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Abstract: The difference of Zagreb indices of a graph G is defined as ∆M(G) = ∑
u∈V(G)

(d(u))2 −

∑
uv∈E(G)

d(u)d(v), where d(x) denotes the degree of a vertex x in G. A Halin graph G is a graph that

results from a plane tree T without vertices of degree two and with at least one vertex of degree at
least three such that all leaves are joined through a cycle C in the embedded order. In this paper, we
establish both lower and upper bounds on the difference of Zagreb indices for general Halin graphs
and some special Halin graphs with fewer inner vertices. Furthermore, extremal graphs attaining
related bounds are found.
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1. Introduction

All graphs that we consider in this paper are simple. If G is a graph, then we use V(G),
E(G), ∆(G), and δ(G) to denote its vertex set, edge set, maximum degree, and minimum
degree, respectively. Let n = |V(G)| and m = |E(G)|. For a vertex y ∈ V(G), we denote by
dG(y) the degree of y in G (in short, d(y)).

A topological index is indeed a quantity associated with chemical composition, which
reveals a close connection between chemical structure and many physical properties,
chemical reactivity, or biological activity. When we discuss a topological index that results
from the vertex degree of a graph, we call it a degree-based index. Given a graph G, we
define the first Zagreb index M1(G) and the second Zagreb index M2(G) as follows:

M1(G) = ∑
u∈V(G)

(d(u))2, M2(G) = ∑
uv∈E(G)

d(u)d(v).

The parameter M1(G) was known to appear in some approximate description regard-
ing the total π-electron energy [1] in 1972, and Gutman et al. introduced the parameter
M2(G) to measure the branching of the carbon atom skeleton [2] in 1975. The first em-
ployment of the name Zagreb indices appeared in a survey article [3]. A wealth of results
above these two indices in graph theory was already collected in the survey article [4].
Recently, Pei and Pan [5] established some upper bounds for the Zagreb indices of trees
in which distance k-domination number were given, and, moreover, they developed a
characterization of extremal trees. Das and Ali [6] provided maximum value on the second
Zagreb index for all connected graphs according to its order and cyclomatic number. Patil
and Yattinahalli [7] obtained explicit formulae for the second Zagreb index of some special
graphs such as semitotal-line graphs, semitotal-point graphs, and total transformation
graphs. Yang and Deng [8] determined maximal values and maximal graphs for the first
Zagreb index of unicyclic digraphs with respect to order and matching number.
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Let ∆M(G) = M2(G)−M1(G), which is said to be the difference of Zagreb indices of
a graph G (see [9,10]). Using a quick computation, we may easily deduce the following
meaningful expression:

∆M(G) = M2(G)−M1(G) = ∑
uv∈E(G)

(d(u)− 1)(d(v)− 1)−m.

More recently, many interesting results about the difference of Zagreb indices of given
graphs were obtained. According to the order and cyclicity of G, Caporossi et al. [11]
provided two nice lower bounds on ∆M(G) for representation. Milošević et al. [12] re-
searched into the graphs, where ∆M(G) became an integer. Furtula et al. [10] gave many
fundamental features of ∆M(G). A more thorough characterization of graphs depending
on the size of ∆M(G) was set up in [13]. Wang and Yuan [14] discussed the difference
between M1(G) and M2(G) to yield some interesting extremal results and related structural
properties. Horoldagva et al. [15] investigated the cyclic graphs by giving the max–min
characterization results on ∆M(G) with respect to the number of order and cut edges. The
extremal cacti with given parameters concerning ∆M(G) were obtained in [16]. Much
more recently, Wang and Zheng [17] established both sharp lower and upper bounds on
∆M(G) for maximal plane graphs with minimum degree four and diameter two, and found
extremal graphs satisfying these prescribed bounds.

Let T be a tree, in which it no longer has a vertex of degree two, and there exists at
least one vertex of degree three or more. A vertex of degree exactly one is a leaf of the tree
T. A tree T is called a plane tree if T is a tree that is embedded in the plane. A Halin graph
is a graph G = T ∪ C, where T is a plane tree and C is a cycle obtained by connecting all
consecutive leaves of T in the cyclic order determined by the embedding of T. Sometimes,
T is said to be characteristic tree of G, and C is the outer cycle of G. The vertices in V(C) and
V(G) \V(C) are called outer vertices and inner vertices of G, respectively.

