can be used in order to cope with these variation problems. 3D facial data 
can be acquired from medical imaging [17,18], 3D scanners [7,8], stereo-vision systems 
[19], or RGB-D devices, such as Kinect. The use of medical imaging leads to a very accurate 
3D model, but this is not appropriate for an easy-to-use, cheap, and portable system. The 
use of a depth camera, such as Kinect, can lead to a reasonable accuracy level while keep-
ing the cheap cost, easy-to-use, and portable requirements, but the developed system de-
pends strongly on the selected sensors. In fact, this could alter the future applicability due 
to stopped production, such as in the case of the Kinect V2 camera. Thus, it is necessary 
to have a more flexible and open method for building 3D information rather than using 
specific scanning devices. 

Numerous applications have been developed to perform 3D shape reconstruction 
from 2D images, such as in the computer animation field when creating 3D avatars from 
images or in entertainment fields (e.g., virtual reality or gaming applications) where it is 
necessary to embed the user avatar into the system [20]. Chien-Hsu Chen et al. [20] (2015) 
proposed the use of an augmented reality-based self-facial modeling system. The system 
overlays 3D animation of participant faces for six basic facial expressions, allowing them 
to practice emotional assessments and social skills. The virtual avatars’ 3D head and face 
models were created to suit patients, and then the system was applied for patients to prac-
tice emotional and social skills by allowing the virtual avatar models to perform six fun-
damental facial expressions. Additionally, a reconstructed 3D face provides biometric fea-
tures for security purposes, such as human identification [21,22] and human expression 
recognition [23]. In fact, the face of a person can be used as particular biometric evidence, 
along with other biometric information, such as what a person has (e.g., iris, fingerprint, 
retina, etc.) or produces (e.g., gait, handwriting, voice, etc.) [21]. Biometric facial recogni-
tion is an appealing biometric technique because it relies on the same identifier that people 
use to differentiate one person from another: the face. 

Various methods have been developed to estimate 3D face shapes from one image or 
multi-views images [24]. Three different approaches have been applied to reconstruct the 
3D shape from 2D information. The first approach uses the statistical model fitting with a 
prior 3D facial model to fit the input images [25–27]. The second approach is based on 
photometric stereo, which is suitable for multiple images, and combines a 3D template 
face model with photometric stereo methods to compute the surface normal of the face 
[28,29]. The third approach uses deep learning to learn the shape and appearance of the 
face by training 2D-3D mapping functions [30,31]. 

The first approach uses a prior statistical 3D facial model to fit the input images [25–
27]. In fact, 3D face reconstruction from 2D images is an ill-pose problem. It needs some 
types of previous knowledge. In order to find the solution, statistical 3D face models are 
preferred methods for incorporating this previous knowledge since they encode facial ge-
ometric variations. The 3D morphable model is a statistical 3D face model built from a set 
of 3D scans of heads. This model includes both the shape and the texture of the face. There 
are several existing 3D statistical models from the last few decades. For example, Blanz 
and Vetter (1999) created a 3DMM in UV space from 200 young adults, including 100 fe-
males and 100 males [32]. The well-established Basel Face Model (BFM) [33] was built 
from 200 subjects (100 males and 100 females with an average age of 24.97 years old, from 
8 to 62) with most of the subjects being Caucasian. Several examples are the Face-
Warehouse model [34], FLAME model [35], and BFM 2017 model [36]. In particular, the 
FaceWarehouse model was built by Cao et al. [34] (2014) from depth images of 150 partic-
ipants. Each has 20 different expressions, and the age range is between 7 and 80 years old. 
Afterward, by identifying parameters of the linear combination of 3D statistical model 
bases that best matches the provided 2D image, a new 3D face can be reconstructed from 
one or more images. For example, Wood, Erroll, et al. [37] fit a morphable model to dense 



Bioengineering 2022, 9, 619 3 of 22 
 

landmarks covering the entire head, including the eyes and teeth to a wild image to re-
construct monocular 3D face. This method is effective for predicting dense landmarks for 
a real-time system at over 150FPS. 

The second approach is based on the photometric stereo. The method is suitable for 
multiple images. The method combines a 3D template face model with photometric stereo 
algorithms to compute the surface normal of the face [28,29]. Kemelmacher-Shlizerman 
and Basri [28] reconstructed the 3D face of a person based on a template model. This 
method estimated each of the three elements, including the surface normal, albedo, and 
depth map alternatively by fixing the two remaining. In particular, the spherical harmonic 
parameters 𝛾 were estimated by fixing the albedo and the normal of the template model, 
while fitting the reference shape into the input image. The depth map from the input im-
age is computed by using pre-computed 𝛾 and albedo parameters. Finally, the albedo was 
recovered using pre-computed 𝛾 and the depth map. Without the assumption of uniform 
surface albedos, a robust optimization approach was developed to accurately calibrate 
per-pixel illumination and lighting direction [38]. The input images are then semantically 
segmented using a customized filer along with the geometry proxy to adjust hairy and 
bare skin areas. 