Halin graphs are minimally three-connected plane graphs, that is, they are themselves
three-connected, but any of their proper subgraph is not. Bondy and Lovász [18] demon-
strated that a Halin graph is almost pancyclic, that is, it has at least one cycle of each length
p, 3 ≤ p ≤ n, except possibly for one even value of p. Particularly, Halin graphs are
Hamiltonian. In 2003, Stadler [19] investigated the minimal cycle bases for Halin graphs.
Lai et al. [20] established a close relation between the strong chromatic index for a Halin
graph and its characteristic tree. Chan et al. [21] showed the edge-face chromatic number of
a Halin graph G with ∆(G) ≥ 5 which is equal to ∆(G). Other related property-preserving
results on Halin graphs have emerged in [22–24].

The main purpose of this paper is to obtain the sharpness of lower and upper bounds
on difference of Zagreb indices concerning Halin graphs by considering two situations:
(i) general case; (ii) special case with fewer inner vertices.

2. Preliminaries

Assume that G is a Halin graph. Let Vinn(G) and Vout(G) denote the set of inner
vertices and outer vertices of G, respectively. When |Vinn(G)| = 1, G is referred to as a wheel
with n vertices, denoted Wn. Let v ∈ V(G). We say that v is a k-vertex if d(v) = k. An inner
vertex is called a handle if exactly one of its neighbors is an inner vertex. In particular, if v is
a handle , and d(v) = k, then v is said to be k-handle. We define an edge uv of E(G) to be an
(i, j)-edge, where d(u) = i and d(v) = j. For simplicity, the set of (i, j)-edge, and the number
of (i, j)-edges of G are denoted by Ei,j and mi,j, respectively, where δ(G) ≤ i, j ≤ ∆(G).

Lemma 1. Let G = T ∪ C be a Halin graph which is not a wheel. Then G includes at least
two handles.

Proof. Note that, because G is not a wheel, G includes at least two inner vertices. Let
F = G−V(C). Then, F is a tree with |V(F)| ≥ 2. Let P = z1z2 · · · zk be the longest path in
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F. According to the longest property of P, the assertion that k ≥ 2 and both z1 and zk are
leaves of F holds. Thus, z1 and zk are handles of G.

Lemma 2. Let G = T ∪ C be a Halin graph on n vertices. Then |Vout(G)| ≥ d n
2 e+ 1.

Proof. For i ≥ 1, let ni denote the number of i-vertices in T. Then, n = n1 + n2 + · · ·+ n∆,
n1 = |Vout(G)|, where ∆ = ∆(T) = ∆(G). Since T has no 2-vertex and |E(T)| = n− 1,
we obtain:

2(n− 1) = ∑
v∈V(T)

dT(v) = n1 +
∆

∑
i=3

ini.

If ∆ ≥ 4, then 2(n− 1) ≥ n1 + 4+ 3(n− n1− 1), so it follows that n1 ≥ 1
2 (n + 3) ≥ d n

2 e+ 1.
If ∆ = 3, then 2(n− 1) = n1 + 3(n− n1), that is, 2n1 = n + 2, which implies that n is even,
and so n1 = n

2 + 1 = d n
2 e+ 1.

Lemma 2 asserts that each Halin graph G contains at least three outer vertices. Specifi-
cally, if |Vout(G)| = 3, then G ∼= K4.

Lemma 3. Let G = T ∪ C be a Halin graph on n vertices which is not a wheel. Assume
that v0 is a k-handle with neighbors u0, v1, . . . , vk−1 in cyclic order, where u0 is an inner ver-
tex and v1, v2, . . . , vk−1 are outer vertices. Assume that C = v1v2 · · · vk−1vk · · · vtv1, where
t = |V(C)| ≥ 4. Suppose G′ = T′ ∪ C′ is a Halin graph obtained from G by carrying out the
following operations (OP1) and (OP2), as shown in Figure 1:

(OP1) Contracting the edge v0u0 into a vertex v′0, and adding a leaf u′0 at v′0 to form T′;
(OP2) Set C′ = v1v2 · · · vk−1u′0vk · · · vtv1.

Then, ∆M(G′) > ∆M(G).

Figure 1. Operations of G to G′.

Proof. It is now easily checked that G′ is a Halin graph with |V(G′)| = |V(G)| = n and
|E(G′)| = |E(G)|+ 1. Suppose that dG(u0) = h and v0, u1, u2, . . . , uh−1 are the neighbors
of u0 in cyclic order. It follows that dG′(v′0) = k + h − 1 ≥ 3 + 3− 1 = 5, dG′(u′0) = 3,
and for any x ∈ V(G′) \ {v′0, u′0}, dG′(x) = dG(x). In particular, for j = 1, 2, . . . , h − 1,
dG′(uj) = dG(uj). Let

S = {e ∈ E(G) | e is incident with v0 or u0} ∪ {vk−1vk};
S′ = {e ∈ E(G′) | e is incident with v′0} ∪ {vk−1u′0, u′0vk}.
Note that E(G)− S = E(G′)− S′ and every edge e ∈ (E(G)− S) ∩ (E(G′)− S′) has

the same contribution in both ∆M(G) and ∆M(G′). For an edge e = xy ∈ S, let

φ(e) = (dG(x)− 1)(dG(y)− 1)− 1,

and for an edge e′ = x′y′ ∈ S′, let

φ′(e′) = (dG′(x′)− 1)(dG′(y
′)− 1)− 1.
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To obtain the conclusion, we need to compute the following:

σ : = ∑
uv∈S

φ(uv)

= ∑
uv∈S

[(dG(u)− 1)(dG(v)− 1)− 1]

= (k− 1)[(3− 1)(k− 1)− 1] + [(k− 1)(h− 1)− 1]

+ [(3− 1)(3− 1)− 1] + [(h− 1)(dG(u1)− 1)− 1]

+ [(h− 1)(dG(u2)− 1)− 1] + · · ·+ [(h− 1)(dG(uh−1)− 1)− 1],

and

σ′ : = ∑
uv∈S′

φ′(uv)

= ∑
uv∈S′

[(dG′(u)− 1)(dG′(v)− 1)− 1]

= k[(3− 1)(k + h− 1− 1)− 1] + 2[(3− 1)(3− 1)− 1]

+ [(k + h− 2)(dG(u1)− 1)− 1] + [(k + h− 2)(dG(u2)− 1)− 1]

+ · · ·+ [(k + h− 2)(dG(uh−1)− 1)− 1].

Since

σ′ − σ = kh + k + h + (k− 1)[dG(u1) + dG(u2) + · · ·+ dG(uh−1)− (h− 1)]

≥ kh + k + h + 2(k− 1)(h− 1)

= 3kh− k− h + 2

= (k− 1)(h− 1) + 2kh + 1

≥ (3− 1)(3− 1) + 2× 3× 3 + 1 = 23,

we derive
∆M(G′)− ∆M(G) = σ′ − σ ≥ 23 > 0.

A direct consequence of Lemma 3 is the next simple lemma.

Lemma 4. Let G be a Halin graph on n vertices and |Vinn(G)| ≥ 2. Then, repeating the above
operations |Vinn(G)| − 1 times, we obtain finally a wheel Wn.

With an easy computation, we can obtain the next lemma:

Lemma 5. For n ≥ 3, ∆M(Wn) = 2(n− 1)2.

3. General Halin Graphs

In this section, we present tight lower and upper bounds on difference of Zagreb
indices for any Halin graphs, and characterize corresponding extremal graphs.

Theorem 1. Let G be a Halin graph on n vertices. Then ∆M(G) ≤ 2(n− 1)2, where the equality
holds if and only if G ∼= Wn.

Proof. If G is a wheel, the result deduces immediately from Lemma 5. Thus, below, we
assume that G is a nonwheel. Let k = |Vinn(G)| ≥ 2. By Lemma 4, by repeating the above
operations k− 1 times, we obtain a sequence of graphs G0, G1, . . . , Gk−1, where G = G0, and
Gk−1

∼= Wn. By Lemma 3, for any 0 ≤ i ≤ k− 1, we know that ∆M(Gi+1)− ∆M(Gi) ≥ 23.
Hence,

∆M(G0) < ∆M(G1) < · · · < ∆M(Gk−1) = 2(n− 1)2.
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This shows that ∆M(G) < 2(n− 1)2 if G is a nonwheel. Hence, the result establishes the
above.

A Halin graph with n vertices is special if it contains one 4-vertex and (n− 1) 3-vertices.

Lemma 6. Suppose G is a Halin graph with n vertices and m edges.

(1) If n is even, then m ≥ 3
2 n, where the equality attains if and only if G is 3-regular.

(2) If n is odd, then m ≥ 1
2 (3n + 1), where the equality attains if and only if G is special.

Proof. Note that δ(G) = 3 and ∆(G) ≥ 3. If n is even, then since

2m = ∑
v∈V(G)

d(v) ≥ 3n,

it follows that m ≥ 3
2 n. Obviously, equality of the lower bound is attained if and only if G

is a 3-regular Halin graph. Assume that n is odd. Since there is no 3-regular graph of odd
order, it yields that ∆(G) ≥ 4 and the following expressions hold:

2m = ∑
v∈V(G)

d(v) ≥ 4 + 3(n− 1) = 3n + 1.

Therefore, m ≥ 1
2 (3n + 1). Similarly, equality of the lower bound is attained if and only if

G is a special Halin graph.