The third approach uses deep learning to learn the shape and appearance of the face 
by training 2D-3D mapping functions. The method encodes prior knowledge of the 
3DMM into the weights of the deep neural network. Several examples can be mentioned. 
Kim et al. [39], for example, rendered synthetic images using parameters predicted based 
on the trained neural network from a real image. Then these synthetic images were added 
to the training set in each iteration. As the result, after each iteration, the training dataset 
was augmented by combining the data generated by the training network. Li et al. [40] 
and Pan et al. [41] used encoder-decoder architecture. The encoder part makes the dimen-
sional reduction of the input image to find new representative features, while the decoder 
part makes use of the new representative features to reconstruct the 3D facial geometry of 
a person. 

Even if these approaches lead to very good accuracy levels for 3D face reconstruction 
and are able to reconstruct 3D subject-specific face reconstruction, the 3D face shape re-
construction of facial palsy patients is still a challenge, and this has not been investigated. 
In fact, the reconstruction of patient-specific 3D face models may be useful for assessing 
the severity degree of facial palsy patients, such as their symmetry. Additionally, merging 
a 3D face model reconstructed from the patient with an animation of practicing rehabili-
tation exercises can generate a realistic animation. This may help patients learn facial mo-
tion and practice rehabilitation exercises more effectively [42]. The objective of the present 
study was to apply these state-of-the-art methods to reconstruct the 3D face shape models 
of facial palsy patients in natural and mimic postures from one single image. Besides, sev-
eral ideas for increasing the accuracy of the reconstruction can be discussed based on the 
results. Then, based on the outcomes, the best method will be selected and implemented 
into our computer-aided decision support system of the facial disorders. 

2. Materials and Methods 
The general framework for reconstructing the 3D face of an individual is illustrated 

in Figure 1. To begin with, a 3D morphable face model is generated from a set of 3D face 
scans. Then, from the input 2D image, the learned model extracts features and estimates 
the corresponding parameters of the 3D morphable model. 
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Figure 1. The general framework for reconstructing a 3D face of an individual. 

2.1. Materials 
In order to reconstruct the 3D face from a 2D image, we used a dataset of two healthy 

subjects (one male and one female) and two facial palsy patients (two females) collected 
from CHU Amiens (France). Each healthy subject or patient signed an informed consent 
agreement before the data acquisition process. The protocol was approved by the local 
ethics committee (no2011-A00532-39). The subject performed several trials with neutral 
positions and facial mimic positions, such as smile, [e], and [u] pronunciation. Our devel-
oped Kinect-based computer vision system [5] was used to capture the high density (HD) 
point clouds of the face as well as the RGB image from Kinect sensors. The images were 
captured where each subject was positioned in front of the camera with a distance of about 
1 m. The RGB image was used for 3D shape reconstruction with the deep learning models. 
The HD point cloud was used to reconstruct the 3D shape for validation purposes. More-
over, 3D face scans using an MRI were also available for validation purposes. 

Two other datasets were collected in order to test more patients with facial palsy. The 
first dataset of 8 patients was collected in an unconstrained condition [43]. The second 
dataset of 12 patients was obtained from the Service Chirurgie Maxillo-Faciale CHU Am-
iens (Prof. Stéphanie DAKPE, Dr. Emilien COLIN) from a pilot study « Etude pilote 
d’évaluation quantitative de l’attention portée aux visages présentant une paralysie fa-
ciale par oculométrie (eye-tracking) » with clinical trial registered (ClinicalTrials.gov Iden-
tifier: NCT04886245-Code promoteur CHU Amiens-Picardie: PI2019_843_0089-Numéro 
ID-RCB: 2019-A02958-49). 

2.2. Method 1: Fitting a 3D Morphable Model 
The information processing pipeline of the 3D morphable modeling approach [25] to 

reconstruct the 3D face shape from a single image is illustrated as in Figure 2. Firstly, a set 
of 2D facial landmarks are detected from the input image by existing face detectors [44,45]. 
Secondly, the scaled orthographic projection projects another set of landmarks from the 
3D model to obtain 2D points in the image plane corresponding with those points ob-
tained from the 2D image. This step results in an equation that parameterizes the pose and 
shape parameter. During the next step, a cost function is built to minimize the error be-
tween the 2D facial landmarks from the 3D model and 2D facial landmarks from the 2D 
facial image. 
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Figure 2. Pipeline to estimate the shape parameters of the 3DMM. 

2.2.1.3D Basel Morphable Model 
In the present study, the Basel 3D Morphable model (3DMM) was used [33]. This 

model was built from a set of 3D faces from a scan of 100 females and 100 males by pre-
senting the face model in terms of trained vector spaces as shape vector spaces. Each face 
is parameterized in the form of angular meshes with 53,490 vertices. The 𝒔 =𝑥 , 𝑦 , 𝑧 , … , 𝑥 , 𝑦 , 𝑧  is the shape vector for 𝑚 = 53,490  vertices. Each vector is in 53,490 × 3 = 106,470 dimensions. 

During the next step, all shape vectors of all 200 subjects were concatenated to obtain 
the matrix of shape 𝑺 (106,470 × 200 dimensional matrix). The principal component anal-
ysis (PCA) was utilized to decompose the shape matrix resulting in a set of linear combi-
nations of shape bases and texture bases. The PCA is usually a technique for reducing the 
dimension of the high dimensional data and still remains the largest information source. 
The constitutive equation of this approach is given in the following equation: 𝑺 = 𝑺 + 𝑺 𝛼  (1)

where 𝑺 (106,470 × 200 dimension matrix) is the shape matrix of 200 subjects and 𝑺  
(106,470 × 200 dimensional matrix) is the mean shape matrix with a mean shape vector 
at each column. 𝑺 (106,470 × 106,470 dimensional matrix) is the principal component of 
the eigenvector of the covariance matrix from the shape matrix, and 𝛼  (106,470 × 200 di-
mensional matrix) is the eigenvalue, which stands for the coefficients of the shape. The 
number of the 𝑺  column and the 𝛼  row can be reduced by choosing the large value of the 
eigenvalue and dropping out the smaller value of the eigenvalue. 

In the PCA decomposition, the mean shape and the shape bases are shared for every 
specific individual, as presented in Figure 3. This means that the mean shape 𝒔  and the 
shape bases (𝑺 ) are the same for every subject in the training set; those can be assumed as 
the population and can be used for other subjects that are different from the subject in the 
training set. Therefore, from a given facial image, the 3D face can be reconstructed by 
finding the coefficients of the specific shape. 
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Figure 3. Patient-specific 3D face model was reconstructed using mean face, eigenfaces, and coeffi-
cients. 

2.2.2. Model Fitting 

Facial Landmark Detection 
Based on the input image, facial landmarks were detected using the pre-trained facial 

landmark detector (dlib library) for the iBUG300-W database [44] from “300 Faces In-the-
Wild Challenge” for automatic facial landmark detection. The method detects 68 facial 
landmarks using the Active Orientation Model, which is a variant of an Active Appear-
ance Model [46]. 

Pose from Scaled Orthographic Projection 
The rotation matrix and translation vector of the face were used to transform a 3D 

face from the space coordinate system into the camera system. The scaled orthographic 
projection assumes that the depths from every point in the face to the camera are not var-
ious from one another, therefore, the mean depth of the face can be the same for every 
point on the face. The projection of the 3D face to the image plane can be estimated using 
rotation 𝑹 ∈ ℝ × , translation 𝒕 ∈ ℝ , and the scale factor 𝑠 ∈ ℝ. This is expressed in the 
following equation: 𝑺𝑶𝑷 𝒇, 𝑹, 𝒕, 𝑠 = 𝑠 1 0 00 1 0 𝑹𝒇 + 𝑠𝒕 (2)

where 𝑺𝑶𝑷 𝒇, 𝑹, 𝒕, 𝑠  are the 2D points of the 3D face in the image plane by scaled ortho-
graphic projection; 𝒇 represents the 3D facial points. 

Additionally, the 𝒇 in the projection equation can be expressed using the shape equa-
tion as follows: 𝒇 = 𝒇 + 𝒇 𝛼  (3)

where 𝒇 is several points in the 3D face, 𝒇  is the corresponding points of the mean shape 
face, 𝒇  corresponds to the shape bases and 𝛼  is the shape coefficients that can be used to 
reconstruct the 3D face. 

Fitting Correspondences 
Optimizing the difference between 2D facial landmarks detected from the input im-

age and corresponding 2D facial landmarks projected from the 3D model could result in 
the pose parameter, including rotation, translation, and scale factor, along with the shape 
parameter (shape coefficients) as follows: 

 𝑬 𝜶, 𝑹, 𝒕, 𝑠 = 𝑳 𝑠 ∑ ‖𝑥 − 𝑺𝑶𝑷 𝒗, 𝑹, 𝒕, 𝑠 ‖  (4)

This problem can be solved by the iterative algorithm POSIT (POS with iteration) 
[47]. The solution is able to estimate the rotation 𝑹, translation 𝒕, and scale factor 𝑠 of the 
input face and the shape parameter 𝛼  for reconstructing the 3D face of the specific image. 