It is not hard to check that there exist only one 3-regular Halin graph on four vertices
(i.e., K4), one 3-regular Halin graph on six vertices (i.e., the triangular prism), one 3-regular
Halin graph on eight vertices, and three 3-regular Halin graphs on ten vertices. These
graphs are depicted in Figure 2.

Figure 2. 3-regular Halin graphs with n = 4, 6, 8, 10.

Analogously, there exist only one special Halin graph on five vertices (i.e., W5), one
special Halin graph on seven vertices, three special Halin graphs on nine vertices, and eight
special Halin graphs on eleven vertices. These graphs are depicted in Figure 3.

Lemma 7. Let n ≥ 4 be an integer.

(1) If n is even, then there is a 3-regular Halin graph on n vertices.
(2) If n is odd, then there is a special Halin graph on n vertices.

Proof. (1) If n = 4, 6, 8, 10, then the result holds automatically by the foregoing analysis
and Figure 2. Assume that n ≥ 12 is even. Let P = x1x2 · · · xk be a path on k ≥ 5 vertices.
Let T be a plane tree constructed from P by adding two leaves at each of x1 and xk and one
leaf at each of x2, x3, . . . , xk−1. Let G denote the Halin graph with T as its characteristic tree.
Then n = 2k + 2 ≥ 12 is even and G is our required graph.
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(2) If n = 5, 7, 9, 11, then the result is true by Figure 3. Assume that n ≥ 13 is odd. Let
P = x1x2 · · · xk be a path on k ≥ 5 vertices. Let T be a plane tree constructed from P by
adding three leaves at x1, two leaves in xk, and one leaf at each of x2, x3, . . . , xk−1. Let G
denote the Halin graph with T as its characteristic tree. Then n = 2k + 3 ≥ 13 is odd and G
is our required graph.

Figure 3. Special Halin graphs with n = 5, 7, 9, 11.

By a simple computation, we immediately derive the next lemma:

Lemma 8. Let G be a 3-regular Halin graph with n ≥ 4 being even. Then ∆M(G) = 9
2 n.

Lemma 9. Let G be a special Halin graph with n ≥ 5 being odd. Then ∆M(G) = 9
2 n + 19

2 .

Proof. By Lemma 6(2), m = 1
2 (3n + 1). Since V(G) consists of one 4-vertex and (n− 1)

3-vertices, we have that E(G) = E3,3 ∪ E3,4, m3,3 = m− 4, and m3,4 = 4. Thus,

∆M(G) = ∑
uv∈E(G)

(d(u)− 1)(d(v)− 1)−m

= 4(4− 1)(3− 1) + (m− 4)(3− 1)(3− 1)−m

= 3m + 8

= 3[
1
2
(3n + 1)] + 8

=
9
2

n +
19
2

.

Now we determine a tight lower bound on ∆M(G) for a Halin graph G with n vertices.
If n = 4, then G ∼= W4, and ∆M(W4) = 18 by Lemma 8. If n = 5, then G ∼= W5, and
∆M(W5) = 32 by Lemma 9. In general, for n ≥ 6, we have the following:

Theorem 2. Let G = T ∪ C be a Halin graph on n ≥ 6 vertices. Then the next results are
presented.

(1) If n is even, then ∆M(G) ≥ 9n
2 , where the equality holds if and only if G is 3-regular.

(2) If n is odd, then ∆M(G) ≥ 9n
2 + 19

2 , where the equality holds if and only if G is special.
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Proof. Using Lemmas 6(1), 7(1), and 8, we can infer the result (1). Similarly, by Lemmas 6(2),
7(2), and 9, the result (2) holds automatically.

4. Halin Graphs with Fewer Inner Vertices

Given an integer k ≥ 1, let Hk
n denote the class of all Halin graphs with n vertices

and k inner vertices. In particular, if k = 1, thenH1
n = {Wn}. This section is dedicated to

investigating the difference of Zagreb indices regarding Halin graphs having fewer inner
vertices.

4.1. Halin Graphs with Two Inner Vertices

Suppose G = T ∪ C ∈ H2
n is a Halin graph. Then |Vinn(G)| = 2. Assume that V(G) =

{u, v; u1, . . . , up−1; v1, . . . , vq−1}, C = u1u2 · · · up−1v1v2 · · · vq−1u1, E(G) = E(C)∪{uv; uu1,
. . . , uup−1; vv1, . . . , vvq−1}, where d(u) = p ≥ 3, d(v) = q ≥ 3, and n = p + q, as illustrated
in Figure 4.

Figure 4. G ∈ H2
n with n = p + q.