2.3. Method 2: 3D FLAME (Faces Learned with an Articulated Model and Expressions) Model 
The second method reconstructs the 3D face using the approach of Yao et al. [48], in 

which the coefficients of the FLAME model [49] were learned from the pre-trained model 
ResNet50 [50]. 

2.3.1. The Principle 
The geometry shape method used an established 3D statistical head model, namely 

FLAME [49], which can generate the face with different shapes, expressions, and poses. 
The model is a linear combination of identity 𝜷 ∈ ℝ| |, expression 𝝍 ∈ ℝ| | with linear 
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blend skin, and pose 𝜽 ∈ ℝ  (𝑘 = 4 includes the neck, jaw, and two eyeballs). The 
FLAME model is defined as follows: 𝑀 𝜷, 𝝍, 𝜽 = 𝑊 𝑇 𝜷, 𝝍, 𝜽 , 𝐉 𝜷 , 𝜽, 𝓦  (5)𝑇 𝜷, 𝝍, 𝜽 = 𝐓 + 𝐵 𝜷, 𝑺 + 𝐵 𝜽, 𝓟 + 𝐵 𝝍, 𝓔  (6)

where 𝑊 𝐓, 𝐉, 𝜃, 𝓦  is the blend skinning function rotating a set of vertices in 𝐓 ∈ ℝ  
around joints 𝐉 ∈ ℝ , which is smoothed by the blend weights 𝓦 ∈ ℝ × . 

The appearance model was converted from the Basel Face Model and generated a 
UV albedo map 𝐴 𝜶 ∈ ℝ × × , where albedo parameter 𝜶 ∈ ℝ|𝜶|. 

The camera model aims to project 3D vertices onto the image plane 𝑣 = 𝑠Π 𝑀 + 𝑡, 
where 𝑀 ∈ ℝ  is a vertex in 𝑀, Π ∈ ℝ ×  is the orthographic projection matrix from 3D to 
2D, and 𝑠 ∈ ℝ and 𝑡 ∈ ℝ  represent the isotropic scale and 2D translation, respectively. 

The illumination model finds the shaded face image based on spherical harmonics 
[51], and texture rendering is based on the geometry parameters 𝑀 𝜷, 𝝍, 𝜽 , albedo, and 
camera information. 

2.3.2. Model Learning 
Reconstructing the face of the patients based on two steps: coarse reconstruction and 

detail reconstruction. 
A coarse reconstruction was performed by training an encoder 𝐸  consisting of Res-

Net50, which minimizes the variation between the input image I and the synthesis image 
Ir, which is generated by decoding the latent code of the encoded input image. The latent 
code contains a total of 236 parameters of the face model, such as geometric information 
(100 shape parameters of 𝜷, 50 expression parameters of 𝝍, and pose parameters 𝜽), 50 
parameters of appearance information 𝜶, camera and lighting conditions. 

The loss function for the 𝐸  network computes the differences between the input im-
age I and the synthesis image Ir, and consists of the (1) landmark loss (𝐿 ) of 68 2D 
key points on the face; (2) eye closure loss (𝐿  ), penalizing the relative variation between 
landmarks on the upper and lower eyelid; (3) photometric loss (𝐿 ), comparing 
between input image I and the synthesis image Ir; (4) identity loss (𝐿 ), computing 
the cosine similarity which presents the fundamental properties of the patient’s identity; 
(5) shape consistency loss (𝐿 ), computing the differences between the shape parame-
ters (𝜷) from different images of the same patient; and (6) regularization (𝐿 ) 
for shape, expression, and albedo as follows: 𝐿 = 𝐿 + 𝐿 + 𝐿 + 𝐿 + 𝐿 + 𝐿  (7)

Then, the detail reconstruction assists in augmenting the coarse reconstruction with 
the different details, such as wrinkles and facial expressions, using a detailed UV displace-
ment map. The detail reconstruction trains an encoder 𝐸 , which is the same architecture 𝐸  to output 128 latent codes 𝜹 relating to the patient-specific details. The loss function for 
the 𝐸  network contains (1) photometric detail loss (𝐿  ) based on a detail 
displacement map, (2) implicit diversified Markov random field loss (𝐿 ) [52] related to 
geometric details, (3) soft symmetry loss (𝐿 ) to cope with self-occlusions of face 
parts, and (4) detail regularization (𝐿  ) to reduce noise as follows: 𝐿 = 𝐿  + 𝐿 + 𝐿 + 𝐿   (8)

2.4. Method 3: Deep 3D Face Reconstruction 
The third method relates to the deep 3D face reconstruction approach of Yu et al. [53], 

in which the coefficients of the 3D morphable model of the face were learned from the 
pre-trained model ResNet50 [50]. 

2.4.1. 3D Morphable Model 
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The shape S and the texture T of the 3DMM were presented as follows: 𝑺 = 𝑺 𝜶, 𝜷 =  𝑺 + 𝑩 𝜶 + 𝑩 𝜷 (9)𝑻 = 𝑻 𝜹 =  𝑻 + 𝑩 𝜹 (10)

where 𝑺 and 𝑻 are the mean shape and texture of the face model; 𝑩 , 𝑩 , and 𝑩  are the 
principal component vectors based PCA presenting for identity, expression, and texture; 
and respective coefficients vectors are 𝜶, 𝜷, and 𝜹. 

The scene illumination was modeled using spherical harmonics coefficients 𝛾 ∈ ℝ . 
The radiosity of a vertex 𝑠  was computed as 𝐶 𝒏 , 𝒕 = 𝒕 ∙ ∑ 𝛾 Φ 𝒏𝑩 , where 𝒏  and 𝒕  are the surface normal and skin texture of the vertex 𝑠 , and Φ  is the spherical harmon-
ics basis function. 

The pose 𝒑 of the face is represented by rotation R and translation t. All of the un-
known parameters (e.g., 𝑥 = 𝜶, 𝜷, 𝜹, 𝛾, 𝒑 ∈ ℝ ) are the output of the modified RestNet-
50, with the last layer including 239 neurons. 

2.4.2. Model Learning 
The coefficients are the output of the ResNet-50 model, as illustrated in Figure 4, 

which is modified based on the last fully collected layer and was trained by estimating a 
hybrid-level loss of image-level loss and perception-level loss, instead of using ground 
truth labels. 

 
Figure 4. The network architecture for learning the parameters of the face model. The output of 
models, including coefficients that represent identity (𝛼), expression (𝛽), texture (𝛿), pose (𝑝), light-
ing (𝛾), and identity confidence (𝑐). 

Image-level losses integrate photometric loss for each pixel and landmark loss for 
sparse 2D landmarks detected from the input image. The photometric loss between the 
raw (𝐼) and the reconstructed (𝐼′) images is defined as follows: 𝐿 𝑥 = ∑ Α∈ℳ ∙ ‖𝐼 − 𝐼 𝑥 ‖∑ Α∈ℳ  (11)

where, with each pixel index 𝑖, ℳ denotes the re-projected face region, Α is skin color, and ‖∙‖  is the 𝑙  norm. 
Landmark loss is computed on 68 landmarks 𝒒  detected from an input image [54] 

and landmarks projected of the reconstructed shape onto the image 𝒒  as follows: 

 𝐿 𝑥 = ∑ 𝜔 ‖𝒒 − 𝒒 ‖   (12)
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where 𝜔  is the landmark weight and is set to 20 for the mouth and nose points, while it 
is set to 0 for others. 

Perception-level loss tackles the local minimum issue for CNN-based reconstruction 
by extracting deep features from the images of the pre-trained FaceNet model for deep 
face recognition [55] and uses it to estimate perception loss. 𝐿 𝑥 = 1 − 〈𝑓 𝐼 , 𝑓 𝐼 𝑥 〉‖𝑓 𝐼 ‖ ∙ ‖𝑓 𝐼 𝑥 ‖ (13)

where 𝑓 ∙  represents the deep feature and 〈∙,∙〉 is the vector inner product. 
Two regularization losses involving coefficients and textures are added to avoid 

shape and texture degeneration. The coefficients loss invokes the distribution close to the 
mean face: 𝐿 𝑥 = 𝜔 ‖𝛼 ‖ + 𝜔 ‖𝛽 ‖ + 𝜔 ‖𝛿 ‖  (14)

The weights are set to 𝜔 = 1.0, 𝜔 = 0.8, and 𝜔 = 0.0017. The texture loss is com-
puted by flattening constrain 

 𝐿 𝑥 = ∑ 𝑣𝑎𝑟 T ,ℛ∈ , ,   (15)

where ℛ is a pre-defined region of the skin at the cheek, nose, and forehead. 

2.5. Validation versus Kinect-Driven and MRI-Based Reconstructions 
The reconstructed outcomes from the above three methods were compared to the 3D 

shape reconstructed from the Kinect-driven and MRI-based shapes. The 3D Kinect-driven 
shape was reconstructed by using our computer vision system; please refer to the [56] for 
detailed information on the processing method. Specifically, the MRI (magnetic resonance 
imaging) images were segmented using the semi-automatic method with the 3D Slicer 
software, as shown in the Figure 5. 3D shapes were saved in the STL format for further 
comparison. The Hausdorff distance [57] was used to estimate the error of the recon-
structed face compared with ground truth data from MRI and Kinect devices. The CPU 
with configuration core i9-9800H CPU, 2.30 GHz, 32.0 GB RAM, and 16GB NVIDIA 
Quadro RTX 5000 GPU was used to predict 3D faces. 
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Figure 5. Reconstructed 3D face shape from the MRI images and segmentation. The 3D face shape 
was finally registered to the coordinate system of the image-based reconstructed face model before 
calculating the Hausdorff distances. 