Theorem 3. Let G = T ∪ C ∈ H2
n be a Halin graph with n = p + q and q ≥ p, which is shown

in Figure 4. Then the next results can be established:

(1) ∆M(G) ≤ 2n2 − 12n + 27, where the equality holds for p = 3 and q = n− 3.
(2) If n is even, then ∆M(G) ≥ 5

4 n2 − 3n, where the equality holds for p = q = n
2 ; If n is odd,

then ∆M(G) ≥ 5
4 n2 − 3n + 3

4 , where the equality holds for p = n−1
2 and q = n+1

2 .

Proof. The definition implies that |Vinn(G)| = 2, |V(C)| = n− 2, and m = (n− 1) + (n−
2) = 2n− 3. Note that G has only (3, 3)-edges, (3, p)-edges, (3, q)-edges, and (p, q)-edge.
Furthermore, observe that m3,3 = n − 2, m3,p = p − 1, m3,q = q − 1, mp,q = 1. Since
q = n− p, we have the following:

∆M(G) = ∑
uv∈E(G)

(d(u)− 1)(d(v)− 1)−m

= (3− 1)(3− 1)(n− 2) + (3− 1)(p− 1)(p− 1)

+ (3− 1)(q− 1)(q− 1) + (p− 1)(q− 1)− (2n− 3)

= 2n2 − 3n + 3p2 − 3pn.

Let
f (p) = 3p2 − 3pn.

It is actually necessary to view f (p) as a continuous function of p to search for the
minimum and maximum values of f (p). Evidently, the function f (p) decreases strictly
monotonically for p ∈ [3, b n

2 c]. Consequently, its maximum value achieves at p = 3:

f (3) = 3× 32 − 3× 3n = 27− 9n.

This implies that ∆M(G) achieves its maximum value:

∆M(G) = 2n2 − 3n + 27− 9n = 2n2 − 12n + 27.
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On the other hand, it is easy to show that f (p) obtains its minimum value if p = b n
2 c.

Precisely, if n is even, then p = n
2 , and hence f ( n

2 ) = 3( n
2 )

2− 3n× n
2 = − 3

4 n2. Consequently,
∆M(G) obtains its minimum value:

∆M(G) = 2n2 − 3n− 3
4

n2 =
5
4

n2 − 3n.

If n is odd, then p = n−1
2 , and hence f ( n−1

2 ) = 3( n−1
2 )2 − 3n× n−1

2 = − 3
4 n2 + 3

4 . It turns
out that ∆M(G) attains its minimum value:

∆M(G) = 2n2 − 3n− 3
4

n2 +
3
4
=

5
4

n2 − 3n +
3
4

.

4.2. Halin Graphs with Three Inner Vertices

Let G = T∪C ∈ H3
n be a Halin graph with Vinn(G) = {u, v, w}. Then {u, v, w} forms a

path in T, say uvw. Assume that d(u) = p, d(v) = q, and d(w) = r. Then p + q + r = n + 1,
|V(C)| = n− 3, and m = (n− 1) + (n− 3) = 2n− 4, where p, q, r ≥ 3.

Lemma 10. Let G ∈ H3
n be a Halin graph defined above. Then

∆M(G) = 2p2 + q2 + 2r2 + (n− 2)q− 3(n + 1).

Proof. Since n = p + q + r− 1, m = 2n− 4, E(G) = E(C) ∪ E3,p ∪ E3,q ∪ E3,r ∪ Ep,q ∪ Eq,r,
|E(C)| = n− 3, m3,p = p− 1, m3,q = q− 2, m3,r = r− 1, mp,q = 1, and mq,r = 1, we have
the following:

∆M(G) = ∑
uv∈E(G)

(d(u)− 1)(d(v)− 1)−m

= (3− 1)(3− 1)(n− 3) + (3− 1)(p− 1)(p− 1) + (3− 1)(q− 1)(q− 2)

+ (3− 1)(r− 1)(r− 1) + (p− 1)(q− 1) + (q− 1)(r− 1)− (2n− 4)

= 2p2 + 2q2 + 2r2 − 3q + pq + qr− 3(n + 1)

= 2p2 + q2 + 2r2 + (n− 2)q− 3(n + 1).

Lemma 11. Let G = T ∪ C ∈ H3
n be a Halin graph with p ≥ r ≥ 4 defined above. Let T′ denote

a plane tree obtained from T by removing a leaf at w and then adding a leaf at u. Let G′ = T′ ∪ C′

be a Halin graph with T′ as characteristic tree. Then ∆M(G′) > ∆M(G).