3. Computational Results 
The input images of the frontal face of the two facial palsy patients and two healthy 

subjects are used to reconstruct the corresponding patient-specific face. The reconstructed 
3D face shapes are shown in Figure 6 with three applied methods. Comparing the three 
methods, the second method can reconstruct wrinkles with a full head instead of the 
cropped face, compared with methods one and three. The second and third methods were 
able to reconstruct the shape detail parameters, such as shape, pose, and expression, while 
the first method only reconstruct the subject in the neutral position. 

  Method 1 Method 2 Method 3 

Normal 
subject 1 

 
 

 

Normal 
subject 2 

 
 

 

Patient 1 

 
 

 

Patient 2 

  
 

Figure 6. 3D face reconstruction from an input image. 

The performance was then quantified by comparing it with the 3D face obtained from 
the 3D camera Kinect and the MRI image. The 3D face from the MRI-based method can 
be treated as the ground-truth data of the person, while the 3D face from the Kinect-based 
method reconstructs the face with an error of about 1mm. Figure 7 demonstrates the 
smallest error of the 3D face reconstructed from the input image and the 3D face from the 
MRI-based method for the first method (fitting a 3DMM). Only three subjects (two normal 
subjects and one patient) were estimated because the MRI data of the second patient is not 
available. The average error of the three subjects is from 2.020 mm to 6.310 mm. The 
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smallest error is observed in the center of the face area, while the performance suffers 
heavily at the jaw. This is because the input image is in the frontal area of the face, while 
the jaw part is occluded from the frontal face image. 

 
Figure 7. Comparison of 3D face reconstruction (grey) and 3D face reconstruction from MRI (yellow) 
using the first method (fitting a 3DMM). 

Figures 8 and 9 show the comparison of 3D face reconstruction (grey) and 3D face 
reconstruction from MRI (yellow) using the second and third methods, respectively. The 
average error of the three subjects is from 1.7 mm to 2.5 mm. These errors for the third 
method range from 1.1 mm to 1.6 mm. 

 
Figure 8. Comparison of 3D face reconstruction (grey) and 3D face reconstruction from MRI (yellow) 
using the second method (DECA). 
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Figure 9. Comparison of 3D face reconstruction (grey) and 3D face reconstruction from MRI (yellow) 
using the third method (deep 3D face reconstruction). 

The best prediction of the third method compared with the MRI ground truth data is 
1.1 mm with a maximum error of 3.7 mm, while the worse prediction is 2.8 mm with a 
maximum error of 9.1mm, as shown in Figure 10. 

 
Figure 10. The error of the best and the worst prediction cases of the third method compared with 
MRI ground truth data. 
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All comparison mean error ranges are reported in Table 1 for all subjects and patients 
in the neutral position. The mean error of all subjects from the third method is smaller 
than that in the second and the first methods. 

Table 1. Reported error ranges of 3D faces reconstructed using the methodology compared to the 
3D faces reconstructed by Kinect and MRI techniques for the validation study. 

Method Subject Error (mm) Method Subject Error (mm) 

Fitting—Kinect 
comparison 

1 2.3 ± 2.9 
Fitting—MRI com-

parison 

1 2.0 ± 2.5 
2 6.3 ± 7.6 2 6.3 ± 7.3 
3 2.4 ± 2.9 3 3.1 ± 3.8 

Mean 3.7 ± 4.5 Mean 3.8 ± 4.5 

Deca—Kinect com-
parison 

1 2.6 ± 1.9 

Deca—MRI com-
parison 

1 2.9 ± 2.1 
2 1.5 ± 1.5 2 2.6 ± 2.1 
3 1.5 ± 1.4 3 2.2 ± 2.0 
4 2.2 ± 1.7 4 1.7 ± 1.6 

Mean 1.8 ± 1.6 Mean 2.3 ± 1.9 

Deep3Dface—Ki-
nect comparison 

1 1.7 ± 1.3 

Deep3Dface—MRI 
comparison 

1 1.6 ± 1.1 
2 1.8 ± 1.3 2 2.3 ± 1.6 
3 1.3 ± 1.0 3 1.8 ± 1.4 
4 1.4 ± 1.0 4 1.8 ± 1.5 

Mean 1.5 ± 1.1 Mean 1.9 ± 1.4 

The reconstruction errors of a healthy subject in various mimic positions are shown 
in Figure 11. In the neutral position, the medium reconstruction error is 1.4 mm, while this 
error is 1.3 mm and 1.7 mm in smile, and [e] and [u] pronunciations, respectively. Simi-
larly, the reconstruction errors of a facial palsy patient in various mimic positions were 
shown in Figure 12. The medium reconstruction error is 1.1 mm, 1.4 mm, 1.3 mm, and 0.9 
mm in neutral, smile, and [e] and [u] pronunciations, respectively. 