Proof. Note that G′ ∈ H3
n satisfies that |V(G′)| = |V(G)| = n, |E(G′)| = |E(G)| = m,

|V(C′)| = |V(C)|, Vinn(G′) = Vinn(G) = {u, v, w}, dG′(u) = dG(u) + 1 = p + 1, dG′(v) =
dG(v) = q, dG′(w) = dG(w)− 1 = r− 1 ≥ 3. By Lemma 10,

∆M(G′)− ∆M(G) = 2(p + 1)2 + q2 + 2(r− 1)2 + (n− 2)q− 3(n + 1)

− [2p2 + q2 + 2r2 + (n− 2)q− 3(n + 1)]

= 4(p− r) + 4 ≥ 4.

Lemma 11 tells us that it is sufficient to consider the case that p ≥ r = 3 to maximize
the difference of Zagreb indices for the graphs inH3

n.

Theorem 4. Let G ∈ H3
n be a Halin graph with r = 3. Then ∆M(G) ≤ 2n2 − 20n + 68, with

equality if and only if the following statements (1) and (2) hold:
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(1) If q ≥ p, then p = 3 and q = n− 5;
(2) If p > q, then q = 3 and p = n− 5.

Proof. Since r = 3, we have p + q = n + 1 − 3 = n − 2. By Lemma 10, ∆M(G) =
2p2 + 2q2 + pq− 3(n− 5). Let

f (p, q) = 2p2 + 2q2 + pq− 3(n− 5).

(1) Suppose that q ≥ p. Our aim is to maximize f (p, q), based on the conditions that
q ≥ p ≥ 3 and p + q = n− 2. In fact, when p ≥ 4, we obtain:

f (p− 1, q + 1)− f (p, q) = 2(p− 1)2 + 2(q + 1)2 + (p− 1)(q + 1)− 3(n− 5)

− [2p2 + 2q2 + pq− 3(n− 5)]

= 3(q− p) + 3 ≥ 3.

The above inequality indicates that the function f (p, q) increases strictly monotonically
while increasing q and decreasing p simultaneously. Hence, f (p, q) achieves its maximum
value at (3, n− 5):

f (3, n− 5) = 2× 32 + 2(n− 5)2 + 3(n− 5)− 3(n− 5) = 2n2 − 20n + 68.

This implies that ∆M(G) attains its maximum value 2n2 − 20n + 68 at (3, n− 5, 3).
(2) Suppose that p > q. Similarly, our aim is also to maximize f (p, q) that satisfies

p > q ≥ 3 and p + q = n− 2. If q ≥ 4, then

f (p + 1, q− 1)− f (p, q) = 2(p + 1)2 + 2(q− 1)2 + (p + 1)(q− 1)− 3(n− 5)

− [2p2 + 2q2 + pq− 3(n− 5)]

= 3(p− q) + 3 ≥ 3.

This confirms that the function f (p, q) increases strictly monotonically as p increases and q
decreases simultaneously, therefore it achieves the maximum value at (n− 5, 3):

f (n− 5, 3) = 2(n− 5)2 + 2× 32 + 3(n− 5)− 3(n− 5) = 2n2 − 20n + 68.

It follows that ∆M(G) attains its maximum value 2n2 − 20n + 68 at (n− 5, 3, 3).

When n = 12, an easy calculation can be used to find exactly four Halin graphs,
depicted in Figure 5, which attain the maximum value of the difference of Zagreb indices
inH3

12.

Figure 5. Graphs attaining the maximum value of the difference of Zagreb indices inH3
12.

Lemma 12. Let G = T ∪ C ∈ H3
n be a Halin graph defined above such that p ≥ r + 2 ≥ 5. Let

T′ denote a plane tree obtained from T by removing a leaf at u and then adding a leaf at w. Let
G′ = T′ ∪ C′ be a Halin graph with T′ as characteristic tree. Then ∆M(G′) < ∆M(G).

Proof. Note that G′ ∈ H3
n satisfies that |V(G′)| = |V(G)| = n, |E(G′)| = |E(G)| = m,

|V(C′)| = |V(C)|, Vinn(G′) = Vinn(G) = {u, v, w}, dG′(u) = dG(u) − 1 = p − 1 ≥ 4,
dG′(v) = dG(v) = q, and dG′(w) = dG(w) + 1 = r + 1. By Lemma 10,
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∆M(G′)− ∆M(G) = 2(p− 1)2 + q2 + 2(r + 1)2 + (n− 2)q− 3(n + 1)

− [2p2 + q2 + 2r2 + (n− 2)q− 3(n + 1)]

= −4(p− r) + 4 ≤ −4.

Lemma 12 is used to provide the condition that suffices for handling the cases p = r
and p = r + 1 to minimize the difference of Zagreb indices for graphs inH3

n.

Theorem 5. Let G ∈ H3
n be a Halin graph with p = r or p = r + 1, and η(n) = 7n2

8 − 2n− 3.
Then ∆M(G) ≥ η(n)− ε, where

(1) If n ≡ 0 (mod8), then ε = 1;
(2) If n ≡ 1, 7 (mod8), then ε = − 1

8 ;
(3) If n ≡ 2, 6 (mod8), then ε = 1

2 ;
(4) If n ≡ 3, 5 (mod8), then ε = 7

8 ;
(5) If n ≡ 4 (mod8), then ε = 0.

Furthermore, we determine extremal graphs with these lower bounds.

Proof. Note that p + r = n + 1− q, and p, q, r ≥ 3. If n, q are both odd or even, then
p = r + 1; Otherwise, p = r.
• Assume that p = r. Then 2r + q = n + 1 and 3 ≤ q = n + 1− 2r ≤ n + 1− 6 = n− 5.

By Lemma 10, ∆M(G) = 4r2 + q2 + (n− 2)q− 3(n + 1) = 2q2 − (n + 4)q + n2 − n− 2. Let

f (q) = 2q2 − (n + 4)q = 2(q− n + 4
4

)2 − (n + 4)2

8
.

The objective is to minimize the continuous function f (q), based on the condition that q is
a variable. Thanks to 3 ≤ q ≤ n− 5, f (q) achieves the minimum value if q = b n+4

4 c.
• Assume that p = r + 1. Then 2r + q + 1 = n + 1 and 3 ≤ q = n− 2r ≤ n− 6. By

Lemma 10, ∆M(G) = (2r + 1)2 + q2 + (n− 2)q− 3n− 2 = 2q2− (n + 4)q + n2− n− 1. Let

f (q) = 2q2 − (n + 4)q = 2(q− n + 4
4

)2 − (n + 4)2

8
.

Since 3 ≤ q ≤ n− 6, f (q) attains its minimum value at q = b n+4
4 c.

Now, according to the size of n, we split the proof into eight subcases as follows. Let
∆∗ denote the minimum value of ∆M(G) in every possible case.

(1) n ≡ 0 (mod 8). Then n is even, q = n+4
4 is odd, p = r = 3n

8 , and

f (
n + 4

4
) = − (n + 4)2

8
= −n2

8
− n− 2.

∆M(G) attains its minimum value:

∆∗ = −n2

8
− n− 2 + n2 − n− 2 =

7n2

8
− 2n− 4.

Consequently, we have ∆M(G) ≥ ∆∗ = 7n2

8 − 2n− 4.
(2) n ≡ 1 (mod 8). Then n is odd, q = n+3

4 or q = n+7
4 . If q = n+3

4 , then q is odd, which
implies that p = r + 1, p = 3n+5

8 , r = 3n−3
8 , and ∆M(G) obtaining the minimum value:

∆∗ = 2(
n + 3

4
)2 − (n + 4)(

n + 3
4

) + n2 − n− 1 =
7n2

8
− 2n− 23

8
.
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If q = n+7
4 , then q is even, which implies that p = r = 3n−3

8 , and the minimum value of
∆M(G) is as follows:

∆∗ = 2(
n + 7

4
)2 − (n + 4)(

n + 7
4

) + n2 − n− 2 =
7n2

8
− 2n− 23

8
.

Consequently, we always have ∆M(G) ≥ ∆∗ = 7n2

8 − 2n− 23
8 .

(3) n ≡ 2 (mod 8). Then n is even, q = n+2
4 or q = n+6

4 . If q = n+2
4 , then q is odd,

which implies that p = r = 3n+2
8 , and ∆M(G) attains its minimum value:

∆∗ = 2(
n + 2

4
)2 − (n + 4)(

n + 2
4

) + n2 − n− 2 =
7n2

8
− 2n− 7

2
.

If q = n+6
4 , then q is even, which implies that p = r + 1, p = 3n+2

8 , r = 3n−6
8 , and ∆M(G)

attains its minimum value:

∆∗ = 2(
n + 6

4
)2 − (n + 4)(

n + 6
4

) + n2 − n− 1 =
7n2

8
− 2n− 5

2
.

Consequently, we always have ∆M(G) ≥ 7n2

8 − 2n− 7
2 .

(4) n ≡ 3 (mod 8). Then n is odd, q = n+1
4 or q = n+5

4 . If q = n+1
4 , then q is odd, which

implies that p = r + 1, p = 3n+7
8 , r = 3n−1

8 , and ∆M(G) attains its minimum value:

∆∗ = 2(
n + 1

4
)2 − (n + 4)(

n + 1
4

) + n2 − n− 1 =
7n2

8
− 2n− 15

8
.