 
Figure 11. The error of the reconstructed face in mimic position of a healthy subject. 
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Figure 12. The error of the reconstructed face in mimic position of a facial palsy subject. 

Several examples of 3D face reconstruction were illustrated in Figure 13 using 
method 3 (deep 3D face reconstruction) for facial palsy patients from 2D images collected 
in open access. 
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Figure 13. The 3D face reconstruction of facial palsy patients using method 3 (deep 3D face recon-
struction) using collected images in open access dataset. 

The reconstructed faces of 12 patients in neutral and smiling poses from 2D images 
obtained at CHU Amiens were illustrated in Figure 14. 

For all patients with their face in a neutral position (Figures 13 and 14), the output 
reconstructed 3D face has quite a close appearance to the individual in the input 2D image. 
The asymmetric feature of the mouth of all patients can be observed in the reconstructed 
3D faces. In the eye region, this asymmetric feature seems less noticeable. In the patients 
of the second dataset, the asymmetry is not much observed for both positions including 
neutral and smiling. This is probably due to the degree of severity of the facial palsy, 
which seems to be less important than the first dataset. This demonstrates the limitation 
of using the database with normal faces instead of facial palsy. 
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Figure 14. The 3D face reconstruction of the last six facial palsy patients using method 3 (deep 3D 
face reconstruction) using images from CHU Amiens. 

4. Discussion 
Fast reconstruction of the 3D face shape plays an important role in the suitable use of 

computer-aided decision support systems for facial disorders. This allows us to track the 
normal and abnormal facial deformations in static and dynamic postures, leading to the 
improved diagnosis and rehabilitation of the involved patients [9,58]. The facial analysis 
for diagnosis and treatment has mainly been based on 2D images [59–61], which remains 
a challenge due to variation poses, expressions, and illumination. However, the 3D infor-
mation collected from scanners and other stereo devices is time-consuming and expensive 
[7,49,62] . Recently, effective data science and deep learning methods have been devel-
oped for reconstructing 3D face information from a single image or from multiple images 
[24]. This opens new avenues for the 3D face shape reconstruction for facial palsy patients. 
In the present study, we applied three state-of-the-art methods (a morphable model and 
two pre-trained deep learning models) to reconstruct the 3D face shape in the neutral and 
facial mimics postures from a single image. Obtained results showed a very good recon-
struction error level by using a well pre-trained deep learning model applied for healthy 
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subjects as well as facial palsy patients. The reconstruction is very fast, and this solution 
is very suitable to be included into a computer-aided decision support tool. 

Regarding the comparison with ground truth data from Kinect depth sensor and MRI 
data, the best mean errors range from 1.5 to 1.9 mm for static and facial mimic postures. 
These findings are in agreement with the accuracy level reported in the literature. An ac-
curacy comparison for heathy subjects revealed that, in the neutral position, the error 
range is less than 2mm when comparing the Basel Face Model (BFM), FaceWarehouse 
model, and FLAME model [49]. Moreover, the error ranges from 5 to 10mm for positions 
with a large movement amplitude (mouth opening, facial expressions) [49]. In particular, 
all three methods estimate the 3D face model parameters without any paired ground truth 
data requirement. For the near frontal view image, all of the methods can reconstruct the 
3D face of the patient well in the central face area; however, the first method turns out 
badly when attempting to keep a low error at the jaw where it is occluded, while two other 
methods can handle the occlude part in a relatively stable way. This is because both the 
second and third methods were trained with the loss function associated with the pose 
change. Interestingly, the first method reconstructs the second healthy subject, who is 
Asian, with a large error (~6.3 mm), while these errors are relatively smaller (2–3 mm) for 
other subjects, who are French. The reason for this is that the first method is based on a 
3DMM model which was built from mostly Caucasian subjects. While the second and 
third methods, which were based on the 3DMM model, were trained based on subjects 
with more diversity in ethnicity, there is not much of a difference in error between each 
subject when reconstructing the 3D face of all subjects (1.7–2.9 mm and 1.6–2.3 mm for the 
second and third methods respectively). This might prove that with more diversity in eth-
nicity when building the 3DMM model, the result of the reconstruction can be better. 
Method 3 was also applied to reconstruct 3D faces of facial palsy patients from uncon-
strained conditions (images were captured by any devices) since it has the lowest recon-
struction error. The method is good at capturing asymmetric features in the mouth area, 
but less so in the eyes. This is due to the method’s usage of the FLAME model, which 
includes various expressions but does not include any patients with facial palsy. 