If q = n+5
4 , then q is even, p = r = 3n−1

8 , and ∆M(G) attains its minimum value:

∆∗ = 2(
n + 5

4
)2 − (n + 4)(

n + 5
4

) + n2 − n− 2 =
7n2

8
− 2n− 31

8
.

Thus, it always holds that ∆M(G) ≥ 7n2

8 − 2n− 31
8 .

(5) n ≡ 4 (mod 8). Then n is even, q = n+4
4 , r = 3n−4

8 , p = 3n+4
8 , and ∆M(G) attains its

minimum value:

∆∗ = 2(
n + 4

4
)2 − (n + 4)(

n + 4
4

) + n2 − n− 1 =
7n2

8
− 2n− 3.

Thus, it always holds that ∆M(G) ≥ 7n2

8 − 2n− 3.
(6) n ≡ 5 (mod 8). Then n is odd, q = n+3

4 or q = n+7
4 . If q = n+3

4 , then q is even,
which implies that p = r = 3n+1

8 , and ∆M(G) attains its minimum value:

∆∗ = 2(
n + 3

4
)2 − (n + 4)(

n + 3
4

) + n2 − n− 2 =
7n2

8
− 2n− 31

8
.

If q = n+7
4 , then q is odd, which implies that p = r + 1, p = 3n+1

8 , r = 3n−7
8 , and ∆M(G)

obtains the minimum value:

∆∗ = 2(
n + 7

4
)2 − (n + 4)(

n + 7
4

) + n2 − n− 1 =
7n2

8
− 2n− 15

8
.

Thus, it always holds that ∆M(G) ≥ 7n2

8 − 2n− 31
8 .

(7) n ≡ 6 (mod 8). Then n is even, q = n+2
4 or q = n+6

4 . If q = n+2
4 , then q is even,

which implies that p = r + 1, p = 3n+6
8 , r = 3n−2

8 , and ∆M(G) attains its minimum value:

∆∗ = 2(
n + 2

4
)2 − (n + 4)(

n + 2
4

) + n2 − n− 1 =
7n2

8
− 2n− 5

2
.
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If q = n+6
4 , then q is odd, which implies that p = r = 3n−2

8 , and ∆M(G) attains its minimum
value:

∆∗ = 2(
n + 6

4
)2 − (n + 4)(

n + 6
4

) + n2 − n− 2 =
7n2

8
− 2n− 7

2
.

Consequently, we always have ∆M(G) ≥ 7n2

8 − 2n− 7
2 .

(8) n ≡ 7 (mod 8). Then n is odd, q = n+1
4 or q = n+5

4 . If q = n+1
4 , then q is even,

which implies that p = r = 3n+3
8 , and ∆M(G) attains its minimum value:

∆∗ = 2(
n + 1

4
)2 − (n + 4)(

n + 1
4

) + n2 − n− 2 =
7n2

8
− 2n− 23

8
.

If q = n+5
4 , then q is odd, which implies that p = r + 1, p = 3n+3

8 , r = 3n−5
8 , and ∆M(G)

attains its minimum value:

∆∗ = 2(
n + 5

4
)2 − (n + 4)(

n + 5
4

) + n2 − n− 1 =
7n2

8
− 2n− 23

8
.

Thus, it always holds that ∆M(G) ≥ 7n2

8 − 2n− 23
8 .

Hence, by the foregoing discussion, we summarize that ∆M(G) ≥ 7n2

8 − 2n − 4 if

n ≡ 0 (mod 8); ∆M(G) ≥ 7n2

8 − 2n− 23
8 if n ≡ 1, 7 (mod 8); ∆M(G) ≥ 7n2

8 − 2n− 7
2 if

n ≡ 2, 6 (mod 8); ∆M(G) ≥ 7n2

8 − 2n− 31
8 if n ≡ 3, 5 (mod 8); ∆M(G) ≥ 7n2

8 − 2n− 3 if
n ≡ 4 (mod 8). In addition, we also find corresponding extremal graphs with the sharpness
of lower bounds.

5. Conclusions

In this paper, we determined sharpnessabove these bounds on the difference of Zagreb
indices for general Halin graphs. Furthermore, we obtained extremal values on the differ-
ence of Zagreb indices for Halin graphs with the number of inner vertices at most three by
Theorems 3–5. All corresponding graphs for extremal values were completely found.

In conclusion, it is natural to raise the following question:

Problem 1. For k = 4, 5, establish both lower and upper bounds on the difference of Zagreb indices
for Halin graphs inHk

n, and find corresponding extremal graphs.
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