In the present study, the first method fits a 3DMM to a single image based on a scale 
orthographic projection [25]. The method first detects facial landmarks detected on the 
input image, then projects the set of corresponding 3D points from the 3D model to obtain 
2D points, and finally estimates the shape and pose parameters of the face model by min-
imizing the error between the 2D facial landmarks from the 3D model and 2D facial land-
marks from the 2D facial image. The second used method reconstructs the 3D face based 
on an established FLAME head model [48]. The method is based on a resNet-50 deep 
learning model to learn the shape parameters, such as shape, expression, pose, and detail, 
and appearance parameters, such as albedo and lighting. The model is trained by mini-
mizing the loss function estimated from the input image and the synthesized image gen-
erated by decoding the latent code of the encoded input image. The third applied method 
reconstructs the 3D face of the patient with weakly-supervised learning to regress the 
shape and texture coefficients from a given input image [53]. This method was also based 
on a hybrid-level loss function to train the resNet-50 deep learning model. 

Regarding the 3D shape reconstruction, our findings confirmed the high accuracy 
level of the 3D pre-trained deep learning models for facial palsy patients. In particular, 
the third method was able to reconstruct the geometric details, such as shape, pose, and 
expression, while the second method reconstructs the face with the wrinkle detail. The 
findings also revealed that the morphable model provided a lower accuracy level. The 
second and third methods result in better accuracy due to integrating the loss of both ge-
ometric information (e.g., the landmark loss) and appearance information (e.g., the pho-
tometric loss), while the first method only counts the landmark loss and ignores the ap-
pearance information. Another reason for being lower accuracy is that the first method 
estimates the shape parameters from the Basel 3D Morphable model [33]. This was only 
modeled based on the face database of mostly Caucasian subjects with neutral 
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expressions. The second and third methods were based on the 3D face models with a 
higher diversity in ethnicity and variations in facial expressions, such as the FLAME 
model [49] and FaceWarehouse [34], respectively. The FLAME model was trained from 
sequences of 3D face scans that can generalize well to the novel facial data of the different 
subjects, which is more reliable and flexible for capturing patient-specific facial shapes. 

One important limitation of the present study deals with a small number of subjects 
and patients used for prediction. Another limitation deals with the lack of facial palsy 
patients in the learning database. This results in the reduction of several facial palsy pa-
tients’ features (e.g., asymmetric face, dropping mouth corner, cheek) while reconstruct-
ing their 3D face. Thus, a larger and diverse 3D facial database, including facial palsy sub-
jects, should be acquired to confirm our findings and contribute toward a potential clinical 
application. Moreover, another limitation of the study relates to the usage of the 3D sta-
tistical facial model. The first method used a 3DMM which was based on the PCA basis 
vectors so that the reconstruction of more detailed information, such as expression and 
wrinkles, can become a hard task. The second and third methods improve that by building 
a more diverse model with subtler information, such as expression and wrinkles, but still 
use a linear model which could generate more error due to facial shape variations, which 
cannot be modeled perfectly using a combination of linear components, as noted in 
[24,63,64] . Improving the existing 3D face models can be a potential suggestion for future 
works. Furthermore, the reconstruction result has not been statistically analyzed for each 
region of the face. This could tackle the uncertainty of the predicted models. Another lim-
itation relates to the effect of the variation of the 2D input images, such as the pose and 
lighting conditions, which have not been investigated. A variation, along with the larger 
quantity, of facial palsy patients are needed for improving the result of the reconstruction 
and should be performed in future work. 

5. Conclusions 
The 3D reconstruction of an accurate face model is essential for providing reliable 

feedback for clinical decision support. Medical imaging and specific depth sensors are 
accurate but not suitable for an easy-to-use and portable tool. The recent development in 
deep learning (DL) models opens new challenges for 3D shape reconstruction from a sin-
gle image. However, the 3D face shape reconstruction of facial palsy patients is still a chal-
lenge, and this has not been investigated. 

In this present study, the 3D face shape was reconstructed from a single image for 
facial palsy patients. The methodology could be used for a single 2D image from any de-
vice for reconstructing the 3D face of patients with facial palsy. The methodology used 
several methods to reconstruct the 3D face shape models of the facial palsy patients in 
natural and mimic postures from one single image. Three different methods (3D Basel 
Morphable model and two 3D Deep Pre-trained models) were applied to the dataset of 
two healthy subjects and two facial palsy patients. Reconstructed outcomes showed a 
good accuracy level compared to the 3D shapes reconstructed using Kinect-driven recon-
structed shapes (1.5 ± 1.1 mm) and MRI-based shapes (1.9 ± 1.4 mm). 

This present study opens new avenues for the fast reconstruction of the 3D face 
shapes of facial palsy patients from a single image. As perspectives, reconstructed faces 
could be used for the further analysis of the face in terms of expression and symmetry. 
Furthermore, the best DL method will be implemented into our computer-aided decision 
support system for facial disorders.  
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